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Abstract 

The issue of periodicity is generally understood to be a desirable property of tem- 
poral data that should be supported by temporal database models and their query 
languages. Nevertheless, there has so far not been any systematic examination of how 
to incorporate this concept into a temporal DBMS. In this paper we describe two con- 
cepts of periodicity, which we call strong periodicity and near periodicity, and discuss 
how they capture formally two of the intuitive meanings of this term. We formally 
compare the expressive power of these two concepts, relate them to  existing tempo- 
ral query languages, and show how they can be incorporated into temporal relational 
database query languages, such as the proposed temporal extension to  SQL, in a clean 
and straightforward manner. 

i Introduction 

Periodicity is a feature of temporal phenomena tha t  has received relatively little attention 

in the literature of temporal databases. The  work tha t  has been done related t o  periodicity, 

which we survey in Section 1.1, has been either mostly of a theoretical nature or is related t o  

the  notion of a calendar [26, 23, 61. However, there has been no comprehensive treatment of 

the subject of periodicity in the temporal database literature tha t  thoroughly addresses both 

the meaning of periodicity in the  database context as well as how this aspect of t ime can 

be supported in commercial temporal database systems. As a result of t he  limited attention 

to  this concept, periodicity is not supported in the  TSQL2 standard [25] and no periodic 

queries were included in the  test suite of temporal queries [15]. 

*The work of the authors was supported in part  by the  NSF under Grant IRI-93-18773. 
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This situation is unfortunate since many of the existing temporal query language pro- 

posals cannot express periodic queries, as we shall discuss in Section 3. For example, they 

cannot express even such a simple periodic query as "Find the names and attendance times 

of people who attended any of the Tuesday meetings." 

The goal of this paper is twofold: we explore the meaning of the concept of periodicity 

in the context of temporal databases, and we show how it can be supported in commercial 

temporal query languages and in the TSQL2 standard in particular. Our objective is mainly 

pragmatic: we want to  add periodicity in a practical way to  temporal query languages, includ- 

ing TSQL2. However, it is impossible to  do this in a comprehensive and theoretically sound 

way without a proper understanding on the conceptual level of what periodicity means and 

how it  can be formally represented. Therefore, we study periodicity both on the theoretical 

and the pragmatic levels. 

To understand what periodicity means intuitively, a good place to  start is in the dictio- 

nary. The entry in the American Heritage Dictionary [I] gives the following three meanings 

for the term periodic: 

1. having periods or repeated cycles 

2. happening or appearing at regular intervals 

3. taking place now and then; intermittent. 

The first of these meanings for the term periodic says that  the events occur a t  such 

moments of time that the distance between these moments is the  same.  For example, a class 

might be scheduled to  meet periodically, say, once a week on Wednesdays a t  11 am. Note 

that the time between two successive occurrences in this case is always exactly seven days. 

The second meaning says that the events occur at regular intervals, meaning that  the  

events do not necessarily occur a t  equally distant moments of time. However, there is a 

certain degree of "regularity" in their occurrence: they are "regularly" distanced and thus 

occur within a certain limit from each other. For example, assume that the head of a s tate  

of some country has t o  travel once every week on some business but a t  the same time is 

concerned about security because of the recent increase in the terrorist activities in that  

country. To make the trips safer, the schedule of trips is kept secret and is organized so 
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that the day of the week when the politician travels appears to be totally random. In this 

example, the set of trips is "regular" in the sense that they occur once a week. On the other 

hand, they are not "regular" in the first sense of the word: they are not equally distanced 

from each other, nor can this set of trips be obtained as a union of equal-distance sequences 

(as will be shown later in the paper). This concept of periodicity is clearly a weaker concept 

than the first one. 

The third meaning for the term periodic says that the events occur "intermittently," 

meaning that if one event occurred then the next will follow some time in the future, but it 

is not clear when. For example, a person may visit a pub "periodically," meaning that the 

visits can be quite irregular but the person will keep going to the pub. Clearly, this is the 

weakest concept of periodicity among the three. 

In this paper, we provide formalizations for the first two concepts of periodicity in the 

context of querying a database along the valid time or transaction time dimensions of its 

data. We do not study the third notion of periodicity because we feel that it is "too weak" 

to be formally supported by temporal query languages: technically, all that it says is that 

periodic sets are unbounded in the future. 

After we formalize the two notions of periodicity described above and study their prop- 

erties and the relationship between them, we address the pragmatic question of how to  add 

periodicity in a practical way to commercially oriented temporal query languages. In this 

paper, we concentrate on the ungrouped temporal data models (81 and, therefore, consider 

ungrouped temporal query languages, and in particular the TSQL2 standard. However, we 

believe that the ideas presented in the paper can be extended to the grouped temporal data 

models (81 as well. In the process of studying of how periodicity can be added to commer- 

cially oriented temporal query languages, we rely on the theoretical results about periodicity 

described earlier in the paper. 

When studying periodicity, one has to address two questions. The first question is how 

to define periodic sets of times. For example, one might want to  define the set consisting 

of "every Wednesday," or "the first day of each month," or a "set of visits of the head of a 

state.'' The second question is how to define periodic queries, such as a query to  find people 

who attended every meeting held on Wednesdays, or people that came to the meetings once 

a week. 
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This distinction between periodic sets of time and periodic queries corresponds to the 

distinction between data expressiveness and query expressiveness discussed in [5]. The data 

expressiveness of a formalism specifies what types of infinite temporal databases can be 

defined with the formalism. It arises only in the context of infinite temporal databases 

because in the finite case all the finite databases can be represented explicitly. The query 

expressiveness of a formalism specifies what types of queries can be expressed in the formalism 

and is more akin to the standard notion of expressiveness of query languages. Therefore, in 

order to  understand how periodicity can be added to TSQL2 in the best possible way, we 

will study the data and query expressiveness of different periodic extensions studied in this 

paper. 

1.1 Related Work 

Perhaps the first approach to analyzing the notion of "time" and its relationship to  con- 

ceptual modeling of data was proposed in [4]. Among the many aspects of time that are 

discussed here is the notion of periodicity. A periodic set is defined here in a set-theoretic 

framework in terms of its "period, duration, and cover interval." Periodic sets, along with all 

of the time aspects discussed in the paper, are all interrelated via a concept network similar 

to a semantic net. While this work is of pioneering importance in the temporal database 

literature by having explored so many aspects of the temporal dimension of data, it did not 

study the properties of periodic sets of times, nor did it address the issue of a language for 

expressing queries about the periodic nature of data. 

The model presented in [19] mentions a technique for "the recording of periodic events." 

It does so by allowing the user to associate multiple valid-time time stamps with a given fact. 

For example, a tuple such as < john, d5, d9, h8, h12 > on relation scheme GUARDS(NAME, 

Fdate, TDate, Fhour, Thour) is said to represent that "John works as a guard during the 

hours h8- h12 (h12 excluded), for every day in the interval [d5, d9)." However, the semantics 

of such relations with multiple valid-time timestamps is not fully explored. Moreover, the 

query language does not support queries about periodic events. 

In [13], a classification of relations based on the types of relationships allowed between 

the transaction-time and valid-time timestamps of "items" in the database is presented. 

Among the varieties of relations types discussed are several that rely on a notion which 
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is called "regularity." For example, a temporal relation is said to be "transaction time 

event regular with time unit At  > 0" if the transaction times of any two items stored 

in the database is always an integral multiple of some specified duration At .  Variations 

of this type of consideration lead to  some additional characterizations of relations related 

to temporal regularity. As the authors point out, regularity is related to, but is different 

from, periodicity. In fact, as we shall see, regularity can be defined in terms of our notion 

of periodicity by starting with a periodic set of times and subtracting any arbitrary, but 

recursively defined, set of times from it. Finally, the issues of a language for querying such 

databases with properties of regularity, or for expressing these regularity constraints on the 

temporal dimensions, are not considered. 

