
DYNAMIC HYPERTEXT SYNTHESIS FOR INFORMATION RETRIEVAL

David Bodoff
Stern School of Business

New York University

Workinq Paper Series
STERN IS-93-32

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

Dynamic Hypertext Synthesis for Information Retrieval

A b s t r a c t

David Bodoff
Information Systems Department

Leonard N. Stem School of Business
New York, N.Y. 10012

Hypertext navigation alone is insuficient for eficient
Information Retrieval (ZR). Previous attempts to
combine IR techniques with hypertext have been
confined to the pre-authored structure of a document.
In this paper we extend computer-science methods to
synthesize a tailor-made hypertext document in
response to each user's query. The synthesis technique
can also be used to automatically create a pre-authored
hypertext document according to an author's
speciJications.

Introduction

As the amount of available electronic information
continues to grow, the problem of information
retrieval grows in urgency. Two paradigms for IR are
database queries and hypertext browsing. Information
which is easily stored in database form is accessible to
users looking for isolated pieces of information. On
the other extreme, users who are not sure what they're
looking for can browse through a hypertext [15].

But many cases fall in between, where the user
knows what he's looking for, but he's not looking for
an isolated piece of database-like information. Rather,
real users frequently seek a more thorough
understanding of an unfamiliar concept. For
example, an executive interested in adopting matrix
management in his organization needs to understand
the concept, its goals and risks, its implementation,
etc.

This type of information requirement has three
defining features which make standard IR techniques
inadequate. Fist, the user's need for understanding
requires that he "read-up" on his topic; this involves
numerous elements of textual description. Second, he
has an angle. That is, he is interested in some -- but
not all -- aspects of the topic. Our manager, for
example, may be uninterested in the history of matrix
management or in certain research questions. Third,

his is not the only conceivable angle. Other users
(e.g. historians and researchers) may be interested in
different aspects of the topic.

Traditional Information Retrieval (IR) techniques are
inadequate for this type of information requirement.
First, we are limited to the inelegant methods of text
retrieval. Traditional keyword-based methods are crude:
Since a keyword is attached to a whole document, it is
necessarily a gross averaging of the document's varied
contents. Because of this inaccuracy, much relevant
information is hard to find. On the other hand, whole
documents are retrieved in response to a query. This
imprecision results in presentation of much
superfluous information [9]. These are not limitations
of keyword techniques pre se. Rather, any IR
technique which treats a document as an atomic unit
will result in the problems of hard-to-find and
irrelevant information. These problems are exacerbated
by the differing angles which each user brings to a
topic. No single document-labeling scheme is best at
limiting superfluous and hard-to-find information for
every possible angle. The information sought by each
user is found in bits and pieces of many documents.

Suppose, on the other hand, that each article were
decomposed into individual thoughts or nodes, and
that each node were labeled with a keyword. Using
this method, we will have controlIed the problems of
superfluous and hard-to-find information, since this
technique is both more precise and more accurate.
Moreover, freed from the constraint of treating a
document as an indivisible unit, we could employ
formal methods to decompose it into nodes such that
typical queries yield a minimum of irrelevant and
redundant information [19]. The problem now,
however, is lack of scope: The manager must now go
fishing in the database countless times, to piece
together all the numerous bits of relevant information.

The ability of hypertext to combine individual
nodes and groups of nodes ("states") into an organized
structure seems promising. We can refer accurately and
precisely to individual nodes and states, and we can
achieve broad scope by collecting these into a larger
hypertext structure. The problem is how to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

automatically retrieve for each user the nodes he
wants, combine them appropriately into states, and
organize these states into a hypertext structure.

In this paper, we present a method to accomplish
this task. In response to each user's query, our method
automatically retrieves all of the relevant nodes and
organizes them into a hypertext structure. In our
approach, the query itself specifies both the content
and structural properties of the desired hypertext. An
algorithm retrieves the relevant nodes and synthesizes
a hypertext structure which exhibits those structural
properties.

The remainder of this paper is organized as follows:
First, we review related research, its contributions and
shortcomings, and outline our proposed approach. In
section two we introduce two very different uses for
our method. Section three gives technical background
necessary for understanding our approach. Section four
provides more details of our algorithm, using a
running example. The paper ends with a discussion of
conclusions and future research.

Section One: Related Literature

Two research areas relate to the retrieval and
organization of information nodes into a hypertext
document. The first area addresses information
retrieval in hypertext. The second area addresses
automatic generation of hypertext. As we will see,
each of these approaches taken alone is inadequate for
the type of information requirement described above.
Taken together as in our approach, they present a
viable approach for meeting such information
requirements.

1.0 Information Retrieval in Hypertext

There are two streams in this research1. The first
stream takes a user's query and a pre-authored
hypertext, and attempts to find a good starting point
for browsing, given a user's query. These attempts
may utilize traditional IR techniques to rank the
simiIarity of each node's contents to the query [23].
Garzotta et al. [13] further provide hierarchical indexes
for access into the hypertext. In addition, the pre-
authored structure -- i.e. the meaning of links -- may
be exploited to help rank a node's similarity to the
query [lo], [18]. Finally, the user's query may refer

Reviewers of earlier versions of this paper were
uncomfortable with this characterization of cited
works into these two 'camps'. The research
contributions of these works extend far beyond this
characterization. But I believe the categories are
nonetheless useful to map out the various possible
meanings of 'combining' IR with hypertext.

explicitly to the hypertext structure to search for
structural patterns [2], [8].

