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Unexpectedness as a Measure of Interestingness in Knowledge Discovery 

Abstract 

Organizations are taking advantage of "data-mining" techniques to leverage the vast amounts of 

data captured as they process routine transactions. Data-mining is the process of discovering 

hidden structure or patterns in data. However several of the pattern discovery methods in data- 

mining systems have the drawbacks that they discover too many obvious or irrelevant patterns 

and that they do not leverage to a full extent valuable prior domain knowledge that managers 

have. This research addresses these drawbacks by developing ways to generate interesting 

patterns by incorporating managers7 prior knowledge in the process of searching for patterns in 

data. Specifically we focus on providing methods that generate unexpected patterns with respect 

to managerial intuition by eliciting managers' beliefs about the domain and using these beliefs to 

seed the search for unexpected patterns in data. Our approach should lead to the development of 

decision support systems that provide managers with more relevant patterns fiom data and aid in 

effective decision making. 

Keywords: Interestingness of Patterns, Unexpectedness, Beliefs, Belief-driven Rule Discovery 

"Ifyou do not expect it, you will notJind the unexpected, for it is hard toJind and difficult. I r  

- Heraclitus of Ephesus, 544 - 484 B. C. 

1. Background and Research Motives 

Technological and organizational trends are increasingly leading to knowledge intensive work 

environments. The Work of Nations [14] identifies a fundamental stream of work that involves 
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the production of information goods, rather than physical goods. The manager-analyst in these 

environments is more of a knowledge worker who routinely deals with information to produce 

value added information products. 

Technological trends have resulted in organizations accumulating enormous amounts of data on 

several facets of their operations. For example, many organizations such as credit-card 

companies or retailing outlets record every single transaction a customer performs. It has been 

estimated [12] that businesses generate gigabytes of data every year and that the total quantity of 

data tracked doubles approximately every two years. 

Organizations may proactively build a technological infrastructure to capture and store such data. 

Firms build data warehouses to support various kinds of decision making tasks such as planning 

marketing promotions using scanner data on sales. In other cases the legal environment in many 

economies may require that organizations collect and maintain operational data (such as 

telephone conversations with clients or credit card transactions) that could grow to enormous 

proportions. In either case, the data exists and organizations should leverage the data for 

competitive advantage by distilling potentially valuable "nuggets" of information. A role of 

intelligent systems in such an environment is to provide an infrastructure that identifies hidden 

patterns in the gathered data and thereby empower managers to make more effective decisions. 

Data-mining is the process of discovering hidden structure or patterns in data. There have been 

many successful data-mining applications [7] in areas such as customer profiling, fraud 

detection, teIecommunications network monitoring and market-basket analysis. These 

applications are driven by methods that discover patterns in data. Several of these methods such 

as association rule algorithms [I] are rule-discovery methods that discover patterns in the form of 

IF-THEN rules1. In a supermarket transactions dataset, for example, rules may indicate patterns 

such as "shoppers who buy diapers on Friday tend to buy beer too" (IF diaper, fiiday THEN beer 

) . The discovered rule in this case could be used to plan shelving arrangements - placing beer 

near diaper shelves may increase sales of beer. In a credit-card transactions dataset finding rules 

of the form IF <condition> THEN <fraudulent - transaction> is valuable since these rules 

' In this paper we use the terms "patterns" and 'hrules" interchangeably 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-97-06 



indicate conditions that result in a fraudulent transaction. There are several commercial data- 

mining tools [lo] that incorporate methods for rule-discovery and these tools are used in as 

diverse areas such as fraud detection and medical research [lo]. In this research we focus on 

improving the data-mining task of discovering rules in business datasets. 

Data mining and data warehousing tools provide an infrastructure in knowledge-intensive work 

environments that could potentially informate skilled manager analysts. However several rule 

discovery approaches proposed in the literature have the following drawbacks: 

1. These methods often generate a very large number of rules, most of which obvious or 

irrelevant, that result in a data-mining problem of the second-order - the interpretation and 

evaluation of the discovered rules could be a highly resource consuming exercise. Recently 

researchers from Stanford University [6] applied an association rule generating algorithm to a 

subset of census data containing about 30,000 records. Their algorithm generated over 

20,000 rules from the census data. In their conclusions, they remark: 

"Looking over the implication rules generated on census data was educational. First, it 

was educational because most of the rules themselves were not. The rules that came 

out at the top, were things that were obvious. "- [6] 

2. An important objective of data-mining is to discover interesting patterns in data. Most of the 

existing approaches in the literature on knowledge discovery and data mining use objective 

measures of interestingness, such as confidence and support [I], for the evaluation of the 

discovered patterns. These objective measures capture the statistical strength of a pattern. It 

has been argued in [8, 12, 16, 171 that besides objective measures of interestingness, 

subjective measures are equally important. These subjective measures, such as 

unexpectedness [8, 16, 171 and actionability [3, 12, 16, 171, assume that the interestingness of 

a pattern depends on the decision-maker and does not solely depend on the statistical strength 

of the pattern. Consider the following two patterns in a supermarket transactions data set: 

The shopping volume on Saturday is greater than the volume on any other day of the week 

(True for 98% of the weeks in the data) 
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When store coupons are available on Friday, these coupons are not used (True for 60% of 

the weeks in the data). 

Using the strength (objective criteria) as the selection criterion for the interestingness of the 

rules will result in the first pattern being chosen as "more interesting" since the pattern is true 

for 98% of the weeks. However, this pattern may be obvious to any domain expert and hence 

represents little added value. In contrast, the second pattern is true for only 60% of the 

weeks, but is unexpected, since it challenges conventional wisdom that a majority of 

shoppers tend to use coupons at a store if they are available. A subjective criterion such as 

unexpectedness would, therefore, rate the second pattern as "more interesting" than the first. 

3. Most of the existing algorithms such as CART [ 5 ] ,  Apriori [2], C4.5 [13] are primarily data- 

driven and do not hlly exploit domain knowledge and intuition that managers in a business 

environment have. Managerial intuition develops over several years of experience and could 

be an invaluable input to any knowledge discovery process. 

These drawbacks are serious concerns given that the users of these systems need to understand 

and act on the data in ever shorter amounts of time. In this paper we propose new methods of 

discovery that address these drawbacks by discovering unexpected patterns that take into 

consideration prior background knowledge of managers. This prior knowledge constitutes a set 

of expectations or beliefs that managers have about the problem domain. We use these beliefs to 

seed the search for patterns in data that contradict the beliefs. Patterns contradictory to prior 

knowledge are by definition unexpected. 

