
SUPPORTING SEARCH FOR REUSABLE SOFTWARE OBJECTS

Tomas Isakowitz

Robert J. Kauffman

Information Systems Department
stern School of Business

New York University

Replaces IS-92-41

Workina Paper Series
STERN IS-93-47

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

SUPPORTING SEARCH FOR REUSABLE SOFTWARE OBJECTS

TOMAS ISAKOWITZ,
Assistant Professor of Information Systems

Stern School of Business

New York University

ROBERT J. KAUFFMAN
Associate Professor of Information Systems

Stern School of Business

New York University

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

SUPPORTING SEARCH FOR REUSABLE SOFTWARE OBJECTS

TOMRS ISAKO WIT2

ROBERT J. K;4 U F F W

ABSTRACT
Software reuse in the presence of a repository and object-based CASE tool is likely to be "biased" Prior

research has shown that a developer will be: (1) most likely to reuse her own objects; (2) somewhat less likely

to reuse objects developed by her project team members; and, (3) even less likely to reuse objects stored in the

repository, but developed elsewhere in the corporation. These biases can result in sub-optimal levels of

software reuse. In the presence of such biases it is appropriate to deploy tools that support the search for

software reuse, so that developers find it easier to reuse software objects authored by developers other than

themselves or project team members. However; the tools that are chosen or created for this purpose must

adequately treat the technical and cognitive fundamentals of the problem for individual developers, and

recognize the organizational and economic perspectives of a firm that wishes to maximize the business value

of its software development activities. In this paper we present a two-stage descriptive model that represents

the search process for reusable software objects. We evaluate appropriate technologies, propose a technical

soIution to the problem of searching for reusable objects, and demonstrate its feasibility via a prototype

implementation. The technical tool combines an automated classifier and a hypertext system. We describe an

architecture to automatically create hypertext networks based on the classification schema. We illustrate our

architecture using a classification of software objects obtained through structured interviews with software

developers.

-

ACKNOWLEDGMENTS

The authors wish to acknowledge Marc Baric, Gene Bedell, Tom Eichner, Gig Graham, Richard

Mosebach, Michael Oara, Tom Robben, Cecelia Poppieton, Vivek Wadwha and Charlie Wright for the access

they provided us to data on software development projects and manager's time throughout our field study of

software reuse in CASE development at Kidder Peabody and Seer Technologies. We also thank the software

developers and managers for participating in interviews that enabled the research results on which we report

here. We also thank Tony Phillips, Allan Rosenstein, Howard Sloan for developing the prototype system.

Thanks to Michael Bieber and Hank Lucas whose comments influenced this paper. AU errors are the

responsibility of the authors.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

1. INTRODUCTION

Soffware development methodologies that emphasize reuse are increasingly recognized

by senior management in terms of the value they deliver in helping their h s to achieve

higher levels of software development productivity and reduced software costs [I], [3], (231,

[25]. Although software reuse is unlikely, by itself, to forestall the software development

crisis, the attention that it has received is warranted. If firms are able to reduce the proportion

of new code that must be constructed fiom 70-100% of the total, as in traditionally developed

applications, to between just 30-40% - as we have recently observed with CASE [3], [4] --
the process of soffware development will be altered for the better. In order to accomplish

this, however, capital investment in tools that appropriately support and promote s o b a r e
reuse must occur. This paper provides a basis for specifying the requirements of a software
reuse support tool that can address the technical and cognitive concerns of the developer,

without losing sight of the organizational and economic concerns of the firm. A key

ingredient to promoting software reuse is reusable object search, i.e., the problem of locating

suitable software objects 1 to be reused. We propose a technical solution to this problem

founded on a hypertext architecture based on a classification of software objects .

For a tool to offer appropriate support it must match both the technical and cognitive
perspectives of the developer, as well as the organizational and economic perspectives of the

firm.

Developer Perspectives. The technicalperspective of the developer can be

characterized by questions such as: 'What existing software is available for reuse, and how can
it be incorporated into a new application? Does the existing software match the need for

specific hnctionality? If not, to what extent must the existing software be modified? The

cognitive perspective of the developer reveals another set of concerns. These include

questions such as: How can objects with potential for reuse be identified? How will this set

of targets be screened? How hard, costly or time-consuming will they be to locate? Will the

object selected really deliver the desired function? If the functionality match is not perfect,

when should a developer stop searching and start building a new object? For software reuse to

be successful, developers should perceive search to be less expensive than construction, i.e.,

the perceived cost of discovering an existing object to hlfill a given need should be less than
the perceived cost of developing it anew.

'The meaning of the word object in repository-based CASE environments differs from the meaning it takes in
Object-Oriented environments. In a repository-based CASE environment, the term software object serves to
denote repository components. In an Object-Oriented environment however, an object represents a domain
entity by encapsulating data and functionality.

Supporting Search for Reusable Soffware Objects - 1
Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

Firm Perspectives. The h ' s perspectives differ substantially. At the level of the

firm, tools that appropriately support software reuse must address basic organizational and

economic concerns. From an organizationalperspective a number of questions are raised:

Can software reuse tools be deployed that will create a common environment for development

to proceed? Can developers be trained to use the tools in a reasonable amount of time with
predictable results? What will it take to convince developers to utilize the reuse support tools

as they were intended to be used? Will they deliver the kinds of reuse that are most beneficial

to the firm? The economicperspective of the firm will require management to ask another set

of questions: How much will it cost to deploy reusable software support tools? How long will

it take to obtain the desired results? Can the new tools be merged onto existing capabilities to
minimize deployment costs? How large will the resulting impacts on development

performance be? Will the impacts be sustainable?

These questions set the broader context within which to address the appropriateness of a

tool set that supports and promotes software reuse. In this paper we present a technical

solution that addresses the cognitive and technical aspects of developers while addressing the

fum perspectives. Our solution promotes the development of a holistic development

environment that fosters reuse and fits in well within the current CASE environments.

The tool we propose is based on a combination of an automated classifier for reusable

objects and a hypertext system to support the identification of objects suitable for reuse.

Classification approaches to reuse have been proposed in earlier work (see for example [29]).
Hypertext technology applies well to domains where information is semi-structured and

relationships among domain elements are important [22]. Such is the case with software

engineering, especially in CASE environments, where software objects such as code,

documentation and designs, are semi-structured -- because they conform to the formal

guidelines of programming language syntax and documentation style-- and are tightly

interconnected (for example, programs call one another, programs use files, files and programs

have documentation, etc.). Reusable object search in a CASE environment is therefore

performed over a domain of semi-structured objects that are tightly interrelated according to

formal guidelines, and this makes a hypertext-based solution suitable.

Section 2 examines results in prior research involving organizations that have employed

reusable software development strategies and highlights that reuse fails to pay off as senior

management hoped. Section 3 offers a partial answer to this problem, by reviewing and

evaluating alternate reusable object search support mechanisms that will enable developers to

expand their awareness of the contents of a large repository of software objects. Section 4

develops a two-stage descriptive model of the search process for reusable objects. The

Supporting Search for Reusable Sofhvare Objects - 2

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

primary argument is that search involves separate activities: identification of potential targets

and fhctionality screening. A related argument is that each needs to be supported in a

diierent manner to maximize effectiveness. We show how a combination of search

mechanisms, including faceted classification and hypertext, can provide the necessary support

for reusable object search. We illustrate these concepts by drawing on an example that was
developed from structured interviews with software developers working in ICE, an Integrated

Case Environment deployed at a major investment bank in New York City, that supports

software reuse. In section 5 we provide a proof of concept of our approach via a prototype

implementation of the reuse search facility. Section 6 concludes the paper by reviewing the

main conceptual contributions of this research, presenting other aspects of related research in

progress and some caveats and implementation considerations.