These approaches do provide IR access into a
hypertext. But they are all limited to the pre-authored
document structure. A pre-authored document cannot
possibly contain a web of nodes to correspond exactly
to every conceivable query's angle on the information;
the original author must insert a small number of
"related-to" links, and his choices "may express an
arbitrary and debatable judgment" (El41 p. 14). Unless
a user's point of view exactly corresponds to the
author's, the problems of superfluous and hard-to-find
information recur.2

The second stream of research, rather than providing
access into a hypertext, retrieves individual nodes [ll],
[19], or organizes them into a new linear structure
known as a guided tour [151. A guided tour may be a
good linear sequence, and this may suffice for some
uses. But even a good linear sequence does not provide
the browsing capabilities with which the user can
incrementally refiie his search.

In summary, these two approaches do begin to
combine IR with hypertext. However, these
approaches either provide the original pre-authored
branching structure (first approach), or provide no
branching structure at all (second approach). This is
understandable, because of the difficulty of
dynamically creating a new hypertext structure for the
dynamically retrieved nodes. We turn now to review
the literature of dynamic hypertext generation.

1.1 Automatic Generation of Hypertext

Assuming we had retrieved all the individual nodes
relevant to this user, we would need a method to
automatically structure them into a meaningful
hypertext document. Most approaches to automatic
link-generation take advantage of the underlying
structure of the domain [231, [41. Bieber's bridge laws,
for example, explicitly "describe the internal structure
of the information system" ([41, p. 393), and the
generated hypertext reflects that structure. This works
well to relate the inputs and outputs of information in
a system. But whereas an information system has a
clear structure, arbitrary text does not. Thus, others
[17], [9] suggest using syntactic hints in the text of
nodes to generate links. A significant limitation of
this approach is its complete insensitivity to the
individual user's point of view. Even a perfect

2 ~ ~ ~ 2 [15] supports a filtering mechanism to
alleviate the problem of superfluous information. The
problem of hard-to-find information remains.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

algorithm of this kind can only be as good as
manually created pre-set links; it cannot dynamically
link nodes from the point of view of each query.

1.2 Information Retrieval and Link
Generation Combined

We propose combining the methods of IR from
hyperbases with automatic link generation to provide
a more adequate response to each user's information
needs. Formal techniques guide our decomposition of
text into nodes [19]. The best available IR techniques
retrieve the individual relevant nodes for each user's
query. Moreover, the meaning of pre-authored links
can be utilized to help identify relevant nodes, as in
[lo]. However, once the individual relevant nodes are
identified and retrieved, the pre-authored structure is
discarded. (In fact, the retrieved nodes may not have
been connected at all in the pre-authored structure.)
Automatic link generation techniques are then applied
to the retrieved nodes, creating a navigable hypertext
document for each query. This is the approach we
adopt in this paper, and we expect to see more research
into this useful combination of methods.

But as we have noted, current techniques for
automatic link generation remain inadequate. In
particular, they remain insensitive to the particular
angle of each user query. Thus, automatically-
generated links can, at best, be only as appropriate as
manually pre-authored links. What is needed is a
method to automatically create links which make
sense for the particular query posed.

Our new approach to link generation is to allow
(require) the user to include in his query structural
specifications to guide construction of a browsable
hypertext from the retrieved nodes. Rather then
retaining the pre-authored hypertext structure, each
query defines new hypertext links for the requested
content. The advantage of this particular approach is
that, rather than hoping to automatically guess the
user's angle on the topic and a correspondingly
appropriate linked structure, the user himself requests
the structure he wants. The automatically generated
structure is always right.

It should be clear that our contribution is not in the
area of IR indexing. Any method of IR ultimately
depends upon the original decomposition of
information into coherent units, and appropriate
indexing of those limits. See [19], for example, for a
discussion of the decomposition problem: "The
question is: How can we design the information
groupings so commonly selected predicates will
encounter a "reasonable" amount of redundancy or
irrelevance?" (ibid., p.5). In this paper, we assume
that a reasonable decomposition has been achieved.

Furthermore, we assume some sort of reasonable
keyword-based indexes. Our contribution lies not in
refining these fundamental IR techniques, but in
combining them with computer science techniques so
that the result of a query is a coherent, tailor-made
hypertext.

Section Two
Two Roles for Automatic Synthesis

The method we propose serves two very different
functions. Viewing the user's input as a query,
hypertext synthesis is a method of IR. Viewing his
input as a hypertext specification, our synthesis
method helps automate the authoring of hypertext
documents.

Automatic Synthesis as Authoring Tool

While we view the real importance of hypertext as a
tool for general information retrieval, many
applications do lend themselves to pre-authored
documents. These documents are being developed for
use within organizations and for commercial use, and
methods and tools for good document design are being
researched and developed El], [121, [16], [91.

Authoring a large hypertext document is a complex
process. Suppose, for example, that we wish to
compose a hypertext to teach a student about
databases. The author would want his document to
possess certain properties, such as:
From a display of topic headings, there is a path
which eventually leads to each topic in the headings
list;
For each topic, an introduction must precede any
substantive material;
From m y advanced topic, there is a path leading to an
example;
From an advanced example, there is at least one path
to an intemdiate example;
etc.

We call these desired properties 'specifications'. It is
easy to see that even a small number of specifications
becomes unmanageable without automated support.
As we see below, Stotts et al. [21] suggested an
authoring tool which would ascertain -- after the fact
-- whether a document satisfied the specifications.
Aside from this suggestion, we know of no authoring
tools to support this complex aspect of the authoring
process.

The method we propose in this paper completely
automates this part of the authoring process. Given a
set of specifications as in the above example, we
construct a graph to show how the information must
be structured. In a second stage, the algorithm

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

retrieves actual information nodes from a hyperbase
and organizes them into such a structure.

extended Ben-Ari's algorithm to apply to automatic
synthesis of hypertext. Each of these sources is
discussed below.

