
ON PERIODICITY IN TEMPORAL DATABASES

Alex Tuzhilin

James Clifford

Stern #IS-95-6

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

ON PERIODICITY IN TEMPORAL DATABASES

Alex Tuzhilin

James Clifford

Forthcoming in Information Systems, Courant Institute of Mathematical
Sciences, Department of Computer Science, New York University

Working Paper Series
STERN IS-95-6

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

On Periodicity in Temporal Databases*

Alexander Tuzhilin and James Clifford

Information Systems Department
Stern School of Business

New York University.

Abstract

The issue of periodicity is generally understood to be a desirable property of tem-
poral data that should be supported by temporal database models and their query
languages. Nevertheless, there has so far not been any systematic examination of how
to incorporate this concept into a temporal DBMS. In this paper we describe two con-
cepts of periodicity, which we call strong periodicity and near periodicity, and discuss
how they capture formally two of the intuitive meanings of this term. We formally
compare the expressive power of these two concepts, relate them to existing tempo-
ral query languages, and show how they can be incorporated into temporal relational
database query languages, such as the proposed temporal extension to SQL, in a clean
and straightforward manner.

i Introduction

Periodicity is a feature of temporal phenomena tha t has received relatively little attention

in the literature of temporal databases. The work tha t has been done related t o periodicity,

which we survey in Section 1.1, has been either mostly of a theoretical nature or is related t o

the notion of a calendar [26, 23, 61. However, there has been no comprehensive treatment of

the subject of periodicity in the temporal database literature tha t thoroughly addresses both

the meaning of periodicity in the database context as well as how this aspect of t ime can

be supported in commercial temporal database systems. As a result of t he limited attention

to this concept, periodicity is not supported in the TSQL2 standard [25] and no periodic

queries were included in the test suite of temporal queries [15].

*The work of the authors was supported in part by the NSF under Grant IRI-93-18773.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

This situation is unfortunate since many of the existing temporal query language pro-

posals cannot express periodic queries, as we shall discuss in Section 3. For example, they

cannot express even such a simple periodic query as "Find the names and attendance times

of people who attended any of the Tuesday meetings."

The goal of this paper is twofold: we explore the meaning of the concept of periodicity

in the context of temporal databases, and we show how it can be supported in commercial

temporal query languages and in the TSQL2 standard in particular. Our objective is mainly

pragmatic: we want to add periodicity in a practical way to temporal query languages, includ-

ing TSQL2. However, it is impossible to do this in a comprehensive and theoretically sound

way without a proper understanding on the conceptual level of what periodicity means and

how it can be formally represented. Therefore, we study periodicity both on the theoretical

and the pragmatic levels.

To understand what periodicity means intuitively, a good place to start is in the dictio-

nary. The entry in the American Heritage Dictionary [I] gives the following three meanings

for the term periodic:

1. having periods or repeated cycles

2. happening or appearing at regular intervals

3. taking place now and then; intermittent.

The first of these meanings for the term periodic says that the events occur a t such

moments of time that the distance between these moments is the same. For example, a class

might be scheduled to meet periodically, say, once a week on Wednesdays a t 11 am. Note

that the time between two successive occurrences in this case is always exactly seven days.

The second meaning says that the events occur at regular intervals, meaning that the

events do not necessarily occur a t equally distant moments of time. However, there is a

certain degree of "regularity" in their occurrence: they are "regularly" distanced and thus

occur within a certain limit from each other. For example, assume that the head of a s tate

of some country has t o travel once every week on some business but a t the same time is

concerned about security because of the recent increase in the terrorist activities in that

country. To make the trips safer, the schedule of trips is kept secret and is organized so

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

that the day of the week when the politician travels appears to be totally random. In this

example, the set of trips is "regular" in the sense that they occur once a week. On the other

hand, they are not "regular" in the first sense of the word: they are not equally distanced

from each other, nor can this set of trips be obtained as a union of equal-distance sequences

(as will be shown later in the paper). This concept of periodicity is clearly a weaker concept

than the first one.

The third meaning for the term periodic says that the events occur "intermittently,"

meaning that if one event occurred then the next will follow some time in the future, but it

is not clear when. For example, a person may visit a pub "periodically," meaning that the

visits can be quite irregular but the person will keep going to the pub. Clearly, this is the

weakest concept of periodicity among the three.

In this paper, we provide formalizations for the first two concepts of periodicity in the

context of querying a database along the valid time or transaction time dimensions of its

data. We do not study the third notion of periodicity because we feel that it is "too weak"

to be formally supported by temporal query languages: technically, all that it says is that

periodic sets are unbounded in the future.

After we formalize the two notions of periodicity described above and study their prop-

erties and the relationship between them, we address the pragmatic question of how to add

periodicity in a practical way to commercially oriented temporal query languages. In this

paper, we concentrate on the ungrouped temporal data models (81 and, therefore, consider

ungrouped temporal query languages, and in particular the TSQL2 standard. However, we

believe that the ideas presented in the paper can be extended to the grouped temporal data

models (81 as well. In the process of studying of how periodicity can be added to commer-

cially oriented temporal query languages, we rely on the theoretical results about periodicity

described earlier in the paper.

When studying periodicity, one has to address two questions. The first question is how

to define periodic sets of times. For example, one might want to define the set consisting

of "every Wednesday," or "the first day of each month," or a "set of visits of the head of a

state.'' The second question is how to define periodic queries, such as a query to find people

who attended every meeting held on Wednesdays, or people that came to the meetings once

a week.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

This distinction between periodic sets of time and periodic queries corresponds to the

distinction between data expressiveness and query expressiveness discussed in [5]. The data

expressiveness of a formalism specifies what types of infinite temporal databases can be

defined with the formalism. It arises only in the context of infinite temporal databases

because in the finite case all the finite databases can be represented explicitly. The query

expressiveness of a formalism specifies what types of queries can be expressed in the formalism

and is more akin to the standard notion of expressiveness of query languages. Therefore, in

order to understand how periodicity can be added to TSQL2 in the best possible way, we

will study the data and query expressiveness of different periodic extensions studied in this

paper.

1.1 Related Work

Perhaps the first approach to analyzing the notion of "time" and its relationship to con-

ceptual modeling of data was proposed in [4]. Among the many aspects of time that are

discussed here is the notion of periodicity. A periodic set is defined here in a set-theoretic

framework in terms of its "period, duration, and cover interval." Periodic sets, along with all

of the time aspects discussed in the paper, are all interrelated via a concept network similar

to a semantic net. While this work is of pioneering importance in the temporal database

literature by having explored so many aspects of the temporal dimension of data, it did not

study the properties of periodic sets of times, nor did it address the issue of a language for

expressing queries about the periodic nature of data.

The model presented in [19] mentions a technique for "the recording of periodic events."

It does so by allowing the user to associate multiple valid-time time stamps with a given fact.

For example, a tuple such as < john, d5, d9, h8, h12 > on relation scheme GUARDS(NAME,

Fdate, TDate, Fhour, Thour) is said to represent that "John works as a guard during the

hours h8- h12 (h12 excluded), for every day in the interval [d5, d9)." However, the semantics

of such relations with multiple valid-time timestamps is not fully explored. Moreover, the

query language does not support queries about periodic events.

In [13], a classification of relations based on the types of relationships allowed between

the transaction-time and valid-time timestamps of "items" in the database is presented.

Among the varieties of relations types discussed are several that rely on a notion which

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

is called "regularity." For example, a temporal relation is said to be "transaction time

event regular with time unit At > 0" if the transaction times of any two items stored

in the database is always an integral multiple of some specified duration At . Variations

of this type of consideration lead to some additional characterizations of relations related

to temporal regularity. As the authors point out, regularity is related to, but is different

from, periodicity. In fact, as we shall see, regularity can be defined in terms of our notion

of periodicity by starting with a periodic set of times and subtracting any arbitrary, but

recursively defined, set of times from it. Finally, the issues of a language for querying such

databases with properties of regularity, or for expressing these regularity constraints on the

temporal dimensions, are not considered.

Classical work in temporal logic (18, 201 is concerned with truth and validity of tem-

poral logic formulae, which are defined in terms of temporal structures [18] specifying how

propositions or predicates change over time. As was observed by [34], classical temporal

logic does not address the issue of periodicity. In particular, (341 showed that the temporal

logic with next and until operators cannot define the set of even numbers, which forms one

of the basic periodic sets. As a remedy, Wolper proposed the language ETL that extended

the standard temporal logic with additional temporal connectives [34]. The extended lan-

guage could express periodic events. However, to get the full expressive power of ETL we

would need infinitely many temporal connectives. To remedy this problem Vardi proposed

the temporal fixpoint calculus p T L [33].