Classical work in temporal logic (18, 201 is concerned with truth and validity of tem- 

poral logic formulae, which are defined in terms of temporal structures [18] specifying how 

propositions or predicates change over time. As was observed by [34], classical temporal 

logic does not address the issue of periodicity. In particular, (341 showed that the temporal 

logic with next and until operators cannot define the set of even numbers, which forms one 

of the basic periodic sets. As a remedy, Wolper proposed the language ETL that extended 

the standard temporal logic with additional temporal connectives [34]. The extended lan- 

guage could express periodic events. However, to get the full expressive power of ETL we 

would need infinitely many temporal connectives. To remedy this problem Vardi proposed 

the temporal fixpoint calculus p T  L [33]. 

The language pTL, as defined in 1331, is a propositional temporal calculus, although 

Vardi points out that it can be easily extended to  the predicate case [33]. Calculus pTL 

is obtained from the propositional temporal logic with operators nex t ,  and two types of 

"previous" operators, previousl and previousz' by the addition of the operators least 

and greatest fixpoint. The formula pX.$(X) (respectively vX.$(X)) denotes the least (re- 

spectively greatest) fixpoint solution to the equation X = $(X), where X is a temporal 

proposition. 

Calculus pTL can express temporal operators unti l  and since and can also define 

periodic sets. For example, it can define the set of even numbers as 

 h he difference between them is that  p rev ious1  is always true and p r e v i o u s z  is always false when 
applied to  an arbitrary formula a t  time t = 0. 
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where init is defined as previousl false and is equal t o  true at time t = 0 and false 

elsewhere. Vardi [33] studies the expressive power of pTL and shows that  it a quite expressive 

language: it has the expressive power of w-regular languages [29]. This means that  pTL is 

"too powerful" to  express periodicity alone: intuitively, pTL does not capture the "essence" 

of periodicity, but  supports other concepts in addition to  periodicity. Since in this paper 

we are interested in the question of what mechanism is needed t o  add periodicity, and only 

periodicity, t o  existing temporal query languages and calculi, we want to  study languages 

that are less powerful than pTL. 

Periodicity has also been studied in the context of infinite temporal databases in [16, 71 

and surveyed in [5]. In [16, 51 a generalized relation is defined as a set of generalized tuples 

of the form 

{tl,  . . . , tm, d l , .  . . ,dl I t i  6 (alnl + b l ) ,  . . . , t ,  E (a,n, + b,) 
and constraints on ( t l , .  . . , t,) are satisfied) 

where tl, . . . , t, are temporal variables, d l , .  . . , dl are non-temporal constants, and the con- 

straints imposed on t l ,  . . . , t, are linear. The expressions a;n; + b; are called linear repeating 

points (LRPs), and they form periodic sets. If we restrict the notion of a generalized tuple 

t o  only one attribute and make it temporal, then a generalized relation would consist of 

a set of LRP's with some linear constraints imposed on them. This representation would 

correspond to  the first notion of periodicity above, i.e., "having periods or repeated cycles." 

The union of LRP's would also capture the second notion of periodicity, i.e., "happening 

or appearing at regular intervals," but only to some extent. For example, as will be shown 

later in the paper, a finite union of LRP's cannot represent the set of "visits of the head 

of a state" described in the introduction. We will call the  sets defined by unions of LRP's 

strongly periodic sets to  distinguish them from the  more general notion of nearly periodic. 

We will show in the paper that  the concept of near periodicity subsumes strong periodicity 

and captures the second meaning of periodicity, i.e. "happening or appearing a t  regular 

intervals.)' 

Also, certain aspects of periodicity are studied,in [7] in the context of Datalogl, (and 
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therefore Templog [5]) programs2. For example, the set of even points can be defined in 

Datalog:,, (and hence in Templog) as q(0) t, q(T $- 2) t- q ( T )  This program says that q 

is t rue at time t = 0, and that if q is true at some moment of time T ,  then it is also true 

at time T + 2. It is shown in 151 that the (infinite) temporal database defined by a Templog 

(or a Datalogl,) program is ultimately periodic (i.e. becomes periodic starting from some 

time). Although [7] deals with periodicity issues within the context of Datalogl,, this work 

does not study periodicity per se: it does not directly address the questions presented in the 

introduction: i.e., what periodicity is, and how it can be added in a practical way to  the 

commercial temporal query languages, including the TSQL2 proposal. 

In summary, the work of 116, 7, 51 studies the theory of temporal deductive databases 

and in the process examines certain theoretical aspects of periodicity. However, it considers 

only what in this paper we call strong periodicity, and does not consider a more general 

concept of near periodicity that will be introduced below. Furthermore, it does not address 

the pragmatic issues of how periodicity can be added t o  existing temporal SQL proposals 

and to  the  TSQL2 standard in particular. 

Still another work related to  periodicity is the work on calendars, as presented in [26, 

23, 61. The objective of this work is to  define not only the standard Gregorian calendar but 

other calendars as well, such as Lunar, Meso-American, Russian and ultimately an arbitrary 

user-defined calendar. However, to  achieve this goal, the  researchers studying calendars take 

different approaches. 

In 161, calendars are defined with a calendar expression language. To define a particular 

user-defined calendar, a script is written in this language. For example, t o  define the calendar 

"the last day of every month; but if this day is a holiday, then the preceding business day," 

(61 proceeds as follows. First, it specifies calendars "last day of every month" and "American 

holidays," and then defines the calendar "business days" by subtracting "American holidays" 

from week-days. Then it  adjusts "last day of every month'' based on whether the last day 

of a month belongs t o  "business days" or not. 

In [23], calendars are defined as periodic infinite sets of consecutive intervals which 

partition time, such as yea r s ,  weeks, months, etc. Also, [23] imposes the partial order 

subcalendar on calendars. For example, days is a subcalendar of weeks and of months. In 

=It is shown in [5] that the two languages are equivalent. 
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addition, [23] defines slices of calendars that are non-consecutive repeated intervals of time. 

Examples of slices are "Sundays," "the 4th hour of the 3rd day of each month," and "from 

3 am to  6 pm each 3rd day of each month." 

Soo and Snodgrass [26] were among the first to  study calendars, and their work, as 

described in 1261, was subsequently incorporated into the TSQL2 standard 1251. In [26], 

Soo and Snodgrass define a calendric system with a set of properties that are contained in a 

property table which is activated with the s e t  p r o p e r t i e s  command. The system presented 

in [26] supports the temporal data types events, intervals, and spans that correspond to 

moments of time, periods of time, and durations of time. Unlike [23] and [6], where it is 

possible to select "slices" of a calendar (non-consecutive repeated intervals of time), 1261 

considers only whole calendars and does not provide operators that "slice" and "dice" them 

into pieces. Therefore, 1261 apparently does not support such periodic sets of time as "the 

first Monday of each month," or "the last non-holiday day of every month." 

Note that the calendars, as defined in [23] and [6], support such periodic events as 

"every Sunday" and "every first Monday of each month." However, as we show in the 

paper, periodicity is not limited to calendars. It is based on a mar; general concept of 

"regularity" and encompasses arbitrary recursive sets of time, elements of which exhibit 

certain "regularity" that we define later in the paper. 

As explained earlier, we follow the methodology used in [5], when studying periodicity, 

and consider both data and query expressiveness. In the next section, we study the data ex- 

pressiveness issues of periodicity by considering formalisms for defining periodic sets of time. 

Then in Section 3 we address the issue of query expressiveness by considering formalisms for 

defining periodic queries. 

Periodic Sets of Time 

In this section, we consider just the temporal domain, in isolation from the value domain, 

and will describe the notion of periodic sets of times for that domain. In particular, we are 

concerned with the data expressiveness of various formalisms that define periodic sets to  see 

how well they capture the intuitive meanings of periodicity described in Section 1. 

Note that all the dictionary meanings of the word periodicity discussed in Section 1, 
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including the third one, assume that each periodic event has a successor. This means, among 

other things, that sequences of periodic events are infinite. In practice, however, databases 

are finite, and therefore infinite periodic sequences are only abstractions. 

To begin with, we have to  specify the model of time. The most general model represents 

time as an arbitrary set with a partial order imposed on it. With additional axioms, we can 

introduce other models of time, e.g., time can be treated as discrete or dense, bounded 

or unbounded, linear or branching 1321. In this paper, we assume that time is discrete, 

linear, unbounded in the future and bounded in the past, because this is the model of time 

generally considered by historical and temporal data models (121, 271). This model of time is 

isomorphic to  the set of natural numbers [32]. For this reason, we assume throughout most 

of the paper that time is represented with natural numbers. 