Automatic Synthesis as Information Retrieval
3.1 Hypertext Defined

But we emphasize the IR use of our method because
we agree with the prevailing consensus that
navigation alone is not a sufficient answer to the
general IR problem. Halasz [I61 spoke of dynamic
virtual nodes and links which are intentionally-defined
by "specifying a description of their components".
These virtual nodes and links would be powerful even
in a pre-authored virtual document, as, for example,
the intentionally-defined links would be born and die
with the evolving hyperbase of nodes. But as Halasz
points out, queries combine with virtual components
as a powerful IR technique. Queries can define the
desired nodes and links in terms of their contents,
connections, etc., and the result of a query would be a
dynamically-formed structure among dynamically-
retrieved nodes. This is the concept we have adopted
and realized as a powerful method for IR.

In this view of hypertext synthesis, the user's input
is a query. Suppose, for example, that a computer
science professor were doing research in databases.
Rather than providing all database students and
researchers with one hypertext on the subject, we
suggest providing a hyperbase of unconnected
information nodes, plus a query language. The
professor's query might look something like this:

I want information on object-oriented databases;
I want that all nodes which discuss a query language
be immediately followed by an example;
that from any info& treatment of a data model there
must exists a path to the corresponding query
language;
etc.

In this way, a user describes the content of interest
and certain structural properties of the hypertext
document he would like to browse. Our method
provides a tailor-made hypertext in response to each
user query. This allows a user to browse through a
hypertext which contains all and only the information
he needs in an appropriate navigable structure.

Section Three
Technical Background

Our work is based on two sources: Stotts et al. [21]
originally suggested (for future research) using
temporal logic formula to help automate hypertext
synthesis. Ben-Ari et al. [3] provide one of the
simpler algorithms for automatic synthesis of
computer 'synchronization skeletons' from temporal
logic specifications. Combining these ideas, we have

We view a hypertext document as a graph of states.
In each state, a small number of nodes and links is
visible. From each state is accessible a number of
possible successor states. Let
N denote a (finite) set of nodes
S denote a (finite) set of states
So denote a special start state

T: S + 2S denote a complete accessibility relation,
i.e. from each state is accessible a nonempty set of
states
M: S + 2N denote a mapping from each state to a
set of nodes visible at that state

Then the structure H = < So, T, M > denotes the
reachability graph of a hypertext which starts in So
and which can then enter states S0..Snm1 according to
T.

A reachability graph can be represented pictorially in
this way:

node-4
node-3

node 4

3.2 Properties of Hypertext

The reachability graph of a hypertext document can
be viewed dynamically as a finite state machine
representing the possible execution paths of a
browsing session. Realizing this dynamic
interpretation of the reachability graph, Stotts et al.
[21] proposed using the graph to answer true-false
queries about the possible executions of the hypertext,
on the pattern of [7].

For example, given the reachability graph of
diagram one above, a query might ask whether the
following property is m e of the system:
From every state with node-4 visible, there is a path
whose next state has node-7 visible. This property

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

holds true of the example reachability graph.

In this simple example, states were labeled with
propositions whose intended meaning regards the
visibility of nodes at that state. More likely, we will
not want to remember the node-number of each piece
of information. We prefer to refer more meaningfully
to the contents of a node, regardless of its node-
number. We might, for example, assert that a state
(collection of nodes) has proposition 'abstract', that it
gives a 'concrete example', or that it includes an
'animation'. These labels are essentially keywords.

Just as these properties of individual states may be
descriptive, the dynamic properties of the whole
system may be descriptive, and more useful than
merely verifying the visibility of nodes. An example
of such a dynamic property is: From every state with
property abstract, there exists a path whose next state
has property concrete-example. In hypertext
synthesis, the user will specify this type of
meaningful dynamic properties, and a hypertext will
be synthesized which satisfies those properties.

Thus, we generalize M in our definition of a
hypertext < So, T, M >. Rather than mapping a state
to a set of visible nodes, it maps a state to a set of
arbitrary propositions. Note that the visibility of
nodes can still be asserted in this more general case,
with propositions such as 'node-1 7'.

3.3 Synthesis of Graphs

As recognized by Stotts et al. [21], property
verification works a posteriori; after a finite state
system has been created, we may verify whether that
existing system satisfies certain dynamic properties. A
complementary technique to property verification
would work in the opposite direction; a user
formulates a wish-list of properties he would l i e to
see. Then a system is automatically created which
manifests those properties. In this case, the desired
properties come first -- a priori -- and the system is
created to meet them. This is our approach to
automatic synthesis of hypertext reachability graphs.

Our method of creating a reachability graph from a
priori specifications uses an algorithm found in [3].
Using a temporal logic language 'UB', the user
specifies -- a priori -- a formula of dynamic properties
such as those in section 3.2 above. The authors detail
a tableau-based decision procedure for satisfi i i ty of
UB formula. Their goal is to prove satisfiability of a
formula, not to construct a model for use. However,
as the tableau method is constructive, we adopt it to
help construct our reachability graph. A model of UB
formula is a graph, a branching structure. As Clarke et

al. ([6], p. 68) point out "we may view the model as a
flowgraph of global system behavior." We use this
graph as the first step of constructing a hypertext
reachability graph to satisfy the formula.

Section Four: Algorithm for
Generating Hypertext Reachability
Graph from User Specifications

4.1 Overview

For formal definitions and details of the algorithm,
the reader is referred to the appendix. The approach is
as follows: The basic algorithm found in [3] is
extended to the special case of synthesizing
hypertexts. The adapted algorithm has two stages and
two inputs. The first stage is identical to that
proposed in [3]. It takes as input the user's wish-list,
and constructs a graph showing the propositions
which must hold at each state and the required
transitions between states. We call this a Constraint
Reachability Graph (CRG), since it represents not a
real hypertext reachability graph, but a depiction of
constraints which must be met.

The algorithm's second stage takes as input the
CRG and a hyperbase of nodes. The nodes are assumed
to be labeled with meaningful keywords, as discussed
in section 3.2. This second stage, then, attempts to
populate the CRG with actual nodes whose labels
match the CRG's labels at each state of the graph.
The final result is a structure H = <So, T, M> of
actual, available hyperbase nodes, structured into a
hypertext according to the original query's
specifications. The entire process can be viewed as in
figure one (next page).