The language pTL, as defined in 1331, is a propositional temporal calculus, although

Vardi points out that it can be easily extended to the predicate case [33]. Calculus pTL

is obtained from the propositional temporal logic with operators nex t , and two types of

"previous" operators, previousl and previousz' by the addition of the operators least

and greatest fixpoint. The formula pX.$(X) (respectively vX.$(X)) denotes the least (re-

spectively greatest) fixpoint solution to the equation X = $(X), where X is a temporal

proposition.

Calculus pTL can express temporal operators unti l and since and can also define

periodic sets. For example, it can define the set of even numbers as

 h he difference between them is that p rev ious1 is always true and p r e v i o u s z is always false when
applied to an arbitrary formula a t time t = 0.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

where init is defined as previousl false and is equal t o true at time t = 0 and false

elsewhere. Vardi [33] studies the expressive power of pTL and shows that it a quite expressive

language: it has the expressive power of w-regular languages [29]. This means that pTL is

"too powerful" to express periodicity alone: intuitively, pTL does not capture the "essence"

of periodicity, but supports other concepts in addition to periodicity. Since in this paper

we are interested in the question of what mechanism is needed t o add periodicity, and only

periodicity, t o existing temporal query languages and calculi, we want to study languages

that are less powerful than pTL.

Periodicity has also been studied in the context of infinite temporal databases in [16, 71

and surveyed in [5]. In [16, 51 a generalized relation is defined as a set of generalized tuples

of the form

{tl, . . . , tm, d l , . . . ,dl I t i 6 (alnl + b l) , . . . , t , E (a,n, + b,)
and constraints on (t l , . . . , t,) are satisfied)

where tl, . . . , t, are temporal variables, d l , . . . , dl are non-temporal constants, and the con-

straints imposed on t l , . . . , t, are linear. The expressions a;n; + b; are called linear repeating

points (LRPs), and they form periodic sets. If we restrict the notion of a generalized tuple

t o only one attribute and make it temporal, then a generalized relation would consist of

a set of LRP's with some linear constraints imposed on them. This representation would

correspond to the first notion of periodicity above, i.e., "having periods or repeated cycles."

The union of LRP's would also capture the second notion of periodicity, i.e., "happening

or appearing at regular intervals," but only to some extent. For example, as will be shown

later in the paper, a finite union of LRP's cannot represent the set of "visits of the head

of a state" described in the introduction. We will call the sets defined by unions of LRP's

strongly periodic sets to distinguish them from the more general notion of nearly periodic.

We will show in the paper that the concept of near periodicity subsumes strong periodicity

and captures the second meaning of periodicity, i.e. "happening or appearing a t regular

intervals.)'

Also, certain aspects of periodicity are studied,in [7] in the context of Datalogl, (and

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

therefore Templog [5]) programs2. For example, the set of even points can be defined in

Datalog:,, (and hence in Templog) as q(0) t, q(T $- 2) t- q (T) This program says that q

is t rue at time t = 0, and that if q is true at some moment of time T , then it is also true

at time T + 2. It is shown in 151 that the (infinite) temporal database defined by a Templog

(or a Datalogl,) program is ultimately periodic (i.e. becomes periodic starting from some

time). Although [7] deals with periodicity issues within the context of Datalogl,, this work

does not study periodicity per se: it does not directly address the questions presented in the

introduction: i.e., what periodicity is, and how it can be added in a practical way to the

commercial temporal query languages, including the TSQL2 proposal.

In summary, the work of 116, 7, 51 studies the theory of temporal deductive databases

and in the process examines certain theoretical aspects of periodicity. However, it considers

only what in this paper we call strong periodicity, and does not consider a more general

concept of near periodicity that will be introduced below. Furthermore, it does not address

the pragmatic issues of how periodicity can be added t o existing temporal SQL proposals

and to the TSQL2 standard in particular.

Still another work related to periodicity is the work on calendars, as presented in [26,

23, 61. The objective of this work is to define not only the standard Gregorian calendar but

other calendars as well, such as Lunar, Meso-American, Russian and ultimately an arbitrary

user-defined calendar. However, to achieve this goal, the researchers studying calendars take

different approaches.

In 161, calendars are defined with a calendar expression language. To define a particular

user-defined calendar, a script is written in this language. For example, t o define the calendar

"the last day of every month; but if this day is a holiday, then the preceding business day,"

(61 proceeds as follows. First, it specifies calendars "last day of every month" and "American

holidays," and then defines the calendar "business days" by subtracting "American holidays"

from week-days. Then it adjusts "last day of every month'' based on whether the last day

of a month belongs t o "business days" or not.

In [23], calendars are defined as periodic infinite sets of consecutive intervals which

partition time, such as yea r s , weeks, months, etc. Also, [23] imposes the partial order

subcalendar on calendars. For example, days is a subcalendar of weeks and of months. In

=It is shown in [5] that the two languages are equivalent.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

addition, [23] defines slices of calendars that are non-consecutive repeated intervals of time.

Examples of slices are "Sundays," "the 4th hour of the 3rd day of each month," and "from

3 am to 6 pm each 3rd day of each month."

Soo and Snodgrass [26] were among the first to study calendars, and their work, as

described in 1261, was subsequently incorporated into the TSQL2 standard 1251. In [26],

Soo and Snodgrass define a calendric system with a set of properties that are contained in a

property table which is activated with the s e t p r o p e r t i e s command. The system presented

in [26] supports the temporal data types events, intervals, and spans that correspond to

moments of time, periods of time, and durations of time. Unlike [23] and [6], where it is

possible to select "slices" of a calendar (non-consecutive repeated intervals of time), 1261

considers only whole calendars and does not provide operators that "slice" and "dice" them

into pieces. Therefore, 1261 apparently does not support such periodic sets of time as "the

first Monday of each month," or "the last non-holiday day of every month."

Note that the calendars, as defined in [23] and [6], support such periodic events as

"every Sunday" and "every first Monday of each month." However, as we show in the

paper, periodicity is not limited to calendars. It is based on a mar; general concept of

"regularity" and encompasses arbitrary recursive sets of time, elements of which exhibit

certain "regularity" that we define later in the paper.

As explained earlier, we follow the methodology used in [5], when studying periodicity,

and consider both data and query expressiveness. In the next section, we study the data ex-

pressiveness issues of periodicity by considering formalisms for defining periodic sets of time.

Then in Section 3 we address the issue of query expressiveness by considering formalisms for

defining periodic queries.

Periodic Sets of Time

In this section, we consider just the temporal domain, in isolation from the value domain,

and will describe the notion of periodic sets of times for that domain. In particular, we are

concerned with the data expressiveness of various formalisms that define periodic sets to see

how well they capture the intuitive meanings of periodicity described in Section 1.

Note that all the dictionary meanings of the word periodicity discussed in Section 1,

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

including the third one, assume that each periodic event has a successor. This means, among

other things, that sequences of periodic events are infinite. In practice, however, databases

are finite, and therefore infinite periodic sequences are only abstractions.

To begin with, we have to specify the model of time. The most general model represents

time as an arbitrary set with a partial order imposed on it. With additional axioms, we can

introduce other models of time, e.g., time can be treated as discrete or dense, bounded

or unbounded, linear or branching 1321. In this paper, we assume that time is discrete,

linear, unbounded in the future and bounded in the past, because this is the model of time

generally considered by historical and temporal data models (121, 271). This model of time is

isomorphic to the set of natural numbers [32]. For this reason, we assume throughout most

of the paper that time is represented with natural numbers.

In the next section, we consider one type of periodicity that captures the first meaning

of this term described in the introduction. Then in Section 2.2, we consider a more general

meaning of this term.

2.1 Strongly Periodic Sets of Time

Periodic sets of numbers have been studied before and are relatively well understood objects.

In particular, Enderton describes these sets in 1101 within the context of mathematical logic

and 116, 51 in the context of infinite temporal databases. To make the paper self-contained,

we review in this section the standard concepts of periodicity, as presented in these references

and elsewhere.