Methods that discover unexpected patterns with respect to prior knowledge are consistent with 

the general nature of scientific inquiry. The philosopher Karl Popper stresses the importance of 

falsijication [4] for scientific inquiry. It is important to develop strong theories about a domain, 

but the rules of science demand that we also formulate the exact circumstances under which 

these theories can be falsified [4]. Moreover, the discovery of unexpected patterns addresses the 

drawbacks mentioned above: 

Since the search is focused on finding potentially interesting patterns, the problem of 

generating too many obvious or irrelevant patterns is avoided. 
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The search uses subjective criteria for interestingness by leveraging prior domain knowledge 

(which constitute a manager's subjective input into the discovery process). Managers are 

potentially invaluable sources of intuition that may be specific to the task at hand. When such 

intuition forms the basis for an initial set of expectations, finding unexpected patterns in data 

attains significance since they potentially test the robustness of managerial intuition. 

An Approach to Pattern Discovery 

Our approach to pattern discovery begins with a set of beliefs that represent a decision maker's 

prior domain knowledge. These beliefs can either be elicited from the decision maker initially or 

"learned" from the data using machine learning methods and shown to the decision maker for his 

or her approval. Our approach has two complementary facets: 

1. Discovery of unexpected patterns in data 

2. Knowledge refinement based on the discovery of unexpected patterns 

ou 
Managerial 

Intuition Unexpected Patterns 

The Data as a 
Knowledge Repository 

Figure 1. Complementary Nature of the Discovery of Unexpected Patterns and 

Knowledge Refinement 

The discovery of patterns in data that contradict prior knowledge can be used in building theories 

about the domain. There could be several reasons why prior intuition and patterns from data may 
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conflict. For example, managerial intuition may have developed over years of prior experience 

and the data might reflect patterns on current environmental conditions distinctly different from 

previous conditions. Whatever the reasons, resolving such contradictions is important and could 

lead to a deeper understanding of the domain. Deming refers to knowledge developed through 

iterative theory building and refinement as "profound knowledge". The discovery of unexpected 

patterns with respect to specific intuitions could therefore lead to learning and the refinement of 

prior knowledge. In this sense, the discovery of unexpected patterns and refinement of prior 

knowledge form two sides of the same coin (as illustrated in Figure 1). 

In this paper, we focus only on the discovery of unexpected patterns given an initial set of 

beliefs. We do not address the issue of how to build a "good" set of beliefs. We assume that it 

can be generated using methods described in [17], such as elicitation of beliefs from the domain 

expert, learning them from data, and refinement of existing beliefs using newly discovered 

patterns. A similar issue of how to specify an initial set of beliefs has also been addressed in [9]. 

The rest of the paper is organized as follows. In Section 2 we discuss unexpectedness and present 

a definition for the unexpectedness of a rule. After briefly presenting some preliminaries of 

association rules in Section 3, we describe an algorithm for the discovery of unexpected rules in 

Sections 4 and 5. In Section 6 we present results fiom applying our method and a standard 

association rule generating algorithm on consumer purchase data and present conclusions in 

Section 7. 

2. Unexpectedness of a Rule 

Unexpectedness of a rule has been considered before in [16, 171, [8] and [15]. However, [16, 171, 

[8] and [I51 present different approaches to defining this concept. 

The approach presented in [8] captures a measure of rule "distance" but not "unexpectedness" 

for the following reason. The approach is based on a syntactic comparison between a rule and a 

belief. In [8], a rule and a belief are "different" if either the consequents of the rule and the belief 

are "similar" but the antecedents are "far apart" or the consequents are "far apart' but the 
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antecedents are "similar", where "similarity" and "difference" are defined syntactically based 

exclusively on the structure of the rules. For example, consider a belief man(;Y) -+ human(X) 

and a rule is woman(X) -+ hurnan(a. According to [8], this rule has an "unanticipated 

condition" (woman(3) and thus the rule is "different" from the belief. However, [8] stops short 

from declaring this rule to be "unexpected" relative to the belief. Indeed, this rule, though 

different from the belief, is not unexpected since one does not contradict the other in any way. 

In (16, 171, a rule is considered to be unexpected if it, intuitively, "shakes" the system of beliefs, 

including changes to the degrees of these beliefs. Our approach differs from [16, 171, in that we 

consider logical contradiction of a rule with a belief, whereas [16, 171 define unexpectedness in 

probabilistic terms of how much the degree of belief is affected by a rule. We believe that our 

definition of unexpectedness is simpler and more operational. 

An alternative approach is presented in [15] that discovering "exception rules" in the form of 

rule-pairs but does not begin with prior background knowledge. The approach in [15] discovers 

pairs of association rules A -+ B and their corresponding exceptions A, C -+ B', where A and C 

are conjunctions of <attribute, value> pairs and B and B' are Cattribute, value> pairs 

corresponding to the same attribute but with different values. Further the unexpectedness of the 

exception rule in [15] is defined by an additional constraint that the "reference rule" C -+ B' has 

low confidence. [15] argues that if the reference rule has high confidence then the exception rule 

A, C -+ B' will not be unexpected. 

The approach presented in [15] is based on an interesting probabilistic approach and has the 

advantage that it does not depend on prior domain knowledge. However, it has been argued [16, 

171 that unexpectedness is inherently subjective and that prior beliefs of the user are, therefore, 

an important component of unexpectedness. Further, unexpectedness as defined in [I51 can be 

restrictive since it does not capture some exceptions that are unexpected in the sense defined 

below. 

In the rest of this section we present a new definition of unexpectedness of a rule. In order to 

define the concept of unexpectedness, we first present some preliminaries including definitions 
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of rules and beliefs. We consider rules of the forrn X -+ A, where X and A are conjunctions of 

literals (i.e., either atomic formulas of first-order logic or negations of atomic formulas). We also 

associate with the rule some measure of its statistical "strength" [I I], such as "confidence" and 

"support" [I]. We say that a rule holds on a dataset D if the confidence of the rule is greater than 

50% (the threshold confidence can also be chosen to be any value greater than 0.5). 

We define a belief as a statement of the form Y -+ B, where Y and B are defined as for the rule. 