2. WHY SUPPORT SEARCH FOR REUSABLE SOFTWARE?

The rationale for providing a tool to improve the effectiveness of a developer's search

for reusable software follows from a consideration of several key questions:

(1) How can reuse assist in the improvement of software development productivity, and

what factors affect software reuse?

(2) To what extent do search costs matter?

(3) How do familiarity biases influence a developer's search for reusable software?

(4) What factors affect software reuse that are addressable through a reuse support tool?

2.1. Development Productivity and the Factors Affecting Software Reuse

Although reuse is possible in all phases of the software development cycle,

construction usually consumes 40% or more of total life cycle costs, so it is natural that many

efforts to improve.software development performance through automation have focused there.
However, CASE increases the relative proportion of effort devoted to early life cycle
activities, such as planning, analysis and design, so software reusability in the form of reusable

requirements, designs and data definitions has become increasingly important.

Banker and Kaufian [3], [4] recently reported on reuse levels for an integrated
CASE development environment deployed at The First Boston Corporation and Carter

Supporting Search for Reusable Sofiare Objects - 3

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-93-47

Hawley Hale Information Services, that contributed to higher development productivity,

especially in construction. The authors measured the extent of software reuse along the lines

of the emerging standards that are espoused by the Technicd Committee on Software
Engineering of the II3.Z Computer Society [32]:

The s o h a r e reuse ratio is defined as (3)J [(1)+(3)] * 100% in terms of the elements shown in

Table 1.

TABLE 1: IEEE STANDARD SOURCE STATEMENT ORIGIN AND USAGE
MATRIX

ORIGIN

Developed

Non-

Developed

The IEEE standards, which deals with program code, do not apply well to CASE
environments because the latter contain software objects other than program code. However,

the standards can be specialized to deal with general software objects resulting in adequate

standards for CASE environments. Experimental development of a number of small, but

realistic repository object-based applications evidenced object reuse percent on the order of

67% [3], [4]. In large-scale development, this level of object reuse was often exceeded, rising
as high as 76%. An object reuse percent of 76% is consistent with an application where an
object is reused an average of 4.11 times. It is interesting to note that the firms at which these

observations were made did not have explicit incentives in place to promote reuse, other than

the motivation that a developer would have to improve her own performance. Nor were there

Supporting Search for Reusab Ie Sofhvare Objects - 4

USAGE

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

Delivered

New Source
Statements (1 I

Reused Source
Statements 131

Deleted Source
Statements (51

Non-delivered

New Source
Statements (21

Reused Source
Statements (41

Deleted Source
Statements (6)

especially powerfUl tools in place to encourage reuse. As a result, Banker, Kauflinan and

Zweig [5] characterized the observed reuse levels as being a conservative estimate of what

could actually be achieved if additional technical support features and new developer

incentives were implemented. However, reuse levels did not exhibit significant increases as

new applications were developed and developers became better at using the CASE tool. In
part this can be adjudicated to difficulties in locating objects for reuse [5].

When business analysts and software designers have laid out plans for software that

offers the potential for reusability, the burden of reusing existing software objects will rest

with developers who perform activities associated with the technical design and software

construction phases of the life cycle. In the technical design phase, a developer must actually

determine whether reuse is feasible; in the construction phase, the existing software must be

plugged into the newly constructed application.

The technical aspects of reuse will pose major concerns to developers involved in

technical design. In order to reuse a software object, for example, it must be available within

.he repository. F i s that are actively pursuing software development in repository-based
CASE normally have multiple repositories, including the development repository for software

that is under development, the tesfing/migration repository for software that is being checked

and tested for migration from one location to another, and theproducfion reposifory for

implemented software. The development repository typically offers the most complete set of

potentially reusable objects, but this may contain so many objects that even experienced
developers will not be aware of the breadth of the functionality available for reuse.

2.2. Search Costs and Familiarity Biases

Conventional search tools are likely to be too costly, in terms of the time it takes

locate an object for reuse, to be effective in repository-based CASE environments. Search

costs are undoubtedly a major factor influencing the observed reuse percent in a project. When

search costs are unacceptably high - for example, in the absence of a repository or a well-
organized code library -- it is likely that developers will search no more than the contents of

their own memories. Although such search still may yield considerable reuse, it is likely that a

significant number of opportunities to reuse software objects will be missed.

Banker, KaufFinan and Zweig [S] reported empirical results pertaining to software
reuse that bear out this observation. They showed that reuse levels at two firms whose

software development operations they investigated seem to have remained constant over time,

Supporting Search for Reusable Sofhvare Objects - 5

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

despite substantial growth in the number of repository objects and increasing programmer

experience with the tool. The following facts describe why this may have been obsewed:

(1) 60% of software reuse involved objects written and reused by the same developer;

(2) 85-90% of software reuse involved objects constructed by members of a project team

within the same application;

(3) 5% of the developers accounted for about 20% of the software objects and over 50%

of the reuse; and,

(4) the top reusers were also experienced programmers, and they were able to achieve

average reuse leverage levels of about 4 times, indicating that 75% of the objects that

they produced resulted from reuse.

These observations suggest that current reuse practices are affected by three kinds of

familiarity biases:

(1) Apersonal bias results in the developer limiting search to just her own objects.

(2) Aproject bias results in the developer limiting search to the objects in the current

project.

(3) A time bias results in the developer focusing the search on objects which have been
created or reused recently, and thus are fresh in the developer's memory.

The existence of personal biases in search is supported by two observations. First, over

half of all reuse results from a developer reusing her own objects; and second, programmers
who are the largest producers of software also exhibit the highest reuse levels. When 85-90%

of soffware reuse involves objects within the same application, it is reasonable to consider the

project and time biases as the factors that drive this result.

Similar results were obtained by Woodfield, Embley and Scott [35], who examined the

performance of programmers relatively untrained in reuse. Although they limited their

examination of reuse to abstract data types stored in a software component library, the results

suggested that:

Supporting Search for Reusable Sojiware Objects - 6

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

(1) individual biases can influence what elements are thought to be important in identifying

targets for reuse; and,

(2) if the effort to reuse is perceived to be less than 70% of the effort to build similar

fbnctionality, then the reuse candidate was chosen.

(3) otherwise, software developers found it hard to gauge the worth of reuse, and thus the

worth of their efforts to locate appropriately reusable code;

The reuse effort threshold of less than 100% (or thereabouts) of development effort

suggests that the available mechanism to support the search for reusable software was not

efficient. (Fischer [16] provides additional evidence for this assertion.)

When a software developer is predisposed to reuse either her own software objects or

those of people with whom she works closely, there is a good chance that she will not take the

time to conduct a carefbl search of the repository to identi@ for objects offering the best

functionality match. When those objects exist in the repository, and the developer builds them

from scratch, the reuse power of the CASE tool and the supporting repository are lost. Reuse

is a skill that can be learned, but when there are no specific incentives to reuse software or

when tools providing appropriate support for reusable object search are not available to a
developer, a lower level of reuse is likely to result. Thus, a cost-effective search mechanism is

needed to support the search for reuse.