A linear repeating point (LRP) 116, 51 is a set

{x E N I (3k)(k E N A x = a k + b))

where a , b E N 3 . LRPs are usually denoted as an + b. Also, an eventual linear repeating

point is defined as

M u {x I (3k)(x > c =+ x = ak + b)}

where M is a finite set of natural numbers and a , b, c E: N .

3Note that 116, 51 assume that a , 6 x and k range over integers. However, we follow Enderton [lo] in this
paper who considers only the set of natural numbers.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

Note that the definition of a linear repeating point corresponds t o the first intuitive

meaning of periodicity (having periods or repeated cycles) as presented in [I] and discussed

in the introduction. Furthermore, if we combine various LRPs, we will get the following

concept of strong periodicity.

Definition 1 A set of natural numbers is strongly periodic if it can be defined as a finite

union of eventual linear repeating points.

As we said already, strong periodicity was studied before under different names in [lo]

and 1161 (we use the term "strong periodicity" to distinguish it from "near periodicity'' to

be defined below). In the rest of this section, we will refer to strongly periodic sets simply as

"periodic sets" if no confusion arises (however, we will call them "strongly periodic" again

in the rest of the paper).

Example 1 Consider the set of times that define first dates of each month over the years.

This set is strongly periodic. To see this, assume that there are no leap and that the

beginning of time starts with 1 (so that January 1 of the first year corresponds to 1). Then

this set can be defined as

365n + 1 U 365n + 32 U 365n + 60 U 365n + 91 U . . . U 365n + 305 U 365n + 335

where the union has 12 terms, and each term corresponds to the first day of the corresponding

month.

It is easy to see that strongly periodic sets are closed under union, intersection, and

complementation. Also strong periodicity corresponds to the second intuitive meaning of

periodicity (happening or appearing a t regular intervals) as presented in [I] and discussed

in the introduction. For example, consider the set consisting of the union of even numbers

and multiples of 3. Note that the elements of this set do not occur in a cycle, as is required

in the first intuitive meaning of periodicity, but they occur "regularly enough" so that they

can be represented as a union of LRPs.

We next consider different first-order logics(s) that can define strongly periodic sets of

numbers. As a starting point, we consider the first-order language RL = (N, 0, S, <) with

41t is easy to see that this set is still strongly periodic if this restrictive assumption is removed. However,
the removal of this assumption will require more complex expressions to define this periodic set of times.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

equality, where N is the set of natural numbers, 0 is a constant symbol (intended to denote

the number O) , S is the successor function S : N -+ N (i.e. S (n) = n + I) , and < is a

linear ordering relation on N. For instance, if we use t + 1 as a shorthand for S (t) , then the

formula (3t1)(t + 1 < t' A t' > 100) is an example of a well-formed formula in RL.

Enderton shows [lO][Corollary 32C] that a set of numbers is definable in RL if and

only if it is either finite or has finite complement. It follows immediately from this that

strongly periodic sets of time cannot be expressed in RL except for some degenerate cases.

For example, the set of even (or odd) numbers cannot be expressed in RL. Therefore, we

have to extend RL to be able to define periodic sets.

A natural way of extending RL t o support periodic sets would be to add the one-place

predicate periodic to RL (actually, we define a class of such predicates, one for each pair of

p and s) :

a
periodic,,,(t) = t E s mod p or as (3k)(t = k * p + s) (1)

We denote the resulting language as RLp. Clearly, we can define some periodic sets in RLp.

For example, the set of even and odd numbers can be defined using RL, as {n I p e r i o d i ~ ~ , ~ (n))

and {n I p e r i ~ d i c ~ , ~ (n)) respectively.

Since predicate periodic is defined above in terms of congruence (=) or addition (+)

operators, we can also define two languages RL, and RL+ [lo] by adding, respectively,

congruence and addition operators to RL. For example, the set of odd numbers can be

defined using RLz as {n I n G 1 mod 21, and as {n I (3m)(n = m + m + 1)) using RL+.

Clearly, the languages RLz and RL+ are at least as expressive as RLp

Furthermore, Enderton shows in [10][Theorem 32F] that

Theorem 2 A set of natural numbers is definable in RL+ if and only if it is strongly periodic.

Intuitively, this theorem holds because any RL+ formula with quantifiers can be con-

verted to an equivalent RLE formula without quantifiers. Furthermore, the following corol-

lary immediately follows from the proof of this theorem.

Corollary 3 Languages RLp, RLE, and RL+ have the same expressive power and define the

class of strongly periodic sets.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

In summary, the three languages RLp, RLG, and EL+ have the same expressive power,

and define exactly the class of strongly periodic sets.

As we mentioned in Section 1.1, generalized relations, as defined in [16, 51, are related

to the concept of strong periodicity: if we restrict generalized tuples t o only one attribute

and make it temporal, then a generalized relation would be strongly periodic.

In [23], Niezette and Stevenne took the concept of linear repeating points and applied

it to the definition of calendars. The resulting language can support not only the Gregorian

calendar, but also other types of calendars, such as Lunar, Meso-American, and various user-

defined calendars. In 1231, they also show that their concept of calendars can be reduced

t o linear repeating intervals, which is an extension of linear repeating points to the case

of intervals. Thus they view calendars as a user-friendly representation of linear repeating

intervals. Therefore, the concept of a calendar, as defined in 1231, does not take us beyond

strongly periodic sets, and thus such sets of times as "the first day of each month," or

"American holidays" can be defined in strongly periodic terms.

It follows from the discussion of strong periodicity, that strong periodicity can capture

a rich class of the sets which are intuitively "periodic." In particular, it captures the first

intuitive meaning of periodicity, as described in the introduction. Furthermore, it captures,

to some extent, the second intuitive meaning of periodicity since such non-equal-distance

but "regular" sets as "the first date of each month" can be expressed in strongly periodic

terms (Example 1). However, it is not clear if strong periodicity is a sufficiently powerful

concept to capture all the aspects of the second meaning of "periodicity," or if we need a

more powerful concept for that purpose. We address this question in the next section.

2.2 Nearly Periodic Sets of Time

A strongly periodic set of times defines a union of eventually periodic points, i.e. of points

that are eventually equally distanced from each other. However, the second concept of

periodicity, as described in the introduction, is intuitively broader than that. All that this

concept says is that "periodic" points have to be "regularly" distanced from each other, i.e.,

within a certain limit from each other; but they don't have to be equally distanced though.

For example, consider the set of once-a-week trips that the head of a state makes, as described

in Section 1. Intuitively, this is a "periodic" set because the trips are regularly made (once

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

a week). However, as we will formally show below, this set cannot be represented as a finite

union of eventually periodic sets. Intuitively, this is the case because the times of the week

when the person travels are very unpredictable (randomized).

To capture the second type of periodicity, we start with an arbitrary recursive set of

times S. Then we impose a restriction on the set S that there is a strongly periodic set of

points S' and a bijective mapping between points in S and S' such that each point in S must

be "close" t o the corresponding point in St. In other words, S and S' are not "too much

away" from each other.

Formally, we proceed as follows.

Definition 4 A recursive set of natural numbers {ql , q2, . . . , q,, . . .) is essentially nearly pe-

riodic with period p i f there exists an eventual LRP defining a periodic sequence pl , p2, . . . , p,, . . .
(pk = k * p + s for some p, s , and M , and for k > M) and a number n , n < p/2, such that

Iqk - pkl < n for all k > M .

Note that it immediately follows from this definition that the set of numbers

{q l , 42,. . . , qn,. . .) forms a monotonic sequence, i.e. qk < qk+l for k > M. The follow-

ing proposition immediately follows from this definition and the definition of a recursive set

and provides an alternative characterization of nearly periodic sets.

Proposition 5 A set of natural numbers {ql , qa, . . . , q,, . . .) is essentially nearly periodic

with period p if and only if there exists an eventual LRP defining a periodic sequence

p l , p 2 , . . . ,p,, . . . (pk = k * p + s for some p, s, and for k > M for some M) , a recur-

sive function f , and a number n, n < p/2, such that

Iqk -pkl < n , f o r k > M

Definition 6 A set D of natural numbers is nearly periodic if it can be defined as a finite

union of essentially nearly periodic sets.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

We will sometimes use a slightly different, though equivalent, characterization of nearly

periodic sets based on the following concept of nearly periodic predicates.

Definition 7 A monadic predicate Q is nearly periodic with period p if it can be defined

by some essentially nearly periodic sequence of numbers with period p, i.e., there exists an

essentially nearly periodic sequence ql, 92,. . . , q,, . . . such that Q (t) is true if and only if there

exists k such that Q (t) = qk.