Associated with a belief is its degree [16, 171. Degrees of beliefs are subjective in the sense that 

they are defined by the user and are revised according to some belief revision procedure [16, 171, 

The approach in [8] considers beliefs that incorporate fuzzy linguistic modifiers (such as "low", 

"high", "small" etc.). An example of such a belief is "if temperature is high then heart-rate is 

low". An advantage of this approach is that it perrnits the user to specify beliefs without drawing 

hard artificial boundaries around continuous variables. In this paper, however, we do not 

consider beliefs that incorporate fuzzy modifiers since we focus our studies on pattern discovery 

in discrete data. We plan, however, to incorporate fuzziness into the representation of user 

beliefs in our subsequent work when we consider continuous variables as well. 

We also make an assumption of monotonicity of beliefs. In particular, if we have a belief Y + B 

which we expect to hold on a dataset D with degree d, then the belief will also be expected to 

hold on any "statistically largew2 subset of D with degree dl that is greater than 0.5. We believe 

that this is a reasonable assumption for the following reason. Assume that we have two non- 

monotonic beliefs "bird(3 -+ jZies(4" and "bird(X), penguin(3 -+ -$?ies(q". Hence in the 

current form it appears that we expect the belief that birds fly to hold in general for the entire 

class of birds, but we do not expect it to hold for a subset that consists of penguins. However 

these can be transformed into the following pair of monotonic beliefs "bird(2, -7penguin(X) -+ 
flies(aW and "bird(a, penguin(3 -+ -$?ies(am. In general, if we have a non-monotonic belief 

(that we expect not to hold for some subset of the data), we incorporate our knowledge of why 

In this paper, we use a user-specified support threshold value to determine if the subset is large enough. 
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we do not expect the belief to hold on the subset into the belief, thereby making the belief more 

specific. We can do this iteratively until we have a set of monotonic beliefs3. 

Given these preliminary concepts, we are ready to define unexpectedness of a rule. 

Definition. The rule A + B is unexpected with respect to the belief X -7, Yon the dataset D if the 

following conditions hold: 

(a) B AND Y /= FALSE. This condition imposes the constraint that B and Y logically 

contradict each other. 

(b) A AND X holds on a statistically large3 subset of tuples in D. We use the term 

"intersection of a rule with respect to a belieg' to refer to this subset. This intersection 

defines the subset of tuples in D in which the belief and the rule are both "applicable" in 

the sense that the antecedents of the belief and the rule are both true on all the tuples in this 

subset. 

(c) The rule A, X + B holds. Since condition (a) constrains B and Y to logically contradict 

each other, it logically follows that the rule A, X -7, --,Yholds. 0 

We believe that this definition captures the spirit of "unexpectedness" for the following reasons: 

( I )  The heads of the rule and the belief are such that they logically contradict each other. 

Therefore in any tuple where the belief and the rule are both "applicable," if the rule holds on 

this tuple, the belief cannot hold and vice-versa. 

(2) Since both a rule and a belief hold statistically, it is inappropriate to label a rule "unexpected" 

if the intersection of the contradicting rule and the belief is very small. Hence we impose the 

condition that the intersection of the belief and the rule should be statistically large. Within this 

statistically large intersection, we would expect our belief to hold because of the monotonicity 

assumption. However if the rule holds in this intersection, the belief cannot hold because the 

heads of the rule and belief logically contradict each other. Hence the expectation that the belief 

should hold on this statistically large subset is contradicted. 

This process of converting non-monotonic beliefs to monotonic beliefs can be automated by letting the user specify 
non-monotonic beliefs with exceptions. Then the system automatically converts these to a set of monotonic beliefs. 
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Our method of representation of beliefs can also be used to represent beliefs in which the 

expected confidence is less than 50% by converting the beliefs into those that have expected 

confidence greater than 50%. For example, consider the belief that Y is true 1% of the cases in 

which X is true. This is equivalent to the belief that NOT(Y) should be true 99% of the cases in 

which X is true. 

The approach presented in this paper differs from that in [15] in the following aspects: 

The approach presented in [I 51 does not depend on prior beliefs but discovers pairs of rules 

(that can be considered as beliefs) and their exceptions simultaneously. The approach 

presented in this paper begins with a system of beliefs. 

The approaches consider different types of unexpectedness. The approach presented in this 

paper is based on the monotonicity of beliefs, while exceptions in [15] are based on the 

structure of the rule-pair discovered and additional probabilistic constraints. 

The approach in [15] discovers only certain refinements to rules as exceptions, while the 

approach presented in this paper discovers all refinements that are unexpected and also 

unexpected generalizations as well. 

We presented a general definition of unexpectedness in this section. We next present an 

algorithm for finding unexpected rules. Since association rules is a very popular method for 

defining patterns with many efficient discovery algorithms developed for them, we focus in the 

rest of the paper on the discovery of unexpected association rules. 

One way to generate unexpected association rules would be to follow the approach proposed in 

[S]: run standard association rule discovery algorithms [2] and then select unexpected rules using 

the definition of unexpectedness introduced in this section. The main problem with this approach 

is that of efficiency. It may turn out that there are few unexpected patterns and it would, 

therefore, not be efficient to generate a large number of patterns before selecting the unexpected 
4 ones . 

As [6] show, in a census data set of 30,000 records, the number of rules generated was more than 20,000. 
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3. Association Rule Preliminaries 

In this section we provide an overview of association rules and sketch the algorithms for 

discovering association rules proposed in [2]. Let I = {il, i2, . . . , i,) be a set of discrete attributes 

(also called "items" [I]). Let an atomic condition be defined as a proposition of the form 

"attribute = value", where the attribute can take on a discrete set of mutually exclusive values. 

An itemset is a conjunction of atomic conditions. Let D = {TI, 1-2, ..., TN) be a relation consisting 

on N transactions [2] TI ,. . .,TN over the relation schema {i 1, i2, . . . , i,) . A transaction Ti is said to 

"contain" an itemset if the itemset holds on Ti, 

An association rule is an implication of the form body -+ head where "body" is an itemset and 

"head" is an itemset that contains only a single atomic condition. The rule holds in D with 

confidence c if c% of the transactions that contain body also contain head. The rule has support s 

in D if s% of the transactions in D contain both body and head. The search for association rules 

is usually constrained to rules that satisfy minimum specified support and confidence 

requirements. An itemset is said to be large if the percentage of transactions that contain it 

exceed the minimum specified support level. 

