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Hypertext navigation alone is insuficient for eficient 
Information Retrieval (ZR). Previous attempts to 
combine IR techniques with hypertext have been 
confined to the pre-authored structure of a document. 
In this paper we extend computer-science methods to 
synthesize a tailor-made hypertext document in 
response to each user's query. The synthesis technique 
can also be used to automatically create a pre-authored 
hypertext document according to an author's 
speciJications. 

Introduction 

As the amount of available electronic information 
continues to grow, the problem of information 
retrieval grows in urgency. Two paradigms for IR are 
database queries and hypertext browsing. Information 
which is easily stored in database form is accessible to 
users looking for isolated pieces of information. On 
the other extreme, users who are not sure what they're 
looking for can browse through a hypertext [15]. 

But many cases fall in between, where the user 
knows what he's looking for, but he's not looking for 
an isolated piece of database-like information. Rather, 
real users frequently seek a more thorough 
understanding of an unfamiliar concept. For 
example, an executive interested in adopting matrix 
management in his organization needs to understand 
the concept, its goals and risks, its implementation, 
etc. 

This type of information requirement has three 
defining features which make standard IR techniques 
inadequate. Fist, the user's need for understanding 
requires that he "read-up" on his topic; this involves 
numerous elements of textual description. Second, he 
has an angle. That is, he is interested in some -- but 
not all -- aspects of the topic. Our manager, for 
example, may be uninterested in the history of matrix 
management or in certain research questions. Third, 

his is not the only conceivable angle. Other users 
(e.g. historians and researchers) may be interested in 
different aspects of the topic. 

Traditional Information Retrieval (IR) techniques are 
inadequate for this type of information requirement. 
First, we are limited to the inelegant methods of text 
retrieval. Traditional keyword-based methods are crude: 
Since a keyword is attached to a whole document, it is 
necessarily a gross averaging of the document's varied 
contents. Because of this inaccuracy, much relevant 
information is hard to find. On the other hand, whole 
documents are retrieved in response to a query. This 
imprecision results in presentation of much 
superfluous information [9]. These are not limitations 
of keyword techniques pre se. Rather, any IR 
technique which treats a document as an atomic unit 
will result in the problems of hard-to-find and 
irrelevant information. These problems are exacerbated 
by the differing angles which each user brings to a 
topic. No single document-labeling scheme is best at 
limiting superfluous and hard-to-find information for 
every possible angle. The information sought by each 
user is found in bits and pieces of many documents. 

Suppose, on the other hand, that each article were 
decomposed into individual thoughts or nodes, and 
that each node were labeled with a keyword. Using 
this method, we will have controlIed the problems of 
superfluous and hard-to-find information, since this 
technique is both more precise and more accurate. 
Moreover, freed from the constraint of treating a 
document as an indivisible unit, we could employ 
formal methods to decompose it into nodes such that 
typical queries yield a minimum of irrelevant and 
redundant information [19]. The problem now, 
however, is lack of scope: The manager must now go 
fishing in the database countless times, to piece 
together all the numerous bits of relevant information. 

The ability of hypertext to combine individual 
nodes and groups of nodes ("states") into an organized 
structure seems promising. We can refer accurately and 
precisely to individual nodes and states, and we can 
achieve broad scope by collecting these into a larger 
hypertext structure. The problem is how to 
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automatically retrieve for each user the nodes he 
wants, combine them appropriately into states, and 
organize these states into a hypertext structure. 

In this paper, we present a method to accomplish 
this task. In response to each user's query, our method 
automatically retrieves all of the relevant nodes and 
organizes them into a hypertext structure. In our 
approach, the query itself specifies both the content 
and structural properties of the desired hypertext. An 
algorithm retrieves the relevant nodes and synthesizes 
a hypertext structure which exhibits those structural 
properties. 

The remainder of this paper is organized as follows: 
First, we review related research, its contributions and 
shortcomings, and outline our proposed approach. In 
section two we introduce two very different uses for 
our method. Section three gives technical background 
necessary for understanding our approach. Section four 
provides more details of our algorithm, using a 
running example. The paper ends with a discussion of 
conclusions and future research. 

Section One: Related Literature 

Two research areas relate to the retrieval and 
organization of information nodes into a hypertext 
document. The first area addresses information 
retrieval in hypertext. The second area addresses 
automatic generation of hypertext. As we will see, 
each of these approaches taken alone is inadequate for 
the type of information requirement described above. 
Taken together as in our approach, they present a 
viable approach for meeting such information 
requirements. 

1.0 Information Retrieval in Hypertext 

There are two streams in this research1. The first 
stream takes a user's query and a pre-authored 
hypertext, and attempts to find a good starting point 
for browsing, given a user's query. These attempts 
may utilize traditional IR techniques to rank the 
simiIarity of each node's contents to the query [23]. 
Garzotta et al. [13] further provide hierarchical indexes 
for access into the hypertext. In addition, the pre- 
authored structure -- i.e. the meaning of links -- may 
be exploited to help rank a node's similarity to the 
query [lo], [18]. Finally, the user's query may refer 

Reviewers of earlier versions of this paper were 
uncomfortable with this characterization of cited 
works into these two 'camps'. The research 
contributions of these works extend far beyond this 
characterization. But I believe the categories are 
nonetheless useful to map out the various possible 
meanings of 'combining' IR with hypertext. 

explicitly to the hypertext structure to search for 
structural patterns [2], [8]. 

These approaches do provide IR access into a 
hypertext. But they are all limited to the pre-authored 
document structure. A pre-authored document cannot 
possibly contain a web of nodes to correspond exactly 
to every conceivable query's angle on the information; 
the original author must insert a small number of 
"related-to" links, and his choices "may express an 
arbitrary and debatable judgment" (El41 p. 14). Unless 
a user's point of view exactly corresponds to the 
author's, the problems of superfluous and hard-to-find 
information recur.2 

The second stream of research, rather than providing 
access into a hypertext, retrieves individual nodes [ll], 
[19], or organizes them into a new linear structure 
known as a guided tour [151. A guided tour may be a 
good linear sequence, and this may suffice for some 
uses. But even a good linear sequence does not provide 
the browsing capabilities with which the user can 
incrementally refiie his search. 

