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Abstract 

In this paper, we study the problem of discovering interesting patterns in large volumes of 
data. Patterns can be expressed in user-defined terms and not only in terms of the database 
schema. The user-defined terminology is stored in a data  d i c t ionary  that maps it into the 
language of the database schema. We define a pattern as a deductive rule expressed in user- 
defined terms that has a degree of certainty associated with it. We present methods of discovering 
interesting patterns based on abstracts  which are summaries of the data expressed in the language 
of the user. 

1 Introduction 

Our interest is in large scale business databases which grow by millions of records daily. While this 

data is recorded primarily for accounting purposes, executives are interested in leveraging them 

for other purposes such as analyses of trends in the data. For example, marketing executives can 

learn about their consumers purchase behavior from credit card and scanner data and can use this 

knowledge to make decisions with respect to pricing, advertising, and promotions. Likewise, secu- 

rities trading data can be monitored for patterns that might point to fraud or other irregularities. 

Clearly, with the massive volumes of data that flow into databases daily, the computer will play 

an increasingly important role in the analysis. The challenge, however, is for it to  generate the 

"interesting" patterns, which may be hidden deep in the data. 

Pattern discovery can be viewed as a generate-and-test problem [Win84], the major challenge 

being to constrain the generator into generating the interesting hypotheses. In scientific domains, 

the "interestingness" heuristics ILen77, LBSBl] for focusing the generator are theory-based. In the 

business arena, we can take advantage of the fact that executives are usually interested in trends 

dealing with changes in aggregate-based functions such as totals and averages for terms in their 
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vocabulary that they in fact want to specify. This information provides some of the "interestingness" 

heuristics for focusing the hypothesis generator. 

We present a method for extracting patterns from very large databases where the novelty lies 

in exploiting two types of knowledge. The first is a user-defined vocabulary that provides relational 

views of the data and is used to express generalization relationships among different data types. 

For example, a credit card company can define Yuppie as a person whose age is less than 35 and 

who makes more than $80000, or who has a Gold card. Also, we can define Wall-Street-Yuppie 

and Madison-Avenue-Yuppie as specializations of Yuppie. The second novelty is in how we use 

abstracts, which are summaries of the data expressed in terms of this vocabulary. The vocabulary 

and abstracts endow the system with the ability to search for patterns in terms of sets that are 

meaningful to the user, in effect, focusing the generator. 

The idea of using an abstracted database was first proposed by Walker [Wd80]. His approach 

made use of the fact that the domain of an attribute can be abstracted, i.e. for the PET attribute, 

dogs and cats are mammals, snakes and turtles are reptiles and so on. In Walker's abstracted 

database, attribute values are replaced by the set to which they belong. Cai et .d [CCHSl] use the 

same technique and search for dependencies among the abstracted attribute values. Our approach 

generalizes on Walker's and Cai's in that attribute values in an abstracted database can also 

be predicates or views of the original database, depending on multiple attributes. This makes 

it possible to derive patterns in user defined terms that would be very difficult to  derive with 

attribute-oriented generalization done. 

In order to describe pattern discovery, we first need a precise definition of a pattern. Cer- 

tainly, there is no standard definition of the term in the literature. In trying to draw a common 

thread through a recent collection of papers on "Knowledge Discovery in Databases," Frawley et.al. 

[FPSMSI] define patterns as follows: 

Given a set of facts (data) F, a language L, and some measure of certainty C, a pattern S 

is a statement S in L that describes relationships among a subset Fs of F with certainty 

C, such that S is simpler (in some sense) than the enumeration of all facts in Ps. 

This definition is made intentionally vague to cover a wide variety of approaches. For example, a 

linear regression [Cli87] qualifies as a pattern with the above definition as does a set of statistical 

parameters such as the mean and standard deviation for a collection of numerical values. In fact, 

any abstraction that in some sense summarizes the data would satisfy the above definition of 

pattern. In contrast to this, we define a pattern in a more restricted sense, as a rule that has 

associated with it a degree of certainty. The precise form of the rule will be described in Section 3. 
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CUSTOMER (name, addr, income, profession, age, card-type) 
TRANSACTION (name, merchant, type, amount, date) 

Figure 1: CREDIT-CARD Database 

The rest of the paper is organized as follows. In Section 2, we describe the terminology of the 

user that he or she employs to express patterns. In Section 3, we define a pattern. In Section 4, we 

describe an abstract as a summary of the data expressed in user-defined terms. In Section 5, we 

present a method to derive patterns from the data using abstracts. In Section 6, we define patterns 

with aggregates and present a method for discovering these types of patterns. In Section 7, we 

compare our approach with the previous work on pattern discovery. 