Then a set of natural numbers D is nearly periodic if and only if it can be expressed as

where Q 1 , . . . , Q k are nearly periodic predicates.

Example 2 Consider a disk backup policy under which computer disks are backed up once

every week but highly irregularly. In particular, the set of backup days is defined with the

predicate backup as:

(7 * n + irregular(n) I n E N) (3)

where the function irregular is a recursive function that (i) maps each natural number to a

natural number between 0 and.6, and (ii) has the property that the sequence of numbers

{ x ~) ~ ~ ~ , such that xk = irregular(k) , does not have a periodic subsequence of the same

number5. In other words, { x k) k E ~ does not have a subsequence {xk ,) iEN such that, for a11

i , k;+l - k; = k; - ki-1 and xk, = xk,,,. For example, such function can be defined with a

pseudo-random recursive function simulating the uniform distribution on the interval [O, 61.

It follows from the definitions that this set of backup dates is nearly periodic.

Similarly, we can define the set of once-a-week visits of the head of a state described in

the introduction and at the beginning of this section with the expression (3) . Again, this set

is nearly periodic.

cl

'Since expression (3) consists of the "periodic" component 7*n and the "random" component irregular(n),
it may appear that predicate backup can be defined in terms of strong periodicity and temporal indeterminacy
[9]. However, this is not the case because the function irregular() is recursive and not a random function.
Therefore, there is no indeterminacy involved in defining predicate backup.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

I t follows from the definitions of strongly and nearly periodic sets that a strongly periodic

set is also nearly periodic. It is also important to know if the inverse is true, and the next

proposition provides the answer to this question.

Proposition 8 Backup and head-of-state-visits do not define strongly periodic sets.

Proof: The proof follows from the definition of strong periodicity and from the fact that

sets backup and head-ofistate-visits do not have any periodic subsets. 13

The next corollary follows from this proposition and from the fact that a strongly

periodic set is also nearly periodic.

Corollary 9 The class of strongly periodic sets of time is properly contained in the class of

nearly periodic sets.

We next consider the restrictions that have to be imposed on the nearly periodic pred-

icates in order to make them strongly periodic. Note that nearly periodic predicates are

defined with arbitrary recursive functions as long as they satisfy the restrictions specified in

Definition 4 (or equivalently Proposition 5) . In contrast to this, it follows from Theorem 2

that the set of natural numbers is strongly periodic if and only if it is expressible in RL+.

Therefore, a necessary and sufficient condition for a nearly periodic set t o be strongly periodic

is that ~ f = ~ Q;(t) in (2) be expressible in RL+; this condition delineates the boundary be-

tween nearly and strongly periodic sets. For instance, if the recursive predicate irregular from

Example 2 is not expressible in RL+, then the resulting sets backup and head-of-state-visits

are nearly but not strongly periodic.

Forrnalizat ion of Periodic Queries

In Section 2, we considered periodic sets of t ime and the data expressiveness of periodic

extensions of RL. In this section, we study periodic queries and their query expressiveness

[5] . This means that we will consider arbitrary temporal relations [14] in addition to periodic

sets of time and study formalisms that capture the two intuitive meanings of periodicity,

described in the introduction, with respect to queries on a database.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

Our starting point is the standard ungrouped temporal calculus T C 131, 81 that serves

as a formal basis for the ungrouped temporal query languages. The calculus T C is based on

two-sorted first-order logic where one of the sorts is linearly ordered (by a relation denoted

<), and is interpreted as the set of times. Furthermore, all the predicates can have at most

one temporal argument. Calculus T C can be thought of as the language RL extended with

temporal relations. Several temporal relational data models, such as TQuel [24], support

two times per relation, typically interpreted as "start time" when the tuple was added to the

relation and "end time" when it was removed. This temporal data model can be represented

with the calculus T C 2 [16] that is very similar to T C except that each predicate has two

times instead of one. As an example of language T C , the query finding names of all the

employees that received a cut in their salaries can be expressed in TC as

{name (3t)(3t1)(EMPL(name, sal, t) A EMPL(name, sal', t') A t < t' A sal > sal'))

Since TC is based on RL, it cannot express the query even that returns the set of even

time points, and thus, like RL, it is not powerful enough to support periodicity. In [B] we

considered some temporal query languages that have the expressive power equal to, or less

than, T C . Therefore, these languages also cannot express periodic queries. Furthermore, as

will be explained in Section 5, periodic queries are not supported in TSQL2 either. Therefore,

we have to extend T C (and these query languages) to support periodicity.

The language T C can be extended to support periodicity by adding strongly or nearly

periodic predicates to it. In particular, the strongly periodic language TC, is obtained from

the language T C by adding the class of monadic predicates periodic,, defined by (1) to the

temporal sort of T C .

Clearly, the language TC, can express periodic queries of the first type defined in the

introduction, i.e. queries dealing with "periods or repeated cycles.'' The following examples

illustrate this point.

Example 3 The query "Find the names and attendance times of people who attended any

of the Tuesday meetings of the Computer Resources Committee (CRC)" can be expressed

in TC, as

{< empl, t > I ATTEND(emp1, meeting, t) A meeting = 'CRC" A p e r i o d i ~ ~ , ~ (t))

where ATTEND is a relationship specifying the times when employees attended meetings, and

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

7 corresponds to seven days of a week, and 2 to Tuesday.

Example 4 The query "Find the people who attended all the Tuesday meetings of the CRC

committee in the past two months" can be expressed in TC, as

{empl 1 (Vt)((periodic7,z(t) A now 5 t + 60 A t < now) =+ ATTEND(empl, "CRC", t)))

assuming that t + 60 is a shorthand for the successor function S applied 60 times to t .

Moreover, strongly periodic queries can express some of the periodic queries of the

second type that deal with the sets of events that are not strongly periodic. For example,

the query "Find the people who attended the CRC meetings once a week" can be expressed

as

{empl I ('v't)(periodic7,,(t) + (3t')(ATTEND(empE, "CRC", t') A t 5 t' < t + 7 A

('v'tU)(t 2 t" < t + 7 A t" # t' + -ATTEND(enzpl, "CRC", t")))))

Note that the "once-a-week" events themselves may not be strongly periodic. However, the

query that checks if events are held once a week is expressed in strongly periodic terms in

the previous example, i.e. is expressed in TC,.

The next proposition, that immediately follows from the fact that periodic sets of time

cannot be defined in RL (see Section 2.1), shows that the predicate periodic adds extra

expressive power to T C .

Proposition 10 TC, has more expressive power than T C .

In addition to strongly periodic predicates, we can add nearly periodic predicates to T C .

The resulting query language will be called nearly periodic and will be denoted as TC,,.

For instance, if head-of-s ta te-vis i t s is a monadic predicate defined in Example 2

specifying the times when the head of a state is scheduled to make visits and ACTUAL-VISITS

is the predicate specifying the actual visits he or she made, then the query "Did the

head of the state make all the visits as they were scheduled for him/her (with predicate

head-of-state-visi ts)?" can be expressed in TC,, as a yes/no query

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

The language TC,, differs from TC, in the following important aspect. T C , is obtained

from TC by adding a family of periodic predicates periodicp,, defined with equation (1). In

contrast to this, TC,, is obtained from T C by adding all the nearly periodic predicates to

T C . Since there are infinitely many such predicates that, unlike TC,, are defined in infinitely

many ways, this means that all of them cannot be added to T C in practice. However, in

practice, the user will add finite libraries of nearly periodic predicates to T C t o support

near-periodicity. We will elaborate on this further in Section 5.

The following proposition follows immediately from the definitions of TC,, TC,,, and

from Corollary 9:

Proposition 11 TC,, has more expressive power than TC,

4 Relationship of TCp and TCnp to Other Formalisms

Periodic queries can be expressed in some other formalisms besides T C , and TC,,. For

instance, the T C , query from Example 3 can also be expressed as:

{< emp1,t > I ATTGND(emp1, meeting, t) A meeting = L'CRC" A (3t1)(t = 7*t'+2)) (4)

in an extension of TC that supports addition6.

Since addition is a very fundamental mathematical operation and since some of the

strongly periodic queries can be expressed using addition, we consider the extension of T C

that supports addition, T C S , in the next section.