In summary, these two approaches do begin to 
combine IR with hypertext. However, these 
approaches either provide the original pre-authored 
branching structure (first approach), or provide no 
branching structure at all (second approach). This is 
understandable, because of the difficulty of 
dynamically creating a new hypertext structure for the 
dynamically retrieved nodes. We turn now to review 
the literature of dynamic hypertext generation. 

1.1 Automatic Generation of Hypertext 

Assuming we had retrieved all the individual nodes 
relevant to this user, we would need a method to 
automatically structure them into a meaningful 
hypertext document. Most approaches to automatic 
link-generation take advantage of the underlying 
structure of the domain [231, [41. Bieber's bridge laws, 
for example, explicitly "describe the internal structure 
of the information system" ([41, p. 393), and the 
generated hypertext reflects that structure. This works 
well to relate the inputs and outputs of information in 
a system. But whereas an information system has a 
clear structure, arbitrary text does not. Thus, others 
[17], [9] suggest using syntactic hints in the text of 
nodes to generate links. A significant limitation of 
this approach is its complete insensitivity to the 
individual user's point of view. Even a perfect 

2 ~ ~ ~ 2  [15] supports a filtering mechanism to 
alleviate the problem of superfluous information. The 
problem of hard-to-find information remains. 
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algorithm of this kind can only be as good as 
manually created pre-set links; it cannot dynamically 
link nodes from the point of view of each query. 

1.2 Information Retrieval and Link 
Generation Combined 

We propose combining the methods of IR from 
hyperbases with automatic link generation to provide 
a more adequate response to each user's information 
needs. Formal techniques guide our decomposition of 
text into nodes [19]. The best available IR techniques 
retrieve the individual relevant nodes for each user's 
query. Moreover, the meaning of pre-authored links 
can be utilized to help identify relevant nodes, as in 
[lo]. However, once the individual relevant nodes are 
identified and retrieved, the pre-authored structure is 
discarded. (In fact, the retrieved nodes may not have 
been connected at all in the pre-authored structure.) 
Automatic link generation techniques are then applied 
to the retrieved nodes, creating a navigable hypertext 
document for each query. This is the approach we 
adopt in this paper, and we expect to see more research 
into this useful combination of methods. 

But as we have noted, current techniques for 
automatic link generation remain inadequate. In 
particular, they remain insensitive to the particular 
angle of each user query. Thus, automatically- 
generated links can, at best, be only as appropriate as 
manually pre-authored links. What is needed is a 
method to automatically create links which make 
sense for the particular query posed. 

Our new approach to link generation is to allow 
(require) the user to include in his query structural 
specifications to guide construction of a browsable 
hypertext from the retrieved nodes. Rather then 
retaining the pre-authored hypertext structure, each 
query defines new hypertext links for the requested 
content. The advantage of this particular approach is 
that, rather than hoping to automatically guess the 
user's angle on the topic and a correspondingly 
appropriate linked structure, the user himself requests 
the structure he wants. The automatically generated 
structure is always right. 

It should be clear that our contribution is not in the 
area of IR indexing. Any method of IR ultimately 
depends upon the original decomposition of 
information into coherent units, and appropriate 
indexing of those limits. See [19], for example, for a 
discussion of the decomposition problem: "The 
question is: How can we design the information 
groupings so commonly selected predicates will 
encounter a "reasonable" amount of redundancy or 
irrelevance?" (ibid., p.5). In this paper, we assume 
that a reasonable decomposition has been achieved. 

Furthermore, we assume some sort of reasonable 
keyword-based indexes. Our contribution lies not in 
refining these fundamental IR techniques, but in 
combining them with computer science techniques so 
that the result of a query is a coherent, tailor-made 
hypertext. 

Section Two 
Two Roles for Automatic Synthesis 

The method we propose serves two very different 
functions. Viewing the user's input as a query, 
hypertext synthesis is a method of IR. Viewing his 
input as a hypertext specification, our synthesis 
method helps automate the authoring of hypertext 
documents. 

Automatic Synthesis as Authoring Tool 

While we view the real importance of hypertext as a 
tool for general information retrieval, many 
applications do lend themselves to pre-authored 
documents. These documents are being developed for 
use within organizations and for commercial use, and 
methods and tools for good document design are being 
researched and developed El], [121, [16], [91. 

Authoring a large hypertext document is a complex 
process. Suppose, for example, that we wish to 
compose a hypertext to teach a student about 
databases. The author would want his document to 
possess certain properties, such as: 
From a display of topic headings, there is a path 
which eventually leads to each topic in the headings 
list; 
For each topic, an introduction must precede any 
substantive material; 
From m y  advanced topic, there is a path leading to an 
example; 
From an advanced example, there is at least one path 
to an intemdiate example; 
etc. 

We call these desired properties 'specifications'. It is 
easy to see that even a small number of specifications 
becomes unmanageable without automated support. 
As we see below, Stotts et al. [21] suggested an 
authoring tool which would ascertain -- after the fact 
-- whether a document satisfied the specifications. 
Aside from this suggestion, we know of no authoring 
tools to support this complex aspect of the authoring 
process. 

The method we propose in this paper completely 
automates this part of the authoring process. Given a 
set of specifications as in the above example, we 
construct a graph to show how the information must 
be structured. In a second stage, the algorithm 
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retrieves actual information nodes from a hyperbase 
and organizes them into such a structure. 

extended Ben-Ari's algorithm to apply to automatic 
synthesis of hypertext. Each of these sources is 
discussed below. 

Automatic Synthesis as Information Retrieval 
3.1 Hypertext Defined 

But we emphasize the IR use of our method because 
we agree with the prevailing consensus that 
navigation alone is not a sufficient answer to the 
general IR problem. Halasz [I61 spoke of dynamic 
virtual nodes and links which are intentionally-defined 
by "specifying a description of their components". 
These virtual nodes and links would be powerful even 
in a pre-authored virtual document, as, for example, 
the intentionally-defined links would be born and die 
with the evolving hyperbase of nodes. But as Halasz 
points out, queries combine with virtual components 
as a powerful IR technique. Queries can define the 
desired nodes and links in terms of their contents, 
connections, etc., and the result of a query would be a 
dynamically-formed structure among dynamically- 
retrieved nodes. This is the concept we have adopted 
and realized as a powerful method for IR. 

