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Abstract

When entities are linked by explicit relations, classification meth-
ods that take advantage of the network can perform substantially
better than methods that ignore the network. This paper argues
that studies of relational classification in networked data should
include simple network-only methods as baselines for compari-
son, in addition to the non-relational baselines that generally are
used. In particular, comparing more complex algorithms with al-
gorithms that only consider the network (and not the features of
the entities) allows one to factor out the contribution of the net-
work structure itself to the predictive power of the model. We
examine several simple methods for network-only classification
on previously used relational data sets, and show that they can
perform remarkably well. The results demonstrate that the inclu-
sion of network-only classifiers can shed new light on studies of
relational learners.

1. Motivation

In recent years, we have seen considerable advances in
algorithms for relational learning, especially statistically
based algorithms. These algorithms have been developed
in a variety of different research fields and problem set-
tings. Generally, these algorithms consider not only the
features of the entities to be classified, but the relations to
and the features of linked entities. Observed improvements
in generalization performance demonstrate that taking ad-
vantage of relational information in addition to attribute-
value information can improve performance—sometimes
substantially.

In this paper,1 we argue that complex relational methods
should be compared not only to non-relational methods,
but also to simple relational methods. Comparison to sim-
ple relational methods is essential for understanding the
source(s) of improved performance. In particular, for rela-
tional learning in networked data (which we discuss in de-
tail below), simple “network-only” classifiers must be used
as baselines to assess how much classification accuracy can
be attributed simply to the nodes’ positions in the network,
and not to more complex modeling.

0Macskassy, S.A. and Provost, F.J., “Simple Models and Clas-
sification in Networked Data,” CeDER Working Paper 03-04,
Stern School of Business, New York University, NY, NY 10012.
Jan 2004.

1Some of this paper’s argument and results appeared in a
workshop last year (Macskassy & Provost, 2003).

In the traditional, non-relational learning setting, the enti-
ties to be classified are (assumed to be) i.i.d., so they can
safely be considered independently when modeling. Re-
lational data have dependencies between entities, violating
the assumption of independence: the classification of an
entity may depend on information about entities to which it
is related, either directly or through arbitrarily long chains
of relations.

In this paper, we consider entities that are connected in a
single network. Some entities’ classifications are known
and some are to be estimated. The labeled entities may be
used as training data and also are available for use during
estimation. This scenario represents many real-world clas-
sification tasks, especially those involving social networks.
For example, in fraud detection entities to be classified as
being fraudulent or legitimate are intertwined with those
for whom classifications are known. In counterterrorism
and law enforcement, suspicious people may interact with
known bad guys. Some networked data are a by-product of
social networks, rather than directly representing the net-
work itself. For example, networks of web pages are built
by people and organizations that are interconnected; when
classifying web pages, some classifications may be known
and some may need to be estimated.

Prior studies have shown that relational learning algorithms
can improve classification in networked data, by taking into
account not only the features of the entities to be classi-
fied, but also the relations to and features of linked enti-
ties. There are many applicable relational learning algo-
rithms (Emde & Wettschereck, 1996; Flach & Lachiche,
1999; Dzeroski & Lavrac, 2001); two examples of their
use in networked data are (Taskar et al., 2001; Neville et al.,
2003). However, it has not been standard practice for stud-
ies of learning from networked data to compare to classi-
fication methods that ignore all feature information, using
only the links between entities and any known class labels.

The main contribution of this paper is the argument and
demonstration that for classification in networked data,
simple, network-only methods must be considered as base-
lines against which more complex methods are compared.
Studies showing the power of relational learning in net-
worked data require a control for the classification power
of the network itself. We present several straightfor-
ward methods for network-only classification. We show
that these simple network-only classifiers can perform re-



markably well on some data sets by comparing their per-
formance with published results using complex relational
learning algorithms. The inclusion of the simple models
can shed new light on the performance of relational learn-
ers. Finally we point out some limitations of our study—a
main one being that even though they perform remarkably
in our study, the simple models still may fall short of a
complete control for the predictive power of the network.