The calculus T C S is defined as follows. It is identical in its syntax and semantics to T C ,

except that it supports one extra function addition (+) only for its temporal sort, and this

function is defined in the standard way. The query specified in (4) provides an example of

the question expressed in T C S .

"t is important to note that the multiplication in this example is really not a true multiplication; it can
be replaced with 6 additions of 2'.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

As the following theorem shows, TC+ is more expressive than TC,.

Theorem 1 2 The class of TC, queries is properly contained in the class of TC+ queries.

Proof: The containment follows from the fact that periodic predicates can be expressed in

TC+. To prove the proper containment, consider the following TC+ query:

We claim that this query cannot be expressed in TC,. To see this, assume that it can be

expressed in TC, as {t I $pPQ (t)). Consider the interpretations for P and Q that make these

predicates true throughout. Then $ is equivalent t o a RL+ formula and hence is eventually

periodic (Theorem 2) with some period p and some starting point M. Furthermore, i t follows

from the proof of Theorem 2 that if $ has a periodic predicate period,,,(t) then q divides p.

Take the largest constant N among all the constants appearing in $ p , ~ , and let to be

a multiple of p such that max{N, M , 1) << to (e.g., let to = 100(M + N + 1)). Consider an

interpretation for Q such that Q is true in that interpretation at only one time, c, and false

elsewhere, and that c is also a multiple of p and is much larger than to, to << c (e.g., let

c = looto).

Then the original TCf query with this interpretation for Q is equivalent to y(t) =
P (t) A (3t1)(P(t') At + t f = c) E P(t) A P (c - t) . Furthermore, $ p , ~ (t) with this interpretation

of Q can be replaced by dp(t), where dp(t) is obtained from $pIQ(t) by replacing all predicate

instances Q(tl) in it with the expression t1 = c. Since we assume that the original TCS query

is equivalent to $ P , ~ , it means that y(t) must be equivalent t o $p(t), i.e., they must be equal

at all times for all the interpretations for P.

Now consider the following two interpretations for P. The first interpretation, Ip, is

true for all moments of time except tl = c - to - p, and the second one, is also true

for all moments of time except for ti = t l + p = c - to (see Figure 1). Clearly, y(to) is true

in Ip , and y(to) is false in 1 2 . Since yp and $p are equivalent, it should be the case tha t

cjlp(to) is true in Ip and dp(tO) is false in I?. However, we claim that if dp(tO) is true in Ip

then glp(tO) must also be true in 12, and the resulting contradiction proves the theorem.

To see that if #p(tO) is true in Ip then $p(tO) must also be true in I:', we do the

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

t'l
C

TIME

I p : - -D

+P I p : - -*

Figure 1: Theorem 9 Illustration

following. For interpretation Ip, we replace gip(to) with (bl(to) obtained from dp(to) by

replacing each instance of P (t) with t # t l . Similarly for interpretation I:,, we replace

dp(to) with d2(to) obtained from dp(tO) by replacing each instance of P (t) with t # tl + p.

Note that dl and 452 no longer contain any temporal predicates. The only difference between

dl and 4 2 is that whenever the first contains an expression of the form t # t l , the second

contains an expression of the form t $I tl + p. It can be shown that if dl(to) is true then

d2(t0) is also true. Intuitively, this is the case because tl is located "far away" from the

other constants appearing in the formula (based on our choice of t l) , and because for any

periodic predicate periodic,,,(t) in dl or 4 2 , q divides p (therefore, periodic predicates do

not "notice" the difference between dl(to) and d2(to)).

Note that T C + is more expressive than TC,, whereas RL+ and RL, have the same

expressive power. Intuitively, this happens because the language RL+ admits quantifier

elimination (that is how Theorem 2 is proved in [lo]), whereas T C + does not. From another

point of view, T C t is more expressive than TC, because temporal variables appearing in

different predicates can be added together in TC+, as is done in query (5). Note that if

we just added to T C purely temporal relations defined in RL+, then the resulting language

would have had the expressive power of TC, because of Theorem 2. This observation shows

that the issue of query expressiveness of periodic extensions of T C cannot be trivially reduced

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

to studying periodic sets of time.

The next theorem shows that TC,, and TC+ are unrelated in the sense that neither

one contains the other.

Theorem 13 There are TC,, queries that cannot be expressed in TC+, and TC+ queries

that cannot be expressed in TC,,.

Proof: To prove the first part, consider the following query:

where p is an integer greater than 1. Clearly, this query belongs to TC,,. However, this set

is not strongly periodic. Therefore, it cannot be expressed in RL+ (Corollary 3) and thus in

TC+ .

The proof of the second part of the query proceeds as the proof of Theorem 12. We start

with the same TC+ query (5) and assume that it can be expressed in TC,, as {t I +plQ(t)).

Then we use the same argument reducing +p,Q t o and $2. However, the constants to, t l ,

and c have t o be selected now differently from the way they were selected in the proof of

Theorem 12. First, we select the point to that is "much larger" than any constant appearing

in $p,Q. Then we select the points tl and t2, such that to < t l < tz , and all the nearly

periodic functions in are either simultaneously true or false at t l and t2. Then we select

the point c = to + t2 and set p = t2 - t l . Then the rest of the argument in the proof of

Theorem 12 goes through. C]

It follows from Theorem 12 that TC+ can express periodic queries. Since TC+ is a

very fundamental, intuitive, and convenient language for expressing periodicity, it would be

very nice t o use it for that purpose. However, it also follows from Theorem 12 that TC+ is

"too powerful'' for defining periodicity, i.e., it captures more than the concept of periodicity

alone. Therefore, if we want to use TC+ for expressing periodic and only periodic queries,

we should impose certain syntactic conditions on TC+ that would restrict it t o only periodic

queries.

As we said already, the main reason why TC+ is more expressive than TC, is that in

TC+ we can add two diflerent temporal variables, whereas in TC,, periodicity can be defined

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

only in terms of the addition of a variable to itself. For example, TC+ formulae containing

expressions t + t t = t" cannot always be expressed in TC, as the proof of Theorem 12

shows. However, if a T C + formula containing expressions t + t' = t" does not contain

temporal relations, then it can be expressed in TC, (by eliminating quantifiers, as explained

in Theorem 32E in [lo], and converting the resulting eventually periodic expression into TC,

expressions).

This discussion suggests the following approach to restricting TC+ t o the class of formu-

lae expressible in TC,. Intuitively, if 4 is a T C + expression, then we want to "separate" all

of its subformulae containing expressions of the form t $- t1 into purely temporal expressions

that do not contain any temporal relations. Then we can remove t + t' expressions through

the quantifier elimination process (as described in the proof of Theorem 32E in [lo]) thus

producing expressions containing only congruence relations that can be easily expressed in

TC,.

Formally, we proceed as follows.

Definition: A T C + expression 4 is essentially periodic if i t is equivalent t o another T C +

expression 4' having the following property:

If 4' contains an atomic formula defined with a relational operator d(tl, tz , . . . , t,)
(0 is <, =, <, etc.) that depends on distinct variables t l , t a , . . . , t,, and n > 1,

then for all variables ti , except one, the subexpression of q5' of the form (Qti)y5,

where Q is a quantifier, does not contain any temporal predicates.

For example, the formula

is essentially periodic because it is equivalent t o (Vt)(P(t) A (3t1)(t + t' = c)), and its subex-

pression (3t1)(t + t' = c) does not contain any predicates. Therefore, the quantifier in the

latter subexpression can be eliminated by replacing the entire subexpression with t < c.

Thus, the main formula is equivalent t o the T C (and hence TC,) formula

('Jt)(P(t) A t < c)

As another example, the formula

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

is not essentially periodic. To see that this is so, consider its atomic subformula t + t' = c.

Both the subexpressions (3 t t) (P(t) A Q(tl) A t + t' = c) and (Vt)(3t1)(P(t) A Q(t') At + t' = c)

contain a temporal predicate (P (t) and Q(t1)) inside. Furthermore, this formula cannot be

converted t o an equivalent formula that satisfies this property.

We denote the class of essentially periodic queries as TC:.

Proposition 14 Classes of queries TC, and TC: have the same expressive power.

Proof: Clearly, any TC, query can be expressed in TC:. To prove the inverse, consider an

essentially periodic query 4. Transform it into the equivalent query $' as described above.