In the next section, we consider one type of periodicity that captures the first meaning 

of this term described in the introduction. Then in Section 2.2, we consider a more general 

meaning of this term. 

2.1 Strongly Periodic Sets of Time 

Periodic sets of numbers have been studied before and are relatively well understood objects. 

In particular, Enderton describes these sets in 1101 within the context of mathematical logic 

and 116, 51 in the context of infinite temporal databases. To make the paper self-contained, 

we review in this section the standard concepts of periodicity, as presented in these references 

and elsewhere. 

A linear repeating point (LRP) 116, 51 is a set 

{x E N I (3k)(k E N A x  = a k +  b)) 

where a ,  b E N 3 .  LRPs are usually denoted as an  + b. Also, an eventual linear repeating 

point is defined as 

M u  {x I (3k)(x > c =+ x = ak + b)} 

where M is a finite set of natural numbers and a ,  b, c E: N .  

3Note that 116, 51 assume that a ,  6 x and k range over integers. However, we follow Enderton [lo] in this 
paper who considers only the set of natural numbers. 
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Note that  the  definition of a linear repeating point corresponds t o  the  first intuitive 

meaning of periodicity (having periods or repeated cycles) as presented in [I] and discussed 

in the introduction. Furthermore, if we combine various LRPs, we will get the  following 

concept of strong periodicity. 

Definition 1 A set of natural numbers is strongly periodic if it can be defined as a finite 

union of eventual linear repeating points. 

As we said already, strong periodicity was studied before under different names in [lo] 

and 1161 (we use the term "strong periodicity" to  distinguish it from "near periodicity'' to  

be defined below). In the rest of this section, we will refer to  strongly periodic sets simply as 

"periodic sets" if no confusion arises (however, we will call them "strongly periodic" again 

in the rest of the paper). 

Example 1 Consider the set of times that define first dates of each month over the years. 

This set is strongly periodic. To see this, assume that there are no leap and that the 

beginning of time starts with 1 (so that  January 1 of the first year corresponds to  1). Then 

this set can be defined as 

365n + 1 U 365n + 32 U 365n + 60 U 365n + 91 U . . . U 365n + 305 U 365n + 335 

where the  union has 12 terms, and each term corresponds to  the first day of the corresponding 

month. 

It is easy to see that strongly periodic sets are closed under union, intersection, and 

complementation. Also strong periodicity corresponds to  the second intuitive meaning of 

periodicity (happening or appearing a t  regular intervals) as presented in [I] and discussed 

in the introduction. For example, consider the set consisting of the union of even numbers 

and multiples of 3. Note that the elements of this set do not occur in a cycle, as is required 

in the first intuitive meaning of periodicity, but they occur "regularly enough" so that  they 

can be represented as a union of LRPs. 

We next consider different first-order logics(s) that can define strongly periodic sets of 

numbers. As a starting point, we consider the first-order language RL = (N, 0, S,  <) with 

41t is easy to see that this set is still strongly periodic if this restrictive assumption is removed. However, 
the removal of this assumption will require more complex expressions to define this periodic set of times. 
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equality, where N is the set of natural numbers, 0 is a constant symbol (intended to  denote 

the  number O) ,  S is the successor function S : N -+ N (i.e. S (n )  = n + I ) ,  and < is a 

linear ordering relation on N. For instance, if we use t + 1 as a shorthand for S ( t ) ,  then the 

formula (3t1)(t + 1 < t' A t' > 100) is an example of a well-formed formula in RL. 

Enderton shows [lO][Corollary 32C] that a set of numbers is definable in RL if and 

only if it is either finite or has finite complement. It follows immediately from this that 

strongly periodic sets of time cannot be expressed in RL except for some degenerate cases. 

For example, the  set of even (or odd) numbers cannot be  expressed in RL. Therefore, we 

have to  extend RL to  be able to define periodic sets. 

A natural way of extending RL t o  support periodic sets would be to  add the one-place 

predicate periodic to RL (actually, we define a class of such predicates, one for each pair of 

p and s ) :  

a 
periodic,,,(t) = t E s mod p or as (3k)(t = k * p + s) (1) 

We denote the resulting language as RLp. Clearly, we can define some periodic sets in RLp. 

For example, the set of even and odd numbers can be defined using RL, as {n I p e r i o d i ~ ~ , ~ ( n ) )  

and {n I p e r i ~ d i c ~ , ~  (n))  respectively. 

Since predicate periodic is defined above in terms of congruence (=) or addition (+) 

operators, we can also define two languages RL, and RL+ [lo] by adding, respectively, 

congruence and addition operators to  RL. For example, the set of odd numbers can be 

defined using RLz as {n I n G 1 mod 21, and as {n I (3m)(n = m + m + 1)) using RL+. 

Clearly, the languages RLz and RL+ are at least as expressive as RLp 

Furthermore, Enderton shows in [10][Theorem 32F] that 

Theorem 2 A set of natural numbers is definable in RL+ if and only if it is strongly periodic. 

Intuitively, this theorem holds because any RL+ formula with quantifiers can be con- 

verted to an equivalent RLE formula without quantifiers. Furthermore, the following corol- 

lary immediately follows from the proof of this theorem. 

Corollary 3 Languages RLp, RLE, and RL+ have the same expressive power and define the 

class of strongly periodic sets. 
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In summary, the  three languages RLp, RLG, and EL+ have the same expressive power, 

and define exactly the class of strongly periodic sets. 

As we mentioned in Section 1.1, generalized relations, as defined in [16, 51, are related 

to  the concept of strong periodicity: if we restrict generalized tuples t o  only one attribute 

and make it  temporal, then a generalized relation would be strongly periodic. 

In [23], Niezette and Stevenne took the concept of linear repeating points and applied 

it to  the definition of calendars. The resulting language can support not only the Gregorian 

calendar, but also other types of calendars, such as Lunar, Meso-American, and various user- 

defined calendars. In 1231, they also show that their concept of calendars can be reduced 

t o  linear repeating intervals, which is an extension of linear repeating points to  the case 

of intervals. Thus they view calendars as a user-friendly representation of linear repeating 

intervals. Therefore, the concept of a calendar, as defined in 1231, does not take us beyond 

strongly periodic sets, and thus such sets of times as "the first day of each month," or 

"American holidays" can be defined in strongly periodic terms. 

It follows from the discussion of strong periodicity, that strong periodicity can capture 

a rich class of the sets which are intuitively "periodic." In particular, it captures the first 

intuitive meaning of periodicity, as described in the introduction. Furthermore, it captures, 

to  some extent, the second intuitive meaning of periodicity since such non-equal-distance 

but "regular" sets as "the first date of each month" can be expressed in strongly periodic 

terms (Example 1). However, it is not clear if strong periodicity is a sufficiently powerful 

concept to  capture all the aspects of the second meaning of "periodicity," or if we need a 

more powerful concept for that purpose. We address this question in the  next section. 

2.2 Nearly Periodic Sets of Time 

A strongly periodic set of times defines a union of eventually periodic points, i.e. of points 

that are eventually equally distanced from each other. However, the  second concept of 

periodicity, as described in the introduction, is intuitively broader than that.  All that this 

concept says is that "periodic" points have to  be "regularly" distanced from each other, i.e., 

within a certain limit from each other; but they don't have to  be  equally distanced though. 

For example, consider the set of once-a-week trips that  the head of a state makes, as described 

in Section 1. Intuitively, this is a "periodic" set because the  trips are regularly made (once 
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a week). However, as we will formally show below, this set cannot be represented as a finite 

union of eventually periodic sets. Intuitively, this is the case because the times of the week 

when the person travels are very unpredictable (randomized). 

To capture the second type of periodicity, we start with an arbitrary recursive set of 

times S. Then we impose a restriction on the set S that there is a strongly periodic set of 

points S' and a bijective mapping between points in S and S' such that each point in S must 

be "close" t o  the corresponding point in St. In other words, S and S' are not "too much 

away" from each other. 