2. Relational Data and Networked Data

We begin by clarifying the type of relational classification
task that is the focus of this paper. A relational classifica-
tion task must contain: (1) entities—e.g., people, movies,
atoms, web-pages, etc., (2) relations between entities—
e.g., directs(person,movie), bound-to(atom,atom), links-
to(web-page,web-page), and (3) a set of target entities—
e.g., person, molecule, web-page, etc. The notion of a re-
lation is vague; we simply assume that relations between
entities have been identified intrinsically by the domain
structure, by a domain expert, or by some other means.
We will describe relational data using graph terminology,
where nodes in the graph represent the entities in the do-
main and the edges between nodes represent the relations
between the entities.

2.1. Single-Entity Graphs

Single-entity graphs represent relational tasks where the
target entities are not interconnected by relationship paths
in the graph. Each target entity is isolated from other tar-
get entities. Sample problems that belong to this category
include:

Medical diagnosis:
Entities: patients, medical tests.
Target entities: patients.
Relations: test-performed(patient,medical-test).
Classification problem: diagnose whether a patient
has a particular disease.

Carcinogenic molecules:
Entities: atoms.
Target entities: molecules made up of all atoms in a
single graph.
Relations: bound-to(atom,atom).
Classification problem: is the molecule carcinogenic?

Single-entity graph tasks can be further subcategorized
based on whether the target entity is a node in the graph
or is a non-trivial subgraph. For single-entity, node-target
(SENT) problems, the graph often forms a tree with the
target entity (e.g., patient) at the root of the tree, and other
entities (e.g., various medical tests) as descendents. For
single-entity, subgraph-target (SEST) problems the target
subgraph often is the entire graph, to be characterized by
its internal structure.

2.2. Multi-Entity Graphs

A different sort of relational classification task has target
entities interconnected to some degree (although there may
be disconnected graph components). Sample problems that
belong to this category include:

• IMDb (Internet Movie Database):
Entities: movies, people (actors, directors, produc-
ers), production companies.
Target entities: movies.
Relations: acted-in, produced-by, directed-by.
Classification problem: “predict” blockbusters.

• Research paper citations:
Entities: research papers, authors.
Target entities: authors or papers.
Relations: author-of, cited-by.
Classification problem: identify the type of research
paper or identify the author of a paper.

• Web-pages/Web-sites:
Entities: web-pages.
Target entities: web-pages.
Relations: links-to.
Classification problem: classify web pages or web
sites by type.

Multi-entity graph tasks can be further subdivided based
on whether entities with known labels interconnect with
entities for which labels are to be estimated. For multi-
entity, separate-data (MESD) tasks, entities with known la-
bels and entities to be estimated are in separate (discon-
nected) graphs. MESD tasks lend themselves naturally to
training/testing divisions.

For multi-entity, networked-data (MEND) tasks, entities
for which labels are to be estimated can be interconnected
with entities with known data. For MEND tasks, there is
not a natural notion of separation into training and test sets.
In real MEND applications (such as those mentioned in the
introduction) it is likely that labeled entities would be used
both for training and as background knowledge during test-
ing. It is on this last category, MEND or simply “networked
data,” that this paper focuses.

2.3. The Power of the Network

Generally, when assessing the modeling power of relational
learning algorithms on networked data, it is essential to
control for the classification power inherent in the struc-
ture of the network given a set of known labels. We argue
that a straightforward (albeit incomplete) way to provide
such a control is to compare to simple classifiers that only
use the network and the known labels. Consider a leave-
one-out classification setting on a graph that contains two
disconnected components, each of which has homogenous
class membership. In this extreme example, the structure
of the network alone allows perfect classification.



Furthermore, for MEND tasks it is possible for informa-
tion about known labels to propagate through the network
from known to unknown entities. Note that for both MEND
and MESD data, it is possible to propagate information
about estimations through the network, if actual labels are
not available. Such “collective classification” has been re-
ceiving increasing attention in machine learning research
(Pearl, 1998; Chakrabarti et al., 1998; Murphy et al., 1999;
Neville & Jensen, 2000; Taskar et al., 2001) and is the basis
for the simple models we describe next.