3. TOOLS TO SUPPORT SEARCH FOR REUSABLE OBJECTS

There are managerial and technical approaches to support developers' search for

reusable software objects. A managerial support approach can take the form of a group of

reusability experts who advise developers on the contents of the repository so that they can

find and retrieve objects of interest. Alternatively, a reuse committee can be put in charge of

managing the repository. This entails the screening of objects to be included into the
repository to enforce quality and boost reuse, for example, by requiring that objects be

specially crafted to be reused. They can also act to reduce or eliminate redundancy by

impeding the addition of objects with overlapping functionality- These managerial approaches

to search have been adopted by various firms with varying degrees of success. However, in

the absence of a powefil technical tool to support reuse search, managers are unable to set

realistically attainable reuse level goals. A technical support approach, consists of

computerized tools that can assist developers in identifying and retrieving objects for reuse. In

Supporting Search for Reusable Sojhvare Objects - 7

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

this section we describe four techniques: keyword search, full text retrieval, structured

classification schemes and hypertext.

3.1. Keyword Search

Keyword search requires assigning to each object a number of relevant keywords or

indices. As an example, consider an investment bank that has developed a number of in-

house applications using a centralized repository. Within the general ledger application there is

module entitled EDIT-ENTRY that enables users to edit entries stored in a file. The EDIT-
ENTRY software object uses a buffer implemented as a string of characters; and it accesses a

file. The following keywords can be associated with this object: EDITING, BUFFER,
STRING INSERnON, STRING DELE;lirON, STRING CHANGE, GENERAL LEDGER
DIARY, ENTRY, ACCOUNZ'NG, FILEI/O. Search for this object within the object
repository involves the specification of a number of keywords, and the subsequent retrieval of
matching objects. For example, a developer looking to implement a module to edit entries in
an account receivables record could issue a search on the keywords EDITING and

ACCOUNTING. The EDIT-ENTRY object would be retrieved because it has been indexed

with those keywords.

A common objection to the keyword method is the high cost associated with manual

indexing, which requires skilled personnel. Another objection is related to the ambiguous

nature of keywords that can lead to substantial disagreement over the choice of keywords 161,
[15], [17], [31], [37]. Therefore, keyword search has been found to offer limited power, and
to be impractical in many kinds of applications. In our setting, keyword-based object search

would require developers to provide appropriate keywords for every object in the repository.

Interviews we held with developers in various firms showed that developers did not willingly

assign keywords to the software objects they create -- there is no perceived direct benefit for

the extra level of effort involved.

3.2. Full-text Retrieval

The high cost of manual indexing has made it attractive to automate the indexing

process. The simplest kind of automatic indexing is illustrated byfill-text retrieval systems.

Such systems work on the basis of a simple mechanism:

"Store the fill text of all documents in the collection in a computer so that

every character of every word in every sentence of every object can be located

by the machine. Then, when aperson wants information from that stored

Supporting Search for Reusable Sofhvare Objects - 8

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

collection, the computer is instructed to search for all documents containing

certain specified wordr and word combinations, which the user has specified "

(I?Ol, 289)

Full text search works best for software objects that have embedded or attached

comments. Full-text retrieval systems can be made quite efficient by pre-processing the
repository and constructing index tables ahead of time. Search in this case involves a table

lookup, which can be done very efficiently. Speed, however, is not the only relevant criterion.

Blair and Maron [lo] showed that for large textual bases, fiill-text retrieval misses many

objects -- as many as 80% of them -- relevant to the search. Therefore, this search method

cannot ensure better performance than the current practice, even in the presence of familiarity

biases. Hence, full-text retrieval is inadequate to support search for reusable objects.

3.3. Structured Classification Schemata

Structured class~fzcation schemata use a fixed number of predetermined perspectives, or

facets, for classification. Table 2 contains sample entries Erom a library of software

components using a six facet classification scheme due to Prieto-Diaz [29]. To search for a

software component, a developer issues a query consisting of a sextuple of values that is

compared to the components in the library.

A common problem with this approach lies in the handling of synonyms and of ambiguous

words. An inadequate treatment of synonyms can result in the retrieval of objects irrelevant to

the search. Word ambiguity can cause low retrieval rates when only few of all possible

meanings of a word are considered; it can also lead to the retrieval of irrelevant objects when

unintended word meanings are considered. One way of addressing these issues is to Iimit the

vocabulary for classifying software components, and to only allow queries drawn from this

controlled vocabulary. Another problem is the implementation of near matches, i.e., retrieving

components that do not exactly match the query, but closely resemble it. To solve this

problem, Prieto-Diaz proposes the use of a conceptualgraph that determines a numeric

distance between words; this system produces a metric to rank the relevance of objects to a

particular query.

Supporting Search for Reusable Sofhvare Objects - 9

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

TABLE 2: FACETS IN THE CLASSIFICATION SCHEMA OF
PRIETO-DMZ [29]

The faceted classification of Prieto Diaz does exploit the characteristics of CASE

environments, where the repository contains a wider variety of software objects as well as

more detailed information about relationships among these objects, than those considered in

non-CASE software libraries. For example, Prieto-Diaz' classification does not contemplate

repository information: some objects are drivers -- they call other objects -- and some are

leaves. The repository records whether an object uses, or is used by, other objects; whether an

object usesJiles or whether it calls a window to converse with the user. These distinctions are

finer that those contemplated in the classification schema shown below. Moreover, some of
the distinctions shown in Table 2, e.g., objects and medium do not apply in the CASE
domain because in CASE environments objects are represented at a level that is

implementation-independent. Moreover, some of the distinctions made in Prieto Diaz' schema

do not apply to CASE environments because CASE objects exhibit higher levels of abstraction

than those present in the source code of third generation language libraries. For example, the

facets objects, medium and system type are unlikely to be relevant in CASE environments.

As we show in section 4, it is possible to adapt faceted classification to integrated CASE
environments.

Setting

advertising

banking
car dealer

Faceted classification is somewhat inflexible in that it requires all objects to be classified

in terms of the same facets. Synder [34] proposes a classification mechanism that allows for

software objects to be classified along specialized facets without imposing these special facets

on all software objects. This approach, based on semantic networks [36] promotes flexibility,

can also be adapted to CASE environments.

Functional
Area
accounts
payable
accounting
budgeting

A disadvantage of these classification approaches vis-a-vis fill-text retrieval is that they

require manual classification, as automatically deducing software finctionality is quite

complex. In integrated CASE environments however, the information available in the

repository can be used to automatically classifjl software objects. Furthermore, the existence

of a centralized software repository in integrated CASE environments supports access to

software objects for inspection purposes. Hence these environments provide the opportunity

Function

add

edit-entry
measure

Supporting Search for Reusable Sofiare Objects - 10

Medium

disk

keyboard
keyboard

Objects

-Y

buffer
buffer

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

System Type

compiler

editor
code optimizer

to auto.matically classifjl software objects and to support exploratory activities for s o b a r e

reuse. Since the classification approaches discussed here fail to exploit these potentials, an

alternative -- or complementary - approach is called for.

3.4. Hypertext Search

Hypertext represents one of the newest forms of computer-based support for reading

documents. Rather than being constrained to the linear order of conventional documents,

users are able to move through a hypertext document by following links represented on the
screen by buttons. (We refer the reader to Conklin [12] and Meken [27] for introductions to

hypertext.) The basic building blocks in hypertext are nodes and links [21]. Each node is

associated with a unit of information, and nodes can be of different types. The node type

depends on various criteria, for example, the class of data stored (plain text, graphics, audio or

an executable program), or the domain object it represents (diary entry, account, financial

statement). Link define relationships between source and destination nodes, for example, a

link can connect the name of a customer in an invoice to a detailed customer profile screen.

Links are accessed from the source node and can be traversed to access the destination node.