We should clarify at this early point that our
algorithm (only) synthesizes a reachability graph to
show the visibility of nodes at each state and the
potential browsing paths between states of the
hypertext. In order to construct an actual hypertext
with those properties, one must choose a data model
(e.g. [20], [22]), and build a document which, under
that model, will result in the desired reachability
graph. For the sake of clearly presenting the essential
synthesis method, our initial treatment is independent
of the details of various data models; we focus on
reachability graphs. The only essential detail we
assume is that the hypertext data model provides some
form of links, with which we implement the state
transitions T of the reachability graph. Our concluding
discussion suggests how recent advances in hypertext
data modeling would be incorporated and leveraged for
hypertext synthesis.

Center for Digital Economy Research
Stem School of Business
Working Paper IS-93-32

SPECIFICATIONS

HYPERTEXT
REACHABILITY
GRAPH

figure 1

HYPERBASE

4.2 Inputs

Hyperbase

There are two important points to be made about
the input hyperbase. First, as discussed in section 1.2,
only nodes are retrieved from the hyperbase; links are
not retrieved. Our algorithm synthesizes new links
between the retrieved nodes.

Second, when we speak of retrieving a node from
the hyperbase, we actually intend, more generally,
retrieving a set of nodes. Most hypertext data models
allow for more than one node to be visible in each
browsing state. Therefore, rather than labeling and
retrieving individual nodes, we label and retrieve sets
of nodes (of course, a state might include only a
single node). We call these Labeled Collections of
Nodes (LCN's).

Query Language

The second input is the user's wish-list, expressed in a
querylspecification language. We adopt Ben-Ari et
al.'s straightforward UB language [3]. For an overview
of temporal logic as it applies to hypertext
reachability graphs, see [21]. In general, the language
allows the users to express the properties (i.e.
keywords) which must hold of the node (or set of
nodes) at each state, as well as the browsing paths
which must exist at each state.

4.3 Example

We will demonstrate all aspects of the algorithm
using one mnning example of a researcher interested

in data models for object-oriented databases. We may
view the example as either a query, or as part of the
specifications for a large pre-authored educational
document. The example is admittedly simplified for
the sake of clearly presenting the essential synthesis
method. We introduce the example with an English
version of a user's specification, followed by the UB-
language equivalent.

English:
Initial state has property date-model-headings ;
On all paths, always, if a state has property
data-model-headings then the next state has property
data-model-substance ;
On all paths, always, if a state has property
query-language then it has property examples.

UB :
data-model-headings
'd G (-data-model-headings

v VXdata-model-substnce)
VG (-query-language v examples)

Stage One Output
Constraint Reachability Graph

One possible output of stage one is this CRG (next
page):

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

diagram two

This CRG shows the required content and browsing
structure of the desired hypertext document. Note that
it has two terminal states (i.e. states with no outgoing
transitions) where browsing terminates. The intuition
behind this termination is: Once a state is reached
which has no headings for further readings, browsing
ceases. The user might instead have specified, for
instance, that one can always return to the start state,
and our CRG would have had no terminal states.

A CRG exactly resembles a hypertext reachability
graph. In fact, its formal definition is identical. A
CRG is defined as a structure
CRG = <CRGSo, T-CRG, M-CRG> where
CRGS is a set of states, P is a set of propositions and
CRGSo E CRGS
T-CRG: CRGS + 2CRGS
M-CRG: CRGS + 2P

The only difference between a CRG and our final
output <H = So, T, M > is that the CRG is abstract;
it only tells us which propositions must hold at each
state. A second step must access an actual hyperbase
and retrieve a set of nodes CCN) to instantiate each
CRG state.

There may be more than one possible CRG for a
given input specification. In particular, if the
specifications imply that the start state may have one
of a few possible properties (a disjunction), then there
will be one CRG for each start-state label. In our
example, in fact, there exists an alternative CRG
which differs only in the label on the start state. The
number of alternatives is likely to be very small in
general, but more work needs to be done to asses the
empirical extent of this source of variability. The user
may be presented with the alternatives, and he may
select any or all for further processing in stage two.

Method of Stage One: Tableau

We present here only an overview of the method. Our
appendix details the tableau procedure and applies it to

our example. A root node is created and labeled with
the user's specifications. A tree is then inductively
created by applying transformation rules to its leaves.
For example, for any label of the form 'p or q', two
child nodes are created, one of which is labeled 'p', the
other of which is 1abeIed 'q'. A tree is built in this
fashion until certain conditions are met, when the
procedure stops.

Stage Two: Populating the CRG with
Actual LCN's

Stage two requires these two inputs:
1. One output CRG from stage one
2. the hyperbase of LCN's

This second stage is straightforward: For each state
in the CRG, we search for an available LCN whose
label satisfies the label on that state of the CRG. The
only complication arises because the CRG states are
labeled with simple formula of the form 'p' and with
negated formula of the form '-p'; the keyword labels
on the LCN's, on the other hand, are labeled only
with simple (non-negated) formula. An LCN satisfies
the label of a CRG state if these two conditions hold:

1. For every simple formula 'p' on the CRG state, the
LCN is identically labeled 'p' .
2. For every negated formula '-p' on the CRG state,
the LCN is not labeled with 'p'.