In this view of hypertext synthesis, the user's input 
is a query. Suppose, for example, that a computer 
science professor were doing research in databases. 
Rather than providing all database students and 
researchers with one hypertext on the subject, we 
suggest providing a hyperbase of unconnected 
information nodes, plus a query language. The 
professor's query might look something like this: 

I want information on object-oriented databases; 
I want that all nodes which discuss a query language 
be immediately followed by an example; 
that from any info& treatment of a data model there 
must exists a path to the corresponding query 
language; 
etc. 

In this way, a user describes the content of interest 
and certain structural properties of the hypertext 
document he would like to browse. Our method 
provides a tailor-made hypertext in response to each 
user query. This allows a user to browse through a 
hypertext which contains all and only the information 
he needs in an appropriate navigable structure. 

Section Three 
Technical Background 

Our work is based on two sources: Stotts et al. [21] 
originally suggested (for future research) using 
temporal logic formula to help automate hypertext 
synthesis. Ben-Ari et al. [3] provide one of the 
simpler algorithms for automatic synthesis of 
computer 'synchronization skeletons' from temporal 
logic specifications. Combining these ideas, we have 

We view a hypertext document as a graph of states. 
In each state, a small number of nodes and links is 
visible. From each state is accessible a number of 
possible successor states. Let 
N denote a (finite) set of nodes 
S denote a (finite) set of states 
So denote a special start state 

T: S + 2S denote a complete accessibility relation, 
i.e. from each state is accessible a nonempty set of 
states 
M: S + 2N denote a mapping from each state to a 
set of nodes visible at that state 

Then the structure H = < So, T, M > denotes the 
reachability graph of a hypertext which starts in So 
and which can then enter states S0..Snm1 according to 
T. 

A reachability graph can be represented pictorially in 
this way: 

node-4 
node-3 

node 4 

3.2 Properties of Hypertext 

The reachability graph of a hypertext document can 
be viewed dynamically as a finite state machine 
representing the possible execution paths of a 
browsing session. Realizing this dynamic 
interpretation of the reachability graph, Stotts et al. 
[21] proposed using the graph to answer true-false 
queries about the possible executions of the hypertext, 
on the pattern of [7]. 

For example, given the reachability graph of 
diagram one above, a query might ask whether the 
following property is m e  of the system: 
From every state with node-4 visible, there is a path 
whose next state has node-7 visible. This property 
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holds true of the example reachability graph. 

In this simple example, states were labeled with 
propositions whose intended meaning regards the 
visibility of nodes at that state. More likely, we will 
not want to remember the node-number of each piece 
of information. We prefer to refer more meaningfully 
to the contents of a node, regardless of its node- 
number. We might, for example, assert that a state 
(collection of nodes) has proposition 'abstract', that it 
gives a 'concrete example', or that it includes an 
'animation'. These labels are essentially keywords. 

Just as these properties of individual states may be 
descriptive, the dynamic properties of the whole 
system may be descriptive, and more useful than 
merely verifying the visibility of nodes. An example 
of such a dynamic property is: From every state with 
property abstract, there exists a path whose next state 
has property concrete-example. In hypertext 
synthesis, the user will specify this type of 
meaningful dynamic properties, and a hypertext will 
be synthesized which satisfies those properties. 

Thus, we generalize M in our definition of a 
hypertext < So, T, M >. Rather than mapping a state 
to a set of visible nodes, it maps a state to a set of 
arbitrary propositions. Note that the visibility of 
nodes can still be asserted in this more general case, 
with propositions such as 'node-1 7'. 

3.3 Synthesis of Graphs 

As recognized by Stotts et al. [21], property 
verification works a posteriori; after a finite state 
system has been created, we may verify whether that 
existing system satisfies certain dynamic properties. A 
complementary technique to property verification 
would work in the opposite direction; a user 
formulates a wish-list of properties he would l i e  to 
see. Then a system is automatically created which 
manifests those properties. In this case, the desired 
properties come first -- a priori -- and the system is 
created to meet them. This is our approach to 
automatic synthesis of hypertext reachability graphs. 

Our method of creating a reachability graph from a 
priori specifications uses an algorithm found in [3]. 
Using a temporal logic language 'UB', the user 
specifies -- a priori -- a formula of dynamic properties 
such as those in section 3.2 above. The authors detail 
a tableau-based decision procedure for satisfi i i ty of 
UB formula. Their goal is to prove satisfiability of a 
formula, not to construct a model for use. However, 
as the tableau method is constructive, we adopt it to 
help construct our reachability graph. A model of UB 
formula is a graph, a branching structure. As Clarke et 

al. ([6], p. 68) point out "we may view the model as a 
flowgraph of global system behavior." We use this 
graph as the first step of constructing a hypertext 
reachability graph to satisfy the formula. 

Section Four: Algorithm for 
Generating Hypertext Reachability 
Graph from User Specifications 

4.1 Overview 

For formal definitions and details of the algorithm, 
the reader is referred to the appendix. The approach is 
as follows: The basic algorithm found in [3] is 
extended to the special case of synthesizing 
hypertexts. The adapted algorithm has two stages and 
two inputs. The first stage is identical to that 
proposed in [3]. It takes as input the user's wish-list, 
and constructs a graph showing the propositions 
which must hold at each state and the required 
transitions between states. We call this a Constraint 
Reachability Graph (CRG), since it represents not a 
real hypertext reachability graph, but a depiction of 
constraints which must be met. 

The algorithm's second stage takes as input the 
CRG and a hyperbase of nodes. The nodes are assumed 
to be labeled with meaningful keywords, as discussed 
in section 3.2. This second stage, then, attempts to 
populate the CRG with actual nodes whose labels 
match the CRG's labels at each state of the graph. 
The final result is a structure H = <So, T, M> of 
actual, available hyperbase nodes, structured into a 
hypertext according to the original query's 
specifications. The entire process can be viewed as in 
figure one (next page). 