2 Data Dictionary 

Consider the following application where a user may be interested in patterns in the data that are 

expressed not in terms of the schema of the database but in other terms: 

Example 1 Assume a credit card agency stores its data in the CREDIT-CARD database that 

contains CUSTOMER and TRANSACTION files. The schemas of these files are shown in Fig. 1. 

The CUSTOMER file stores all the information about the credit card customers, and the TRANS- 

ACTION file stores all the information about the transactions performed by these customers, such 

as customer name, merchant's name, merchant's type, and the amount and the date of a transac- 

tion. 

a 

An executive at the credit card agency may be interested in the spending patterns of various 

types of customers. In particular, he or she may be interested in the spending patterns of yuppies in 

expensive restaurants during a recession. Note that the terms "yuppie," "expensive restaurants," 

and "recession" do not directly come from the data but can be derived from it. For example for a 

credit card company, a yuppie can be a person whose age is less than 35 and who makes more than 

$80000, or who has a Gold card. This means that "yuppie" is a view on the relation CUSTOMER. 

To generalize this observation, patterns of interest to the user should be defined in user-defined 

terms, or, in database terms, as relational views of the original data. This user-defined terminology, 

such as "yuppies" and "expensive restaurants," should be stored in a data dictionary that defines 

this terminology in terms of the database schema. A data dictionary incorporates the following: 
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Views for Relation CUSTOMER 
~ u ~ ~ i e ( n a m e )  ..- . age < 35 and income > 80000 or card-type = 'Gold7 
Wallstreet-yuppie(name) ..- . yuppie(name) and profession = "Investment Banking" 
MadisonAv-yuppie(name) ..- . yuppie(name) and profession = "advertising7' 
senior-citizen(name) . . . - age > 65 
student(name) ..- . profession = 'student' 
customer-type(name) . . . - CUSTOMER(name,addr,income,profession,age7card~type) 

Views for Relation TRANSACTION 
merchant(type) . ..- TRANSACTION(name,merchant,type,amount,date) 
departmentstore(type) . ..- . - type = "departmentstore" 
restaurant(type) ..- . type = "restaurant" 
expensiverestaurant(merchant) ::= restaurant(type) and amount > 150 
moderaterestaurant(merchant) : :  restaurant(type) and 40 < amount and amount < 150 
inexpensive-restaurant(merchant) : :  restaurant(type) and amount < 40 
eco-condition(date) . . . - TRANSACTION(name,merchant ,type,amount 'date) 
yearly-purchas(date) . ..- SUM(amount) grouped-by year(date) 
recession(date) . . . - yearly-purchas(date) < yearly-purchas(date - lyr) and 

yearly-purchas(date - lyr) < yearly-purchas(date - 2yr) 
boom(date) ::= yearly-purchas(date) > yearly-purchas(date - lyr) and 

yearly-purchas(date - lyr) > yearly-purchas(date - 2yr) 

Figure 2: Vocabulary for CREDIT-CARD Application. 

the vocabulary containing a set of user-defined predicates or views, a classification hierarchy, and a 

set of abstraction functions. We now define each of these concepts and their specific roles. 

2.1 Vocabulary 

The vocabulary consists of a set of user-defined predicates. A user-defined predicate over a database 

is defined as a disjunction of conjunctive clauses, where each atomic formula is either a database re- 

lation, or a condition involving attributes from database relations or another previously introduced 

user-defined predicate. For instance, the vocabulary for the credit card application from Example 1 

can have the user-defined predicates presented in Fig. 2l. 

Several comments about the predicates defined in Fig. 2 are in order. First, in most of the 

user-defined predicates we omitted the relation(s) to which various attributes belong. For example, 

yuppie(nane1 should really be defined as 

'In this simplified example, we assume that a recession occurs when the yearly purchases decline over two consec- 
utive years, and a boom occurs when yearly purchases increase over two consecutive years. 
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~~STOMER(name,addr,income,profession,age,card~type) and ( age < 35 and 

income > 80000 o r  card-type = 'Gold' ) 

We o~nitted these relations to avoid excessive cluttering of the figure and assume that these relations 

can be identified from the attributes used in the specification of user-defined predicates. Second, 

note that the predicate yuppie is defined as a disjunction of conjunctive clauses. Third, the predi- 

cate W a l l s t r e e t  -yuppie is defined in terms of another user defined predicate, yuppie. However, 

definitions of user-defined predicates should be acyclic. Fourth, predicate yearly-purchas is de- 

fined as an aggregation of individual purchases over a year by using the aggregation function SUM. 