3. Simple Relational Models

To demonstrate our thesis, we implemented three sim-
ple, network-only methods. All three take advantage of
a first-order Markov assumption on the network: only a
node’s local neighborhood is necessary for classification.
The first two, closely related, methods add an assump-
tion of homophily—that similar entities are more likely to
be interconnected—and simple belief propagation (Pearl,
1998) in cases where neighbors’ labels are not known. The
third method is a simplified variant of a Markov Random
Field (Dobrushin, 1968; Geman & Geman, 1984; Winkler,
2003).

3.1. Relational Neighbor (RN) Classifiers

Our first classifier estimates class probabilities based on
two assumptions in addition to the Markov assumption:
(1) some entities’ class labels are known within the same
MEND structure, and (2) the entities exhibit homophily—
i.e., linked entities have a propensity to belong to the
same class (Blau, 1977; McPherson et al., 2001). A
homophily-based classifier is an important baseline, be-
cause homophily is ubiquitous in social networks and is
the basis for social theories (Blau, 1977; McPherson et al.,
2001). Homophily was one of the first characteristics noted
by early social network researchers (Almack, 1922; Bott,
1928; Richardson, 1940; Loomis, 1946; Lazarsfeld & Mer-
ton, 1954), and holds for a wide variety of different rela-
tionships (McPherson et al., 2001). It seems reasonable to
conjecture that homophily will also be present in other sorts
of networks, especially networks of artifacts.

Definition. Given an entity e and a set De of entities
linked to e, the relational-neighbor (RN) classifier esti-
mates P (c|e), the probability that an entity e belongs to
class c, as the (weighted) proportion of entities in De that
belong to class c.

P (c|e) =
1
Z

∑

{ej∈De|label(ej)=c}
w(e, ej), (1)

where Z =
∑

ei∈De
w(e, ei), and w(e, ei) is the weight of

the link2 between entities e and ei. Entities in De that are

2Note that the notion of “linked to” is domain dependent and,
as we will show, even for the same domain different definitions
can lead to (very) different performance.

not of the same type as e are ignored. If De is empty or
has no entities with known class labels, then the RN will
estimate e based on the class prior (of the known labels).

RN only takes the local neighborhood of a target node into
account. This may be a poor approximation to “the power
of the network” if many of the entities in De are unknown.
More of the network can be taken into account by allow-
ing class information to propagate through the network, a
technique that has been used successfully before—e.g., it-
erative classification (Neville & Jensen, 2000), relaxation
labeling (Chakrabarti et al., 1998) and belief propagation
(Pearl, 1998).

Definition. The iterative relational-neighbor classifier
(RN∗) iteratively classifies networked entities using the RN
classifier in its inner loop. We define RNi as the model at
iteration i, where RN0 defines what is initially known and
RN1 is equivalent to RN. At iteration i, RNi uses the labels
given by RN(i−1) to predict class-membership of unknown
instances. In the case where the class-membership proba-
bility of a neighboring entity, ej ∈ De, is a prediction from
RN∗ and was not initially known, the class with the high-
est probability score is used. An entity e will be classified
as unknown if the (weighted) majority is unknown.3 For
the experiments in paper, RN∗ stops when no unknown en-
tities are left or when no new entities can be labeled (as
could be the case when there are isolated components with
no known labels).

All RN results in this paper are based on RN∗.

3.2. Probabilistic Relational Neighbor (pRN)
Classifiers

RN∗ propagates class labels only when certainty reaches a
critical level. An alternative is to propagate estimates of
the probability of class membership, such that there is an
estimate for all nodes at all times. This allows the incor-
poration of the marginal class distribution as a prior, and
also would allow the incorporation of Bayesian priors or
estimation by other learning algorithms (Neville & Jensen,
2000) (neither of which we consider further in this paper).

Definition. The probabilistic relational-neighbor classi-
fier (pRN) estimates P (c|e) as the (weighted) mean of the
class-membership probabilities of the entities in De.