We should clarify at this early point that our 
algorithm (only) synthesizes a reachability graph to 
show the visibility of nodes at each state and the 
potential browsing paths between states of the 
hypertext. In order to construct an actual hypertext 
with those properties, one must choose a data model 
(e.g. [20], [22]), and build a document which, under 
that model, will result in the desired reachability 
graph. For the sake of clearly presenting the essential 
synthesis method, our initial treatment is independent 
of the details of various data models; we focus on 
reachability graphs. The only essential detail we 
assume is that the hypertext data model provides some 
form of links, with which we implement the state 
transitions T of the reachability graph. Our concluding 
discussion suggests how recent advances in hypertext 
data modeling would be incorporated and leveraged for 
hypertext synthesis. 
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SPECIFICATIONS 

HYPERTEXT 
REACHABILITY 
GRAPH 

figure 1 

HYPERBASE 

4.2 Inputs 

Hyperbase 

There are two important points to be made about 
the input hyperbase. First, as discussed in section 1.2, 
only nodes are retrieved from the hyperbase; links are 
not retrieved. Our algorithm synthesizes new links 
between the retrieved nodes. 

Second, when we speak of retrieving a node from 
the hyperbase, we actually intend, more generally, 
retrieving a set of nodes. Most hypertext data models 
allow for more than one node to be visible in each 
browsing state. Therefore, rather than labeling and 
retrieving individual nodes, we label and retrieve sets 
of nodes (of course, a state might include only a 
single node). We call these Labeled Collections of 
Nodes (LCN's). 

Query Language 

The second input is the user's wish-list, expressed in a 
querylspecification language. We adopt Ben-Ari et 
al.'s straightforward UB language [3]. For an overview 
of temporal logic as it applies to hypertext 
reachability graphs, see [21]. In general, the language 
allows the users to express the properties (i.e. 
keywords) which must hold of the node (or set of 
nodes) at each state, as well as the browsing paths 
which must exist at each state. 

4.3 Example 

We will demonstrate all aspects of the algorithm 
using one mnning example of a researcher interested 

in data models for object-oriented databases. We may 
view the example as either a query, or as part of the 
specifications for a large pre-authored educational 
document. The example is admittedly simplified for 
the sake of clearly presenting the essential synthesis 
method. We introduce the example with an English 
version of a user's specification, followed by the UB- 
language equivalent. 

English: 
Initial state has property date-model-headings ; 
On all paths, always, if a state has property 
data-model-headings then the next state has property 
data-model-substance ; 
On all paths, always, if a state has property 
query-language then it has property examples. 

UB : 
data-model-headings 
'd G (-data-model-headings 

v VXdata-model-substnce) 
VG ( -query-language v examples) 

Stage One Output 
Constraint Reachability Graph 

One possible output of stage one is this CRG (next 
page): 
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diagram two 

This CRG shows the required content and browsing 
structure of the desired hypertext document. Note that 
it has two terminal states (i.e. states with no outgoing 
transitions) where browsing terminates. The intuition 
behind this termination is: Once a state is reached 
which has no headings for further readings, browsing 
ceases. The user might instead have specified, for 
instance, that one can always return to the start state, 
and our CRG would have had no terminal states. 

A CRG exactly resembles a hypertext reachability 
graph. In fact, its formal definition is identical. A 
CRG is defined as a structure 
CRG = <CRGSo, T-CRG, M-CRG> where 
CRGS is a set of states, P is a set of propositions and 
CRGSo E CRGS 
T-CRG: CRGS + 2CRGS 
M-CRG: CRGS + 2P 

The only difference between a CRG and our final 
output <H = So, T, M > is that the CRG is abstract; 
it only tells us which propositions must hold at each 
state. A second step must access an actual hyperbase 
and retrieve a set of nodes CCN) to instantiate each 
CRG state. 

There may be more than one possible CRG for a 
given input specification. In particular, if the 
specifications imply that the start state may have one 
of a few possible properties (a disjunction), then there 
will be one CRG for each start-state label. In our 
example, in fact, there exists an alternative CRG 
which differs only in the label on the start state. The 
number of alternatives is likely to be very small in 
general, but more work needs to be done to asses the 
empirical extent of this source of variability. The user 
may be presented with the alternatives, and he may 
select any or all for further processing in stage two. 

Method of Stage One: Tableau 

We present here only an overview of the method. Our 
appendix details the tableau procedure and applies it to 

our example. A root node is created and labeled with 
the user's specifications. A tree is then inductively 
created by applying transformation rules to its leaves. 
For example, for any label of the form 'p or q', two 
child nodes are created, one of which is labeled 'p', the 
other of which is 1abeIed 'q'. A tree is built in this 
fashion until certain conditions are met, when the 
procedure stops. 

Stage Two: Populating the CRG with 
Actual LCN's 

Stage two requires these two inputs: 
1. One output CRG from stage one 
2. the hyperbase of LCN's 

This second stage is straightforward: For each state 
in the CRG, we search for an available LCN whose 
label satisfies the label on that state of the CRG. The 
only complication arises because the CRG states are 
labeled with simple formula of the form 'p' and with 
negated formula of the form '-p'; the keyword labels 
on the LCN's, on the other hand, are labeled only 
with simple (non-negated) formula. An LCN satisfies 
the label of a CRG state if these two conditions hold: 

1. For every simple formula 'p' on the CRG state, the 
LCN is identically labeled 'p' . 
2. For every negated formula '-p' on the CRG state, 
the LCN is not labeled with 'p'. 

The result of this substitution of LCN's 
for CRG states is our final output: a 
hypertext reachability graph H = <So,T,M[> 
constructed out of the available LCN's, 
which satisfies the original user 
specifications3: 

In our example, suppose stage two were provided with 
the Fist CRG output of stage one (diagram 2), and 
with the following hyperbase of LCN's: 

LCN1: dataamodeldeheadings 
LCN2: data-model-substance, beginner 
LCN3: data-model-substance, examples, 
query-language, intermediate 
LCN4: data-model-headings, data-model-substance, 
other 

Then one possible solution is this (next page): 

See appendix where we show more formally that the 
document satisfies the specifications using the UB 
semantics 
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diagram three 

4.4 Final Output: Discussion 

The labels on the final instantiated hypertext states 
differ from those of the CRG: there are no labels of 
the form -p, and there may be additional labels in each 
state which were not required by the CRG. The 
hypertext reachability graph is a concrete instantiation 
of the requirements, given the available hyperbase of 
information. The labels on the final output 
reachability graph show -- for one concrete 
instantiation of the CRG -- which propositions will 
actually hold at each state. 