Then for each relational operator B(tl, t 2 , . . . , t,) having more than one distinct variable in it

(n > 1) take the subexpression (Qt;)$ containing the scope of the outermost quantifier (i.e.

quantifiers of all other variables t,, except one are contained inside $). By the definition

of an essentially periodic query, $ does not contain any predicates. Using the quantifier

elimination procedure, as described in [lo, Theorem 32E], convert it into a subexpression

that contains only one variable from the set i t l , t 2 , . . . , t,) and the congruence operator (in

other words, the expression $ containing quantifiers over temporal variables is replaced by

an equivalent expression containing the congruence operator and no quantifiers). Repeat

this process inductively for all other relational operators B(tl, t 2 , . . . , t,) having more than

one distinct variable. As a result of this procedure, the addition operator can appear only in

terms having only a single variable, and these terms can be defined with periodic predicates.

a

In summary, we have considered language T C + in this section and have shown that

it is more expressive than TC, and is unrelated to TC,,. Furthermore, we have defined

a restricted version of T C S , TC:, that is equivalent to TC,, and thus captures strongly

periodic queries and only them. These results are summarized in Figure 2, where arrows

mean "proper inclusion."

Since languages TC,, and T C + are unrelated t o each other, it is important to know if

there is a language that supports periodicity and a t the same time contains both TC,, and

T C + . We address this issue in the next section.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

TC-

Figure 2: The Relationship Between Calculi T C , TC,, TC:, TC,,, and T C S (Arrows
Indicate Inclusion).

4.2 Calculus TCS*

In this section we define the calculus T C + * and show that it is more expressive than each

of the calculi TCf and TC,,. The calculus TC+* is obtained from T C + by supporting

the multiplication operator for the temporal sort. For example, the query "find the people

who attended CRC meetings on non-prime days and report their attendance dates" can be

expressed in TC+* as

{< empl, t > I ATTEND(emp1, meeting, t) A meeting = T R C " A

(3t1)(3t'')(t = t' * t" A t' # 1 A t' # t))

As the following propositions show, TCS* is more expressive than TC,, and T C + .

Proposition 15 T C + * is more expressive than T C + .

Proof: Immediately follows from Corollary 32G in [lo] that says that multiplication cannot

be defined in (N, 0, S, <, +). For example, the TCS* query {t I (3s)(s E N A t = s * s)) does

not define a strongly periodic set and therefore is not expressible in T C + .

Proposition 16 TCf * is more expressive than TC,,.

Proof: By definition, the nearly periodic predicates are recursive. Then Theorem 34A from

1101 says that they are expressible in (N , 0, S, <, +, *, E) (where E stands for exponentia-

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

TC- TC, TC

Figure 3: The Relationship Between Calculi T C , TC,, TC:, TC,,, T C + , and TC+*
(Arrows Indicate Inclusion).

tion). Then Theorem 37C in [lo] says that they are also expressible in (N,O, S, <, +, *).

Furthermore, it follows from Theorem 13 and Proposition 15 that the inclusion is proper. CI

Propositions 15 and 16 complete the picture that relates the various periodic calculi described

in this paper. This relationship is presented in Figure 3.

Figure 3 shows that the languages TC, and TC: are equivalent and are the least

powerful periodic query languages. They define exactly the class of strongly periodic queries.

The query language TC,, that defines the class of nearly periodic queries is strictly

more expressive than the class of periodic queries. However, if the user wants to formu-

late a nearly periodic query, he or she has to specify nearly periodic predicatets), such as

head-of-state-visits, that are part of the query. This means that the nearly periodic pred-

icates must be stored in a library that is either a part of the DBMS or is created by the

end-user or the systems administrator. Furthermore, the user has to deal with the situations

when the nearly periodic predicates he or she needs are not in the library.

Therefore, we also studied some of the other formalisms for expressing periodicity that

do not have to deal with libraries of predicates, such as languages T C + and T O * . The

language T C S is strictly more expressive than TC, and is very simple: it differs from TC

in that it also supports addition for the temporal sort. However, it does not express all

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

TC,, queries. Finally, the language T C + * can support both periodic and nearly periodic

queries (and is strictly more expressive than T C f). However, it may be the case that T C + *

is overly expressive, i.e. it supports various other concepts in'addition to periodicity; but

the study of the exact characterization of the expressive power of TC+* is beyond the scope

of this paper.

Adding Periodicity

In the previous sections of the paper we have formalized the two intuitive concepts of period-

icity borrowed from [l] and presented in the introduction. We have also considered various

periodic extensions of T C that support the two types of periodicity, and we have established

the relationships among these extensions. We are now ready to discuss how periodicity can

be added to end-user-oriented temporal query languages and to the TSQL2 standard [25] in

particular. We concentrate in this section on TSQL2 because it is an important and highly

influential temporal query language. However, our discussions of how t o add periodicity to

this language are more general in nature and can be applied to various other ungrouped

temporal query languages, such as TQuel [24] or TSQL 1221. Moreover, we believe that some

of these ideas can be extended to the grouped temporal query languages, such as Lh [8], and

Gadia's [ll] and Tansel's [28] languages.

To make the discussion in this section concrete, we need to consider a specific relation

embodying some data that can support periodic queries. For this purpose consider a relation

which records attendance by employees at various company meetings. The TSQL2 command

t o create such a table might be the following:

CREATE TABLE ATTEND-2 (EMPLNAME CHARACTER (20) NOT NULL,
MEETINGNAME CHARACTER (20))

VALID AS INTERVAL

Figure 4 shows the example instance of the A T T E N D - 2 relation which we will use in

this section to illustrate periodic queries.

In its present form, the TSQL2 proposal does not support periodic queries for the

following reason. TSQL2 is based on the interval-based temporal logic and supports such

Allen's interval-based operators as precedes, contains, overlaps, etc. [2]. Since temporal

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

Note that the following dates in this table are Mondays: 1/4/93, 1/11/93, 1/18/93,
1/25/93, 2/1/93, 2/8/93, 2/15/93, 2/22/93, 1/3/94, 3/21/94.

ATTEND-2

Figure 4: Interval Relation ATTEND-2

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

end-time

1/4/93 13:00
1/11/93 12:00
1/18/93 13:OO
1/25/93 15:00
2/1/93 12:OO
2/8/93 13:00

2/15/93 13:OO
2/22/93 15:30
1/18/93 13:00

1/3/94 13:00
1/4/94 13:30

9/18/93 16:OO
10/20/93 16:30
3/21/94 16:30
4/13/94 13:30

start-time

1/4/93 10:30
1/11/93 9:30

1/18/93 10:30
1/25/93 13:30

2/1/93 9:30
2/8/93 10:30

2/15/93 10:30
2/22/93 13:30
1/18/93 11:30

1/3/94 1 1 : O O
1/4/94 11:30

9/18/93 14:30
10/20/93 14:OO

3/21/94 14:00
4/13/94 10:30

EMPL-NA ME
Tom
Tom
Tom
Tom
Tom
Tom
Tom
Tom

Susan
Susan
Susan
Susan
Susan
Susan
Susan

MEETING-NA ME
CRC
CRC
CRC
CRC
CRC
CRC
CRC
CRC
CRC
CRC
CRC
P&T
P&T
P&T
P&T

logic, including the interval-based one, cannot support periodic queries 1341, it follows that

TSQL2 cannot support these queries either.

Based on the theoretical discussions presented in Sections 3 and 4, periodic queries can

be added t o TSQL2 (or t o any other ungrouped temporal query language) in one of the

following ways:

1. by adding additional temporal operators that support ,periodicity to the temporal op-

erators already existing in TSQL2;

2. by allowing explicit references to time in TSQL2, including temporal variables and

quantification over them, and by supporting arithmetic on the temporal domain by

using such operators as +, g, and *;

3. by supporting a set of periodic functions, including "calendar" functions.

The first alternative can be implemented by adding congruence operators to temporal

logic operators, as has been done for the single temporal attribute case in timed temporal

logic 131. However, since in this paper we considered periodicity within the framework of

first-order logic with explicit references of time, this proposal t o extend temporal logic is

beyond the scope of this paper.

The second alternative can support periodicity by allowing the following additions to

TSQL2. In its current form, TSQL2 allows references t o the initial and final endpoints of

a temporal interval as B E G I N (< tuple-variable>) and E N D (< tuple-variable>) . However,

it does not allow any temporal variables and quantification over these variables, as TC

does. Periodicity can be supported in TSQL2 by allowing such variables and quantifications

over t f~em, and by allowing arithmetic operators such as addition (+), congruence (G) (or

predicate periodic), and multiplication (*).