P (c|e) =
1
Z

∑

ej∈De

w(e, ej) ∗ P (c|ej), (2)

where De, Z and w(e, ej) are defined as before. Entities
whose class labels are not known are assigned a prior (for
this paper: the marginal class frequency).

3In cases where too little propagation takes place, because of
too much weight from unknown labels, the need for a majority
of weight from a known class can be weakened. This was not
necessary for the cases presented in this paper.



Definition. The iterative probabilistic relational-neighbor
classifier (pRN∗) is similar to RN∗, except it uses pRN in
its inner loop and all initially unknown instances have their
probabilities continuously updated. Unlike RN∗, pRN∗ up-
dates class-probabilities of all initially unknown entities at
every iteration. Because of the loopy nature of the propaga-
tion, there is no guarantee of convergence, though in all our
test cases the probabilities seem to be converging. Propa-
gation stops based on a maximum number of iterations as
well as a convergence stopping criterion.

All pRN results in this paper will be based on pRN∗.

3.3. Network-only Markov Random Field Classifiers
(noMRF)

Methods based on Markov Random Fields (MRFs) (Do-
brushin, 1968; Geman & Geman, 1984; Winkler, 2003)
also utilize the structure of the network and (potentially)
known class labels. They do not rely on a homophily as-
sumption, but rather learn how different configurations of
neighbors’ classes affect a target entity’s class. To our
knowledge, all classification methods based on MRFs al-
gorithms need to be provided with initial estimations of the
entities’ classes. These initial estimations are based either
on an exogenous initial estimation (e.g., an original pixel
value in an image) or based on a separate (learned) classi-
fier that uses only attributes of the instance (e.g., the text of
a web page (Chakrabarti et al., 1998)).

We implemented a simple network-only Markov Random
Field (noMRF) model, based on the relaxation labeling
algorithm described by Chakrabarti (Chakrabarti et al.,
1998), with some notable differences. For a network-only
classifier, using initial estimates based on attributes would
not be proper. We therefore use the same scheme as for
pRN—initialize unknown labels to the class prior. We use
the same inner Bayesian classifier as in the original work,
without the attribute-specific probabilities:4

P (c|e) = P (De|c) · P (c), (3)

where

P (De|c) = Πej∈DeP (label(ej)|c)w(e,ej). (4)

Note that the original work differentiated between incom-
ing and outgoing links, whereas we do not.

This classifier assumes all neighbor labels are known.
When a subset of neighbors are unknown, we use their cur-
rent class estimations to predict P (c|e). This updates the
class estimation of e, and thus would influence e’s neigh-
bor estimations. We therefore iterate until the estimations
converge. More formally:

P (c|∆K)(n+1) =
∑

DU
e ∈ΩU

e

P (c|DU
e , DK

e ) · P (DU
e |∆K)(n),

(5)

4The original classifier was defined as: P (c|e) = P (De|c) ·
P (τe|e) · P (c), with τe being the text of document-entity e.

where

P (DU
e |∆K) = Πej∈DU

e
P (label(ej)|∆K). (6)

where DU
e is the set of neighbors of e whose labels are

unknown, DK
e are the set of neighbors whose labels are

known, ∆K is everything that is known in the network and
ΩU

e is the set of all possible class labelings of DU
e . There

are m|DU
e | of these, where m is the number of possible

classes. This can quickly become intractable as the num-
ber of unknown neighbors grows and an approximate solu-
tion is needed. Gibbs sampling (Geman & Geman, 1984)
is rapidly becoming the method of choice. An alternative
method, proposed by the Chakrabarti et al., is based on the
k-shortest-path algorithm (KSP). We adopt this idea, par-
tially to stay as close to the original method as possible.
However, we base our summation on the Viterbi algorithm
(Forney, 1973) rather than KSP. This is the only other dif-
ference between our algorithm and the original algorithm.
Note that the use of the Viterbi algorithm is possible due to
the independence among neighbors. Use of the Viterbi al-
gorithm rather than KSP further makes our summation over
ΩU

e exact rather than approximate.