State five deserves attention. Recall that the 
specifications require that any state which has 
headings for further readings must be followed by 
substantive material. But in this particular 
instantiation of the CRG, state five, by chance, does 
not contain any headings -- yet it is still required to 
lead to substantive material. The 'mistake' here is in 
the specifications: To preclude this possibility, the 
specifications should also say that any state with no 
headings is not followed by substantive material. 

Note that although states three and five have the 
same content -- i.e. the content of LCN3 -- they are 
distinct states because of the different outgoing 
transitions. In cases where two reachability graph 
states are instantiated with an identical LCN and have 
identical incoming and outgoing transitions, the 
reachability graph could be simplified by collapsing 
the two states into one. 

Note also that there may be more than one possible 
substitution of LCN's for each CRG state. 
Considering all possible combinations, one CRG may 
represent many different reachability structures. There 
are, therefore, two sources of variability given a single 
specification; first, more than one CRG may result 
from stage one, if there is more than one possible 
starting state. Second, for each CRG, many different 
substitutions of LCN's for CRG states are possible. 

??his second source of variability can result in a 
large number of alternatives, if many LCN's in the 
hyperbase are identically labeled. In ordinary IR such 
as keyword search, we expect a list of resulting 
documents which match the keywords, and there is no 
problem. In our approach, the question is how to 
integrate these alternatives into a single hypertext 
structure. One solution is to create a list of the 
alternative LCN's for each CRG state. At each 
browsing state (corresponding to a CRG state), the 
user can scroll through the alternatives as he would if 
he were using traditional search methods. The formal 
definition of H = < So, T, M> would have to be 
extended to H = < So, T, M, L> where L is a 
mapping from each state Si (accessible from So by TI 
to a set of possible LCN's, or equivalently, to a set of 
possible sets of nodes visible in that state. 

Ease of Maintenance 

The separation of this algorithm into these two 
stages facilitates maintenance. In the case of pre- 
authored documents, the user's specifications are 
likely to remain fairly constant. On the other hand, 
the hyperbase may be constantly changing, as outdated 
information is replaced, and as new information 
becomes available. Fortunately, the abstract CRG 
does not rely on the existence of any particular node or 
LCN in the database. When the database is updated, 
only stage two needs to be re-executed to determine 
which of the currently-available LCN's should be used 
in the hypertext structure. This is especially fortunate 
because of the computational expensiveness of stage 
one, as discussed below. 

Section Five: Extensions 

For the sake of simplicity, we presented the 
algorithm assuming the simplest IR techniques, and 
largely independent of the details of hypertext data 
models. We now show how advances in the fields of 
IR and hypertext data modeling can be incorporated. 

5.1 Keywords and IR 

We have assumed the most primitive IR technique, 
keywords. Many of the more sophisticated approaches 
proposed for general text IR and for hypertext node 
retrieval are easily incorporated. Individual nodes (or 
collections of nodes) are retrieved using any of these 
more refined techniques; our synthesis algorithm 
focuses on constructing a browsing structure from 
among the retrieved components. So, for example, we 
may use attribute-value pairs as in [I31 and relational 
queries as in [I 11 to reference individual components, 
without any modifications to our algorithm. In 
addition, if the nodes of the available LCN's happen to 
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be incorporated into pre-authoml hypertext documents, 
we might use the meaning of those links to help 
retrieve appropriate nodes, as in [lo], [15]. 

5.2 Querylspecification Language 

Admittedly, the UB language would be too formal 
for most users. A less formal language based on 
temporal logic would be required. But we anticipate 
that most users would experience difficulty not only 
with the formal syntax, but with adopting the 
mentality of branching logic. One cannot simply ask 
the user to supply structural qualities he wants, and 
expect that he will adopt the language of paths and 
branches. A user interface would need to guide hirn to 
assert browsing properties of the form "there exists a 
path, for all paths, next state, etc.". The current trend 
toward providing users with a gods'-eye-view of 
hypertext documents (to limit disorientation) should 
help acclimate users to these branching notions. 

5.3 Nodes versus States 

We simplified our presentation by requiring that states 
(LCN's) -- but not individual nodes -- are labeled. Our 
method is easily extended to allow labeling and 
retrieval of individual nodes, as shown immediately 
below. A query could then alternately reference both 
properties of a browsing state and properties of its 
constituent nodes. An example query is: 
UB: \dG (p -+ (3Xqand 3n (rtn)))) 
English: Always, on all paths, from a state with 
property p there exists a path whose next state has 
state-property q and which has at least one node with 
(node) property r. 

The algorithm would be extended as follows: Stage 
one, the hard part, simply labels a state in the CRG 
with q and with the complex label (En r(n)), i.e. at 
this state, q must hold and it must be true that there 
exists a node labeled r. Stage two, whose job it is to 
find LCN's to match the constraints of the CRG, is 
easily extended. It would take as additional inputs: the 
mapping M-nodes from individual nodes to their 
properties, and a new mapping V from each LCN to 
its set of visible nodes V: LCN -+ 2N. Armed with 
these two mappings, the second stage can easily find 
which LCNs satisfy the specification. 

The more fundamental problem -- and this issue 
pertains to many areas of hypertext data model 
research, not only for automated synthesis -- is how to 
relate the contents and labels of individual nodes to the 
labeling of LCN's which contain those nodes. We 
assumed above that simple labels at least had the 
advantage of being automatically generated. But this 
assumption overlooks the question of how to 
automatically generate keyword labels for an LCN 

which is a set of nodes. Are they merely a conjunction 
of all the keywords we would generate for each node in 
the LCN ? Would we not want other labels to 
describe the more general idea of the set of nodes, or 
properties like "half the nodes in this LCN are 
graphic" ? Garzotta et al. ([13]) raise this difficult 
issue with respect to labeled links, in the case of a 
hierarchical data model. These questions arise in all 
cases where we label components at multiple levels of 
abstraction. They are left open for future work. 