Exarnple 5 Consider the query from Example 3 "Find the names and attendance times of

who attended any of the Monday meetings of the Computer Resources Committee

(CRC)." This can be expressed in such an extension of TSQL2 as

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

EMPL-NAME
Tom
Tom

Tom ii 2/8/93 10~30 i 2'18'193 13:oo

Tom
Tom
Tom

start- t ime

1/4/93 10:30
1/11/93 9:30

end-t ime

1/4/93 13:OO
1/11/93 12:00

1/18/93 10:30
1/25/93 13:30

2/1/93 9:30

Tom
Tom

Figure 5: Answer to the "Monday-CRC" Query.

1/18/93 13:OO
1/25/93 15:OO
2/1/93 12:00

Susan
Susan

S E L E C T EMPL-NAME
F R O M ATTEND-2 A
WHERE MEETING = 'CRC' A N D periodic(week,Monday,T)

A N D BEGIN(A) 5 T < END(A))

2/15/93 10:30
2/22/93 13:30

This query would return the result in Figure 5.

2/15/93 13:OO
2/22/93 15:30

1)18)93 11:30
1/3/94 11:OO

In this query, periodic(week,Monday,T) is the periodic predicate defined in (I) , BEGIN(A)

and END(A) are TSQL2 functions that specify the initial and final endpoints of a temporal

1)18)93 13:00
1/3/94 13:OO

interval of the tuple referenced by A. Note that the variable T in the WHERE clause is

implicitly existentially quantified, as is the standard practice in relational calculi. Its purpose

in the query is to check whether the lifespan of the tuple referenced by A contains Mondays.

It follows from the theoretical considerations described in Sections 3 and 4 that different

types of arithmetic operators added to TSQL2 support different types of periodicity. For

instance, if we add only the predicate periodic or the congruence operator (E) to TSQL2, then

we can express only strongly periodic queries in it. If we add the addition operator (+), then

we can support strongly periodic queries and more (as discussed in Section 4), but we cannot

support nearly periodic queries. To be able to express nearly periodic queries in TSQL2,

we have to add addition and multiplication to the language. However, by adding these two

operators, we can express more than nearly periodic queries in TSQL2 (Proposition 16)

Note that the advantage of adding to TSQL2 temporal variables and arithmetic operators

over them lies in its simplicity: we can express both types of periodicity in it using only a

few operators (one or two operators depending on the specific choice made).

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

Figure 6: Answer to the "First-Monday-of-each-month" Query.

However, this approach can be quite user unfriendly in some cases. For example, the

definition of predicate f i rs t-date-of -eachmonth, as presented in Example 1, requires addi-

tion of 12 terms. Such long and cumbersome expression can confuse the user and can result

in specification errors. Therefore, designers of TSQL2 may consider the third approach to

adding periodic queries to the language.

end-time

1/4/93 13:OO
2/1/93 12:OO
1/3/94 13:OO

EMPL-NA ME
Tom
Tom

Susan

The third approach addresses some of the deficiencies of the second approach by sup-

porting user-defined periodic functions, including extensions to TSQL2 calendars. These

functions can be either strongly or nearly periodic and can be divided into the following

types:

start-time

1/4/93 10:30
2/1/93 9:30

1/3/94 11:OO

the set of basic periodic functions provided by the vendors, such as every-week, ev-

ery-month, first-day-obeach-month, and other periodic functions that the vendor finds

the most commonly used in practice;

arbitrary user-defined periodic functions7.

Example 6 For example, if the predicate first-Monday-ofieach-month is located in a user-

defined library of periodic predicates, then the query "Give me the names and attendance

times of people who attended any of the CRC meetings held on the first Monday of each

month" can be expressed as

SELECT EMPL-NAME
FROM ATTEND-2 A
WHERE MEETING = 'CRC' A N D (first-Monday-of-eachmonth(T)

A N D BEGIN(A) 2 T < END(A))

This query would return the result in Figure 6.

7By "user" we mean here either the end-user of the temporal DBMS or a systems administrator. Both
of them can define periodic functions.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

In order for users to define arbitrary periodic functions, such as head-of s t a t e - v i s i t s

or third-day-of _eachmonth, TSQL2 should support a language for that purpose. Such a

language can include the operators of the calendar expression language of [6] or slices of [23].

For example, the function t h i r d d a y - o f -eachmonth can be defined as months + 3. days

in the language of [23], where months and days are calendars, and the expression 3. days

selects the third day in a month. However additional constructs may also be added t o this

language in order for it to support arbitrary user-defined periodic functions in an efficient

manner. Moreover, as we demonstrated in Section 4 (and in particular in Proposition 16),

this language should also have the operators of addition and multiplication for the temporal

sort.

One obvious advantage of this approach is that it is more user-friendly than the first

one. However, its limitation is that users many need large libraries of user-defined (and

vendor-supplied) functions to support their needs. Also, if we restrict these user-defined

periodic functions to nearly-periodic functions, then, as it was shown in Proposition 16,

this approach does not take us beyond the second proposal of adding arithmetic operators

and temporal variables to the query language because it does not add any expressibility t o

periodic queries.

To address deficiencies of the second and third approaches of adding periodicity t o the

TSQL2 standard, we propose a combination of the two approaches. In other words, TSQL2

can support explicit references to time and arithmetic operators on the temporal domain,

as was advocated in the second approach, and also support libraries of user-defined periodic

functions. By combining the two approaches, TSQL2 would be able to express any nearly

periodic query and would also have the user-friendliness that comes with the libraries of

periodic functions. Although this approach "over-supplies" the user with various periodic

operators, it gives him or her the ability t o express periodic queries concisely. Therefore, we

would advocate this approach as the approach t o adding periodicity to the TSQL2 standard.

Finally, we note that this proposal for integrating periodicity into TSQL2 fits quite

smoothly with other of its extended temporal aspects, such as temporal aggregates [17]. This

is so because temporal aggregation in TSQL2 is applied after the TSQL2 temporal selection

and projections are performed. In other words, periodicity is treated here essentially as part

of the temporal selection process, in that the periodic predicates and operators determine

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

Figure 7: Result of COUNT Aggregate Query

EMPL-NAME
Tom
Susan

whether or not a particular time-stamped "fact" in a relation is eligible t o participate in

the answer to a query; thus they appear in the WHERE clause of TSQL2. The aggregation

process occurs only after any periodic predicates and operators are satisfied, and hence this

process mashes nicely with this treatment of periodicity.

C O W T (T)
8
2

In [17] it is noted that, as in ordinary (non-temporal) aggregation, it is useful to dis-

tinguish two principal types of temporal aggregation, viz. "aggregation via selection" and

"aggregation via computation." We illustrate an example of each of these two types in the

context of a query involving periodicity.

Example 7 The query "How many Monday meetings of the CRC did each employee at-

tend" can be expressed in TSQL2 as

SELECT SNAPSHOT EMPL-NAME ,COUNT(*)
FROM ATTEND-2 A
WHERE MEETING-NAME = 'CRC' AND

periodic(week,Monday,T) AND
BEGIN(A) 5 T < END(A))

GROUP BY EMPL-NAME

This query would return the result in Figure 7, and does the temporal aggregation by co,m-

puting (counting) the number of meetings each employee attended. Therefore, [17] calls this

type of temporal aggregation "aggregation via computation."

Example 8 The query "Who attended the first Monday meeting of the CRC" can be ex-

pressed in TSQL2 as

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

1 EMPL-NAME /
I Tom

Figure 8: Result of MIN Aggregate Query

SELECT SNAPSHOT EMPL-NAME
FROM ATTEND-2 A
WHERE MEETING-NAME = 'CRC' AND

periodic(week,Monday,T) AND
BEGIN(A) 5 T < END(A)) AND
T = (

SELECT MIN(T1)
FROM ATTEND-2 A2
WHERE MEETING-NAME = 'CRC7 AND

periodic(week,Monday,Tl) AND
BEGIN(A2) < T 1 < END(A2))

This query would result in the relation in Figure 8 which is obtained by selecting the time of

the first Monday meeting of the CRC committee and then returning the names of the persons

present a t that meeting. Therefore, [17] calls this type of temporal aggregation "aggregation

via selection."