Various efficient algorithms for finding all association rules in transactions databases have been 

proposed in [2]. These algorithms operate in two phases. In the first phase, all large itemsets are 

generated. This phase utilizes the observation that all subsets of a large itemset are large. 

Candidate itemsets of length k are generated from the set of large itemsets of length (k-1) by 

imposing the constraint that all subsets of length (k-1) of any candidate itemset must be present 

in the set of large itemsets of length (k-1). The second phase of the algorithm generates rules 

from the set of all large itemsets. For example, let I1 = {age = high, income = high) and I2 = 

{age = high). From the supports of these two itemsets the confidence, c, of the rule '"(age = 

high) then (income = high) " can be calculated as c = support({age = high, income = high)) / 

support((age = high)). Hence in this phase, given the set of all large itemsets, significant rules 

involving these itemsets are generated. 
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4. Discovery of Unexpected Association Rules 

In this section we present an extension to the algorithm of [2] that takes a set of beliefs, B, and 

discovers unexpected association rules. 1n this paper we restrict our attention to beliefs that have 

the same syntax as association rules and where the head of the belief involves a binary attribute5. 

4.1 Ovewiew of the Discovery Strategy 

Consider a belief X -+ Y and a rule A -+ B, where both the itemsets X and A are conjunctions of 

atomic conditions and both Y and B are single atomic conditions involving binary attributes. It 

follows from the definition of unexpectedness in Section 2 that if an association rule A -+ B is 

"unexpected" with respect to the belief X -+ Y, then the following must hold: 

(1) B = 1  Y. 

(2) The rule X, A -+ B holds. 

Hence, for every unexpected rule of the form A -+ B, it has to be the case that the rule X, A -+ B 

also holds. 

We propose the discovery algorithm Zoom UAR ("Unexpected Association Rules") that consists 

of two parts: ZoominUAR and ZoomoutUAR. Given a belief X -+ Y, the strategy that the 

algorithm ZoomUAR adopts is to first discover (in Algorithm ZoominUAR) all significant rules 

of the form X, A + TY and then consider (in Algorithm ZoomoutUAR) other more general and 

potentially unexpected rules of the form X', A -+ lY, where X' c: X. The rules that ZoominUAR 

discovers are "refinements" to the beliefs such that the beliefs are contradicted. The rules that 

ZoomoutUAR discovers are not refinements, but more general rules that satisfy the conditions of 

unexpectedness. For example, if a belief is that "professional -+ weekend" (professionals tend to 

shop more on weekends than on weekdays), ZoominUAR may discover a refinement such as 

"professional, december -+ weekday" (in December, professionals tend to shop more on 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-97-06 



weekdays than on weekends). ZoomoutUAR may then discover a more general rule "december 

-+ weekday", which is totally different from the initial belief "professional -+ weekend".We 

propose the discovery algorithm ZoomUAR ("'Unexpected Association Rules") that consists of 

two parts: ZbominUAR and ZoomoutUAR. 

4.2 Algorithm ZoominUAR 

The inputs to this algorithm are a set of beliefs, B, and the dataset D. For each belief X -+ Y, 

ZoominUAR finds all unexpected association rules of the form X, A -+ --Y. It is important to 

note that our approach differs from other association rule algorithms mainly in how we generate 

candidate itemsets that need to be checked for support and not in the actual process of checking 

the transactions in the dataset to determine the supports for these itemsets. In [2] different 

algorithms that calculate supports for itemsets efficiently are presented. Our method can be 

easily integrated into any such efficient association rule algorithm. For simplicity, in this paper, 

we use the "shell" of the Apriori algorithm proposed in [2]. ZoominUAR is presented in Fig. 4.1. 

For each belief, B, ZoominUAR first generates incrementally all large itemsets that may 

potentially generate unexpected rules. For example if a belief is X -+ Y then the search is 

initially for large itemsets that contain X and - - Y  since the set of unexpected rules generated by 

this algorithm is of the form X, A -+ TY. The confidence of this rule is given by support( X, A, 

--Y)/ support( X, A). Hence each time the algorithm generates a candidate itemset I1 containing 

the negation of the head of the belief, the algorithm should also generate a corresponding 

candidate itemset 11' that contains all conditions in I1 except the negation of the head of the 

belief. In Fig. 4.1 the notation Ck refers to a set of candidate itemsets that contain the negation of 

the head of the belief and Ck' refers to the corresponding set of candidate itemsets that do not 

contain the negation of the head of the belief. For example, for the belief X -+ Y, for every 

itemset of the form { X, A, -1Y) in Ck there will be a corresponding itemset { X, A) in Ck'. 

5 This does not restrict the beliefs we consider. For example, if the head of the belief is day = Sunday, we handle this 
case by introducing a binary attribute that holds iff day=Sunday. 
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The first candidate itemsets generated (Step 2 in Fig. 4.1) in this case is just {X, -1Y) and {XI. 

Once candidate itemsets are generated, steps 4 and 5 determine the support counts in dataset D 

for all the candidate itemsets currently being considered and selects the large itemsets in this set. 

Hence in the initial pass, if both {X, -7Y) and {X) are found to be "large", then Lo = { {X, 

-,Y>,{Xl ). 

Inputs: Beliefs Be1 Set, Dataset D, Thresholds min-support and min-conf 
Outputs : For each belief, B ,  iternsets Items-In-UnexpRule, 

a forall beliefs B E Be1 Set { - 
2 C, = {{lhead(~)  body(^)}}; C,' =  body(^) 1 ) ;  k=O; 
3  while (C, ! =  0 ) do { 

forall candidates c E C, u Ck, , compute support (c) 
L, = {x I x E Ck V Ck, support (x) 2 min-support } 
k+ + 
C, = generate - new - candidates (Lk.l ,  B) ; 
C,, = generate-bodies (C, , B) ; 

1 
Let X = {x I x E uLi, x=, lhead(B) } 
Items-In-UnexpRule, = 0 
forall (x E X) { 

1 3  rule-con£ = support (x) /support (x - ~head(B) 
1 4  if (rule-con£ > min - conf) { 
15 Items-In-UnexpRule, = Items - In - UnexpRule, u {x] 
16 Output Rule " x - 7head(B) -+ ~head(B) \\ 
1 7  1 
18 1 
1 9  1 

Figure 4 . 1  A l g o r i t h m  ZoominUAR 

In step 7, the function generate - new - candidates(LLr, B) generates the set Ck of new candidate 

itemsets to be considered in the next pass from the previously determined set of large itemsets, 

Lk-,, with respect to the belief B ("x x y") in the following manner: 

(1) Initial condition (when k=l): To explain this step, consider the following example. Assume 

that for the belief x -+ y, Lo = { {x, -.ly),{x) ), i.e. both the initial candidates were found to be 

large. Further assume that "pp" and "q" are the only other attributes in the domain that are not 
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already present in any of the conditions in x or y and that "p" and "q" are both binary attributes. 