5.4 Algorithmic Complexity and Data 
Abstraction 

The complexity of the satisfiability problem is 
exponential in the length of the formula. This is bad 
news for our otherwise straightforward approach. The 
problem is likely to be much worse when our 
synthesis methods used to automatically generate a 
pre-authored document than when it is used as a query 
for information retrieval, simply because of the size of 
the formula. Fortunately, most pre-authored 
documents have a fair amount of hierarchy, as 
prescribed in [16] and [I]. The specifications can be 
written, and a reachability graph synthesized, one level 
at a time. For example, in authoring a tour-book, we 
may specify the browsing properties between 
countries ("from every country there exists a path to 
its immediate neighbors"), then between cities, etc., 
all the way down, say, to the browsing properties 
among restaurants within a city. The overall 
reachability graph is thus built top-down. This is only 
feasible, of course, where the author in fact wants 
such a strong hierarchy. In future work we will 
elaborate on how to utilize data models which support 
hierarchical composition (e.g. [5]) to help alleviate the 
potential exponential complexity of our algorithm. 

5.5 Links 

In the case of property verification, we can verify 
that a state has visible a certain named link (e.g. 
link-l7), as in [21]. In a more sophisticated model, 
we could verify that a link of some type is visible. 
Furthermore, we can label links with arbitrary 
properties, and by extending the specification language 
as we did for individual nodes, we could quantify o v a  
individual links and verify their properties. 

But the case of hypertext synthesis is much more 
complicated. Allowing specification of links in 
addition to nodes and states would require a logic of 
links within the synthesis algorithm. For example, 
what is the meaning of specifying that a state has no 
successors but that it has a link, or that it has a 
successor of some type but no links which (by their 
link-type definition) can lead to such a node, and other 
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such contradictions ? In our proposed synthesis 
algorithm these contradictions are avoided, since the 
requirement of links is left implicit in the 
requirements to have paths between states. To allow 
explicit specification of states, paths among states, 
and links requires a logic of these components that 
understands how they relate. Such a logic is left for 
future work. 

Conclusions 

In this paper we have proposed a method to 
automatically synthesize a hypertext reachability 
graph from temporal logic specifications. The method 
is an extension of Ben-Ari's algorithm to the case of 
hypertext. This technique serves two important uses. 
First, for the case of pre-authored hyperdocuments, a 
structure is automatically synthesized which 
necessarily meets the author's specifications. This 
takes the guesswork out of manual link-creation, in 
which the author must envision how each new link 
will affect the browsing structure and its properties. 
More importantly, we propose that these 
specifications -- viewed as queries -- serve as a 
powerful IR technique. Individual nodes of 
information are precisely targeted and combined into a 
document ready for browsing. With today's limited 
technology, the user himself must include structural 
properties in his query. At some later time, an 
intelligent technique may specify those properties 
automatically. Either way, our algorithm retrieves 
nodes and sets of nodes and produces among them a 
browsing structure which satisfies those properties. 
The user then has all the relevant information he needs 
in the desirable form of a tailor-made hypertext 
document. 

References 

1. Acksyn, Robert M., McCracken, Donald L., and Yoder, 
Elise A. KMS: A Distributed Hypermedia System for 
Managing Knowledge in Organizations. In 
Communications of the ACM, vol. 31, no. 7, July 1988, 
pp. 820-835 

2. Beeri, Catriel and Kornatzky, Yoram. A Logical Query 
Language for Hypertext Systems. In Proceedings of the 
European Conference on Hypertext, Camridge University 
Press, France, November 1990, pp. 67-80 

3. Ben-Ari, M., Manna, Z., and Pnueli, A. The temporal 
Logic of Branching Time. In Proceedings 8th ACM 
Symposium on Principles of Programming Languages, 
ACM, New York, 1981, pp. 164-176 

4. Bieber, Michael. Providing Information Systems with 
Full Hypermedia Functionality. In Proceedings of the 
26th Hawaii International Conference on System 
Sciences, IEEE, vol. 3, January 1993, pp. 390-400 

5. Casanova, Marco A. and Tucherman, Luiz. The Nested 
Context Model for Hyperdocuments. In Hypertext '91 
Proceedings, ACM Press, December 1991, pp. 193-201 

6. Clarke, Edmund M. and Emerson, E. Allen. Synthesis 
of Synchronization Skeletons from Branching Time 
Temporal Logic. In Proceedings of the Workshop on 
Logics of Programs (Yorktown-Heights, New York). 
Lecture Notes in Computer Science, Springer-Verlag, New 
York, 1981, pp. 52-71 

7. Clarke, E.M., Emerson, E.A., and Sistla, A.P. 
Automatic Verification of Finite-State Concurrent 
Systems Using Tempoal Logic Specifications. In ACM 
Transactions on Programming Languages and Systems, 
vol. 8, no. 2, April 1986, pp. 244-263 

8. Consens, Mariano P. and Mendelzon, Alberto 0. 
Expressing Structural Hypertext Queries in Graphlog. In 
Hypertext-89 Proceedings, ACM, November 1989, pp. 
269-292 

9. Egan, Dennis E., Remde, Joel R., Gomez, Louis M., 
Landauer, Thomas K., Eberhardt, Jennifer, and Lochbaum, 
Carol C. Formative Design-Evaluation of Superbook. In 
ACM Transactions on Office Information Systems, vol. 
7, no. 1, January 1989, pp. 30-57 

10. Frei, H.P. and Stieger, D. Making Use of Hypertext 
Links when Retrieving Information. In Proceedings of 
the ACM Conference on Hypertext, November 1992, pp. 
102-111 

11. Gallagher, Leonard, Furuta, Richard, and Stotts, P. 
David. Increasing the Power of Hypertext Search with 
Relational Queries. In Hypermedia, vol. 2, no. 1, 1990, 
pp. 1-14 

12. Garrett, Nancy L., Smith, Karen E., and Meyrowitz, 
Norman. Intermedia: Issues, Strategies, and Tactics in the 
Design of a Hypermedia Document System. Institute for 
Research in Information and Scholarship (IRIS), Brown 
University, Providence, RI. 