It follows from the definition that a user-defined predicate is similar to a relational view. This 

means that all the predicates from Fig. 2 can be defined as views on relations CUSTOMER and 

TRANSACTION. 

2.2 Classification Hierarchy 

The user-defined predicates introduced in Section 2.1 are grouped into a classification hierarchy. We 

can impose s partial order on all the predicates in the vocabulary based on the logical implication, 

i.e. P < P' if P logically implies PI. For example, Walls t reet-yuppie < yuppie. 

Based on this partial order, we can build a classification hierarchy of user-defined predicates. 

The classification hierarchy for the vocabulary from Fig. 2 is shown in Fig. 3. Notice that siblings 

may not be mutually exclusive in a hierarchy. For example, a senior citizen can (sometimes) be a 

student. 

However, we assume that the children of a user-defined predicate in the hierarchy form a 

collectively exhaustive set for the parent. This can be achieved by implicitly assuming an extra 

predicate other for each node in the hierarchy as the "catch all" condition. For example, we can 

implicitly define other-yuppies, other-merchants, etc. 

The hierarchy enables the user to specify the level of analysis at  which the system should 

focus. For example, a marketing manager can be interested in patterns at  a national level, whereas 

a branch manager might be interested in a specific region. Anand and Kahn [AK92] provide 

examples of the varied types of analyses of scanner data  from supermarkets that are of interest to  

different managers and sales personnel of consumer product companies. 
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Wd-streetjuppie Madison-Avjuppie expensive moderate inexpensive 

Figure 3: Classification Hierarchy for CREDIT-CARD Application. 

2.3 Abstraction F'unctions 

The third component of the data dictionary is the set of user-defined abstraction functions. An 

abstraction function of an attribute maps the domain values of the attribute into some other domain. 

For example, the abstraction function year maps a date into a year by "extracting" the year from 

the date. Similarly, city function extracts the name of the city from a street address. 

Furthermore, abstraction functions can be grouped into abstraction hierarchies by forming 

composition of abstraction functions. Examples of some of the abstraction hierarchies are presented 

in Fig. 4. 

As a conclusion, a data dictionary for searching patterns contains the vocabulary consisting of 

user-defined predicates, a classification hierarchy based on the vocabulary, and a set of abstraction 

functions grouped into abstraction hierarchies. In the next section, we show how patterns are 

defined based on the data dictionary. 

3 Patterns 

As mentioned in the introduction, [FPSMSl] provide a very general definition of a pattern as some 

sort of a "data compression." According to this definition, a mean and a variance of a sample can 

be a pattern. In this paper, we adopt a more specific definition of a pattern, namely, as a rule 
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month 
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addr 

Figure 4: Abstraction Hierarchy for Date and Addr Attributes of the CREDIT-CARD Database. 

expressed in terms of the vocabulary with some degree of likelihood attached to it. In Section 6, 

we extend this definition to patterns with aggregates. 

A pattern is defined as 

PI and . . . and P, --+ Q (with likelihood p) (1) 

where Pi, i = 1, .  . . , n are database relations, or user-defined predicates, or their negations, and 

Q is a relation, or a user-defined predicate, or a relational operator =, <, <, etc. Finally, p is a 

"measure of likelihood" that a certain pattern holds. We will define it precisely after we provide 

some examples of patterns. 

Example 2 The pattern "New York Yuppies most likely live in Manhattan" can be ex- 

pressed as 

CUSTOMER(name,addr,income,profession,age,card-type) and 

yuppie(name) and city(addr) = "New York" 

3 

borough(addr) = "Manhattan" (with likelihood 95%) 
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Intuitively, "likelihood 95%" means that 95% of New York Yuppies live in Manhattan. We provide 

a precise definition of likelihood below. Also notice that the right-hand side of the rule contains a 

relational operator (equality in this case). 

0. 