The result of this substitution of LCN's
for CRG states is our final output: a
hypertext reachability graph H = <So,T,M[>
constructed out of the available LCN's,
which satisfies the original user
specifications3:

In our example, suppose stage two were provided with
the Fist CRG output of stage one (diagram 2), and
with the following hyperbase of LCN's:

LCN1: dataamodeldeheadings
LCN2: data-model-substance, beginner
LCN3: data-model-substance, examples,
query-language, intermediate
LCN4: data-model-headings, data-model-substance,
other

Then one possible solution is this (next page):

See appendix where we show more formally that the
document satisfies the specifications using the UB
semantics

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

diagram three

4.4 Final Output: Discussion

The labels on the final instantiated hypertext states
differ from those of the CRG: there are no labels of
the form -p, and there may be additional labels in each
state which were not required by the CRG. The
hypertext reachability graph is a concrete instantiation
of the requirements, given the available hyperbase of
information. The labels on the final output
reachability graph show -- for one concrete
instantiation of the CRG -- which propositions will
actually hold at each state.

State five deserves attention. Recall that the
specifications require that any state which has
headings for further readings must be followed by
substantive material. But in this particular
instantiation of the CRG, state five, by chance, does
not contain any headings -- yet it is still required to
lead to substantive material. The 'mistake' here is in
the specifications: To preclude this possibility, the
specifications should also say that any state with no
headings is not followed by substantive material.

Note that although states three and five have the
same content -- i.e. the content of LCN3 -- they are
distinct states because of the different outgoing
transitions. In cases where two reachability graph
states are instantiated with an identical LCN and have
identical incoming and outgoing transitions, the
reachability graph could be simplified by collapsing
the two states into one.

Note also that there may be more than one possible
substitution of LCN's for each CRG state.
Considering all possible combinations, one CRG may
represent many different reachability structures. There
are, therefore, two sources of variability given a single
specification; first, more than one CRG may result
from stage one, if there is more than one possible
starting state. Second, for each CRG, many different
substitutions of LCN's for CRG states are possible.

??his second source of variability can result in a
large number of alternatives, if many LCN's in the
hyperbase are identically labeled. In ordinary IR such
as keyword search, we expect a list of resulting
documents which match the keywords, and there is no
problem. In our approach, the question is how to
integrate these alternatives into a single hypertext
structure. One solution is to create a list of the
alternative LCN's for each CRG state. At each
browsing state (corresponding to a CRG state), the
user can scroll through the alternatives as he would if
he were using traditional search methods. The formal
definition of H = < So, T, M> would have to be
extended to H = < So, T, M, L> where L is a
mapping from each state Si (accessible from So by TI
to a set of possible LCN's, or equivalently, to a set of
possible sets of nodes visible in that state.

Ease of Maintenance

The separation of this algorithm into these two
stages facilitates maintenance. In the case of pre-
authored documents, the user's specifications are
likely to remain fairly constant. On the other hand,
the hyperbase may be constantly changing, as outdated
information is replaced, and as new information
becomes available. Fortunately, the abstract CRG
does not rely on the existence of any particular node or
LCN in the database. When the database is updated,
only stage two needs to be re-executed to determine
which of the currently-available LCN's should be used
in the hypertext structure. This is especially fortunate
because of the computational expensiveness of stage
one, as discussed below.

Section Five: Extensions

For the sake of simplicity, we presented the
algorithm assuming the simplest IR techniques, and
largely independent of the details of hypertext data
models. We now show how advances in the fields of
IR and hypertext data modeling can be incorporated.

5.1 Keywords and IR

We have assumed the most primitive IR technique,
keywords. Many of the more sophisticated approaches
proposed for general text IR and for hypertext node
retrieval are easily incorporated. Individual nodes (or
collections of nodes) are retrieved using any of these
more refined techniques; our synthesis algorithm
focuses on constructing a browsing structure from
among the retrieved components. So, for example, we
may use attribute-value pairs as in [I31 and relational
queries as in [I 11 to reference individual components,
without any modifications to our algorithm. In
addition, if the nodes of the available LCN's happen to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

be incorporated into pre-authoml hypertext documents,
we might use the meaning of those links to help
retrieve appropriate nodes, as in [lo], [15].

5.2 Querylspecification Language

Admittedly, the UB language would be too formal
for most users. A less formal language based on
temporal logic would be required. But we anticipate
that most users would experience difficulty not only
with the formal syntax, but with adopting the
mentality of branching logic. One cannot simply ask
the user to supply structural qualities he wants, and
expect that he will adopt the language of paths and
branches. A user interface would need to guide hirn to
assert browsing properties of the form "there exists a
path, for all paths, next state, etc.". The current trend
toward providing users with a gods'-eye-view of
hypertext documents (to limit disorientation) should
help acclimate users to these branching notions.

5.3 Nodes versus States

We simplified our presentation by requiring that states
(LCN's) -- but not individual nodes -- are labeled. Our
method is easily extended to allow labeling and
retrieval of individual nodes, as shown immediately
below. A query could then alternately reference both
properties of a browsing state and properties of its
constituent nodes. An example query is:
UB: \dG (p -+ (3Xqand 3n (rtn))))
English: Always, on all paths, from a state with
property p there exists a path whose next state has
state-property q and which has at least one node with
(node) property r.

The algorithm would be extended as follows: Stage
one, the hard part, simply labels a state in the CRG
with q and with the complex label (En r(n)), i.e. at
this state, q must hold and it must be true that there
exists a node labeled r. Stage two, whose job it is to
find LCN's to match the constraints of the CRG, is
easily extended. It would take as additional inputs: the
mapping M-nodes from individual nodes to their
properties, and a new mapping V from each LCN to
its set of visible nodes V: LCN -+ 2N. Armed with
these two mappings, the second stage can easily find
which LCNs satisfy the specification.

The more fundamental problem -- and this issue
pertains to many areas of hypertext data model
research, not only for automated synthesis -- is how to
relate the contents and labels of individual nodes to the
labeling of LCN's which contain those nodes. We
assumed above that simple labels at least had the
advantage of being automatically generated. But this
assumption overlooks the question of how to
automatically generate keyword labels for an LCN

which is a set of nodes. Are they merely a conjunction
of all the keywords we would generate for each node in
the LCN ? Would we not want other labels to
describe the more general idea of the set of nodes, or
properties like "half the nodes in this LCN are
graphic" ? Garzotta et al. ([13]) raise this difficult
issue with respect to labeled links, in the case of a
hierarchical data model. These questions arise in all
cases where we label components at multiple levels of
abstraction. They are left open for future work.