Current hypertext systems provide users with sophisticated user interface tools that
enable them to inspect node contents, and to navigate through the network by selecting a path

to follow. For example, clicking on the name of a customer will result in a display of his

detailed profile. Besides allowing users to traverse links at their own discretion, hypertext

systems provide users with pre-defined paths through the network, and with the ability to

spec@ search conditions for the selection of nodes. Their queries may be content-based
(searching the content of nodes, e.g., "all occurrences of the word print") or sfructural
(depending on the topography of the hypertext network, e.g., "all software objects that have a

link labeled uses to the main program"). Because a major problem with hypertext is the

potential for users to get lost in the details of the information that can be accessed [28],

hypertext systems usually provide backtracking and other navigation aids such as maps, to
help orient the user.

Hypertext has been used previously to organize software repositories. DIF, Document

Integration Facility 1191, is a hypertext system to support the development, use and

maintenance of large-scale systems and their life-cycle documents. Dynamic Design [8],[9] is a

hypertext-based repository that organizes relationships between various software components

such as specifications, design documentation, program documentation, user documentation,

source code, object code and symbol tables. It enables easy access to components that are

related to each other and it helps during validation by linking source code to requirements.

Supporting Search for Reusable Sojhvare Objects - 11

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

Robson 1301 presents DYHARD, a language that specifies how hypertext links are to be

created. DYHARD can be used to develop a software tools that support hypertext-based

repositories. Creech, Freeze and Griss describe KZOSK [I 11, a hypertext system to access a

structured library of software components. Repository objects are represented as nodes, and

relationships among the objects as links. The links record code dependencies between

modules, inheritance among classes and between software objects and their documentation. In
addition, KIOSK supports multiple views of the library that correspond to the various roles of

those involved in software development (e.g., developers, designers, users). Each such view

has its own set of links and nodes. A software developer can specify her focus with filters that
restrict access to links. The ESC project [7] is an attempt at organizing software sources and

documentation as a hypermedia encyclopedia to foster reuse. ESC can integrate disperse
repositories by communicating with servers across a telecommunication's network.

The capability of hypertext to represent semi-structured information has been exploited to

support specification and design activities; and more generally, cooperative CASE

environments. For example, HyperCASE [14] and Dynamic Design [9],[8] are hypertext-

based CASE environments. Conklin and Begeman's gIBIS [13] enables systems designers to

collaborate by organizing discussions on system design and by capturing reasoning behind
design decisions. Another example is Garg and Scacchi's ISIIYS (Intelligent Software
Hypertext System) [18], that supports the specification phase of software development and

actively checks for consistency and completeness of software specifications. Intermediary

agents are proposed by Kerola and Oinas-Kukkonen 2241 to facilitate interaction within a

CASE environment through hypertext.

Except for ESC [7] and KIOSK [I 11 little research has been performed on the potential

of hypertext to directly support search for reusable software objects. As Creech, Freeze and

Griss report [Il l , KIOSK'S success was limited because developers were not willing to spend

the extra time required to learn to use the new facility. Similar difficulties arose within the

scope of the ESC project. Our approach differs from KIOSK in two significant ways. First,

the hypertext system is structured using a classification that matches the software developer's

mental model of ICE. Second, the tool is to be searnlessly integrated within the ICE

environment to minimize leaning costs by developers. Hence the system is likely to be natural
and easy to use for ICE developers.

A helpfkl hypertext concept is that of a guided tour [33]. In a guided tour, navigation is

usually constrained to a few choices. Although they seem to limit the power of hypertext,

guided tours help users focus on a specific path and reduce the disorientation than can occur

because of a large number of navigational possibilities. For example, the collection of all

Supporting Search for Reusable Scjhvare Objects - I2

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

software objects in a repository that implement a "customer SQL-update" can be organized

into a guided tour. System developers then navigate among the various elements of the guided

tour to locate the ones that more closely match their needs. Ganotto, Paolini and Mainetti

1201 implement guided tours as linear paths that enable users to navigate only backwards and

forwards through an ordered list of nodes. All other links are disabled when traversing a

guided tour. As soon as the user exits a guided tour, the other links are re-enabled to allow for

gee exploration.

Hypertext technology applies well to CASE environments because the information units

(e.g., software components, documentation) are quite structured and the relationships among
domain elements are clearly defined, and hence lend themselves to representation as links. can

be represented in a clear way. As we show in Section 4, there is potential for wider use ofthis
technology to support search for reusable software objects.

We have reviewed four methods used to support search reuse. The first three, keyword

search, fill-text retrieval and structured classification schemata, represent approaches that are

based on a classification of repository objects. In these approaches, search for reusable

objects is implemented as a query process that employs the relevant classification. Hypertext

represents a fourth approach based on a navigational metaphor. It gives users the ability to

navigate the space of repository software objects at their own will. We propose combing

automated classification and hypertext in a tool that provides navigational capabilities based

on a classification of repository objects.

4. AN ARCHITECTURE TO SUPPORT REUSABLE OBJECT SEARCH

A key aspect of our design is the use of a robust classification schema. We developed

such a classification for ICE based on field interviews with software developers. The

classification is used to structure the repository, to assist developers in formulating queries for

objects to be reused, and to process these queries. The hypertext system facilitates the detailed

inspection of the set of objects that the query processor retrieved from the repository. As our

prototype will demonstrate, such classification can be automated.

In order to make the search process more effective, we use a two-stage approach as
shown in Figure 1. Stage 1 is screening, it involves the purposeful evaluation of a large set of

object reuse candidates from the entire repository of software objects to determine a subset of

near matches for fkrther investigation. During Stage 2, identification, developers closely

examine this subset to determine if any of its objects provides the desired functionality.

Supporting Search for Reusable S o m r e Objects - 13

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

FIGURE 1. A TWO-STAGE DESCRIPTM MODEL OF SEARCH FOR
REUSABLE OBJECTS

The underlying idea is that a developer's involvement in the screening process should

purposely be kept to a minimum. With a large number of objects to screen -- almost like a

needle in a haystack -- it is unlikely that the requisite functionality could be identified in Stage

1. On the other hand, we would expect the developer to be more proactive in Stage 2, where

identification would occur from among a smaller number of relevant objects.

4.1. Stage 1 - The Screening Process

Using the classification schema, the user specifies the requisite functionality that needs to

be implemented. We use an interactive screen in which descriptors, belonging to various

facets, are elicited from the developer. Screening consists of retrieving from the repository a

set of objects that belong to the class specified by the developer. The objective during this

stage is the retrieval of a sizable yet manageable set of candidates for reuse. There are two

steps in this stage:

Step 1: The developer enters a description of the requisite functionality by providing

values for the classification facets.

Supporting Search for Reusable Sofiare Objects - 14

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

Step 2: The repository is scanned using the classification schema producing a set of

objects, which provide a reasonable or approximate "first-passn match for the desired

knctionality.

By the end of screening, a sizable set of relevant objects -- the set of candidate objects for

reuse - has been extracted from the repository. Some of the retrieved objects may not be

completely relevant to the task to be implemented. However, most of the relevant ones will be

included. However, it would be too labor-intensive to examine each of them at this point:

there will still be too many. Instead, the number of candidates needs to be organized to make
it feasible for a developer to inspect them individually during the identification stage.

4.2. Stage 2 - The Identification Process

To facilitate inspection for reuse, the set of candidate objects obtained from the screening

phase is structured as a network of hypertext guided tours according to the classification

schema. This will aid developers to inspect objects that exhibit similar fbnctionalities. in Figure

2 illustrates the use of guided tours to interweave related software objects. The objects shown

in the figure all agree on the value for facet$ Construction of the guided tours is based upon

the following mechanism:

If al , a2, ..., an are all the objects obtainedfiom screening phase with a value o f f
for facet F, they are collected into a guided tour GT= Jal , at, ..., a d . First the
objects are ordered2, then links labeled f are created to connect a special start node

labeled Guided Tour f (GTf;) to node al , node a1 to node a2, node a2 to no& a3,

and so on, clositrg the list by linking node an back to the start node GTf:

FIGURE 2. A GUIDED TOUR (GZJ CONNECTING THE OBJECTS WITEI
THE SAME VALUE (VAL) FOR A FACET (lj3

2 ~ h e ordering criteria can be arbitrary, e.g., lexicographic by rule name, or it can reflect a more developed
metric if available.