Example 3 The pattern "expensive restaurants in the Greenwich Village are mostly 

visited by yuppies" can be expressed as 

CUSTOMER(name,addr,income,profession,age,card-type) and 

TRANSACTION (name ,merchant, type, amount, data) and 

expensiverestaurant(merchant) and city(merchant) = "New York" and 

school-district (merchant) = ' 'Greenwich Village' ' 
--+ 

yuppie (name) (with likelihood 60%) 

In this example, we also used the relation CUSTOMER besides the relation TRANSACTION 

because yuppie is defined in terms of that relation. Also, notice that the right-hand side of the 

rule contains a relational predicate. 

The likelihood of a pattern can be defined in several ways. One way is to define it as a 

conditional probability that the head of a rule is true given that the body of the rule is true. In 

other words, the likelihood of the rule p -4 q is 

P(q is true and p is true) 
P(q is true I p is true) = 

P(p is true) 

- - number of tuples satisfying conditions p and q 
number of tuples satisfying condition p 

(2) 

For example, if there are 100,000 yuppies who live in New York and 95,000 of them live in 

Manhattan then the likelihood of the rule from Example 2 is 95%. 

It is also possible to do more sophisticated statistical analyses of patterns in the database by 

assuming that its data is a sample of the "real" population. In this case, the proportion of yuppies 

becomes an estimator [Cli87] of the true mean. This makes it necessary to compute the sampling 

error [Cli87] associated with the samples. For example, we can say that the likelihood that New 

York yuppies live in Manhattan is 95% rt 2%, where 2% is the sample error. The sampling error 
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can be computed using standard statistical methods [Cli87] which are beyond the scope of this 

paper. 

Since user-defined predicates in patterns are defined in terms of the database relations, it 

means that the patterns can be converted into rules defined in terms of database relations and 

abstraction functions. For instance, the pattern from Example 2 can be converted to 

CUSTOMER(name,addr,income,profession,age,cardtype) and 

(age < 35 and income > 80000 or card-type = 'Gold') and city(addr) = "New York" 

+ 

borough(addr) = "Manhattan" (with likelihood 95%) 

However, this type of a rule is usually less useful to the executive who is more interested in patterns 

defined in his or her terms, such as yuppies, expensive restaurants, and recession. In fact, 

much of the statistical analyses that organizations apply to data (such as cluster and factor analyses) 

are directed at imposing such labels on the data in order to interpret them parsimoniously. 

Since the data can contain billions of different patterns in general, it is important to provide 

methods that limit the search for patterns. Our approach is to let the user first specify the "objects 

of interest7'. For example, the user can indicate to the system that he or she is interested in the 

patterns concerning eating habits of yuppies at expensive restaurants measured in terms of 

average or total spending, frequency, and so forth. After the user examines the patterns discovered 

by the system, he or she may ask the system to find other types of patterns, e.g. concerning eating 

habits of yuppies at expensive restaurants during recessions. We shall describe the pattern 

extraction procedure in Section 5. 

4 Abstracts 

As mentioned above, one way to limit the search for interesting patterns is to let the user specify, 

in broad terms, the types of patterns of interest. In particular, the user has to specify three types 

of information: 

the list of relational attributes and/or user-defined predicates the pattern should contain 

the list of abstraction functions the pattern should contain 

aggregation principle (or aggregation function). 

User-defined predicates and abstraction functions were defined in Section 2. An aggregation prin- 

ciple specifies how observations in patterns of interest should be aggregated. The user can provide 
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LOCATION 
CUSTOMER-TYPE CITY BOROUGH COUNT 

yuppie New York Manhattan 95,000 

yuppie New York Queens 1,000 
. yuppie New York Brooklyn 3,500 
yuppie New York Bronx 500 
senior-citizen New York Manhattan 450,000 
yuppie Boston Brookline 9,000 
student Los Angeles Hollywood 2,000 

Figure 5: Example of an Abstract. 

only one aggregation principle a t  a time. For example, the user may specify yuppies as a user- 

defined predicate, c i t y  (restricted t o  New York), borough as abstraction functions, and count as an 

aggregation principle. This specification means that the user is interested in the living patterns of 

New York yuppies expressed in terms of counts (e.g. most of New York yuppies live in Manhattan, 

i.e. the total count of Manhattan yuppies is greater than that of yuppies living in other boroughs). 

In this example, we considered counting as an aggregation principle. Examples of other aggre- 

gation principles are summation, averaging, mazimizing, and minimizing. They will be discussed 

further in Section 6. 