5.4 Algorithmic Complexity and Data
Abstraction

The complexity of the satisfiability problem is
exponential in the length of the formula. This is bad
news for our otherwise straightforward approach. The
problem is likely to be much worse when our
synthesis methods used to automatically generate a
pre-authored document than when it is used as a query
for information retrieval, simply because of the size of
the formula. Fortunately, most pre-authored
documents have a fair amount of hierarchy, as
prescribed in [16] and [I]. The specifications can be
written, and a reachability graph synthesized, one level
at a time. For example, in authoring a tour-book, we
may specify the browsing properties between
countries ("from every country there exists a path to
its immediate neighbors"), then between cities, etc.,
all the way down, say, to the browsing properties
among restaurants within a city. The overall
reachability graph is thus built top-down. This is only
feasible, of course, where the author in fact wants
such a strong hierarchy. In future work we will
elaborate on how to utilize data models which support
hierarchical composition (e.g. [5]) to help alleviate the
potential exponential complexity of our algorithm.

5.5 Links

In the case of property verification, we can verify
that a state has visible a certain named link (e.g.
link-l7), as in [21]. In a more sophisticated model,
we could verify that a link of some type is visible.
Furthermore, we can label links with arbitrary
properties, and by extending the specification language
as we did for individual nodes, we could quantify o v a
individual links and verify their properties.

But the case of hypertext synthesis is much more
complicated. Allowing specification of links in
addition to nodes and states would require a logic of
links within the synthesis algorithm. For example,
what is the meaning of specifying that a state has no
successors but that it has a link, or that it has a
successor of some type but no links which (by their
link-type definition) can lead to such a node, and other

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

such contradictions ? In our proposed synthesis
algorithm these contradictions are avoided, since the
requirement of links is left implicit in the
requirements to have paths between states. To allow
explicit specification of states, paths among states,
and links requires a logic of these components that
understands how they relate. Such a logic is left for
future work.

Conclusions

In this paper we have proposed a method to
automatically synthesize a hypertext reachability
graph from temporal logic specifications. The method
is an extension of Ben-Ari's algorithm to the case of
hypertext. This technique serves two important uses.
First, for the case of pre-authored hyperdocuments, a
structure is automatically synthesized which
necessarily meets the author's specifications. This
takes the guesswork out of manual link-creation, in
which the author must envision how each new link
will affect the browsing structure and its properties.
More importantly, we propose that these
specifications -- viewed as queries -- serve as a
powerful IR technique. Individual nodes of
information are precisely targeted and combined into a
document ready for browsing. With today's limited
technology, the user himself must include structural
properties in his query. At some later time, an
intelligent technique may specify those properties
automatically. Either way, our algorithm retrieves
nodes and sets of nodes and produces among them a
browsing structure which satisfies those properties.
The user then has all the relevant information he needs
in the desirable form of a tailor-made hypertext
document.

References

1. Acksyn, Robert M., McCracken, Donald L., and Yoder,
Elise A. KMS: A Distributed Hypermedia System for
Managing Knowledge in Organizations. In
Communications of the ACM, vol. 31, no. 7, July 1988,
pp. 820-835

2. Beeri, Catriel and Kornatzky, Yoram. A Logical Query
Language for Hypertext Systems. In Proceedings of the
European Conference on Hypertext, Camridge University
Press, France, November 1990, pp. 67-80

3. Ben-Ari, M., Manna, Z., and Pnueli, A. The temporal
Logic of Branching Time. In Proceedings 8th ACM
Symposium on Principles of Programming Languages,
ACM, New York, 1981, pp. 164-176

4. Bieber, Michael. Providing Information Systems with
Full Hypermedia Functionality. In Proceedings of the
26th Hawaii International Conference on System
Sciences, IEEE, vol. 3, January 1993, pp. 390-400

5. Casanova, Marco A. and Tucherman, Luiz. The Nested
Context Model for Hyperdocuments. In Hypertext '91
Proceedings, ACM Press, December 1991, pp. 193-201

6. Clarke, Edmund M. and Emerson, E. Allen. Synthesis
of Synchronization Skeletons from Branching Time
Temporal Logic. In Proceedings of the Workshop on
Logics of Programs (Yorktown-Heights, New York).
Lecture Notes in Computer Science, Springer-Verlag, New
York, 1981, pp. 52-71

7. Clarke, E.M., Emerson, E.A., and Sistla, A.P.
Automatic Verification of Finite-State Concurrent
Systems Using Tempoal Logic Specifications. In ACM
Transactions on Programming Languages and Systems,
vol. 8, no. 2, April 1986, pp. 244-263

8. Consens, Mariano P. and Mendelzon, Alberto 0.
Expressing Structural Hypertext Queries in Graphlog. In
Hypertext-89 Proceedings, ACM, November 1989, pp.
269-292

9. Egan, Dennis E., Remde, Joel R., Gomez, Louis M.,
Landauer, Thomas K., Eberhardt, Jennifer, and Lochbaum,
Carol C. Formative Design-Evaluation of Superbook. In
ACM Transactions on Office Information Systems, vol.
7, no. 1, January 1989, pp. 30-57

10. Frei, H.P. and Stieger, D. Making Use of Hypertext
Links when Retrieving Information. In Proceedings of
the ACM Conference on Hypertext, November 1992, pp.
102-111

11. Gallagher, Leonard, Furuta, Richard, and Stotts, P.
David. Increasing the Power of Hypertext Search with
Relational Queries. In Hypermedia, vol. 2, no. 1, 1990,
pp. 1-14

12. Garrett, Nancy L., Smith, Karen E., and Meyrowitz,
Norman. Intermedia: Issues, Strategies, and Tactics in the
Design of a Hypermedia Document System. Institute for
Research in Information and Scholarship (IRIS), Brown
University, Providence, RI.