The next set of candidates to be considered would be C1 = ( (x, ~ y ,  p}, (x, ~ y ,  lp), (x, ~ y ,  q}, 

{x, -7Y, - 4 1 ,  and C1' = { {x, P}Y {x, l p } ,  {x, q), {x, 1 q ) ) .  

In general for the belief B, the initial candidate itemset Co contains the single element 

{bod~(B),~head(B)). If this itemset is large, then the next set of candidate itemsets would be the 

sets Cl = { {  body(B), lhead(B), X } / where X is any atomic condition involving an attribute not 

present in either body(B) or lhead(B)} and C1' = {(  body(B), X } I where X is any atomic 

condition involving an attribute not present in either body(B) or -7head(B)). The algorithm 

precomputes all the unique values for each attribute in the dataset and uses these values to 

generate all possible attribute-value combinations that can be considered for X. 

(2) Incremental generation of Ck from LkAl when k > I :  This function is very similar to the 

apriori-gen function described in [2 ] .  For example, assume that for the belief x -+ y, L1 = { {x, 

-.y, p}, {x, ~ y ,  q}, {x, p}, {x, q} ) . Similar to the Apriori algorithm, the next set of candidate 

itemsets that contain x and l y  is C2 ={ {x, ~ y ,  p, q) ) since this is the only itemset such that all 

its subsets of one less cardinality that contain x and ~y are in L1. We would also need the 

support of the itemset {x, p, q} to (eventually) determine the confidence of the rule x, p, q -7, ~ y .  

Hence the function generate-bodies(C2,B) generates C29 = { (x, p, q} } . 

In general, an itemset X is in Ck if and only if for the belief By X contains 7head(B) and body(B) 

and all subsets of X with one less cardinality. containing --rhead(B) and body(B), are in Lk-]. The 

condition that X contains the negation of the head of the belief B is just an artifact of the fact that 

for every itemset of the form A, body(B), 7head(B) in Lk-, there will be a corresponding itemset 

A,body(B) that will also be in Lkal. Once Ck is generated as described above, the function 

generate - bodies(ChB) generates the set Ck' by considering each itemset in Ck and dropping 

lhead(B) from the itemset. 
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Once all such large itemsets have been generated, steps 10 through 16 of the algorithm generate 

unexpected rules of the form (x,A+ 7y) where (x,-,y,A) and (x,A) are large itemsets 

generated. 

4.3 An Example of ZoominUAR 

Consider the following example. Assume that we have a dataset of purchases at a supermarket 

(Fig. 4.2a) containing the following 4 binary attributes: (1) day of shopping (weekend /weekday) 

(2) whether the shopper is employed (3) whether diapers were purchased and (4) whether beer 

was purchased. Further assume that we have a belief that shoppers who buy diapers tend to buy 

beer (diaper -+ beer). Fig. 4.2b illustrates the iterations of ZoominUAR and the unexpected rules 

generated given the constraints that any itemset in a rule should have a support of at least 3 

transactions and that the minimum confidence of a rule should be 60%. 

Bought Diapers (D 

Weekend (W = 1) 

Figure 4.2a (left). Example data containing 9 transactions, each consisting offourfields. 
Figure 4.2b (right). Iterations of ZoominUAR (right table) corresponding to the belief "diapers -+beerH 

Itera- 
tion # 

1 

2 

3 
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Itemsets 
To Check 

(diaper, notbeer) 3 J None - confidence (318) of 

(diaper) 8 J diap. -+ not-beer is < 0.6 

(diaper, not-beer, weekend) 0 X None 
(diaper, weekend) 4 J 

(diaper, not-beer, not-weekend) 3 diap., weekday -+ not-beer 
(diaper, not-weekend) 4 J (conf. = 314 = 0.75) 

{diaper, not-beer, employed) 0 X None 
(diaper, employed) 3 J 

(diaper, not-beer, not-employed} 3 J diaper, not-employed. -+ ' 

{diaper, notemployed) 5 J nocheer (conf. = 315) 

(diaper, not-beer, not-weekend, 3 J diaper, not-employed, 
not-employed) weekday -+ nocheer 

(diaper, not-weekend, 3 J (conf. = 313) 
not-employed) 

Sup Large 
Itemset? 
(sup. > 3) 

Rules 
Generated 
(confidence > 0.6) 



Our approach differs from Apriori in that in the first iteration we start with itemsets that are 

derived from the belief (since ZoominUAR focuses on discovering rules of the form diaper, X -7, 

beer). We observe from the data that the belief is true in general (confidence of the rule diaper 

-7, beer is 518). However, in the second iteration we discover two interesting rules that during 

weekdays or when the shopper is not employed, then the purchase of diapers implies that beer is 

not purchased. Further refinement (third iteration) results in a stronger rule (conf. 100%) that 

when a shopper who is not employed shops on weekdays and buys diapers then the shopper does 

not buy beer. Observe that: 

(I) To compute the confidence of the rule diaper, X -+ not - beer we need the supports of both the 

itemsets (diaper, X, not-beer) and (diaper, X) . 

(2) In each iteration we consider itemsets containing one more condition and the corresponding 

rules generated are therefore more specific ("zooming in"). 

(3) In the third iteration for example, we do not even consider the itemset (diaper, not - beer, 

weekend, unemployed) since a subset of this itemset, (diaper, not-beer, weekend), did not have 

minimum support (the first itemset considered in iteration #2). If any subset of an itemset does 

not have enough support, then the itemset in consideration also cannot have minimum support 

P I  

4.4 Algorithm ZoomoutUAR 

ZoomoutUAR considers each unexpected rule generated by ZoominUAR and tries to determine 

all the other more general rules that may be unexpected. Given a belief X -+ Y and an 

unexpected rule X, A -+ l Y ,  ZoomoutUAR tries to find more general association rules of the 

form X', A -+ 1 Y  , where X' c X, and check if they satisfy minimum confidence requirements. 