One way to extract patterns from the data is to group them based on the user provided terms 

from the data dictionary, and then compare different groups of data. For example, if the user 

is interested in the living patterns of New York yuppies, we could first group the data based on 

CUSTOMER-TYPE, CITY, and BOROUGH as is shown in Fig. 5. Then we could extract patterns 

from this table by comparing patterns of living for New York yuppies with patterns of living of 

other customer types living in other cities. 

We call this kind of a table an abstract because it summarizes and abstracts the data in terms 

of high-level categories. For example, the first row in Fig. 5 says that there are 95,000 yuppies living 

in the borough of Manhattan in New York. Note that the atomic entities stored in an abstract 

in Fig. 5 are the user-defined predicates yuppies and s tudents .  Note that an abstract can also 

be considered as a report [PS91]. It aggregates data in a form that can be useful to  an executive. 

In fact, much of the consolidation of data involved in management reporting systems involves the 

generation of abstract-like tables which provide useful summaries of the data. 

An abstract is obtained from the data and the user-specified inputs consisting of predicates, 

abstraction, and aggregation functions as follows. Initially, database relations that were referenced 
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in the user-specified inputs have to be joined together into a single relation which we will call 

an underlying relation. This can be achieved either by making a universal relation assumption 

[KKF+84] or by explicitly joining relations based on the joins specified in user-defined predicates. 

For example, relations CUSTOMER and TRANSACTION should be joined on the field name for 

the CREDIT-CARD database to obtain the underlying relation. An abstract is constructed for the 

underlying relation and for the user-provided inputs as follows: 

1. For each user-defined predicate and each abstraction function, create a column in the abstract. 

Furthermore, create an aggregation column based on the user-specified aggregation principle. 

For example, if the user specified yuppies as a user-defined predicate, c i t y  and borough 

as abstraction functions, and count as an aggregation principle, then the abstract has four 

columns, one for each of the inputs. 

2. For each user-defined predicate selected by the user, consider all of its siblings in the classifi- 

cation hierarchy described in Section 2.2. For each aggregation function, determine its range. 

Fbrm the Cartesian product of the sets of siblings for the user-defined predicates and the 

ranges of all the aggregation functions. 

For example, as is shown in Fig. 3, the siblings of the predicate yuppies are senior-ci t  izens 

and students ,  and their parent is customer-type. The abstraction function c i t y  defines the 

set of all the cities in the USA, and borough the set of all boroughs in these cities. Take the 

Cartesian product of all the combinations of all the customer types in all the boroughs in all 

the cities. 

3. For each tuple t from the Cartesian product obtained in Step 2, retrieve all the tuples from 

the underlying relation satisfying the conditions of tuple t2 .  

For example, consider the tuple (yuppie, New York, Manhattan) from the Cartesian prod- 

uct obtained in Step 2. Based on this tuple, select from the underlying relation all the yuppies 

that live in the borough of Manhattan in New York. 

4. Aggregate the values of the tuples selected in Step 3 based on the aggregation principle 

specified by the user. If the value is 0, then the corresponding tuple is removed from the 

abstract. 

F Q ~  example, if the aggregation principle is counting, then the aggregation field contains the 

number of customers belonging to a certain customer type who live in a certain borough in 

2Notice that we consider two different types of tuples. Tuple t comes from the abstract, and the other type of 
tuple from the underlying relation. 
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a certain US city. For example, if there are 95,000 yuppies living on Manhattan then we 

get a tuple (yuppies, New York , Manhattan, 95000). Furthermore, if no yuppies live in 

Bismarck, North Dakota then the tuple (yuppie, Bismarck, x ,  0) will not appear in the 

abstract for any borough x in Bismarck. 

The method described above only illustrates the principIe of constructing an abstract and does 

not address any efficiency considerations. It is highly inefficient because it builds the Cartesian 

product of all the columns and then selects tuples with the non-zero aggregation column. The 

discussion of efficient implementations is beyond the scope of this paper. 

5 Deriving Patterns Frorn Abstracts 

Since an abstract is just a relational table containing aggregated data, it can be used for discovering 

statistical patterns using standard statistical methods, such as regression, cluster, and discriminant 

analysis [Cli87]. In this section, we present one method, and mention others in the next section. 