Formally, we proceed as follows. 

Definition 4 A recursive set of natural numbers {ql ,  q2, . . . , q,, . . .) is essentially nearly pe- 

riodic with period p i f  there exists an eventual LRP defining a periodic sequence pl , p2,  . . . , p,, . . . 
(pk = k * p + s for some p, s ,  and M ,  and for k > M )  and a number n ,  n < p/2, such that 

Iqk - pkl < n for all k > M .  

Note that  it immediately follows from this definition that the set of numbers 

{q l ,  42,. . . , qn,. . .) forms a monotonic sequence, i.e. qk < qk+l for k > M.  The follow- 

ing proposition immediately follows from this definition and the definition of a recursive set 

and provides an alternative characterization of nearly periodic sets. 

Proposition 5 A set of natural numbers {ql ,  qa, . . . , q,, . . .) is essentially nearly periodic 

with period p if and only if there exists an eventual LRP defining a periodic sequence 

p l , p 2 , .  . . ,p,, . . . (pk = k * p + s for some p, s, and for k > M for some M ) ,  a recur- 

sive function f ,  and a number n, n < p/2, such that 

Iqk -pkl < n ,  f o r k  > M 

Definition 6 A set D of natural numbers is nearly periodic if  it can be defined as a finite 

union of essentially nearly periodic sets. 
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We will sometimes use a slightly different, though equivalent, characterization of nearly 

periodic sets based on the following concept of nearly periodic predicates. 

Definition 7 A monadic predicate Q is nearly periodic with period p if it can be defined 

by some essentially nearly periodic sequence of numbers with period p, i.e., there exists an 

essentially nearly periodic sequence ql, 92,. . . , q,, . . . such that Q ( t )  is true if and only if there 

exists k such that Q ( t )  = qk. 

Then a set of natural numbers D is nearly periodic if and only if it can be expressed as 

where Q 1 , .  . . , Q k  are nearly periodic predicates. 

Example 2 Consider a disk backup policy under which computer disks are backed up once 

every week but highly irregularly. In particular, the set of backup days is defined with the  

predicate backup as: 

(7  * n + irregular(n)  I n E N )  (3) 

where the  function irregular is a recursive function that  (i) maps each natural number to  a 

natural number between 0 and.6, and (ii) has the property that the sequence of numbers 

{ x ~ ) ~ ~ ~ ,  such that xk = irregular(k) ,  does not have a periodic subsequence of the  same 

number5. In other words, { x k ) k E ~  does not have a subsequence {xk , ) iEN such that,  for a11 

i ,  k;+l - k; = k; - ki-1 and xk, = xk,,,. For example, such function can be defined with a 

pseudo-random recursive function simulating the uniform distribution on the interval [O, 61. 

It follows from the definitions that this set of backup dates is nearly periodic. 

Similarly, we can define the set of once-a-week visits of the head of a state described in 

the introduction and at the beginning of this section with the expression (3) .  Again, this set 

is nearly periodic. 

cl 

'Since expression (3) consists of the "periodic" component 7*n and the "random" component irregular(n), 
it may appear that predicate backup can be defined in terms of strong periodicity and temporal indeterminacy 
[9]. However, this is not the case because the function irregular() is recursive and not a random function. 
Therefore, there is no indeterminacy involved in defining predicate backup. 
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I t  follows from the definitions of strongly and nearly periodic sets that a strongly periodic 

set is also nearly periodic. It is also important to know if the inverse is true, and the next 

proposition provides the answer to this question. 

Proposition 8 Backup and head-of-state-visits do not define strongly periodic sets. 

Proof: The proof follows from the definition of strong periodicity and from the fact that 

sets backup and head-ofistate-visits do not have any periodic subsets. 13 

The next corollary follows from this proposition and from the fact that a strongly 

periodic set is also nearly periodic. 

Corollary 9 The class of strongly periodic sets of time is properly contained in  the class of 

nearly periodic sets. 

We next consider the restrictions that have to  be imposed on the nearly periodic pred- 

icates in order to make them strongly periodic. Note that nearly periodic predicates are 

defined with arbitrary recursive functions as long as they satisfy the restrictions specified in 

Definition 4 (or equivalently Proposition 5 ) .  In contrast to this, it follows from Theorem 2 

that the set of natural numbers is strongly periodic if and only if it is expressible in RL+. 

Therefore, a necessary and sufficient condition for a nearly periodic set t o  be strongly periodic 

is that ~ f = ~  Q;(t )  in (2) be expressible in RL+; this condition delineates the boundary be- 

tween nearly and strongly periodic sets. For instance, if the recursive predicate irregular from 

Example 2 is not expressible in RL+, then the resulting sets backup and head-of-state-visits 

are nearly but not strongly periodic. 

Forrnalizat ion of Periodic Queries 

In Section 2, we considered periodic sets of t ime and the data expressiveness of periodic 

extensions of RL. In this section, we study periodic queries and their query expressiveness 

[ 5 ] .  This means that we will consider arbitrary temporal relations [14] in addition to  periodic 

sets of time and study formalisms that capture the two intuitive meanings of periodicity, 

described in the introduction, with respect to  queries on a database. 
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Our starting point is the standard ungrouped temporal calculus T C  131, 81 that serves 

as a formal basis for the ungrouped temporal query languages. The calculus T C  is based on 

two-sorted first-order logic where one of the sorts is linearly ordered (by a relation denoted 

<), and is interpreted as the set of times. Furthermore, all the predicates can have at  most 

one temporal argument. Calculus T C  can be thought of as the language RL extended with 

temporal relations. Several temporal relational data models, such as TQuel [24], support 

two times per relation, typically interpreted as "start time" when the tuple was added to the 

relation and "end time" when it was removed. This temporal data model can be represented 

with the calculus T C 2  [16] that is very similar to T C  except that each predicate has two 

times instead of one. As an example of language T C ,  the query finding names of all the 

employees that received a cut in their salaries can be expressed in TC as 

{name (3t)(3t1)(EMPL(name, sal,  t )  A EMPL(name,  sal', t') A t < t' A sal > sal')) 

Since TC is based on RL, it cannot express the query even that returns the set of even 

time points, and thus, like RL, it is not powerful enough to support periodicity. In [B] we 

considered some temporal query languages that have the expressive power equal to, or less 

than, T C .  Therefore, these languages also cannot express periodic queries. Furthermore, as 

will be explained in Section 5, periodic queries are not supported in TSQL2 either. Therefore, 

we have to extend T C  (and these query languages) to support periodicity. 

The language T C  can be extended to support periodicity by adding strongly or nearly 

periodic predicates to it. In particular, the strongly periodic language TC, is obtained from 

the language T C  by adding the class of monadic predicates periodic,, defined by (1) to the 

temporal sort of T C .  

Clearly, the language TC, can express periodic queries of the first type defined in the 

introduction, i.e. queries dealing with "periods or repeated cycles.'' The following examples 

illustrate this point. 

Example 3 The query "Find the names and attendance times of people who attended any 

of the Tuesday meetings of the Computer Resources Committee (CRC)" can be expressed 

in TC,  as 

{< empl, t > I ATTEND(emp1, meeting, t )  A meeting = 'CRC" A p e r i o d i ~ ~ , ~ ( t ) )  

where ATTEND is a relationship specifying the times when employees attended meetings, and 
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7 corresponds to seven days of a week, and 2 to Tuesday. 

Example 4 The query "Find the people who attended all the Tuesday meetings of the CRC 

committee in the past two months" can be expressed in TC, as 

{empl 1 (Vt)((periodic7,z(t) A now 5 t + 60 A t < now) =+ ATTEND(empl, "CRC", t ) ) )  

assuming that t + 60 is a shorthand for the successor function S applied 60 times to t .  

Moreover, strongly periodic queries can express some of the periodic queries of the 

second type that deal with the sets of events that are not strongly periodic. For example, 

the query "Find the people who attended the CRC meetings once a week" can be expressed 

as 

{empl I ('v't)(periodic7,,(t) + (3t')(ATTEND(empE, "CRC", t') A t 5 t' < t + 7 A 

('v'tU)(t 2 t" < t + 7 A t" # t' + -ATTEND(enzpl, "CRC", t"))))) 

Note that the "once-a-week" events themselves may not be strongly periodic. However, the 

query that checks if events are held once a week is expressed in strongly periodic terms in 

the previous example, i.e. is expressed in TC,. 