Such rules satisfy the following properties: 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-97-06 



They are unexpected since the intersection6 of this rule with the belief results in the rule X, 

A -+ lY, which is already known to hold. 

These rules are more general in the sense that they have at least as much support as the rule 

X, A -+ i Y .  

The itemsets { X', A) and { X', A, 1 Y  ) are guaranteed to satisfy the minimum support 

requirement (though we still have to determine their exact support in D) since the itemsets 

{ X, A) and { X, A, 7Y ) are already known to satisfy the minimum support requirement. 

Inputs : Beliefs Be1 - Set, Dataset D, Thresholds min-support ' and min-conf, 
For each belief, B, itemsets Items-In-UnexpRulq 

1 forall beliefs B { 
2 new - candidates = 0 
3 forall (x E Items-In-UnexpRule, ) { 
4 Let K = {kl k c x, k 2 x- body(^) ) 
5 Let Kf = {kl k c x - lhead(B), k 2 x- body(^) ) 
6 new - candidates = new candidates u K u Kf - 
7 I 
8 find - support (new - candidates) 
9 Let X = {x I x E new - candidates, x 2 ~head(B) ) 
10 forall (x E X) { 
11 rule - conf = support (x) /support (x - lhead (B) ) 
12 if (rule - con£ > min-con£ ) { 
13 Items - In-UnexpRule, = Items - In - UnexpRule, U {x) 
14 Output Rule I' x - ~head(B) -+ lhead (B) \' 

15 1 
1 6  1 
17 I 

Figure 4 . 3 .  A.1 gory  thm Zoolnout UAR 

The algorithm ZoomoutUAR is presented in Fig. 4.3. For each belief, B, from the previous 

algorithm ZoominUAR we have the set of all large itemsets that contain both lhead(B) and 

body(B). The general idea is to take each such large itemset, I, and find the supports for all the 

subsets of I that are obtained by dropping from I one or more attributes that are in body(B). From 

As described in part (b) of the definition of unexpectedness in Section 2 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-97-06 



the supports of all such new itemsets7 considered here, ZoomoutUAR derives the rest of the more 

general unexpected rules. Step 4 of the algorithm creates candidate itemsets from the set of all 

large itemsets that contains the head of the unexpected rule being considered. As explained 

previously, for every itemset created in step 4, step 5 creates a corresponding new itemset that 

does not contain the head of the unexpected rule considered. Hence in steps 3 through 6 the 

algorithm generates all the new candidate itemsets for which supports have to be calculated. In 

one pass over D, step 8 determines the supports for all these candidate itemsets. Once all the new 

large itemsets have been determined, steps 9 through 14 of the algorithm generates unexpected 

rules in a similar manner as the latter part (Steps 10 through 16) of the previous algorithm 

ZoorninUAR. 

4.5 Completeness of ZoomUAR 

In this section we present the theorem that ZoomUAR discovers all unexpected rules and provide 

a sketch of the proof. 

Theorem. For any belief A -+ B, ZoomUAR discovers all unexpected rules of the form X -+ Y, 

where X and A are conjunctions of atomic conditions and Y and B are single atomic conditions 

involving binary attributes. 

Sketch of the Proof. Consider the belief A -+ B and any unexpected rule X -+ Y (with support 

and confidence values greater than the specified threshold values) where both the itemsets X and 

A are conjunctions of atomic conditions and both Y and B are single atomic conditions involving 

binary attributes. From the definition of unexpectedness (Section 2) it follows that: 

(1) Y = 7 B. 

(2) The rule X, A -+ -1B holds. 

Therefore, the rule X, A -+ Y B  has support and confidence values greater than the specified 

threshold values. More specifically, the itemset { X, A, 7 B  ) has adequate support. To prove 

the theorem, we will first show that ZoominUAR: 

(a) Generates the itemset { X, A, Y B  ), and 

(b) Derives the rule X, A -+ 7 B  from the itemset { X A, -,B ). 

These itemsets were not considered in ZoominUAR since all candidate itemsets considered there contain body(B). 
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If A is a subset of X, this completes the since the rule X, A -+ 7 B  is equivalent to the 

rule X -+ Y given that Y = 7 B. If A is not a subset of X, we will show that ZoomoutUAR: 

(c) Generates the itemset { X ) and 

(d) Derives the rule X -+ -7B from the itemset { X, -,B ). Since Y = TB, this rule is the 

unexpected rule X -+ Y. 

Since X is a conjunction of atomic conditions, assume that X = {XI, X2, ..., XN). Since the 

itemset {X, A, 7 B )  is guaranteed to have adequate suppport, all subsets of {X A, 7 B )  will 

also have adequate support. First, since we start with the belief A -+ B, step 2 of ZoominUAR 

(Fig. 4.1) generates the itemset {A, 7 B ) .  In the first iteration of ZoominUAR (k==O), the 

itemset {A, 7B) will be determined to have adequate support. Further, in this iteration, step 7 

of ZoominUAR generates all candidate itemsets {P, A, 7B) where P is a single atomic 

condition. Hence, this candidate set also contains {X,, A, 7 B )  for i = 1 to N. In the next 

iteration (k l ) ,  all the itemsets {X, , A, -7B) will be determined to have adequate support in 

step 4. The next set of candidate itemsets generated (by generate - new - candidates) will 

contain itemsets of the form {P, Q, A, -8) such that all subsets of this itemset that contain 

{A, 7B) have been determined to be large in the previous iteration. All itemsets of the form 

{X,, X,, A, 7B) will be generated as candidates since the subsets {X,, A, -7B) and {X,, A, 7B} 

are known to be large from the previous iteration. Extending the same argument in subsequent 

iterations, it can be shown that ZoominUAR generates the itemset {XI,  Xz, ..., XM A, 7B) in 

the iteration in the Nth iteration. Since this itemset has adequate support, {X, A, T B )  will be 

an element in the set Items - In - UnexpRule. 

Since ZoominUAR determines the set {X, A, 7 B )  to be large, step 13 of ZoominUAR considers 

the rule X, A -+ 7 B  and determines that the rule holds. If A is a subset of X, this completes the 

proof, since the rule X, A -+ -7B is equivalent to the rule X -+ Y given that Y = --B. 