Patterns can be derived by "fixing" all the attributes in the abstract except one and comparing 

aggregated values across the "unfixed" attribute. We call the first type of an attribute fixed attribute, 

and the second type free attribute. For instance in Fig. 5, we can fix attributes CUSTOMER-TYPE 

to be "yuppie" and CITY to be "New York." We then compute the conditional probabilities of 

yuppies living in different boroughs. If NY-yuppie is defined as 

CUSTOMER-TYPE = yuppie and CITY = New York 

then the conditional probability that a yuppie lives in borough x of New York is 

P(x)  = P(NY-yuppie and BOROUGH = x I NY-yuppie) 

Substituting the numbers from Fig. 5, we obtain the following conditional probabilities: 

In general, if r is a condition describing the values of fixed attributes and q is the condition 

describing a free attribute and if p is the conditional probability, i.e., 

P{q is true I r is true) = p 

then we can obtain the rule 
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r 3 q (with likelihood p) 

For example, if r is the condition NY-yuppie and q is BOROUGH = x then, since P(Manhattan) = 

95%, we obtain the pattern 

NY-yuppie .--t BOROUGH = Manhattan (with likelihood 95%) 

or in words: 

New York yuppies most likely live in Manhattan (with likelihood 95%) 

If we expand NY-yuppie in the previous rule then we obtain 

CUSTOMER(name,addr,income,profession,age,card~type) and 

yuppie(name) and city(addr) = "New York" 

3 

borough(addr) = "Manhattan" (with likelihood 95%) 

An example of another pattern obtained in a similar way is 

CUSTOMER(name,addr,income,profession,age,card~type) and 

yuppie(name) and city(addr) = "New Yorku 

.--t 

borough(addr) = "BronxH (with likelihood 0.5%) 

or in words: 

New York yuppies most unlikely live in the Bronx (with likelihood 0.5%) 

It follows from this discussion that we associate the likelihood of a pattern with the conditional 

probability that the pattern holds. 

Notice that in this pattern the head of the rule contains the equality predicate because the 

free attribute is based on the aggregation function BOROUGH. If it were based on a user-defined 

predicate, then the derived pattern would have a predicate in its head. 

Patterns derived in this section are based only on the counting aggregation principle because 

counting is used to compute the likelihood of a pattern. In the next section, we describe other 

types of patterns that use other aggregation principles besides counting. 
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6 Patterns with Aggregates 

In Section 3, we defined patterns of the form (1). These expressions define patterns in terms of the 

original, non-aggregated data. In Section 4, we used abstracts only as a technique to derive these 

patterns, since patterns do not "depend" on abstracts (there is nothing in the pattern that forces 

it to use abstracts). In fact, these patterns can be derived with other statistical techniques, such 

as discriminant and cluster analysis [Cli87]. 

In this section, we consider other types of patterns, which require aggregation of the original 

data. For example, the pattern 

Yuppies tend to spend more money on expensive restaurants during boom periods 

than during recessions. 

has aggregation "built" into it (total amount of money per year). 

To discover aggregated patterns, we solicit inputs from the user as for non-aggregated pat- 

terns. For example, the user may be interested in cumulative spending patterns of yuppies over 

the years. In this case, he can indicate an interest in user-defined predicates yuppies, expensive 

restaurants, and recessions, the abstraction function year, and the aggregation principle sum- 

mation for the field amount in the relation TRANSACTION. 

Based on the user inputs, an abstract is generated as described in Section 4. For the user 

inputs provided above, an abstract specifying how much a group of customers spends in different 

types of restaurants during different types of economic conditions is shown in Fig. 6. 

Once an abstract is generated, we can extract patterns from it. However, unlike patterns 

described in Section 3, patterns with aggregates are expressed in terms of an abstract. For example, 

the last pattern can be defined as 

~PENDING(yuppie,expensive-restaurant,recession,X,Nl) and 

SPENDING(yuppie , expensive-restaurant , boom,NEXTBOOM(X) ,N2) 
i 

N2 > N1 (with likelihood 95%) 

where SPENDING is the name of the abstract from Fig. 6, X is a variable over the attribute YEAR, 

NEXTBOOM is a function specifying the next boom year, and N1 and N2 are the cumulative 

spendings for yuppies in expensive restaurants during the corresponding years. 