The next proposition, that immediately follows from the  fact that periodic sets of time 

cannot be defined in RL (see Section 2.1), shows that the predicate periodic adds extra 

expressive power to  T C .  

Proposition 10 TC,  has more expressive power than T C .  

In addition to strongly periodic predicates, we can add nearly periodic predicates to T C .  

The resulting query language will be called nearly periodic and will be denoted as TC,,. 

For instance, if head-of-s ta te-vis i t s  is a monadic predicate defined in Example 2 

specifying the times when the head of a state is scheduled to make visits and ACTUAL-VISITS 

is the predicate specifying the actual visits he or she made, then the query "Did the 

head of the state make all the visits as they were scheduled for him/her (with predicate 

head-of-state-visi ts)?" can be expressed in TC,, as a yes/no query 
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The language TC,, differs from TC, in the following important aspect. T C ,  is obtained 

from TC by adding a family of periodic predicates periodicp,, defined with equation (1). In 

contrast to  this, TC,, is obtained from T C  by adding all the nearly periodic predicates to  

T C .  Since there are infinitely many such predicates that,  unlike TC,, are defined in infinitely 

many ways, this means that all of them cannot be added to  T C  in practice. However, in 

practice, the  user will add finite libraries of nearly periodic predicates to T C  t o  support 

near-periodicity. We will elaborate on this further in Section 5. 

The following proposition follows immediately from the definitions of TC,, TC,,, and 

from Corollary 9: 

Proposition 11 TC,, has more expressive power than TC,  

4 Relationship of TCp and TCnp to Other Formalisms 

Periodic queries can be expressed in some other formalisms besides T C ,  and TC,,. For 

instance, the  T C ,  query from Example 3 can also be expressed as: 

{< emp1,t > I ATTGND(emp1, meeting, t )  A meeting = L'CRC" A (3t1)(t = 7*t'+2)) (4) 

in an extension of TC that supports addition6. 

Since addition is a very fundamental mathematical operation and since some of the 

strongly periodic queries can be expressed using addition, we consider the extension of T C  

that supports addition, T C S ,  in the next section. 

The calculus T C S  is defined as follows. It is identical in its syntax and semantics to  T C ,  

except that it supports one extra function addition (+) only for its temporal sort, and this 

function is defined in the standard way. The query specified in (4) provides an example of 

the question expressed in T C S .  

"t is important to note that the multiplication in this example is really not a true multiplication; it can 
be replaced with 6 additions of 2'. 
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As the  following theorem shows, TC+ is more expressive than TC,. 

Theorem 1 2  The class of TC, queries is properly contained in the class of TC+ queries. 

Proof: The containment follows from the fact that periodic predicates can be expressed in 

TC+. To prove the  proper containment, consider the following TC+ query: 

We claim that  this query cannot be expressed in TC,. To see this, assume that  it can be 

expressed in TC, as {t I $pPQ (t)).  Consider the interpretations for P and Q that make these 

predicates true throughout. Then $ is equivalent t o  a RL+ formula and hence is eventually 

periodic (Theorem 2) with some period p and some starting point M. Furthermore, i t  follows 

from the proof of Theorem 2 that if $ has a periodic predicate period,,,(t) then q divides p. 

Take the largest constant N among all the constants appearing in $ p , ~ ,  and let to be 

a multiple of p such that max{N, M ,  1) << to (e.g., let to = 100(M + N + 1)). Consider an 

interpretation for Q such that Q is true in that interpretation at only one time, c, and false 

elsewhere, and that  c is also a multiple of p and is much larger than to, to << c (e.g., let 

c = looto). 

Then the original TCf query with this interpretation for Q is equivalent to  y( t )  = 
P ( t )  A (3t1)(P(t') At + t f  = c) E P(t) A P (c -  t) .  Furthermore, $ p , ~ ( t )  with this interpretation 

of Q can be replaced by dp(t),  where dp(t) is obtained from $pIQ(t) by replacing all predicate 

instances Q(tl) in it with the expression t1 = c. Since we assume that the original TCS query 

is equivalent to  $ P , ~ ,  it means that y(t)  must be equivalent t o  $p(t), i.e., they must be equal 

at all times for all the interpretations for P. 

Now consider the following two interpretations for P. The first interpretation, Ip,  is 

true for all moments of time except tl  = c - to - p, and the second one, is also true 

for all moments of time except for ti = t l  + p = c - to (see Figure 1). Clearly, y(to) is true 

in Ip ,  and y(to) is false in 1 2 .  Since yp and $p are equivalent, it should be the  case tha t  

cjlp(to) is true in Ip and dp(tO) is false in I?. However, we claim that if dp(tO) is true in Ip 

then glp(tO) must also be true in 12, and the  resulting contradiction proves the  theorem. 

To see that if #p(tO) is true in Ip then $p(tO) must also be true in I:', we do the 
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t'l 
C 

TIME 

I p :  - -D 

+P I p  : - -* 

Figure 1: Theorem 9 Illustration 

following. For interpretation Ip, we replace gip(to) with (bl(to) obtained from dp(to) by 

replacing each instance of P ( t )  with t # t l .  Similarly for interpretation I:,, we replace 

dp(to) with d2(to) obtained from dp(tO) by replacing each instance of P ( t )  with t # tl + p. 

Note that dl and 452 no longer contain any temporal predicates. The only difference between 

dl and 4 2  is that whenever the first contains an expression of the form t # t l ,  the second 

contains an expression of the form t $I tl  + p. It can be shown that if dl(to) is true then 

d2(t0) is also true. Intuitively, this is the case because tl is located "far away" from the 

other constants appearing in the formula (based on our choice of t l ) ,  and because for any 

periodic predicate periodic,,,(t) in dl or 4 2 ,  q divides p (therefore, periodic predicates do 

not "notice" the difference between dl(to) and d2(to)). 

Note that T C +  is more expressive than TC,, whereas RL+ and RL, have the same 

expressive power. Intuitively, this happens because the language RL+ admits quantifier 

elimination (that is how Theorem 2 is proved in [lo]),  whereas T C +  does not. From another 

point of view, T C t  is more expressive than TC, because temporal variables appearing in 

different predicates can be added together in TC+, as is done in query (5). Note that if 

we just added to T C  purely temporal relations defined in RL+, then the resulting language 

would have had the expressive power of TC, because of Theorem 2. This observation shows 

that the issue of query expressiveness of periodic extensions of T C  cannot be trivially reduced 
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to  studying periodic sets of time. 

The next theorem shows that TC,, and TC+ are unrelated in the sense that neither 

one contains the other. 

Theorem 13 There are TC,, queries that cannot be expressed in TC+, and TC+ queries 

that cannot be expressed in TC,,. 

Proof: To prove the first part, consider the following query: 

where p is an integer greater than 1. Clearly, this query belongs to  TC,,. However, this set 

is not strongly periodic. Therefore, it cannot be expressed in RL+ (Corollary 3) and thus in 

TC+ . 

The proof of the second part of the query proceeds as the proof of Theorem 12. We start 

with the same TC+ query (5) and assume that it can be expressed in TC,, as {t I +plQ(t)). 

Then we use the same argument reducing +p,Q t o  and $2. However, the  constants to, t l ,  

and c have t o  be selected now differently from the way they were selected in the proof of 

Theorem 12. First, we select the point to that is "much larger" than any constant appearing 

in $p,Q. Then we select the points tl  and t2,  such that to < t l  < tz ,  and all the nearly 

periodic functions in are either simultaneously true or false at t l  and t2. Then we select 

the point c = to + t2 and set p = t2  - t l .  Then the  rest of the argument in the proof of 

Theorem 12 goes through. C] 

It follows from Theorem 12 that TC+ can express periodic queries. Since TC+ is a 

very fundamental, intuitive, and convenient language for expressing periodicity, it would be 

very nice t o  use it for that purpose. However, it also follows from Theorem 12 that  TC+ is 

"too powerful'' for defining periodicity, i.e., it captures more than the concept of periodicity 

alone. Therefore, if we want to  use TC+ for expressing periodic and only periodic queries, 

we should impose certain syntactic conditions on TC+ that  would restrict it t o  only periodic 

queries. 