Supporting Search for Reusable Sofhvare Objects - 15

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

Software objects may well be shared by various guided tours, resulting in a network of

interconnected links. Figure 3 shows a portion of two intersecting guided tours, one linking

objects classified under value INTERACTION (rule 7, rule 8, rule 10, rule 11 and rule 12),

the other linking objects classified as SQL (rule 7, rule 12 and rule 15).

FIGURE 3: INTERSECTING GUIDED TOURS

Once the network has been created in this manner, the developer can proceed to explore

the set of candidates in a structured manner using a hypertext-based tool that enables her to

inspect various objects by navigating from object node to object node, within the set of

candidates for reuse. The navigational capabilities of hypertext facilitate a rapid traversal of

the network to locate target objects for reuse. The navigation is helpfkl in zeroing in on the

requisite hnctionality because the links are set up according to a classification schema which

reflects the mental model that software developers have of the repository.

User-driven navigation achieves multiple purposes. It enables the exploration of a

relatively large set of objects, and hence, the initial screening does not need to be very precise.

It also allows developers to make their own decisions. The benefits of the navigational aids

provided by this hypertext-based tool are likely to have a favorable impact, reducing search

time and, thus, overall search costs.

To summarize, identification consists of the following two steps:

Step 1: The objects retrieved are automatically structured into guided

tours, in accordance with the classification schema.

Step 2: The developer proceeds to explore the candidates for reuse

using the hypertext tool to inspect individual objects and to navigate

among them in search of relevant objects to be reused.

Supporting Search for Reusable Sofiare Objects - 16

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

When identification concludes, the developer will have located and retrieved a small set of

applicable objects that can be reused, or she will be almost certain that no applicable objects

are readily available in the repository.

The ambiguity problems we referred to in section 3.3 are addressed as follows. Lexical

ambiguity is reduced by using a controlled vocabulary. When developers select search criteria

they do so by picking from a set of given classifiers - a pull-down menu is used in the

prototype. The hypertext subsystem is geared to enable developers to explore "near matches",

the second problem mentioned in section 3.3. The guided tours group together objects with

similar fbnctionalities. Developers can easily inspect similar objects by following these guided

tours.

4.3. Illustration
The following example, based on our experience with the ICE toolset, illustrates our

approach. The software repository under consideration contains various kinds of objects, as

shown in Table 3.

TABLE 3: ICE OBJECTS

Object Type Description

Based on structured interviews with seven software developers conducted over a period of

three months at three research sites, we were able to determine that reuse can be promoted by

encouraging the reuse of rule objects, over other objects. Rules are written in a fourth

generation programming language, which is high level. Figure 4 shows part of the code of a

rule that performs an SQL operation. We discovered that developers' reuse of rules was less
than one may have expected in view of the emphasis on reuse in the software development

methods used. Although developers were apparently interested in reusing rules, they had

Components

Business Processes

Rules

Views

Windows

Fields

Tables

Supporting Search for Reusable Sojhvare Objects - 17

Code in a third generation language, that is usually
reused from other, non CASE based applications.
High level object that encompasses all other objects of
an application. Supports a specific business activity.
Programs written in a fourth-generation programming
language from which code is generated automatically
and later compiled for the target platform.
~ rescn~ t ion of interactions between the information
stored in tables and the users as well as the interaction
between various rules.
Descriptions - in the form of templates - of screens to
be used as part of views.
The smallest unit of information, used to describe
atomic information,such as customer name, product
price, etc.
Relations that are to be accessed using SQL.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

difficulties in locating those exhibiting appropriate fbnctionally matches. Thus, we concluded

that a tool to support reuse search for rules should result in significant benefits in reuse levels.

FIGURE 4: SAMPLE CODE OF AN ICE RULE

We also discovered that software developers classify rule objects in terms of three major

facets. The repository structure facet describes how a rule relates to other objects in the ICE

repository. Thefirnctionality facet describes the kind of processing that the rule implements,

e.g., calculations, database access. The third facet, (3) business domain, provides

information about the application domain the rule deals with. This third facet normally

describes a business entity such as customers, financial instruments, etc. Table 4 summarizes

this classification schema3 . A partial enumeration of several rules fiom ICE repositories is

depicted in Table 5.

The reader shouid recognize that this categorization is not exhaustive; it is merely illustrative. We currently
have research underway that aims to elicit a more complete characterization of the classification schema that
sohare developers use in this context.

Supporting Search for Reusable Sofhvare Objects - 18

Center for Digital Economy Research
Stern School o f Business
Worhng Paper IS-93-47

TABLE 4: CLASSIFICATION SCHEMA FOR ICE RULES

Repository
Classifier Description

Supporting Search for Reusable Sofhvure Objects - 19

DRIVER

INTERACTION

LC9F

ROOT

SUB-RULE

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-93-47

calls other rujBS

uses other
objects such as
views, windows
and other rules
is not called by
any rule

is at the top of
the calling
hierarchy
is called by
another ruls

TABLE 5: SAMPLE CLASSIFICATION OF RULES IN A REPOSrrORY

Supporting Search for Reusable Sojhvare Objects - 20

Domain
CUSTOMER

FlNclNCLQ L

CUSTOMER

F l u NCIA L

CUSTOMER

CUSTOMER

CUSTOMER

CUSTOMER

CUSTOMER
RNA NCL4 L

CUSTOMER

CUSTOMER

FINA NCL4 L
CUSTOMER

FINA NCLQ L

CUSTOMER

FINANCL4 L

CUSTOMER

CUSTOMER

FNVANClA L

FINA NCIAL

PROD.
MASTER

PROD.
MASTER

PROD.
MASTER

FINANClAL

CUSTOMER

FlNA NCL4 L

CUSTOMER

FlNANClA L

CUSTOMER

CONTACT

PARTNER

PARTNER

PARTNER

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

Functionality
DISPLAY,

SEARCH,

THREAD

DISPLAY,

SEARCH.
THREA D

SECURITY

DISPLA Y,

THREA 0,
UTILITY

DISPLA Y,
RETRIEVE

DISPLA Y,

THREAD, SOL

DISPU Y

DlSPLA Y, SOL,

DISPLAY,
EXCEPTION

DISPLA Y,

EXCEPTION

SOL

DISPLAY, SOL

DISPLA Y, SOL

DISPU Y

ERROR

SOL

SOL

DISPLA Y, SOL

DISPU Y, SOL,

UTILITY

ERROR, SOL

DISPLA Y,

THREAD

DISPLAY

SOL

SOL

SOL

Rule Name
ACCOUNT-UNKI#l I

ACCOUNTUNKl#2)

APPROV-FRONT-CHK

COMMENT-DETAIL

CUSTANFO-UPDATE

CUST-PROD-1

CUST-ACCOUNTS

CUST-DELETE

CUST-NAME-ADDR

CUST-EXCPTNDETL

CUST-EXCPTNSUMRY

DOC-TRACK-RETRIEVE

FIN 1 -INFO

FINUl-RETRIEVE

PRODUCT-DETAIL

PMU909

PMUCCC

PMUXXX

SALESMAN-NAME

SAVE-DATA

STORESQL-ERRORS

SUBORDI-CUST-LINK

WP-CONTACT

WP PARTNER DYN SQL FET

WP PARTNER FIRM SQL FET

WP PARTNER SQL SEL

Repository

INTUZACTION

INTER4 CTION

DRIVER

DRIVER

INTER4 CTION

INTERACTION

LEAF

SUB-RULE

LEAF

SUSRULE

INTERACTION

LEAF

LEAF

LEAF

SUB-RULE

LEAF

DRIVER

DRIVER, SUB-RULE

INTERACTION

INTERACTION

INTERACTION

INTERACTION

DRIVER,
INTERACTION

SUB-RULE

SUB-RULE

SUB-RULE

The applications involved deal with investment accounts and with sales support

systems. To illustrate the search process, let us suppose that the developer needs a high level

rule to produce a report that provides information on the current status of all accounts for a
given customer. To start the process of building the rule, the developer engages in the

screening phase by issuing a request to retrieve all rules belonging to the CUSTOMER
domain. The resulting sixteen rules are shown in Table 6.