Notice that SPENDING in this pattern is the name of an abstract, and the pattern is expressed 

in terms of properties of this abstract. Therefore, abstracts play a crucial role in expressing ag- 
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SPENDING 
CUST-TYPE REST-TYPE ECO-CONDITION YEAR TOTALAMOUNT 

senior citizens expensive recession 1980 1M 
senior citizens moderate recession 1980 1.8M 
senior citizens inexpensive recession 1980 0.9M 
students expensive recession 1980 40K 
students moderate recession 1980 180K 
students inexpensive recession 1980 420K 
senior citizens moderate boom 1986 2.4M 
students moderate boom 1986 560K 
yuppies expensive boom 1981 7.3M 
yuppies expensive recession 1983 6.7M 
yuppies expensive boom 1987 9.5M 
yuppies expensive recession 1991 7.4M 
yuppies moderate recession 1980 4.5M 
yuppies inexpensive recession 1980 3M 

Figure 6: An Abstract for Extracting Patterns with Aggregates. 

gregated patterns. Also, as was pointed out in Section 4, user-defined predicates become atomic 

values in abstracts. Therefore, they are also treated as atomic values in aggregate patterns based 

on abstracts. For example, yuppie is an atomic value in the pattern presented above, as opposed 

to the user-defined predicate in the patterns presented in Examples 2 and 3. 

The general structure of an aggregated pattern is 

PI and . . . and Pn -t Q (with likelihood p) 

where Q ,  Pi, for i = 1,. . . , n are either abstract predicates or relational operators, or their negations. 

However, we will restrict our attention to the following important special case of an aggregated 

pattern 

( a l  a m  1 , .  . . , b ,  1 , .  . . , , N 1) and P a , .  . a ,  1 , .  . . , 1 ,  . . . , X n ,  (3) 

N1 B N2 (with likelihood p) 

where P i s  an abstract, a l ,  . . . , a,, bl, . . . , bk, cl, . . . , ck are constants from the abstract P, xl,  . . . , xn 

are variables, N1 and N2 are values for the aggregation column in the abstract, and 0 is a com- 

parison operator =, <, <, etc., and p is the likelihood with which the pattern holds. This pattern 

means that for aJJ 21,. . .,xt.,, the rule holds with likelihood p, where likelihood is defined as in 

Section 3 either in terms of conditional probabilities or with any other statistical method. 
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In the previous example, yuppie, expensive-restaurant , recession, and boom are con- 

stants, X is a variable, and N 1  and N 2  are values for the total amount spent per year. The 

likelihood of the SPENDING pattern can be defined as follows. Let nl be the number of business 

cycles when yuppies spent more money on expensive restaurants during the boom period of the 

cycle than during the recession period. Let nz be the total number of business cycles. Note that 

nl and nz can easily be computed from the data in the abstract in Fig. 6. Then the likelihood of 

the SPENDING pattern can be defined as a conditional probability p = nl /nz .  

It should be noted that there could be many ways to derive the likelihood in the SPENDING 

rule above besides using conditional probabilities. In particular, one could apply the standard sta- 

tistical methods, such as regression analysis and ANOVA [Cli87], to show the relationship between 

the attributes of an abstract. The spending rule above could be derived by running ANOVA on 

the abstract from Fig. 6. ANOVA will show how much of the variance in the dependent variable 

TOTALAMOUNT is explained [Cli87] by keeping some of the attributes in the abstract fixed (e.g. 

yuppie and expensive restaurant)  and letting the remaining ones vary. 

To summarize, we defined aggregated patterns in this section as rules expressed in terms of an 

abstract. We also discussed how the likelihood of a rule can be defined either in terms of conditional 

probabilities or using existing statistical methods. 

7 Related Work 

A recent book by Piatetsky-Shapiro and Frawley [PSFSl] contains a collection of articles on pattern 

discovery. It presents various approaches to this important problem ranging from purely statistical 

approaches to the knowledge-based methods. We compare some of these methods and other related 

work to our approach to pattern discovery in this section. 

There has been much work done in the area of pattern discovery in the scientific arena. How- 

ever, there are some fundamental differences between commercial and scientific data, in the types 

of patterns that one is trying to discover, and in the methods for doing so. First, much of the 

business data is qualitative or categorical, not numeric. It is not collected in a controlled manner, 

but is a by product of decisions about what data is necessary for business functions. Secondly, 

the patterns in a large business database tend to be inherently fuzzy, not precise mathematical 

relationships as in the natural sciences. It therefore makes more sense to use statistical techniques 

to test the hypotheses instead of state space search or explicit enumeration techniques. Finally, the 

criteria for deciding what is "interesting" in scientific domains, which is the generator part of the 

generate-and-test, tend to be theory-based as in AM [Len771 and BACON ILBS811. In the busi- 
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ness arena, as illustrated in the examples, executives are usually interested in trends dealing with 

changes in aggregate-based functions, such as totals and averages, for the terms in their vocabulary 

that they are interested in investigating. This information provides the "interestingness" heuristics 

for focusing the hypothesis generator. 