8 If A is a subset ofX, then the condition X, A is the same as the condition X. For example, if A is "income = high" 
and X is "income = high, age = low", then XAND A is equivalent to X. 
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If A is not a subset of X, since {X;  A, -7B) is an element in the set Items - In - UnexpRule Step 4 of 

ZoornoutUAR (Fig. 4.2) generates the itemset { X; 7B) by dropping one or more attributes from 

the body (A) of the belief A -+ B. Step 5 similarly generates the itemset (X). The itemsets {X) 

and {X; 7B) are, therefore, elements in the set new - candidates generated in step 6 of 

ZoomoutUAR. Since these are guaranteed to have adequate support, step 14 of ZoomoutUAR 

generates the rule X -+ -7B. From the observation that Y = -lB it follows that ZoomoutUAR 

generates the rule X -+ Y. 

The theorem presented in this section states that ZoomUAR discovers all unexpected rules. 

Moreover, it is clear that ZoomUAR discovers only unexpected rules and no other rules. 

Therefore, ZoomUAR discovers a rule if and only if it is unexpected. 

5, Handling Multiple Beliefs Efficiently in ZoorninUAR 

Algorithm ZoominUAR shown in Figure 4.1 discovers unexpected rules for each belief 

independently. In this section we present extensions to ZoomUAR to exploit efficiency issues 

when dealing with multiple beliefs in parallel. 

Figure 5.1 Example itemsets considered by ZoominUAR for the two 
beliefs A -+ B and C -+ B 

Iteration 

1 

2 

3 
F 

Consider the following example. Assume that the only conditions in a domain are A, B, C, D and 

their logical negations. Consider two beliefs, A -+ B and C --+ B. When the algorithm attempts 

discovers unexpected rules for each belief independently, the Figure 5.1 lists the itemsets 

considered by ZoominUAR in a hypothetical case (the underlined itemsets in these tables are 

assumed to represent the "large" itemsets in that specific iteration). 
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Itemsets Considered for the 
belief A -+ B 
{Al 1Bf 

{A. 4. C) , {A, l B ,  7C), 
(A, l B ,  D), {A, l B ,  1D)  

{A, l B ,  C, -1D) 

Itemsets Considered for the 
belief C -+ B 
iC, ,B) 

{C, 4% A), {C, 1B, l A ) ,  
{C, i B ,  D), {C, i B ,  i D )  

, {C, l B ,  A, D) 



Observe that: 

(a) In the second iteration, the same itemset {A, -7B, C) is considered twice: once each when 

iternsets are generated for the two beliefs, A -+ B and C -+ B. This could result in discovering 

the same rule (e.g. A, C -+ -1B) by starting from two different beliefs. 

(b) When itemsets are considered for the belief A -+ B, the third iteration considers only the 

itemset {A, TB, C, TD) for support since this is the only itemset that satisfies the condition that 

all its subsets containing {A, -1B) are "large" (the underlined itemsets in the previous iteration). 

However, one of its subsets {-TB, C, -1D) does not have support as determined in the second 

iteration for the other belief C -+ B. Hence, the itemset {A, -1B, C, TD) is guaranteed not to 

have the minimum support and therefore does not even need to be considered for checking its 

support. 

Inputs: Beliefs Bel-Set, Dataset D, Threshold min-support, 
Outputs: The set of large itemsets used by the rest of ZoominUAR to generate 
the itemsets Items-In-UnexpRule, (as in Fig. 4.1) 

1 forall beliefs Bi E Bel-Set { 
2 C,[il = {{7head(~i) ,body(Bi)}}; C,' [il =  body(^^))>; 
3 1 
4 k = 0; 

5 while (3i : C, [i] ! =  0 1 do { 
6 for (j = 1 to numbeliefs) { 
7 forall candidates c E C,[jI U C,. [jl, get support (c) 

8 Lk [ j 1 = {X I x E Ck [ j 1 U C,, [ j I , support (x) 2 min support } 
1 

- 
9 
10 k++ 
11 for (j = 1 to numbeliefs) { 
12 C, [j] = generate new candidates (L,_, [I , B)  ; - - 
13 c,, [j] = generate-bodies(Ck [jl, B) ; 
14 1 
15 1 

Figure 5 . 2  E x t e n s i o n  t o  the  c a n d i d a t e  b u i l d i n g  p h a s e  o f  A l g o r i t h m  
Zoomin UAR 

We incorporated these observations into the extended version of ZoominUAR. In Figure 5.2 we 

present the modified candidate building phase of ZoominUAR. The rest of the algorithm is the 

same as shown in Figure 4.1. 
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6. Experiments 

We tested our algorithm on consumer purchase data from a major market research firm. We pre- 

processed this data by combining different data sets, made available to us by this firm, into one 

table containing 36 different attributes. These attributes pertain to the item purchased by a 

shopper at a store, together with certain characteristics of the store and the demographic data 

about the shopper and his or her family9. Some demographic attributes include age and sex of the 

shopper, occupation, income and marital status of the household head and the presence of 

children in the family and the size of the household. Some transaction-specific attributes include 

type of item purchased, coupon usage (whether the shopper used any coupons to get a lower 

price or not), the availability of store coupons or manufacturer's coupons and presence of 

advertisements for the product purchased in the store. 

M i l e  we generated this combined data set, we also restricted the purchasing records only to the 

class of carbonated beverages, i.e., each record in this data set refers to a purchase of some 

carbonated beverage by a shopper. The resulting dataset had 87437 records, each consisting of 

36 discrete fields. The levels of discrete attributes range from 2 to 12 distinct values. 

6.1 Discovering Unexpected Patterns. 

We compiled 15 beliefs about the data in this domain which fall into three groups: (1) Usage of 

coupons, e.g. "young shoppers with high income tend not to use coupons". (2) Purchase of diet 

vs. regular drinks, e.g. "shoppers in households with children tend to purchase regular 

beverages more than diet". (3) Day of shopping, e.g. 'professionals tend to shop more on 

weekends than on weekdays". Some of these beliefs were solicited from experts and others were 

based on prior analyses of data. These beliefs were certainly not exhaustive about such a 

- 

We would like to point out that this is unnormalized data that contains in one file both transaction and 
demographic data. 
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complex application in the sense that they do not contain all possible beliefs that a person may 

have about consumer purchase data. The set of beliefs that we used were selected just for 

illustrative purposes. In general, a much more complete set of beliefs can be obtained by learning 

them from the data as discussed in [18]. 