TABLE 6: RESULTS FROM TEE SCREENING PHASE

9
10
11
12
13
14
15
16

The next step is identification. It involves the creation of hypertext guided tours linking

the various rules. For each facet value that is shared by more than one rule, such a guided tour

is created. The resulting eleven guided tours are shown in Table 7, where numbers refer to the

rule numbers as they appear in Table 6.

CUST-NAME-ADDR
CUST EXCPTN-DETL
CUST EXCPTN-SUMRY
DOC-TRACK-RETRJXVE
FINl-INFO
SAVE-DATA
STORE-SQL-ERRORS
SUBORDI CUST LINK

Supporting Search for Reusable Sojhvare Objects - 2 1

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

TABLE 7: THE HYPERTEXT GUIDED TOURS GENERATED BY USING

THE FACETED CLASSll?ICATION.

Each of the guided tours enables a developer to explore similar rules, i.e., those that share

the same classifier in a given facet. Figure 5 shows portions of guided tours GT-1, GT-3, GT-
6 and GT-10. Since some of the guided tours intersect with each other, there are opportunities

for a developer to move among exploration paths at intersection points. Figure 6 depicts a

portion of the derived hypertext network that shows the intersection of guided tours at rule

CUST-ACCOUNTS (rule 7). When a developer reaches that rule, she has the ability to

continue exploring along any of the three guided tours, i.e. move directly to rule 8 (via GT-1

or GT-lo), to rule 12 (via GT-3) or to rule 16 (via GT-6.)

As we see in Figure 6, rule 7 -- CUST-ACCOUNTS -- is related to rule 16 --
SUBORDI-CUST-LINK -- via GT-4, which groups THREADING rules. Rule 7 is

connected to rule 8 via two links, representing the INTERACTION (GT-1) and CUSTOMER

(GT-10) guided tours. Rule 7 is also connected to both rule 12 via the SQL rules guided tour

and to rule 16 via the THREADING rules guided tour.

Supporting Search for Reusable Sofhuare Objects - 22

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

FIGURE 5: TFW FOUR GUIDED TOURS CONTALNLNG RULE 7

FIGURE 6: A PORTION OF THE DERIVED HYPERTEXT

NE?7VORK

Supporting Search for Reusable Soffware Objecfs - 23

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

FIGURE 7: A SAMPLE S m E N SHOWING A RULE AND THE
NAVIGATIONAL LINKS EMANATING FROM IT

Figure 7 illustrates a screen design for rule nodes. By clicking on the buttons, a developer

can easily inspect various rules in searching for an object to reuse. By clicking on the left

(right) arrow of any one of the highlighted criteria, the developer navigates to the previous
(next) rule that guided tour. It is via these buttons that the hypertext system enables

developers to navigate among software objects in a way that supports the search for reusable

objects.

Our illustration demonstrates how to construct a hypertext network to support reuse from

a classification of software objects. Moreover, it is clear that such construction can be

automated. Since most of the information needed to classi& ICE rules is present in the

repository, the classification process may also be automated. Thus, we have shown how the
principles of faceted classification and hypertext can be merged into an automated software

tool to better support reusable object search. In section 5 we demonstrate the feasibility of our
approach by presenting a prototype implementation of the tool to support search for reuse.

To address organizational aspects of software reuse, we point out that the tool for

reusable object search is designed to be part of a larger set of reuse evaluation and support

tools that represent the facilities of a commercial integrated CASE tool [2]. The other tools

include a hnction point analyzer and an object reuse analyzer. The latter provides

management with objective, inexpensively captured metrics that gauge the proportion of

reused objects exhibited within and across repository applications. Once tools have been built

Supporting Search for Reusable Sofhvare Objects - 24

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-93-47

to support search for reusable objects, it will be possible to conduct experiments to determine

their effectiveness and their impact on reuse levels.

5. IMPLEMENTATION: OBJECT REUSE CLASSIFICATION ANALYZER (ORCA)

We report on a prototype system for reuse search of repository rules that has been built

within the ICE environment. The system is called ORCA, Qbject Reuse Classification

Analyzer. In conformance with the search model presented in Section 4, the system consists of -
two components. The first component implements screening by combining an automated

repository classifier and a query processor. This component enables system developers to

spec* repository queries based on the classification criteria. The classification is performed

automatically by using information present within the ICE repository. Thus, developers do not

have to manually classlfjr the rules. The second component organizes the objects produced by
the first component into a hypertext network and provides software developers with the
hnctionality required to navigate among these objects.

HGURE 8: TIBE SCREEN USED TO ENTER CRITERIA FOR SEARCH

A sample session is depicted in Figures 8, 9 and 10. The system developer starts by

selecting facet values from the three list-boxes4 shown in Figure 8. Each list-box corresponds

to one of the three classification criteria described in Section 4.5. In the figure, the user has

specified a search for rules classified as W F and SQL in any business domain. The names of

all the rules satisfying the criteria are retrieved into the screen shown in Figure 9. Developers

select a rule by double clicking on its name. This brings up the detailed screen as shown in

Figure 10. The classification boxes shown in the figure enable the user to focus on a more

definite exploration. For example, by selecting FIRM, and clicking on the right (left) arrow,

the developer is presented with the next (previous) FIRMrule from the list of Figure 9.

The use of list-boxes ensures that developers choose valid classifiers, thereby eliminating wordchoice
problems.

Supporting Search for Reusable Sojhvare Objects - 25

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

- -

FIGURE 9: THE RULES SATISJ?171NG THZ SEARCH CRITERIA

Rule Detail and Novigatlon U n b
I

SQL ASS
DELETE FROM WP-PARTNER
WHERE WP-PARTNEFLID =

WF-PARnrERSQLJ3E~.WPWPPARTNER-l - - - -
D
ENDSQL

*> ll a contad is deleted. then you must also
<*
*> delete all Information ownedlrelatcd to hlm

> -language profiles <
> issues associated 4 t h this: <
* > d o we delete the contact's finn [probably
no] <t
w> d i t to for communication records <*
r> not sure how to delete all records 4 I h a
condition <*

FIGURE 10: INSPECTING THE CONTENTS OF A RULE
The left and right arrows enable hypertext navigation among rules satisfying the
search criteria

Supporting Search for Reusable Sofhvare Objects - 26

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

At the core of the prototype system lies an algorithm that classifies objects based on

information available in the repository. It does so in real-time. Each classifier is associated

with a logic that prescribes when a rule falls within the scope of the classifier. 'When a

developer selects criteria for search, the automated classification algorithm constructs a

sequence of SQL queries by combining the logic associated with the each of the selected

classifiers. The results are retrieved into a temporary area that is firther processed to produce

the hypertext network.