As we said already, the main reason why TC+ is more expressive than TC, is that  in 

TC+ we can add two diflerent temporal variables, whereas in TC,, periodicity can be defined 
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only in terms of the  addition of a variable to itself. For example, TC+ formulae containing 

expressions t + t t  = t" cannot always be expressed in TC,  as the proof of Theorem 12 

shows. However, if a T C +  formula containing expressions t + t' = t" does not contain 

temporal relations, then it can be expressed in TC,  (by eliminating quantifiers, as explained 

in Theorem 32E in [lo], and converting the resulting eventually periodic expression into TC,  

expressions). 

This discussion suggests the following approach to restricting TC+ t o  the  class of formu- 

lae expressible in TC,. Intuitively, if 4 is a T C +  expression, then we want to  "separate" all 

of its subformulae containing expressions of the form t $- t1 into purely temporal expressions 

that do not contain any temporal relations. Then we can remove t + t' expressions through 

the quantifier elimination process (as described in the  proof of Theorem 32E in [lo]) thus 

producing expressions containing only congruence relations that can be easily expressed in 

TC,. 

Formally, we proceed as follows. 

Definition: A T C +  expression 4 is essentially periodic if i t  is equivalent t o  another T C +  

expression 4' having the following property: 

If 4' contains an atomic formula defined with a relational operator d(tl, tz ,  . . . , t,) 
(0 is <, =, <, etc.) that depends on distinct variables t l , t a , .  . . , t,, and n > 1, 

then for all variables ti ,  except one, the subexpression of q5' of the form (Qti)y5, 

where Q is a quantifier, does not contain any temporal predicates. 

For example, the formula 

is essentially periodic because it  is equivalent t o  (Vt)(P(t) A (3t1)(t + t' = c)), and its subex- 

pression (3t1)(t + t' = c) does not contain any predicates. Therefore, the quantifier in the 

latter subexpression can be eliminated by replacing the entire subexpression with t < c. 

Thus, the main formula is equivalent t o  the T C  (and hence TC,)  formula 

('Jt)(P(t) A t < c) 

As another example, the formula 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-95-06 



is not essentially periodic. To see that this is so, consider its atomic subformula t + t' = c. 

Both the subexpressions (3 t t ) (P( t )  A Q(tl) A t + t' = c) and (Vt)(3t1)(P(t) A Q(t')  At + t' = c) 

contain a temporal predicate (P ( t )  and Q(t1)) inside. Furthermore, this formula cannot be 

converted t o  an equivalent formula that satisfies this property. 

We denote the  class of essentially periodic queries as TC:. 

Proposition 14 Classes of queries TC, and TC: have the same expressive power. 

Proof: Clearly, any TC, query can be expressed in TC:. To prove the inverse, consider an 

essentially periodic query 4. Transform it into the equivalent query $' as described above. 

Then for each relational operator B(tl, t 2 , .  . . , t,) having more than one distinct variable in it 

(n > 1) take the  subexpression (Qt;)$ containing the scope of the outermost quantifier (i.e. 

quantifiers of all other variables t,, except one are contained inside $). By the definition 

of an essentially periodic query, $ does not contain any predicates. Using the quantifier 

elimination procedure, as described in [lo,  Theorem 32E], convert it into a subexpression 

that contains only one variable from the set i t l ,  t 2 , .  . . , t,) and the congruence operator (in 

other words, the expression $ containing quantifiers over temporal variables is replaced by 

an equivalent expression containing the congruence operator and no quantifiers). Repeat 

this process inductively for all other relational operators B(tl, t 2 , .  . . , t,) having more than 

one distinct variable. As a result of this procedure, the addition operator can appear only in 

terms having only a single variable, and these terms can be defined with periodic predicates. 

a 

In summary, we have considered language T C +  in this section and have shown that 

it is more expressive than TC,  and is unrelated to TC,,. Furthermore, we have defined 

a restricted version of T C S ,  TC:, that is equivalent to  TC,, and thus captures strongly 

periodic queries and only them. These results are summarized in Figure 2, where arrows 

mean "proper inclusion." 

Since languages TC,, and T C +  are unrelated t o  each other, it is important to know if 

there is a language that  supports periodicity and a t  the same time contains both TC,, and 

T C + .  We address this issue in the next section. 
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TC- 

Figure 2: The Relationship Between Calculi T C ,  TC,, TC:, TC,,, and T C S  (Arrows 
Indicate Inclusion). 

4.2 Calculus TCS* 

In this section we define the calculus T C + *  and show that it  is more expressive than each 

of the calculi TCf and TC,,. The calculus TC+* is obtained from T C +  by supporting 

the multiplication operator for the temporal sort. For example, the query "find the people 

who attended CRC meetings on non-prime days and report their attendance dates" can be 

expressed in TC+* as 

{< empl, t > I ATTEND(emp1, meeting, t) A meeting = T R C "  A 

(3t1)(3t'')(t = t' * t" A t' # 1 A t' # t ) )  

As the following propositions show, TCS* is more expressive than TC,, and T C + .  

Proposition 15 T C + *  is more expressive than T C + .  

Proof: Immediately follows from Corollary 32G in [lo] that  says that multiplication cannot 

be defined in (N, 0, S, <, +). For example, the TCS* query {t I (3s)(s E N A t = s * s ) )  does 

not define a strongly periodic set and therefore is not expressible in T C + .  

Proposition 16 TCf * is more expressive than TC,,. 

Proof: By definition, the nearly periodic predicates are recursive. Then Theorem 34A from 

1101 says that they are expressible in (N ,  0, S, <, +, *, E) (where E stands for exponentia- 
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TC- TC, TC 

Figure 3: The Relationship Between Calculi T C ,  TC,, TC:, TC,,, T C + ,  and TC+* 
(Arrows Indicate Inclusion). 

tion). Then Theorem 37C in [lo] says that they are also expressible in (N,O, S, <, +, *). 

Furthermore, it follows from Theorem 13 and Proposition 15 that the inclusion is proper. CI 

Propositions 15 and 16 complete the picture that relates the various periodic calculi described 

in this paper. This relationship is presented in Figure 3. 

Figure 3 shows that the languages TC, and TC: are equivalent and are the least 

powerful periodic query languages. They define exactly the class of strongly periodic queries. 

The query language TC,, that defines the class of nearly periodic queries is strictly 

more expressive than the class of periodic queries. However, if the user wants to  formu- 

late a nearly periodic query, he or she has to specify nearly periodic predicatets), such as 

head-of-state-visits, that are part of the query. This means that the nearly periodic pred- 

icates must be stored in a library that is either a part of the DBMS or is created by the 

end-user or the systems administrator. Furthermore, the user has to deal with the situations 

when the nearly periodic predicates he or she needs are not in the library. 

Therefore, we also studied some of the other formalisms for expressing periodicity that 

do not have to deal with libraries of predicates, such as languages T C +  and T O * .  The 

language T C S  is strictly more expressive than TC, and is very simple: it differs from TC 

in that it also supports addition for the temporal sort. However, it does not express all 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-95-06 



TC,, queries. Finally, the language T C + *  can support both periodic and nearly periodic 

queries (and is strictly more expressive than T C f  ). However, it may be the  case that T C + *  

is overly expressive, i.e. it supports various other concepts in'addition to  periodicity; but 

the  study of the exact characterization of the expressive power of TC+* is beyond the scope 

of this paper. 

Adding Periodicity 

In the previous sections of the paper we have formalized the  two intuitive concepts of period- 

icity borrowed from [l] and presented in the introduction. We have also considered various 

periodic extensions of T C  that support the two types of periodicity, and we have established 

the relationships among these extensions. We are now ready to  discuss how periodicity can 

be added to  end-user-oriented temporal query languages and to  the TSQL2 standard [25] in 

particular. We concentrate in this section on TSQL2 because it is an important and highly 

influential temporal query language. However, our discussions of how t o  add periodicity to 

this language are more general in nature and can be applied to  various other ungrouped 

temporal query languages, such as TQuel [24] or TSQL 1221. Moreover, we believe that some 

of these ideas can be extended to  the grouped temporal query languages, such as Lh [8], and 

Gadia's [ll] and Tansel's [28] languages. 