4. Case Studies

We now assess the classification performance of these sim-
ple, network-only classifiers in three case studies. Each
study is based on data that were used in a published
relational-learning research paper. The purpose of these
case studies is to demonstrate that the power of the network
indeed must be controlled for, because a simple, network-
only model performs remarkably well. The existence of
published results allows us to calibrate how well the simple
models perform. In each case, we replicated the experi-
mental setup used in prior work as faithfully as we could;
we indicate our deviations. In the third case study, the re-
sults are not directly comparable to the prior results (for
reasons we explain), but nevertheless support our thesis.
We emphasize that we are taking the results out of con-
text for the purpose of our demonstration; the reader should
consult the original papers before drawing any conclusions
about the research contained therein.

4.1. IMDb

We used the Internet Movie Database (IMDb)5 data set to
build models predicting successful movies based on box-
office receipts (Jensen & Neville, 2002a). Following the
work of Neville et al. (Neville et al., 2003), we focus on
movies released in the United States between 1996 and
2001 with the goal of predicting whether a movie “will be”
a blockbuster (the opening weekend box-office receipts ex-
ceed $2 million) (Neville et al., 2003). Using the database
from the authors of this study we extracted “blockbuster”
classifications. However, we could not recreate the com-

5http://www.imdb.com



link-type AUCRN∗ AUCpRN∗ AUCnoMRF

actor 0.766 0.734 0.704
director 0.658 0.483 0.595
producer 0.850 0.705 0.755
prodco 0.862 0.822 0.836

Table 1. AUCs of RN*, pRN* and noMRF using only 1 link type.

plete graph as described in the original work, which used
1364 movies (45% of those being blockbusters). We in-
stead used a data set obtained from the IMDb web-site. We
identified 1441 movies released between 1996 and 2001
that we were able to link up with a “blockbuster” classifi-
cation in the original database. In our version of the data,
615 of the 1441 movies (42.6%) were classified as “block-
buster.”

Links between movies are through various other enti-
ties (actors, studios, production companies, etc.), and
we consider the links to be typed by the entity
through which they pass (e.g., RNproducer). Based
on a suggestion from David Jensen, we consider four
types of links: {actor, director, producer,
production company6}.

We used 10-fold cross-validation to generate predictions
for all training examples. It is then straightforward to gen-
erate an ROC curve—using the class-membership prob-
abilities produced by RN—and the area under the ROC
curve (AUC) by pooling these predictions and sorting the
prediction scores for the primary class (“blockbuster,” in
our case) (Fawcett, 2003). In order to account for vari-
ance, we ran the 10-fold cross-validation 10 times, each
time with a different random partition. Table 1 shows the
mean AUCs for the simple network-only classifiers on each
of the four link types (the standard deviations all are less
than 0.013).

Using Relational Probability Trees (RPTs) and Relational
Bayesian Classifiers (RBCs), the prior work reported AUCs
of 0.82 and 0.85, respectively, using eight attributes of
related entities, such as the most prevalent genre of the
movie’s studio. Observe that in comparison, the network-
only classifiers can perform very well, supporting our argu-
ment that such classifiers must be considered as baselines
against which to compare more complex relational learning
methods.

For this case study, the selection of links to use is an im-
portant problem which we do not claim to solve. However,
it may be possible to perform even better by considering
more than one link type. To test this, we ran a simple for-
ward feature-selection search: for each remaining (unused)
link-type/feature, add it to the current best performer—
starting with prodco, the best performer from Table 1—and

6We shorten ’production company’ to ’prodco’ when describ-
ing our results below.

link-type AUCRN∗ AUCpRN∗ AUCnoMRF

prod+prodco 0.884 0.841 0.853
dir+prod+prodco 0.885 0.841 0.854

Table 2. AUCs of RN*, pRN* and noMRF using a forward-
selection feature-based search to combine multiple link types.

keep the combination that reported the best performance;
keep adding one feature at a time until it stops improving
the performance.7 Using this methodology, we end up with
the AUCs presented in Table 2.8

noMRF generally performs worse than RN*. This sug-
gests that the homophily bias is appropriate, which concurs
with prior observations of considerable relational autocor-
relation in this domain (Jensen & Neville, 2002b). Ap-
parently, noMRF can not take advantage of its increased
flexibility, either because sufficient signal is not present, or
because there is not enough training data to capture it. To
our knowledge no better results have been reported on this
relational learning problem.