We identified two important implementation concerns through the development of the

ORCA prototype. First, since criteria for classification are likely to evolve over time, the
system should easily accommodate changes in the classification schema. In the prototype,

criteria for classification are hard-coded. Hence, adding new classifiers requires re-compilation

of significant portions of the prototype system. Second, fast response times are essential.

Otherwise, developers will perceive the search costs to bee too high and will not use the

search facility.

The construction of the prototype has helped us identify that classification speed and

parameterization of classifiers are essential to successfUl implementation of a working system.
Currently, ORCA has limited hypertext navigational facilities, and is restricted to rule objects

and to a small set of classifiers. In spite of these restrictions, ORCA demonstrates the
feasibility of the reuse search model presented in Section 4, as well as the feasibility of an

automated classification algorithm without which a reuse search tool would be inefficient. The

prototype serves as a proof of concept, and as a testbed to experiment with techniques and

tools leading towards the design and construction of a working system.

6. CONCLUSION

In this paper, we have investigated the process of search for reusable software objects.

Along with managerial and technical aspects of repository organization, the search

mechanisms themselves are an important ingredient in determining the outcomes of programs

that promote the reuse of software. We argued that the design of mechanisms to support

search requires an understanding of the technical, cognitive and economic issues that arise in

search:

1. From a developers' technicalperspeciive, we noted that the search should be

conducted at a level above that of source lines of code. At this higher level, a meta-

language should facilitate the description of the software objects with attributes

relevant to the developer 1261. Thus, we performed a series of structured

Supporting Search for Reusable Sofiare Objects - 27

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

interviews with software developers that lead us to propose the classification

schema presented in section 4.

2. From a developers' cognitive perspective, we suggested that developers need to

overcome biases that develop out of their own experience and knowledge of a

repository; without a means to "de-biasn their view of the repository, they can only

fail to use it in the most efficacious manner. We have pointed out that search has a

cost. According to the principle of equating marginal costs and marginal benefits;

deveIopers will engage in a search process only so as long as expected or perceived
benefits outweigh the cumulative costs of search [34]. Technical tools to support

search for reusable objects can substantially reduce these costs.

3. From afirms' organizationalperspective, the approach we described leads to an

integral environment to support software reuse. The search facility has been

designed to match developers' own mental models. This will reduce the time

required to train developers in the use of the search tool and will increase the

likelihood that developers will use the search tool.

4. From afirms' economical perspective, we have designed the facility to support
search for reuse so that it integrates well within existing repository-based CASE

tools. This will reduce the cost of developing the search tool. The ORCA

prototype, that was developed using the ICE tool, testifies to the feasibility of a

rapid and inexpensive construction.

6.1. Contributions of the Research

Collectively, our review of these perspectives suggested the need for mechanisms to

support reusable object search that can assist in:

1) interpreting the finctionality of the objects being sought;

2) determining the qualities that are required for an object match;

3) searching the space of objects to produce candidates for reuse; and,

4) inspecting and evaluating those candidates.

Supporting &arch for Reusable Sofrware Objects - 28

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

We propose a two-stage descriptive model of search for reusable software objects, that

takes into account the three perspectives. During the screening stage, the user specifies a set

of requirements to be satisfied. The screening tool exhaustively scans the repository seeking

objects that satisfj. these requirements. The outcome of this first phase is a set of potential

candidates for reuse. During the identification phase, the user carefilly scrutinizes this pool of

candidates to select software objects for reuse. The process can be iterated: the developer

refines the requirements specified at the outset until the desired objects are found, or until she

terminates the search.

We conducted structured interviews with developers to define the specifics of a workable

classification schema for ICE. This led us to establish a set of organizing principles for the

object repository that are based on the mental models of the developers themselves.
Moreover, the classification criteria can be derived from information that is present in the

repository. As the prototype system demonstrates, this enables the automation of classiication

for reuse.

We argued that a tool for search should support both phases of the process in a
balanced manner. After analyzing the requirements of each phase, we concluded that

screening is better supported by a structured repository organization and a powerfkl query
language. But idenfification requires more active human participation. Therefore, a diierent

kind of tool - for example, one that is based on hypertext navigation of repository objects --
is needed for identification. We have described the basic elements of a design for tools to

support reusable object search and have given a proof of concept via the prototype

implementation.

In order to validate and gauge the business value of the reuse mechanism that we have

described in practice, we are planning to conduct a controlled experiment that involves novice

developers in the software development consulting training program at the research site. They

will be trained in the use of the CASE tool and the benefits of software reuse, and given a
cursory overview of a large repository of objects available for reuse.

6.2. Caveats and Implementation Concerns

We now consider several caveats and implementation concerns that we have recognized

in the process of carrying out this research.

The Need to Accommodafe Changing Class~~cation Schema. The reusable object search

tools described in this paper will rely upon a classification scheme for software objects that we

Supporting Search for Reusable Sofhvare Objects - 29

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

expect will change over time. This change will occur as adjustments are made based on our

experimental evaluation of how well the tool is performing, and developers' feedback and

experience with it. A mechanism to support reusable object search that is inflexibly dependent

upon a specific classification schema is quite vulnerable to changes in the schema, and

therefore, highly undesirable. The reader should note that the query mechanism that is used

d u ~ g screening and the generated hypertext network reflect the classification schema. For

this reason, we are taking extra care to develop a design that will enable the users to

parametrize the classification schema, thus making it able to incorporate schema changes.

The Need for Fast Response Times and Upto-date Information. The automatic

classification and the construction of the hypertext network are quite time consuming since
they require numerous queries to the repository. This discourages a dynamic system that
classifies and builds in real-time. On the other hand, a batch process would be unable to
incorporate recently created objects. Hence, developers might find a batch process less

valuable. A good solution should exhibit an appropriate balance between speed and

completeness of information.

To What Extent Can Object Classsification Actually Be Automated? Since developers

have little incentive to add keywords or other information conducive to assisting proper future

classification, it is desirable that most of the classification process should be automated.
Although it is conceivable that this may be achieved by inspecting sofhare objects and their
relationship with other objects in the repository, we should point out that the extent to which
this is possible in practice (for the CASE tool at our research site or elsewhere) is really an

empirical question. It may be hard, in fact, to come up with a fool-proof algorithm which

will do so in a manner that requires no manual classification to complete the effort.

Getting the User Interface "Right" Will Be Crucial. As has been already documented

elsewhere, e.g., [ll], hypertext facilities that are embedded into other applications often fail

because users are not accustomed to the "extra" interface. Our design for the hypertext

aspects of the facility to support reusable object search has been chosen so that it blends well

with the already familiar user interface of the CASE tool. This should ease acceptance and

promote its use.

The technical solution for searching for reusable objects we proposed here is to be viewed

in the context of a firm's efforts towards an integrated environment that supports reuse during

software development and maintenance. From a managerial perspective, the technical tool will

enable managers to set higher goals for reuse levels while providing developers with the means

Supporting Search for Reusable &@are Objects - 30

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

to achieve these goals. Hence, our work will help promote higher productivity by combining

technical and managerial aspects of s o b a r e development.

Supporting Search for Reusable Sofhoare Objects - 3 1

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

*: Affiliations of authors:

Mbrmation Systems Department

Stem School of Business

New York University

REFERENCES

[I] U. Apte, C. S. Sankar, M. Thakur and J. Turner, "Reusability strategy for development of

information systems: Implementation experience of a bank. MIS Quarterly, vol. 14, no. 4, pp.

42 1-43 1, December 1990.