13. Garzotto, France, Mainetti, Luca, and Paolini, Paolo. 
Navigation Patterns in Hypermedia Data Bases. In 
Proceedings of the 26th Hawaii International Conference 
on System Sciences, IEEB, vol. 3, January 1993, pp. 
370-379 

14. Garzotto, Franca, Paolini, Paolo and Schwabe, 
Daniel. HDM - A Model-Based Approach to Hypertext 
Application Design. In ACM Transaction on Information 
Systems, January '93, pp. 1-26 

15. Guinan, Catherine and Smeaton, Alan F. Information 
Retrieval from Hypertext Using Dynamically Planned 
Guided Tours. In In Proceedings of the ACM Conference 
on Hypertext, November 1992, pp. 122-130 

16. Halasz, Frank G. Reflections on Notecards: Seven 
Issues for the Next Generation of Hypermedia Systems. In 
Communications of the ACM, vol. 31, no. 7, July 1988, 
pp.836-852 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-32 



17. Hua, Hua and Kimbrough, Steven 0 .  On Hypermedia- 
Based Argumentation Decision Support Systems. In 
Proceedings of the 26th Hawaii International Conference 
on System Sciences, IEEE, vol. 3, January 1993, pp. 
401-410 

18. Lucarella, Dario. A Model for Hypertext-Based 
Information Retrieval. In Proceedings of the European 
Conference on Hypertext, Cambridge University Press, 
France, November 1990, pp. 81-94 

19. Shasha, Dennis. NetBook - a data model to support 
knowledge exploration. Technical Report, Department of 
Computer Science, Courant Institute of Mathematical 
Sciences, New York, 1985 

20. Stotts, P. David and Furuta, Richard. Petri-Net-Based 
Hypertext: Document Structure with Browsing Semantics. 
In ACM Transactions on Information Systems, vol. 7, 
no. 1, January 1989, pp. 3-29 

21. Stotts, P, David, Furuta, Richard, and Ruiz, J. 
Cyrano, Hyperdocuments as Automata: Trace-Based 
Browsing Property Verification. In Proceedings of the 
ACM Conference on Hypertext, November 1992, pp. 
272- 281 

22. Tompa, Frank WM. A Data Mode for Flexible 
Hypertext Database Systems. In ACM Transaction on 
Information Systems, vol. 7, no. 1, January 1989, pp. 
85-100 

23. Wilson, Eve. Links and structures in hypertext 
databases for law. In Proceedings of the European 
Conference on Hypertext, Cambridge University Press, 
France, November 1990, pp. 194-21 1 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-32 



Appendix 

Semantics of UB 

The semantics of a UB formula are defined with respect to a tree: A formula is satisfied at a state s of a tree T. In our 
case, we want the specifications to be satisfied at the state So of the infinite tree represented by the hypertext 
reachability graph. 

The following excerpt from [3] formally defines the semantics of UB formula: 

"A model T for UB is a triple T = (S,P,R) where S is a set of states and P is an assignment of 
proposition letters to states. For a proposition a and a state s E S, a E P(s) iff a is true at the state s. R is a 
binary relation on states which defines the structure of T. When sRt holds, we say that t is an immediate 
successor (descendant) of s. To capture the concept of non-ending time, we require that R be total, i.e. forall s 
there-exists t s.t. (sRt) - every state has a successor1 . R* is the reflexive transitive closure of R. Thus sR*t 
iff there is an R-path leading from s to t. An s-branch b is an infinite path b = (s = %,sl,...) such that si E S 
and siRsi+1. We define the notion of a general formula p being satisfied at a node s in T - written as T,s tiL. p 
or s I-- p when T is implicitly understood. 

1. For a proposition a, s + a iff a E P(s). 
2. s I-- -piff s tf p 
3 .s  + p V q i f f s f = p o r s t = q  
4 . s ~  \dGpiff v b v t ( t ~ b + t + ~ )  
5. s I- v F p i f f  v b 3 t ( t ~  bandt I-. p) 
6. s I-- v x p i f f  v t  (sRt + t t=- p) 
7 . s b . 3 G ~ i f f 3 b v t ( t ~ b + t b . . p )  
8. s h.5 3 F p i f f  3 b 3 t ( t ~  band t b.. p) 

9. s !== 3Xp iff 3 t ( s ~ t  and t I=- p)" 

In this paper, our aim is to synthesize a structure H = <So, T, M > (this triple differs notationally from Ben-Mi's in 
our choice to include only So, not S) which satisfies the specifications "Spec". Utilizing Ben-Ari's precise 
semantics, H satisfies "Spec" iff 
H, So I-= "Spec". 

Ben-Ari's Tableau Method for UB 

The method constructs a tree T out of the initial specification. The root of T is created and labeled with the originial 
specifications. The tree T is then constructed by inductively applying these rules to its leaves: Formula in the leaf are 
matched against the a column of table 1.a and the P column of table 1.b. For every formula which matches an a 
pattern, a child node is created which is labeled by the corresponding a1 and a2. For every formula which matches a P 
pattern, two child nodes are created, one of which is labeled with the corresponding P1 , the other of which is labeled 
with P2. When no matches can be found for a leafs formula, that leaf is designated an X-node. If a node contains two 
contradictory formula, one of the form 'p' and one of the form '-p', the that node is not expanded any further. 