To make the discussion in this section concrete, we need to  consider a specific relation 

embodying some data that can support periodic queries. For this purpose consider a relation 

which records attendance by employees at various company meetings. The TSQL2 command 

t o  create such a table might be the following: 

CREATE TABLE ATTEND-2 (EMPLNAME CHARACTER ( 20 ) NOT NULL, 
MEETINGNAME CHARACTER ( 20 ) )  

VALID AS INTERVAL 

Figure 4 shows the example instance of the A T T E N D - 2  relation which we will use in 

this section to illustrate periodic queries. 

In its present form, the TSQL2 proposal does not support periodic queries for the 

following reason. TSQL2 is based on the interval-based temporal logic and supports such 

Allen's interval-based operators as precedes, contains, overlaps, etc. [2]. Since temporal 
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Note that the following dates in this table are Mondays: 1/4/93, 1/11/93, 1/18/93, 
1/25/93, 2/1/93, 2/8/93, 2/15/93, 2/22/93, 1/3/94, 3/21/94. 

ATTEND-2  

Figure 4: Interval Relation ATTEND-2  
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end-time 

1/4/93 13:00 
1/11/93 12:00 
1/18/93 13:OO 
1/25/93 15:00 
2/1/93 12:OO 
2/8/93 13:00 

2/15/93 13:OO 
2/22/93 15:30 
1/18/93 13:00 

1/3/94 13:00 
1/4/94 13:30 

9/18/93 16:OO 
10/20/93 16:30 
3/21/94 16:30 
4/13/94 13:30 

start-time 

1/4/93 10:30 
1/11/93 9:30 

1/18/93 10:30 
1/25/93 13:30 

2/1/93 9:30 
2/8/93 10:30 

2/15/93 10:30 
2/22/93 13:30 
1/18/93 11:30 

1/3/94 1 1 : O O  
1/4/94 11:30 

9/18/93 14:30 
10/20/93 14:OO 

3/21/94 14:00 
4/13/94 10:30 

EMPL-NA ME 
Tom 
Tom 
Tom 
Tom 
Tom 
Tom 
Tom 
Tom 

Susan 
Susan 
Susan 
Susan 
Susan 
Susan 
Susan 

MEETING-NA ME 
CRC 
CRC 
CRC 
CRC 
CRC 
CRC 
CRC 
CRC 
CRC 
CRC 
CRC 
P&T 
P&T 
P&T 
P&T 



logic, including the  interval-based one, cannot support periodic queries 1341, it follows that 

TSQL2 cannot support these queries either. 

Based on the theoretical discussions presented in Sections 3 and 4, periodic queries can 

be added t o  TSQL2 (or t o  any other ungrouped temporal query language) in one of the 

following ways: 

1. by adding additional temporal operators that support ,periodicity to  the temporal op- 

erators already existing in TSQL2; 

2. by allowing explicit references to  time in TSQL2, including temporal variables and 

quantification over them, and by supporting arithmetic on the temporal domain by 

using such operators as +, g, and *; 

3. by supporting a set of periodic functions, including "calendar" functions. 

The first alternative can be implemented by adding congruence operators to  temporal 

logic operators, as has been done for the single temporal attribute case in timed temporal 

logic 131. However, since in this paper we considered periodicity within the  framework of 

first-order logic with explicit references of time, this proposal t o  extend temporal logic is 

beyond the  scope of this paper. 

The second alternative can support periodicity by allowing the  following additions to  

TSQL2. In its current form, TSQL2 allows references t o  the  initial and final endpoints of 

a temporal interval as B E G I N ( <  tuple-variable>) and E N D ( <  tuple-variable>) . However, 

it does not allow any temporal variables and quantification over these variables, as TC 

does. Periodicity can be supported in TSQL2 by allowing such variables and quantifications 

over t f~em,  and by allowing arithmetic operators such as addition (+), congruence ( G )  (or 

predicate periodic), and multiplication (*). 

Exarnple 5 Consider the query from Example 3 "Find the names and attendance times of 

who attended any of the Monday meetings of the Computer Resources Committee 

(CRC)." This can be expressed in such an extension of TSQL2 as 
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EMPL-NAME 
Tom 
Tom 

Tom ii 2/8/93 10~30 i 2'18'193 13:oo 

Tom 
Tom 
Tom 

start- t ime 

1/4/93 10:30 
1/11/93 9:30 

end-t ime 

1/4/93 13:OO 
1/11/93 12:00 

1/18/93 10:30 
1/25/93 13:30 

2/1/93 9:30 

Tom 
Tom 

Figure 5: Answer to the "Monday-CRC" Query. 

1/18/93 13:OO 
1/25/93 15:OO 
2/1/93 12:00 

Susan 
Susan 

S E L E C T  EMPL-NAME 
F R O M  ATTEND-2 A 
WHERE MEETING = 'CRC' A N D  periodic(week,Monday,T) 

A N D  BEGIN(A) 5 T < END(A)) 

2/15/93 10:30 
2/22/93 13:30 

This query would return the result in Figure 5. 

2/15/93 13:OO 
2/22/93 15:30 

1)18)93 11:30 
1/3/94 11:OO 

In this query, periodic(week,Monday,T) is the periodic predicate defined in ( I ) ,  BEGIN(A) 

and END(A) are TSQL2 functions that specify the initial and final endpoints of a temporal 

1 )18)93 13:00 
1/3/94 13:OO 

interval of the tuple referenced by A. Note that the variable T in the WHERE clause is 

implicitly existentially quantified, as is the standard practice in relational calculi. Its purpose 

in the query is to  check whether the lifespan of the tuple referenced by A contains Mondays. 

It follows from the  theoretical considerations described in Sections 3 and 4 that different 

types of arithmetic operators added to  TSQL2 support different types of periodicity. For 

instance, if we add only the predicate periodic or the congruence operator (E) to  TSQL2, then 

we can express only strongly periodic queries in it. If we add the addition operator (+), then 

we can support strongly periodic queries and more (as discussed in Section 4), but we cannot 

support nearly periodic queries. To be able to  express nearly periodic queries in TSQL2, 

we have to add addition and multiplication to the language. However, by adding these two 

operators, we can express more than nearly periodic queries in TSQL2 (Proposition 16) 

Note that the advantage of adding to  TSQL2 temporal variables and arithmetic operators 

over them lies in its simplicity: we can express both types of periodicity in it using only a 

few operators (one or two operators depending on the specific choice made). 
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Figure 6: Answer to the "First-Monday-of-each-month" Query. 

However, this approach can be quite user unfriendly in some cases. For example, the  

definition of predicate f i rs t-date-of  -eachmonth, as presented in Example 1, requires addi- 

tion of 12 terms. Such long and cumbersome expression can confuse the user and can result 

in specification errors. Therefore, designers of TSQL2 may consider the  third approach to  

adding periodic queries to the language. 

end-time 

1/4/93 13:OO 
2/1/93 12:OO 
1/3/94 13:OO 

EMPL-NA ME 
Tom 
Tom 

Susan 

The third approach addresses some of the  deficiencies of the second approach by sup- 

porting user-defined periodic functions, including extensions to  TSQL2 calendars. These 

functions can be either strongly or nearly periodic and can be divided into the  following 

types: 

start-time 

1/4/93 10:30 
2/1/93 9:30 

1/3/94 11:OO 

the set of basic periodic functions provided by the vendors, such as every-week, ev- 

ery-month, first-day-obeach-month, and other periodic functions that the vendor finds 

the most commonly used in practice; 

arbitrary user-defined periodic functions7. 

Example 6 For example, if the predicate first-Monday-ofieach-month is located in a user- 

defined library of periodic predicates, then the query "Give me the names and attendance 

times of people who attended any of the CRC meetings held on the first Monday of each 

month" can be expressed as 

SELECT EMPL-NAME 
FROM ATTEND-2 A 
WHERE MEETING = 'CRC' A N D  (first-Monday-of-eachmonth(T) 

A N D  BEGIN(A) 2 T < END(A)) 

This query would return the result in Figure 6. 