4.2. CoRA

This case study uses the CoRA data set (McCallum et al.,
2000), a data set of computer science research papers,
which includes the full citation graph as well as labels for
the topic of each paper (and potentially sub- and sub-sub-
topics).9 Following a prior study (Taskar et al., 2001), we
focused on 4240 papers within the machine learning topic
with the classification task of predicting a paper’s sub-topic
(there are seven). We used all 4007 unique authors that we
could identify in this subset. Thus, our graph differed from
the prior study (Taskar et al., 2001) in which they report
using 4187 papers and 1454 authors.

Papers can be linked in one of two ways: using a com-
mon author, or using a citation. We (somewhat arbitrarily)
assign the weight of a relation as the sum of the number
of authors two papers have in common and the number of
citations that link them to each other. This latter number
ordinarily would only be zero or one unless the two papers
cite each other.

Using essentially the same methodology as Taskar et al.,
we varied the proportion of papers for which the class
is initially known from 10% to 60%. We varied in 5%
increments; we performed a 10–fold cross-validation at

7The relational structure of the data complicates things, mak-
ing it unclear what it means to use only the training set to perform
the feature-selection. We circumvented this problem by using all
the data in this study. These feature-selection results therefore are
optimistic.

8We also, separately, performed a brute-force analysis of all
possible combinations of link types. For this study, the AUCs
reported in Table 2 were the best results.

9These labels were assigned by a naive Bayes classifier (Mc-
Callum et al., 2000).
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each setting (the previous study performed a 5–fold cross-
validation, varying the training set in 10% increments).
Figure 1 shows the classification accuracy of RN*, pRN*,
noMRF, and Taskar et al.’s Probabilistic Relational Model,
which used the text of the page in addition to the author
and citation links.10 RN* took 3–5 iterations to converge,
decreasing as we increased the labels that were known ini-
tially. We see RN* is competitive with the PRM, matching
its performance once 30% of the labels are known initially.
For this task, the performance of pRN* is statistically indis-
tinguishable from that of RN*.11 noMRF performed simi-
larly, but worse for very small amounts of labeled data, with
higher variance (recall that noMRF builds a model mapping
neighborhood members to entity classifications).

These results again support our argument that simple,
network-only models must be considered as baselines for
comparing complex relational learners in networked data.
If we assume that the results presented here and those of
the prior study are directly comparable, much of the perfor-
mance of the PRM might be explained by the power of the
network. The PRM only has an advantage over the simple,
network-only methods for very small amounts of labeled
data (in which case the estimations from the text apparently
add value).

4.3. WebKB

The last case study we present is based on the data set col-
lected by the WebKB Project (Craven et al., 1998).12 It
consists of a set of web pages from four computer sci-
ence departments, with each page manually labeled into
the categories: course, department, faculty, person, project,
staff, student or other. This data set includes clearly de-
fined link-to relations between pages. Following a prior

10The PRM values were approximated from the graphs in the
original paper.

11For the studies in this paper, pRN* generally performed
worse or only comparably to RN*. In virtually all tests presented
in this paper, when only a small fraction (≤ 30%) of data was
initially labeled, RN* performed better than pRN*, though they
often had similar performance when ≥ 75% of the data was la-
beled.

12We use the WebKB-ILP-98 data set.

study, we will classify whether a page belongs to a student
(Neville et al., 2003). As with the prior study, we extracted
the pages that have at least one incoming and one outgoing
link, and kept remaining (“background”) pages that either
link to a page or are linked to by a page in this subset of
pages. This resulted in a data set of 920 pages and 3036
background pages, giving us a total of 3956 pages. This
differs from the prior work which had 910 extracted pages
and a total of 3877 pages, including the background pages
(Neville, 2003).