[2] R. D. Banker, T. Isakowitz, R. J. Kauhan, R. Kumar and D. Zweig, "Tools for

managing repository objects", in AnaIyticd methods for software engineering economics 11,

P. T. G e ~ e r , T. Gulledge and W. P. Hutzler, Eds. New York: Springer-Verlag, 1993.

[3] R. D. Banker and R. J. KaufFman, "Reuse and productivity: An empirical study of

integrated computer-aided software engineering (ICASE) technology at the First Boston

Corporation," MS Quarterly, vol. 15, no. 3, pp. 375-401, September 1991.

[4] R. D. Banker and R. J. Kaufhan, " Measuring the development performance of integrated

computer-aided software engineering (ICASE): A synthesis of field study results from the

First Boston Corporation," in Analytical methods for software engineering economics I, T.

Gulledge and W. Hultgren, Eds. New York, NY: Springer-Verlag Publishers, 1993.

[5] R D. Banker, R. J. Kauffman, and D. Zweig, "Repository evaluation of software reuse",

IEEE Trans. Software Eng., vol. 19, no. 4, pp. 379-389, April 1993.

[6] M. J. Bates, "Subject access in on-line catalogs: A design model," J. Amer. Soc. Inf: Sci.,

vol. 37, no. 6 pp. 357-376, November 1986.

[7] B. Beckman, W. Van Snyder, S. Shen, J. Jupin, L. Van Warren, B. Boyd and

R.Tausworthe, "ESC: A hypermedia encyclopedia of reusable sofivare components," Jet

Propulsion Lab., Calif. Inst. Tech., Pasadena, CA, September 1991.

[S] J. Bigelow, "Hypertext and CASE," IEEESoftware, vol. 5, no. 2, 23-27, March 1988.

[9] J. Bigelow and V. Riley, "Manipulating source code in DynarnicDesign," HLpertextf87
Proceedings, Novemberl987, Chapel Hill, NC, ACM Press, pp. 397-408.

Supporting Search for Reusable Sojhvare Objects - 32

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

[lo] D. C. Blair and M. E. Maron, "An evaluation of retrieval effectiveness for a full-text

document-retrieval system," Commun. ACM, vol. 28, no. 3, pp. 289-299, March 1985.

[ll] M. L. Creech, D. F. Freeze and M. L. Griss, "Using hypertext in selecting reusable

software components," Hypertext '91 Proceedings, ACM Press, San Antonio, TX, ACM

Press, December 1991, pp. 25-38.

1121 J. Conklin, "Hypertext: An introduction and survey," IEEE Computer, vol. 20, no. 9, pp.

17-41, September 1987.

1131 J. C o d i n and L. M. Begeman, "gDBIS: A hypertext tool for exploratory policy

discussion," ACM Trans. OOff Info. Sys., vol. 6, no. 4, pp. 303-33 1, October 1988.

[14] J. L. Cybulski and K. Reed, "A hypertext-based software engineering environment",

IEEE Software, vol. 9, no. 2, pp.62-68, March 92.

[15] R. Fidel, "Individual variability in on-line searching behavior," Proc. Amer. Soc. Info. Sci.

48th Annual Meeting, Las Vegas, NV. White Plains, NY: Knowledge Industry Publ., Inc.,

vol. 22, October 1985, pp. 69-72.

[16] G. Fischer, "Cognitive view of reuse design," IlZE Software, vol. 4, no. 4, pp. 60- 72,

July 1987.

[I71 G. W. Furnas, T. K. Landauer, L. M. Gomez and S. T. Dumais, "The vocabulary

problem inhuman-system cornmunications," Commun. ACM, vol. 30, no. 11, pp. 964-971,

November 1987.

[IS] P. K.Garg and W. Scacchi, "Ishys: Designing an intelligent software hypertext system,"

IEEEExpert, Vol . 4, no. 3, pp. 52-62, Fall 1989.

[19] P. K.Garg and W. Scacchi, "A hypertext system for software life cycle documents," IEEE

Software, vol. 7, no. 3, pp. 90-98, May 1990.

[20] F. Garzotto, P. Paolini and L. Mainetti, "Navigation in hypermedia applications:

Modeling and semantics, J. Org. Comp., submitted for publication, 1993.

Supporting Search for Reusable Sofhvoe Objects - 33

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

[21] F. G. Halasz, "Reflections on Notecards: Seven issues for the next generation of

hypermedia systems," Commun. ACM, vol. 31, no. 7, pp. 836-852, July 1988.

[22] T, Isakowitz, "Hypermedia in organizations and information systems: A research

agenda," in Proc. 26th Hawaii Intl. Con$ Sys. Sci., Maui, KI, vol. 3, January 1993, pp. 36 1-

369.

[23] J. Karirni, "An asset-based systems development approach to software reusability," MIS
Quarterly, vol. 14: no. 2, pp. 179-1 98, June 1990.

[24] P. Kerola and H. Oinas-Kukkonen, "Hypertext system as an intermediary agent in CASE

environments," in The Impact of Computer Supported Technologies on Infonnation Systems

Development, K. E. Kendall, K. Lyytinen and J. DeGross, Eds. New York: North-Holland,

pp. 289-3 13, 1992.

1251 Y. Kim and E. Stohr, "Software reuse: Issues and research directions," in Proc. 25th

Hawaii Intl. Con? Sys. Sci., Maui, HI, IEEE Comput. Soc. Press, January 1992, pp. 612-

623.

1261 Y. Matsumoto, "Some experiences in promoting reusable software: Presentation in

higher abstract levels," IEEE Trans. S o f i e Eng., vol. 10, no. 5, pp. 502-512, September

1984.

[27] J. Nielsen, J. Hypertext and Hypermedia. New York, NY: Academic Press, 1990.

[28] J. Nielsen, "Navigating through hypertext," Commun. ACM, vol. 33, no. 3, pp. 297-310,

March 1990.

[29] R. Prieto-Diaz, "Implementing faceted classification for software re'use", Commun. ACM,
voi. 34, no. 5 , pp. 89-97, May 1991.

[30] R. Robson, "Using hypertext to locate reusable objects," in Proceedings of the 25th

Hawaiian International Confrence on System Sciences, vol. 3, pp. 549-557, January 1992.

[3 11 D. Tan and H. Borko, "Factors influencing inter-indexer consistency," in Proc. Amer.

Soc. Info. Sci. 37th Annual Meeting, Atlanta, GA. White Plains, NY: Knowledge Industry

Publ., Inc., pp. 50-55, October 1974.

Supporting Search for Reusable Sofiare Objects - 34

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

[32] Tech. Comm. on Software Eng. of the IEEE Comput. Soc., "Working Draft on

Standards for Reuse Measurements," IEEE Comput. Soc. Press, 1992.

[33] R. H. Trigg, "A network-based approach to text handling for the online scientific

community," Compuf. Sci. Tech. Rep. no. irR-1346, Dep. Comput. Sci., Univ. ofMD, College

Park, 1983.

[34] W. Van Snyder, "Sofware classification and retrieval," Technical suuportpackage for

NASA Tech. Brief NPO-18530, NASA Tech. Briefs 17, 8, Item 27, August 1993.

[35] S. N. Woodfield, D. W. Embley and D. T. Scott, "Can programmers reuse software?"
I~Sof'are, vol. 4 no. 4, pp. 52-59, July 1987.

[36] W. A. Woods, "What's in a link: Foundations for semantic networks", in Representation
and understanding: Sfuduies in cognitive science, D. G. Bobrow and A Collins , Eds., New

York" Academic Press, 1975 , pp. 82.

1371 P. Zunde and M. E. Dexter, "Indexing consistency and quality," Amer, Documentation,

vol. 20, no. 3, pp. 259-264, July 1969.

Supporting Search for Reusable Sojhume Objects - 3 5

Center for Digital Economy Research
Stern School of Business
Working Paper IS-93-47