There are also other techniques in the machine learning literature referred to as "learning from 

examples" techniques such as Winston's learning program [Win75], Mitchell's LEX system that 

works with "version spaces" [MKKC86], and Quinlan's ID3 algorithm [Qui86]. Of these, the ID3 

is most closely related to our work. It tries to generate a decision tree that explains the data. For 

example, given a table with information on yuppies, expensive restaurants, and spending amounts, 

it would generate a decision tree where each node would involve a test on a particular attribute, in 

effect partitioning the data. The leaves of the tree contain the classification, such a low spenders 

and high spenders. 

One of the limitations of ID3 is that it does not deal well with noisy data. Specifically, the tree 

becomes overly complicated in order to account for the noisy instances. A related problem is that 

it cannot deal with inconclusive data, that it, there are no rules that classify all possible examples 

correctly using only the available at tributes. Uthurusamy et .al. [UFSSlJ propose that the solution 

to this problem is to use probabilistic rather than categorical rules. This essentially makes it a 

statistical approach, in the same spirit as our method which makes use of likelihoods. 

As we mentioned at the outset, our use of abstracts builds on the work of Walker [VVal80]. The 

concept of an abstract as described by Walker was independently rediscovered by Cai, Cercone and 

Han [CCHSl] who term this method as "attribute oriented generalization". As is apparent from 

the examples, our approach generalizes on the above in that attribute values in our abstracts can 

also be predicates or views of the original database that depend on multiple attributes. This makes 

it possible to derive patterns in terms of the user defined vocabulary that are difficult to discover 

based on attribute-oriented generalization alone. 

More recently, Krishnamurthy and Imielinsky [KI91] have proposed a procedure for discovering 

patterns based on iterative querying of a database until the user feels that an interesting pattern 

is discovered. In contrast, our approach makes use of the abstracts based on user input as a basis 

for discovering interesting patterns. 

The work of Shum and Muntz [SM88] is also related, although in a more peripheral way. They 

make use of a generalization hierarchy in order to determine how responses to queries can include 

aggregate level concepts (from the hierarchy) such that the amount of information conveyed to the 

user is maximized (using entropy measures). 
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8 Conclusion and Future Work 

In this paper, we presented a method to discover a certain class of patterns based on the concept 

of an abstract. This method assumes that the user will guide the search for interesting patterns by 

specifying the types of patterns he or she is interested in. Therefore, it is the user's responsibility to 

specify what an "interesting pattern" means. Nevertheless, the system can still discover numerous 

uninteresting patterns such as "yuppies living in Manhattan live in New York." 

We are currently working on extending our approach to incorporate the concept of inter- 

estingness in our method. The system should somehow differentiate between "interesting" and 

"uninteresting" patterns it discovers. In particular, the pattern discovery procedure must be able 

to take care of functional dependencies and avoid generating patterns that involve them. For ex- 

ample, the pattern presented above is not interesting because it contains the functional dependency 

BOROUGH --+ CITY (we assume that there are now two boroughs in different cities with the same 

name). Therefore, the pattern does not provide any interesting information beyond the known fact 

that a borough uniquely determines the city. Likewise, there could be other types of patterns that 

are not worth generating, such as the wealthy spending more than the poor. Thus the system must 

be able to generate additional constraints to focus the search. 

We are also working on the methods that explain the discovered patterns. This is a problem 

of practical concern because executives are often aware that certain trends exist and would like 

explanations for them. While reasons for trends might sometimes be inexplainable using the data 

in the database alone, it is worthwhile determining whether the data do in fact account even 

partially for the observations. One approach to this is to use the notion of approximate functional 

dependencies [PSMSl]. For example, the observation that vasectomies in a hospital are down 

50% compared to last year might be explainable by the functional dependency between doctor's 

specialty (vasectomies) and patient's sex (the explanation could be that the doctor that performs 

the majority of vasectomies is currently on leave). 

Finally, we still need to address the issue of how patterns should ultimately be presented to 

the user. Trends are probably best conveyed using line graphs and stacked bar graphs, whereas 

cross-sectional comparisons might be better presented using pie charts. The problem becomes more 

complicated where multidimensional data are involved. Some of the existing statistical tools make 

use of color. More sophisticated envisioning techniques have also been described by Tufte [TufSO]. 

Finally, approaches such as linguistic summaries based on fuzzy sets [YagSl] could also be useful. 
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