We create a preliminary edge (p-edge) between two pages
if one page contains a hyperlink to the other. We weight
these p-edges by summing the number of hyperlinks from
one page to the other and vice versa (ignoring directional-
ity).

We define “neighbors” for this task as pages 2 p-edges
away, based on the prior observation that a student is more
likely to have a hyperlink to her advisor or a group/project
page rather than to one of her peers (Craven et al., 1998).
Therefore it is more likely that student pages have interme-
diaries in common than direct links. Such 2-hop relations
are not unique to this domain; for example, for fraud de-
tection in telecommunications, bandits are often two hops
away from previously identified bandits (they call the same
numbers). We weight each relation by multiplying the p-
edge weights composing the linkage (e.g., if a student page
has 2 p-edges to a group page, and a fellow student has 3
p-edges to the same group page, then the weight along that
path between those 2 students would be 6). This weight
represents how many possible ways two pages could reach
each other.

Using the 10-by-10-fold cross-validation methodology de-
scribed above for the IMDB study, we used the 920 pages
identified earlier to create the training/testing folds. For all
pages we allowed paths to any background page. For this
data set, RN* and pRN* perform very well in an absolute
sense: they have mean AUCs of 0.949 and 0.946 respec-
tively, both with standard deviations of 0.001. That means
that there is a 95% probability that a randomly selected stu-
dent page will get a higher RN* score than a randomly se-
lected non-student page. This is the case even though the
data comprise four disconnected MEND subnetworks.

Unlike the previous two case studies, these results can not
be compared directly to those of prior work, because prior
studies have treated these data as comprising a MESD task.
Specifically, prior results have been based on a 4-fold cross-
validation methodology in which one university’s web site
is used as a holdout set while the remaining three are used
for training.

Nevertheless, results using simple network-only classifiers
can provide interesting insight. Let us consider the four
sites as separate networks. Observing for each network
the relationship between the number of labeled data within
a network and the classification performance of the sim-
ple classifiers gives a view of the difficulty of the problem.
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Figure 2. Comparison of RN*, pRN*, noMRF and RPT on the
four universities in the WebKB data set. The horizontal lines are
for the RPTs trained on the other three universities.

Specifically, it shows how much data would have to be la-
beled for the power of the network alone to yield a par-
ticular accuracy. In many domains the amount of labeling
could be translated directly to a cost, which would indicate
the value of the MESD modeling.

To demonstrate, considering each university as a sepa-
rate data set we performed a study similar to that of
the CoRA data set above: we randomly pick l% of the
pages and label them. The remaining labels are un-
known. Running our methods, we calculate their result-
ing AUCs. We do this 10 times, each time randomly
picking l% pages to label, giving us an average and stan-
dard deviation for the AUCs for a given l. Doing this for
l ∈ { 1

2 , 1, 5, 10, 15, 20, 25, 30, 40, . . . , 90}, we graph the
resulting average AUCs as l increases. These results can be
compared to the AUCs reported in a MESD study. Figure 2
shows, for each university, the resulting graphs.

Using RPTs, the prior MESD study shows AUCs ranging
from 0.716 to 1.0 for RPTs (Neville, 2003). These MESD
learners used a set of ten attributes on related entities, such
as the URL path and host, as well as structural attributes
such as the number of in-links and out-links of each page.
(Of course, it does not make sense for them to use labels or
entity ids.)

In all cases RN* was able to get close to its best perfor-
mance even when labeling only 5% of the data. pRN*
showed similar behavior, though it needed 30% of the data
to be labeled in order to reach close to its best performance.
In all cases, though less so on the Cornell data set, RN*
is competitive with RPT even having seen only 5% of the
data. In fact, RN* was able to outperform RPT on the
Washington data set, having seen only 5% of the data.