6 Summary

As discussed in Section 1, periodicity, despite its importance, has not been studied in a com-

prehensive manner in the temporal database literature. One result of this is that periodicity

is not currently supported in the commercially oriented temporal query languages, including

the TSQL2 standard. To address this omission, we have explored in this paper the meaning

of the notion of periodicity in the context of temporal databases, and have demonstrated

how it can be supported in a practical way in end-user-oriented temporal query languages,

such as TSQL2.

In order to understand what periodicity means in temporal databases, we consulted a

dictionary [I] and identified two different intuitive meanings of periodicity that are related to

temporal databases, i.e. "having periods or repeated cycles'' and "happening or appearing at

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

regular intervals." To define these concepts formally, we started with the languages RL and

T C for representing sets of time and temporal queries, respectively, and considered various

periodic extensions of these languages. We examined how well these extensions capture the

two types of periodicity described above. This means that for the extensions of RL we dealt

with the data expressiveness of these extensions and for the extensions of TC we dealt with

the query expressiveness of the extensions.

At the data expressiveness level, we identified two types of periodicity, i.e. strong

and near periodicity. Strong periodicity can be captured by periodic predicates, by the

congruence relation, or by the addition operator. Near periodicity is a broader concept and

can be captured by various nearly periodic predicates. At the query expressiveness level, we

considered periodic extensions TC,, TC,,, T C + , TC:, and TCS* that are obtained from

T C by adding different types of periodic operators described above. The relationship among

these languages was summarized in Figure 3.

Having studied on a theoretical level what the concept of periodicity means in the

database context, it becomes feasible to add periodicity in a comprehensive way to commer-

cially oriented temporal query languages. In particular, we considered various ways of adding

periodicity to TSQL2 and concluded that the most practical and theoretically sound method

would be to allow temporal variables, arithmetic operations over the temporal domain, and

libraries of vendor- and user-defined periodic functions, including calendar functions. Al-

though these periodic fclnctions are not strictly necessary (they call be implemented with

arithmetic operations), they add user-friendliness to the language.

Although this paper focused on the issue of querying the database with respect t o the

periodicity of the data that it contains, there are other aspects of periodicity which can

be of interest in the database context. For example, there is the notion of being able to

schedule something to occur at every time in some previously defined periodic set of times.

In an active database or in a conceptual modeling language one might want to schedule a

particular update to be made automatically "every Wednesday," or a particular report to be

automatically generated "the first day of each month." Such functionality has been added

to the active database Ode 1121 and to the specification language Templar [30]. For example,

the rule "If a person is a member of a club, he or she must attend the club meetings held on

Fridays before his or her club membership expires" can be expressed in Templar as

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

when every Friday
before membership-expiration-date(person)
if clubmember(person)
then-do attend-clubmeeting(person)

Also, as pointed out in [13], there are many interesting issues related to the interrelation-

ships between the two different dimensions of time, valid time and transaction t ime, which

have been proposed as the primary temporal dimensions of data (127, 141). Issues related to

how periodicity, either strong or near, might be interrelated in one or both of these dimen-

sions, or of how it could be incorporated into the schema, query, or active components of a

DBMS, are all subjects for further research. Finally, we plan to work on the implementation

issues and on the query processing and the optimization strategies for periodic queries.

Acknowledgments

The authors would like to thank the reviewers for their valuable comments which have helped

to improve the presentation of this paper.

References

[I] The American Heritage Dictionary. Houghton MiHin Company, second edition, 1985.

[2] J . F. Allen. Towards a general theory of action and time. Artificial Intelligence, 23:123-

154, 1984.

[3] R. Alur and T . A. Henzinger. A really temporal logic. In Proceedings of the A C M

Symposium on the Foundations of Computer Science, 1989.

[4] T . L. Anderson. Modeling time a t the conceptual level. In P. Scheuermann, editor,

Proceedings of the International Conference o n Databases: Improving Usability and

Responsiveness, pages 273-297, Jerusalem, Israel, June 1982. Academic Press.

(51 M. Baudinet, J . Chomicki, and P. Wolper. Temporal deductive databases. In A. Tansel,

J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors, Temporal

Databases. Benjamin/Cummings, 1993.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

[6] R. Chandra, A. Segev, and M. Stonebraker. Implementing calendars and temporal rules

in next generation databases. In Proceedings of the International Conference on Data

Engineering, 1994.

[7] J . Chomicki and T. Imielinski. Finite representations of infinite query answers. ACM

Transactions on Database Systems, 18(2): 182-223, 1993.

I87 J . Clifford, A. Croker, and A. Tuzhilin. On completeness of historical query languages.

ACM Transactions on Database Systems, 19(1), 1994.

[9] C. E. Dyreson and R. T. Snodgrass. Temporal indeterminacy in TSQL2. Commentary,

TSQL2 Design Committee, September 1994.

[lo] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972. New

York.

[11] S. K. Gadia. A homogeneous relational model and query languages for temporal

databases. ACM Transactions on Database Systems, 13(4):418-448, December 1988.

[12] N. H. Gehani, H. V. Jagadish, and 0. Shmueli. Event specification in an active object-

oriented database. In Proceedings of the ACM SIGMOD Conference, pages 81 - 90,

1992.

[13] C. S. Jensen and R. Snodgrass. Temporal specialization and generalization. IEEE

Transactions on Knowledge and Data Engineering, 6(6):954-974, 1994.

[14] C.S. Jensen, J . Clifford, S.K. Gaida, A. Segev, and R.T. Snodgrass. A glossary of

temporal database concepts. ACM SIGMOD Record, 21(3), September 1992.

1151 Jensen, C., Clifford, J . , et al. A consensus test suite of temporal database queries. In

R. Snodgrass, editor, The TSQL2 Language Specification. Tucson, AZ, October 1993.

[16] F. Kabanza, J.-M. Stevenne, and P. Wolper. Handling infinite temporal data. 1x1

Proceedings of the ACM Symposium on Principles of Database Systems, pages 392-403,

1990.

[17] Kline, N., Snodgrass, R. T . Aggregates in TSQL2. Available by anonymous f tp from

cs.arizona.edu, June 1994.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

[18] F. Kroger. Temporal Logic of Programs. Springer-Verlag, 1987. EATCS Monographs

on Theoretical Computer Science.

1191 N.A. Lorentzos and R.G. Johnson. Extending relational algebra to manipulate temporal

data. Information Systems, 13(3):289-296, 1988.

[20] 2. Manna and A. Pnueli. The h p o d Logic of Reactive and Concurrent Systems.

Springer-Verlag, 1992.

[21] E. McKenzie and R. Snodgrass. schema evolution and the relational algebra. Infornza-

tion Systems, 15(2):207-232, 1990.

[22] S. B. Navathe and R. Ahmed. A temporal relational model and a query language.

Information Sciences, 49: 147-175, 1989.

[23] M. Niezette and J.M. Stevenne. An efficient symbolic representation of periodic time.

In Proceedings of the 1st International Conference on Information and Knowledge Man-

agement, Baltimore, Maryland, 1992.

1241 R. T . Snodgrass. The temporal query language TQuel. ACM Transactions on Database

Systems, 12(2):247-298, June 1987.

1251 R. T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer Academic

Publishers, 1995.

[26] M.D. Soo and R.T. Snodgrass. Multiple calendar support for conventional database

management systems. Technical Report TR 92-07, University of Arizona, Department

of Computer Science, 1992.

[27] A. Tansel, J . Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass, editors. Tem-

poral Databases. Benjamin-Cummings, 1993.

[28] A.U. Tansel. Adding time dimension to relational model and extending relational alge-

bra. Information Systems, 11 (4) :343-355, 1986.

[29] W. Thomas. A combinatorial approach to the theory of w-automata. Information and

Control, 48:261-283, 1981.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

[30] A. Tuzhilin. Templar: A knowledge-based language for software specifications using

temporal logic. A C M Transactions o n Information Systems, 13(3) , 1995.

[31] A. Tuzhilin and J. Clifford. A temporal relational algebra as a basis for temporal

relational completeness. In Proceedings of the International Conference o n Very Large

Databases, pages 13-23, 1990.

[32] J.F.A.K. van Benthem. The Logic of Time. D. Reidel Publishing Company, 1983.

[33] M . Y . Vardi. A temporal fixpoint calculus. In Proceedings of the Fifteenth Annual

A C M S I G A C T - S I G P L A N Symposium o n Principles of Programming Languages, pages

250-259, 1988.

1341 P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72-99,

1983.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-95-06