7By "user" we mean here either the end-user of the temporal DBMS or a systems administrator. Both 
of them can define periodic functions. 
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In order for users to  define arbitrary periodic functions, such as head-of s t a t e - v i s i t s  

or third-day-of _eachmonth, TSQL2 should support a language for that  purpose. Such a 

language can include the operators of the calendar expression language of [6] or slices of [23]. 

For example, the function t h i r d d a y - o f  -eachmonth can be defined as months + 3. days  

in the language of [23], where months and days are calendars, and the expression 3. days  

selects the third day in a month. However additional constructs may also be added t o  this 

language in order for it to  support arbitrary user-defined periodic functions in an efficient 

manner. Moreover, as we demonstrated in Section 4 (and in particular in Proposition 16), 

this language should also have the operators of addition and multiplication for the temporal 

sort. 

One obvious advantage of this approach is that it is more user-friendly than the first 

one. However, its limitation is that users many need large libraries of user-defined (and 

vendor-supplied) functions to  support their needs. Also, if we restrict these user-defined 

periodic functions to nearly-periodic functions, then, as it was shown in Proposition 16, 

this approach does not take us beyond the second proposal of adding arithmetic operators 

and temporal variables to  the query language because it does not add any expressibility t o  

periodic queries. 

To address deficiencies of the second and third approaches of adding periodicity t o  the 

TSQL2 standard, we propose a combination of the two approaches. In other words, TSQL2 

can support explicit references to  time and arithmetic operators on the temporal domain, 

as was advocated in the second approach, and also support libraries of user-defined periodic 

functions. By combining the two approaches, TSQL2 would be able to  express any nearly 

periodic query and would also have the user-friendliness that comes with the  libraries of 

periodic functions. Although this approach "over-supplies" the user with various periodic 

operators, it gives him or her the ability t o  express periodic queries concisely. Therefore, we 

would advocate this approach as the approach t o  adding periodicity to  the  TSQL2 standard. 

Finally, we note that this proposal for integrating periodicity into TSQL2 fits quite 

smoothly with other of its extended temporal aspects, such as temporal aggregates [17]. This 

is so because temporal aggregation in TSQL2 is applied after the TSQL2 temporal selection 

and projections are performed. In other words, periodicity is treated here essentially as part 

of the temporal selection process, in that the  periodic predicates and operators determine 
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Figure 7: Result of COUNT Aggregate Query 

EMPL-NAME 
Tom 
Susan 

whether or not a particular time-stamped "fact" in a relation is eligible t o  participate in 

the answer to  a query; thus they appear in the WHERE clause of TSQL2. The aggregation 

process occurs only after any periodic predicates and operators are satisfied, and hence this 

process mashes nicely with this treatment of periodicity. 

C O W T ( T )  
8 
2 

In [17] it is noted that,  as in ordinary (non-temporal) aggregation, it is useful to  dis- 

tinguish two principal types of temporal aggregation, viz. "aggregation via selection" and 

"aggregation via computation." We illustrate an example of each of these two types in the 

context of a query involving periodicity. 

Example 7 The query "How many Monday meetings of the CRC did each employee at- 

tend" can be expressed in TSQL2 as 

SELECT SNAPSHOT EMPL-NAME ,COUNT(*) 
FROM ATTEND-2 A 
WHERE MEETING-NAME = 'CRC' AND 

periodic(week,Monday,T) AND 
BEGIN(A) 5 T < END(A)) 

GROUP BY EMPL-NAME 

This query would return the result in Figure 7, and does the temporal aggregation by co,m- 

puting (counting) the number of meetings each employee attended. Therefore, [17] calls this 

type of temporal aggregation "aggregation via computation." 

Example 8 The query "Who attended the first Monday meeting of the CRC" can be ex- 

pressed in TSQL2 as 
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1 EMPL-NAME / 
I Tom 

Figure 8: Result of MIN Aggregate Query 

SELECT SNAPSHOT EMPL-NAME 
FROM ATTEND-2 A 
WHERE MEETING-NAME = 'CRC' AND 

periodic(week,Monday,T) AND 
BEGIN(A) 5 T < END(A)) AND 
T = ( 

SELECT MIN(T1) 
FROM ATTEND-2 A2 
WHERE MEETING-NAME = 'CRC7 AND 

periodic(week,Monday,Tl) AND 
BEGIN(A2) < T 1  < END(A2) ) 

This query would result in the  relation in Figure 8 which is obtained by selecting the time of 

the first Monday meeting of the CRC committee and then returning the names of the persons 

present a t  that meeting. Therefore, [17] calls this type of temporal aggregation "aggregation 

via selection." 

6 Summary 

As discussed in Section 1, periodicity, despite its importance, has not been studied in a com- 

prehensive manner in the temporal database literature. One result of this is that periodicity 

is not currently supported in the commercially oriented temporal query languages, including 

the TSQL2 standard. To address this omission, we have explored in this paper the meaning 

of the notion of periodicity in the  context of temporal databases, and have demonstrated 

how it can be supported in a practical way in end-user-oriented temporal query languages, 

such as TSQL2. 

In order to  understand what periodicity means in temporal databases, we consulted a 

dictionary [I] and identified two different intuitive meanings of periodicity that are related to 

temporal databases, i.e. "having periods or repeated cycles'' and "happening or appearing at 
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regular intervals." To define these concepts formally, we started with the languages RL and 

T C  for representing sets of time and temporal queries, respectively, and considered various 

periodic extensions of these languages. We examined how well these extensions capture the 

two types of periodicity described above. This means that for the extensions of RL we dealt 

with the data expressiveness of these extensions and for the extensions of TC we dealt with 

the query expressiveness of the extensions. 

At the data expressiveness level, we identified two types of periodicity, i.e. strong 

and near periodicity. Strong periodicity can be captured by periodic predicates, by the 

congruence relation, or by the addition operator. Near periodicity is a broader concept and 

can be captured by various nearly periodic predicates. At the query expressiveness level, we 

considered periodic extensions TC,, TC,,, T C + ,  TC:, and TCS* that are obtained from 

T C  by adding different types of periodic operators described above. The relationship among 

these languages was summarized in Figure 3. 

Having studied on a theoretical level what the concept of periodicity means in the 

database context, it becomes feasible to add periodicity in a comprehensive way to commer- 

cially oriented temporal query languages. In particular, we considered various ways of adding 

periodicity to  TSQL2 and concluded that the most practical and theoretically sound method 

would be to  allow temporal variables, arithmetic operations over the temporal domain, and 

libraries of vendor- and user-defined periodic functions, including calendar functions. Al- 

though these periodic fclnctions are not strictly necessary (they call be implemented with 

arithmetic operations), they add user-friendliness to the language. 

Although this paper focused on the issue of querying the database with respect t o  the 

periodicity of the data that it contains, there are other aspects of periodicity which can 

be of interest in the database context. For example, there is the notion of being able to  

schedule something to  occur at  every time in some previously defined periodic set of times. 

In an active database or in a conceptual modeling language one might want to schedule a 

particular update to be made automatically "every Wednesday," or a particular report to be 

automatically generated "the first day of each month." Such functionality has been added 

to the active database Ode 1121 and to the specification language Templar [30]. For example, 

the rule "If a person is a member of a club, he or she must attend the club meetings held on 

Fridays before his or her club membership expires" can be expressed in Templar as 
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when every Friday 
before membership-expiration-date(person) 
if clubmember(person) 
then-do attend-clubmeeting(person) 

Also, as pointed out in [13], there are many interesting issues related to  the interrelation- 

ships between the  two different dimensions of time, valid time and transaction t ime, which 

have been proposed as the primary temporal dimensions of data (127, 141). Issues related to  

how periodicity, either strong or near, might be interrelated in one or both of these dimen- 

sions, or of how it could be incorporated into the  schema, query, or active components of a 

DBMS, are all subjects for further research. Finally, we plan to  work on the implementation 

issues and on the  query processing and the optimization strategies for periodic queries. 
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