Some side notes about the different network-only classi-
fiers: pRN* was worse than RN* when few (< 30%) initial
labels were known, but was able to “catch up” as the num-

ber of known labels increased. Finally, we see that noMRF
performed far worse than all methods except when almost
nothing was known (≤ 5%). Only on the Washington data
was it finally able to beat RPT after having seen 90% of the
labels. We will return to this below.

Regarding our main argument, treating WebKB as a
MEND classification task, the simple network-only meth-
ods again perform remarkably well. Furthermore, they per-
form well even with only small amounts of labeled data,
which provides an interesting complementary view to a
MESD classification study.

5. Discussion and Limitations

All three case studies show clearly that network-only clas-
sifiers can classify remarkably well. In particular, the
simplest—RN*—performs remarkably well, often even
with very few labeled data. The other network-only meth-
ods never do better and often do worse. RN is biased
strongly by the homophily assumption, which should re-
sult in good performance when the assumption holds, even
for few known labels if the propagation is effective.

On the other hand, basing classification on an assumption
of homophily will result in poor or even pathological per-
formance if the assumption does not hold or is violated
more seriously. Let us return to the WebKB case study.
If we define links simply as the p-edges themselves (hyper-
links weighted by frequency), we get a graph that does not
exhibit homophily. Indeed, using a leave-one-out cross-
validation (which allows as much labeled data as possi-
ble) RN* achieved an AUC of 0.352—classification per-
formance much worse than random guessing!

In these case studies, homophily gave RN* an advantage
too large for the lower-bias noMRF to overcome. How-
ever, consider again the p-edge version of the WebKB task.
noMRF does not exhibit the worse-than-random pathology
of RN. In fact, it is able to learn patterns of neighbor labels
moderately well (classifying student web pages with AUC
= 0.706).

In exchange for its lower bias noMRF should exhibit higher
variance, which is likely to require more data to overcome.
Therefore, it should be expected that when homophily is
present to some degree, RN will perform relatively better
for smaller amounts of data. This is suggested by our re-
sults, but we have not yet seen clear cases of the curves
crossing.

What about pRN versus RN? On good-guy/bad-guy net-
works from a terrorist simulator, we have observed pRN to
dominate RN. We believe it is related to the large imbal-
ance in the classes (for which the voting-based RN fails),
but we have not looked carefully into the conditions for the
applicability of each.

An important limitation of this work is that we randomly
choose training data to be labeled. It is likely in real net-
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work data that the data for which labels are available are in-
terdependent. For example, you may know all the members
of one terrorist cell and none from another. This may dilute
the power of network-based methods. If other attributes
are available more uniformly, then studies such as this may
artificially favor network-only methods, especially simple
ones, over attribute-based methods.

We use a particularly strong notion of “network-only” clas-
sifiers. Comprehensive studies should look at other notions
as well. For example, in MEND data the exact identifiers
of known entities can be used directly in classification and
learning. For the other three scenarios (SENT, SEST and
MESD), this does not make sense: the same entities will
not appear in “test” data, so learning programs must gener-
alize based on characteristics of the entities. For example,
on the CoRA task Perlich’s ACORA (Perlich, 2003) builds
a logistic-regression based model, where features are con-
structed by looking at distributions of the actual paper ids
(rather than just the labels), but still ignoring the text. As
Figure 3 shows, when given only 5% of the data, ACORA
already outperforms all the other methods even when they
are given 60% of the data. This suggests a “next tier” of
network-only baseline methods.

Finally, with respect to the main argument of our paper,
even considering only links and class labels, none of these
methods completely controls for the power of the network.
They all make a (first-order) Markov assumption–i.e., that
“the power of the network” can be reduced to “the power
of the neighborhood.” Moreover, they use relatively sim-
ple techniques even within the neighborhood. Neverthe-
less, the case studies have shown that very simple models
based on the neighborhood alone (perhaps with influence
propagated from the rest of the network) can be remark-
ably powerful. Furthermore, from the point of view of con-
ducting relational learning studies on MEND data, these
methods are straightforward enough for anyone to include
as baselines.
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