Although Ben-Ari defines the meaning of formula with respect to an infinite structure representing the non-ending nature 
of time, his algorithm for constructing a model from specifications allows construction of finite graphs with terminal states. 
In fact, our simple example with which we demonstrate our extension to his algorithm synthesizes a finite hypertext with 
terminal states. We can either loosen the definition of a model to allow finite time, or we can extend the algorithm to 
arbitrarily add a path from the terminal nodes to non-terminal nodes. 
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We will demonstrate this first part of the algorithm using our running example. As a shortcut, we simultaneously 
apply our rules to more than one subformula in each iteration. This shortcut does not affect the final result. Also, for 
brevity, we use 'headings' in place of 'data-model-headings' and 'substance' in place of 'data-model-substance': 

Specifications: 
headings A VG (-headings v VX substance) A VG (-query-language v examples) 

headings 
V n G  (-headings v VX substance) 

P - headings v VX substance 

P VZVG (- query -language v examples) - query ,language v examples 

4 

specs 1 headings A VG (-headings v VX substance) A VG(- query -language v examples) I 
1 

Appendix-:! 

a 
a 
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headings 
VG (- headings v VX substance) 
VG (- query -language v examples: 



At this point, we have only two X-nodes which contain no contradictions. X-nodes contain simple formula of the 
form 'p'or '-p', and nexttime formula of the form 
VXp and 3 ~ ~ . ~  The processing for X-nodes is most easily expressed using Ben-Ari's notation. Suppose the set of 

nexttime formula is this: {3Xp, ,... 3Xp,, \dXql,.. . VXqm}. Then, for each formula of the form 3Xpi, a child is 
created and labeled { pi, ql,..,qm} . For all the formula m q l , . . ,  VXqm, one child is created and labeled ql..qm. 

"The construction of T is kept finite by observing the following two termination rules: 
T1: If a created node n contains both p and -p then mark this node as closed and do not expand it any further. 
T2: If a state m is to be created as a son of n, and there is a state t (which has already been created) elsewhere 
in the tableau [with identical labels] ... then do not create m but connect n to t instead." 

Two more steps conclude the tableau method. We will only briefly describe these two steps, and refer the reader to [31. 
First, we delete a node if any of the following apply: 

its labels assert both p and -p 
it is an a node and one of its sons is deleted 
it is a p node and both its sons are deleted 
it is an X-node and one of its descendants has been deleted 
it is a node labeled 3 F p  and there exists no path from the node to a state labeled p 
it is a node labeled VFp and there exists a path along which p cannot be fulfilled 

This last rule is deceptively tricky. We do not delete the VFp node if there merely exists a path along which p is not 
fulfilled. The construction of T actually creates such cycles, since for each occurence of YFp, we provide a son 
labeled VX VFp as well as the son labeled p. By cycling in a path labeled YX VFp, we can forever avoid 
fulfilling p. Instead, this last rule only deletes a node labeled YFp  if there exists a path along which p cannot be 
fulfiiled. 

For all other VFp nodes, every path can eventually fulfill p. In a final step, we modify the tree to ensure that every 
such path does in fact fulfill p, by unraveling the tree to avoid the possibility of a cycle of 'J'X VFp. With this 
overview of this last step in mind, the reader is refered to [3]. 

We now return to our example and continue building the remainder of the tree: 

Formula of the form VTf (or 3Tf) are just a method to propagate the truth of VGf (3Gf ) to all states. Others ([8]) 
have taken a less formal approach to these formula, since they clutter-up the tableau method. Ben-Ari does not explain how 

he treats these VTf (3Tf ). To complete the formal approach to these formula, we add this to Ben-Ari's rules: 

If a node is an X-node node with a nexttime fomula, then treat YTf (3Tf ) as Y x  f ( 3x f )  Otherwise it does not call 
for any expansion. 
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substance 
a 

VWG (-headings v VX substance) I I VWG (-headings v VX substance) 
9 VXsubstance VXsubstance I 10 

p - 
7 P - 

VWG (-headings v VX substance) - headings v VXsubstance 
substance 
VWG (- query -language v examples) 
-query -language v examples 

The last node is identical to node five, so nodes nine and ten are connected to node five and processing is complete. 
This graph is not yet the final output CRG of stage one. The CRG must be extracted from this graph. 
Extracting the CRG from T 

Lnodc 

X-node 

Every X-node is defined as a. It is these 'states' in the structure T which represent fragments of the model for p 
which we seek. The other nodes of T are merely used to help compute the solution. We extract the model of p from 
the tree T by retaining only those nodes which are 'states' -- i.e. X-nodes. The transition relation is derived as 
follows: SIRS:! if s l  is encountered in T at depth i, s2 is a descendant of s l  and is encountered at depth j, and no 
descendant of s l  is encountered at depth k < j. 

In each retained state we retain only elementary labels of the form 'p' or '-p'. So of the CRG is the first state 

5 VG (-headings v VX substance) 
substance 
VG (- query -language v examples) 

substance 
VWG (- query -language v examples) - query -language 

encountered when traversing T breadth-first. If more than one state is encounteredit the same depth of T, one is 
chosen arbitrarily. We may construct a CRG for each possible choice, to offer the user alternative solutions from 
which to choose. From that point, we traverse T, retaining only the states. 

In our example, by retaining only the 'states' of T as described, we obtain these two simple CRG's, one for each 
possible choice of So. In general, a different selection of So can result in a very different graph. In this simple case, 

substance 
v WG (- query -language v examples) 
examples 

only SO differs. For readability, we replace our abbreviated 'headings' with 'data-model-headings' and 'substance' with 
'data-modellsubstance': 

X-node 
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data-model-headings 
uery-language 

,model-substanc 

( data-model-headings ) 
\ examples I 

Stage Two 
Populating the CRG with Actual LCN's 

In this second stage, we find an actual LCN to populate each state in the CRG. When we find an LCN for each CRG state, we 
have built one model of the original specifications. 

Ben-Ari et al. [3] show that the CRG satisfies the specifications. We now show that one instance of the CRG -- populated by 
LCN's in the manner described -- also satisfies the original specifications. 

The only differences between the labels of the CRG and the labels of the final Hypertext 
Reachability Graph (HRG) are: 
1. The CRG has negated labels of the form '-p'. But by the semantics of UB, a formula '-p' is 
satisfied iff the state is not labeled 'p'. And by construction, the HRG state is guaranted not to be labeled 'p' 

2. The HRG states may be labeled by extra propositions about which the CRG and the original formula asserted neither 'p' nor 
'-p' . The presence of these extra propositions is irrelevant to the semantics of UB. 
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