Figure 6 . 1 .  S o m e  U n e x p e c t e d  R u l e s  Der ived  f r o m  C o n s u m e r  P u r c h a s e  D a t a  . 

# 
1 

2 

3 

Fig. 6.1 illustrates some of the unexpected rules discovered using our algorithm. The first rule in 

Fig. 6.1 is that shoppers who are retired do not use coupons, which is a direct contradiction of 

our belief. More subtle cases are when the unexpected rules do not directly contradict our 

beliefs. For example, we believed that professionals shop more on weekends than on weekdays ( 

belief #2 in Fig. 6.1). Though the belief holds on the data, we find that, during December or 

when the household size is large, the belief is contradicted: professionals tend to shop more on 

weekdays in these cases. 'l'hough unexpected, ex-post these rules seem to make sense given that 

there are usually more holidays in December or that large households may require the shopper to 

shop more often on demand than at convenient times. We also believed that households that had 

children tend to buy more of regular than diet beverages (belief #3). Though this did seem to 

hold on the data, we found that when there are large advertisements in the store they bought 

more diet than regular drinks. 
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Belief 

occupation = retired -+ 
coupon-usage = yes 

occupation = professional 

-+ day = weekend 

children = yes -+ drink = 

regular 

Some Unexpected Rules for these Beliefs 

occupation = retired --+ coupon-usage = 
no 
[c = 0.9, s = 11%1 
occupation - - professional, 

household size = large -+ day = weekday - 
[ c =  0.6, s = 1%] 
occupation = professional, month = 

december -+ day = weekday [c = 0.6, s = 

1%] 
children = yes, store - advertisement = 

large -+ drink = diet [c = 0.64, s = 1%] 



6.2 Comparison with Apriori. 

In addition to our belief-driven algorithm ZoomUAR we tested a standard association rule 

generating algorithm, Apriori [2] on the consumer purchase data. ZoomUAR generated about 

600 unexpected rules while Apriori generated over 40,000 rules. To compare the interestingness 

of the rules generated, for illustrative purposes we list a few rules generated by each method in 

Figure 6.2. For Apriori we selected some of the strongest rules (all with almost a 100% 

confidence!) and for ZoomUAR we manually selected some rules since we are dealing with a 

much smaller set of rules. 

Figure 6.2. Comparison o f  r u l e s  generated from ZoomUAR and Apriori  

Rules from ZoomUAR 

1. professional, december + 
weekday (0.6) 
2. professional, large - household 
-+ weekday (0.6) 
3. children, store - advertisement 
+ diet (0.6) 
4. male, young + diet (0.7) 
5. retired + no - coupon-usage 

(0.9) 
6. old, low - income + 
no coupon usage ( 0.9) - - 

The rules generated from ZoomUAR (Figure 6.2) are not statistically very strong, but are 

interesting since they were unexpected with respected to some of our expectations. In contrast, 

some of the top few rules generated by Apriori were extremely strong in the statistical sense 

(close to a 100% rule confidence!). However these rules, as they turned out, were an artifact of 

the data - for all the records in the data, there were no product displays in the lobby of the store 

during the purchase. Hence, trivially, any rule X -+ no - display - in - lobby would have a 100% 

confidence. 

Rules from Apriori 

1. weekday + no - display in lobby - - 
(1.0) 
2. weekend + no display in lobby - - - 
(1.0) 
3 -  january + no display in lobby - - - 
(1.0) 
4. february + no display in lobby - - - 
(1.0) 
5. march + no - display - in - lobby 
(1.0) 
6. april + no display in lobby - - - 
(1.0) 
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6.3 Discussion. 

As shown in the theorem in Section 4.5, for any belief, A -+ B ZoomUAR discovers all 

unexpected rules of the form X -+ Y, where X and A are conjunctions of atomic conditions and 

Y and B are single atomic conditions involving binary attributes. Apriori (extended for discrete 

attributes) on the other hand discovers all association rules. The rules that ZoomUAR discovers 

are therefore a subset of the rules that Apriori discovers. This subset consists of the set of all 

unexpected rules, and is the most interesting subset of rules if unexpectedness is used as the 

measure of interestingness. Are there some patterns that Apriori discovers and that ZoomUAR 

does not that could be "interesting"? Inasmuch as unexpectedness is the single measure of 

interestingness, this can never be the case (based on the theorem in Section 4.5). However from a 

more general perspective, there may be other subjective measures of interestingness (such as 

actionability [3,12,16,17]) that could result in ZoomUAR "missing" some of the "interesting" 

rules. We would like to make three observations in this regard. First, ZoomUAR is not intended 

to discover all "interesting" rules. Rather, it is an algorithm that discovers all unexpected rules. 

Hence, ZoomUAR by design, discovers only the subset of interesting rules that satisfy 

unexpectedness. Second, even for another subjective measure such as "actionability" the only 

"missing" rules are actionable, but expected rules. It has been conjectured [16,17,18] that most 

actionable rules are unexpected and hence this subset is small. Third, inasmuch as it is possible 

to explicitly characterize all facets of interestingness, it may be possible to develop methods that 

discover all interesting patterns. Our work is just a step in this direction. Characterizing all the 

facets of interestingness and developing methods to discover all interesting patterns are 

important areas of future research in data mining. 

7. Conclusions 

In this paper we proposed a new definition of unexpectedness of a rule with respect to a belief 

and presented an algorithm that finds unexpected association rules from data using this measure. 

We tested our methods on consumer purchase data from a market research firm and found some 

unexpected patterns with respect to our belief set. We also compared our approach with a 

standard association rule generating algorithm (Apriori) across the two dimensions: 
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interestingness of rules and number of rules generated. We conclude that our method discovers, 

generally, fewer rules and avoids discovering many obvious or irrelevant rules as Apriori does. 

This means that our approach provides more focused and, therefore, more efficient search for 

interesting rules than Apriori. 

In future work we plan to extend our algorithm to discover unexpected patterns of a more general 

nature than association rules. We also plan to apply our method in the context of knowledge 

refinement based on the discovery of unexpected patterns. More generally, the contribution of 

this research will be procedures for making data-mining more intelligent and useful for the 

decision maker. Our approach should lead to the development of decision support systems that 

provide more relevant patterns in the data to the user, patterns that confirm or challenge the 

user's beliefs and domain knowledge. We believe that such a breakthrough is required if data- 

mining is to achieve its potential in business applications. 
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