13. Garzotto, France, Mainetti, Luca, and Paolini, Paolo.
Navigation Patterns in Hypermedia Data Bases. In
Proceedings of the 26th Hawaii International Conference
on System Sciences, IEEB, vol. 3, January 1993, pp.
370-379

14. Garzotto, Franca, Paolini, Paolo and Schwabe,
Daniel. HDM - A Model-Based Approach to Hypertext
Application Design. In ACM Transaction on Information
Systems, January '93, pp. 1-26

15. Guinan, Catherine and Smeaton, Alan F. Information
Retrieval from Hypertext Using Dynamically Planned
Guided Tours. In In Proceedings of the ACM Conference
on Hypertext, November 1992, pp. 122-130

16. Halasz, Frank G. Reflections on Notecards: Seven
Issues for the Next Generation of Hypermedia Systems. In
Communications of the ACM, vol. 31, no. 7, July 1988,
pp.836-852

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

17. Hua, Hua and Kimbrough, Steven 0 . On Hypermedia-
Based Argumentation Decision Support Systems. In
Proceedings of the 26th Hawaii International Conference
on System Sciences, IEEE, vol. 3, January 1993, pp.
401-410

18. Lucarella, Dario. A Model for Hypertext-Based
Information Retrieval. In Proceedings of the European
Conference on Hypertext, Cambridge University Press,
France, November 1990, pp. 81-94

19. Shasha, Dennis. NetBook - a data model to support
knowledge exploration. Technical Report, Department of
Computer Science, Courant Institute of Mathematical
Sciences, New York, 1985

20. Stotts, P. David and Furuta, Richard. Petri-Net-Based
Hypertext: Document Structure with Browsing Semantics.
In ACM Transactions on Information Systems, vol. 7,
no. 1, January 1989, pp. 3-29

21. Stotts, P, David, Furuta, Richard, and Ruiz, J.
Cyrano, Hyperdocuments as Automata: Trace-Based
Browsing Property Verification. In Proceedings of the
ACM Conference on Hypertext, November 1992, pp.
272- 281

22. Tompa, Frank WM. A Data Mode for Flexible
Hypertext Database Systems. In ACM Transaction on
Information Systems, vol. 7, no. 1, January 1989, pp.
85-100

23. Wilson, Eve. Links and structures in hypertext
databases for law. In Proceedings of the European
Conference on Hypertext, Cambridge University Press,
France, November 1990, pp. 194-21 1

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

Appendix

Semantics of UB

The semantics of a UB formula are defined with respect to a tree: A formula is satisfied at a state s of a tree T. In our
case, we want the specifications to be satisfied at the state So of the infinite tree represented by the hypertext
reachability graph.

The following excerpt from [3] formally defines the semantics of UB formula:

"A model T for UB is a triple T = (S,P,R) where S is a set of states and P is an assignment of
proposition letters to states. For a proposition a and a state s E S, a E P(s) iff a is true at the state s. R is a
binary relation on states which defines the structure of T. When sRt holds, we say that t is an immediate
successor (descendant) of s. To capture the concept of non-ending time, we require that R be total, i.e. forall s
there-exists t s.t. (sRt) - every state has a successor1 . R* is the reflexive transitive closure of R. Thus sR*t
iff there is an R-path leading from s to t. An s-branch b is an infinite path b = (s = %,sl,...) such that si E S
and siRsi+1. We define the notion of a general formula p being satisfied at a node s in T - written as T,s tiL. p
or s I-- p when T is implicitly understood.

1. For a proposition a, s + a iff a E P(s).
2. s I-- -piff s tf p
3 .s + p V q i f f s f = p o r s t = q
4 . s ~ \dGpiff v b v t (t ~ b + t + ~)
5. s I- v F p i f f v b 3 t (t ~ bandt I-. p)
6. s I-- v x p i f f v t (sRt + t t=- p)
7 . s b . 3 G ~ i f f 3 b v t (t ~ b + t b . . p)
8. s h.5 3 F p i f f 3 b 3 t (t ~ band t b.. p)

9. s !== 3Xp iff 3 t (s ~ t and t I=- p)"

In this paper, our aim is to synthesize a structure H = <So, T, M > (this triple differs notationally from Ben-Mi's in
our choice to include only So, not S) which satisfies the specifications "Spec". Utilizing Ben-Ari's precise
semantics, H satisfies "Spec" iff
H, So I-= "Spec".

Ben-Ari's Tableau Method for UB

The method constructs a tree T out of the initial specification. The root of T is created and labeled with the originial
specifications. The tree T is then constructed by inductively applying these rules to its leaves: Formula in the leaf are
matched against the a column of table 1.a and the P column of table 1.b. For every formula which matches an a
pattern, a child node is created which is labeled by the corresponding a1 and a2. For every formula which matches a P
pattern, two child nodes are created, one of which is labeled with the corresponding P1 , the other of which is labeled
with P2. When no matches can be found for a leafs formula, that leaf is designated an X-node. If a node contains two
contradictory formula, one of the form 'p' and one of the form '-p', the that node is not expanded any further.

Although Ben-Ari defines the meaning of formula with respect to an infinite structure representing the non-ending nature
of time, his algorithm for constructing a model from specifications allows construction of finite graphs with terminal states.
In fact, our simple example with which we demonstrate our extension to his algorithm synthesizes a finite hypertext with
terminal states. We can either loosen the definition of a model to allow finite time, or we can extend the algorithm to
arbitrarily add a path from the terminal nodes to non-terminal nodes.

Appendix- 1
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

We will demonstrate this first part of the algorithm using our running example. As a shortcut, we simultaneously
apply our rules to more than one subformula in each iteration. This shortcut does not affect the final result. Also, for
brevity, we use 'headings' in place of 'data-model-headings' and 'substance' in place of 'data-model-substance':

Specifications:
headings A VG (-headings v VX substance) A VG (-query-language v examples)

headings
V n G (-headings v VX substance)

P - headings v VX substance

P VZVG (- query -language v examples) - query ,language v examples

4

specs 1 headings A VG (-headings v VX substance) A VG(- query -language v examples) I
1

Appendix-:!

a
a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

. 1

headings
VG (- headings v VX substance)
VG (- query -language v examples:

At this point, we have only two X-nodes which contain no contradictions. X-nodes contain simple formula of the
form 'p'or '-p', and nexttime formula of the form
VXp and 3 ~ ~ . ~ The processing for X-nodes is most easily expressed using Ben-Ari's notation. Suppose the set of

nexttime formula is this: {3Xp, ,... 3Xp,, \dXql,.. . VXqm}. Then, for each formula of the form 3Xpi, a child is
created and labeled { pi, ql,..,qm} . For all the formula m q l , . . , VXqm, one child is created and labeled ql..qm.

"The construction of T is kept finite by observing the following two termination rules:
T1: If a created node n contains both p and -p then mark this node as closed and do not expand it any further.
T2: If a state m is to be created as a son of n, and there is a state t (which has already been created) elsewhere
in the tableau [with identical labels] ... then do not create m but connect n to t instead."

Two more steps conclude the tableau method. We will only briefly describe these two steps, and refer the reader to [31.
First, we delete a node if any of the following apply:

its labels assert both p and -p
it is an a node and one of its sons is deleted
it is a p node and both its sons are deleted
it is an X-node and one of its descendants has been deleted
it is a node labeled 3 F p and there exists no path from the node to a state labeled p
it is a node labeled VFp and there exists a path along which p cannot be fulfilled

This last rule is deceptively tricky. We do not delete the VFp node if there merely exists a path along which p is not
fulfilled. The construction of T actually creates such cycles, since for each occurence of YFp, we provide a son
labeled VX VFp as well as the son labeled p. By cycling in a path labeled YX VFp, we can forever avoid
fulfilling p. Instead, this last rule only deletes a node labeled YFp if there exists a path along which p cannot be
fulfiiled.

For all other VFp nodes, every path can eventually fulfill p. In a final step, we modify the tree to ensure that every
such path does in fact fulfill p, by unraveling the tree to avoid the possibility of a cycle of 'J'X VFp. With this
overview of this last step in mind, the reader is refered to [3].

We now return to our example and continue building the remainder of the tree:

Formula of the form VTf (or 3Tf) are just a method to propagate the truth of VGf (3Gf) to all states. Others ([8])
have taken a less formal approach to these formula, since they clutter-up the tableau method. Ben-Ari does not explain how

he treats these VTf (3Tf). To complete the formal approach to these formula, we add this to Ben-Ari's rules:

If a node is an X-node node with a nexttime fomula, then treat YTf (3Tf) as Y x f (3x f) Otherwise it does not call
for any expansion.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

substance
a

VWG (-headings v VX substance) I I VWG (-headings v VX substance)
9 VXsubstance VXsubstance I 10

p -
7 P -

VWG (-headings v VX substance) - headings v VXsubstance
substance
VWG (- query -language v examples)
-query -language v examples

The last node is identical to node five, so nodes nine and ten are connected to node five and processing is complete.
This graph is not yet the final output CRG of stage one. The CRG must be extracted from this graph.
Extracting the CRG from T

Lnodc

X-node

Every X-node is defined as a. It is these 'states' in the structure T which represent fragments of the model for p
which we seek. The other nodes of T are merely used to help compute the solution. We extract the model of p from
the tree T by retaining only those nodes which are 'states' -- i.e. X-nodes. The transition relation is derived as
follows: SIRS:! if s l is encountered in T at depth i, s2 is a descendant of s l and is encountered at depth j, and no
descendant of s l is encountered at depth k < j.

In each retained state we retain only elementary labels of the form 'p' or '-p'. So of the CRG is the first state

5 VG (-headings v VX substance)
substance
VG (- query -language v examples)

substance
VWG (- query -language v examples) - query -language

encountered when traversing T breadth-first. If more than one state is encounteredit the same depth of T, one is
chosen arbitrarily. We may construct a CRG for each possible choice, to offer the user alternative solutions from
which to choose. From that point, we traverse T, retaining only the states.

In our example, by retaining only the 'states' of T as described, we obtain these two simple CRG's, one for each
possible choice of So. In general, a different selection of So can result in a very different graph. In this simple case,

substance
v WG (- query -language v examples)
examples

only SO differs. For readability, we replace our abbreviated 'headings' with 'data-model-headings' and 'substance' with
'data-modellsubstance':

X-node

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

data-model-headings
uery-language

,model-substanc

(data-model-headings)
\ examples I

Stage Two
Populating the CRG with Actual LCN's

In this second stage, we find an actual LCN to populate each state in the CRG. When we find an LCN for each CRG state, we
have built one model of the original specifications.

Ben-Ari et al. [3] show that the CRG satisfies the specifications. We now show that one instance of the CRG -- populated by
LCN's in the manner described -- also satisfies the original specifications.

The only differences between the labels of the CRG and the labels of the final Hypertext
Reachability Graph (HRG) are:
1. The CRG has negated labels of the form '-p'. But by the semantics of UB, a formula '-p' is
satisfied iff the state is not labeled 'p'. And by construction, the HRG state is guaranted not to be labeled 'p'

2. The HRG states may be labeled by extra propositions about which the CRG and the original formula asserted neither 'p' nor
'-p' . The presence of these extra propositions is irrelevant to the semantics of UB.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-93-32

