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Multilayer Feedforward Networks with 
Non-Polynomial Activation Function Can 

Approximate Any Function 

Abstract 

Several researchers characterized the activation function under which multilayer feedfor- 

ward networks can act as universal approximators. We show that most of all the charac- 

terizations that were reported thus far in the literature are special cases of the following 

general result: a standard multilayer feedforward network with a locally bounded piecewise 

continuous activation function can approximate any continuous function to any degree of 

accuracy if and only if the network's activation function is not a polynomial. We also 

emphasize the important role of the threshold, asserting that without it the last theorem 

does not hold. 

Keywords: Multilayer feedforward networks, Activation functions, role of threshold, Uni- 

versal approximation capabilities, LP(p)  approximation. 
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1 Background 

The basic building block of a neural network is a processing-unit which is linked to n input- 

units through a set of n directed connections. The single unit model is characterized by (1) 

a threshold value, denoted 6, (2) a univariate activation function, denoted 5 : R -+ R, and 

(3) a vector of "weights," denoted w = wl, . . . , w,. When an input-vector x = xl, . . . , x, 
is fed into the network through the input-units, the processing-unit computes the function 

o-(w x - 6), w x being the standard inner-product in P. The value of this function is 

then taken to be the network's output. 

A network consisting of a layer of n input-units and a layer of m processing-units can be 

"trainedn to approximate a limited class of functions f : Rn -+ Rm. When the network 

is fed with new examples of vectors x E Rn and their correct mappings f(x), a "learning 

algorithm" is applied to adjust the weights and the thresholds in a direction that minimizes 

the difference between f (x) and the network's output. Similar backpropagation learning 

algorithms exist for multilayer feedforward networks, and the reader is referred to Hinton 

(1989) for an excellent survey on the subject. This paper, however, does not concern 

learning. Rather, we focus on the following fundamental question: if we are free to choose 

any w, 0, and o- that we desire, which "real lifen functions f : Rn --+ R" can multilayer 

feedforward networks emulate? 

During the last decade, multilayer feedforward networks have been shown to be quite 
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effective in many different applications, with most papers reporting that they perform 

at least as good as their traditional competitors, e.g. linear discrimination models and 

Bayesian classifiers. This success has recently led several researchers to undertake a rigorous 

analysis of the mat hematical properties that enable feedforward networks to perform well 

in the field. The motivation for this line of research was eloquently described by Hornik 

and his colleagues, (Hornik, Stinchcombe and White (1989)), as follows: "The apparent 

ability of sufficiently elaborate feedforward networks to approximate quite well nearly any 

function encountered in applications leads one to wonder about the ultimate capabilities of 

such networks. Are the successes observed to date reflective of some deep and fundamental 

approximation capabilities, or are they merely flukes, resulting from selective reporting and 

a fortuitous choice of problems?" 

Previous research on the approximation capabilities of feedforward networks can be found 

in le Cun (1987), Cybenko (1989), Funahashi (1989), Gallant and White (1988), Hecht- 

Nielson (1989), Hornik et al., (1989), Irie and Miyake (1988), Lapedes and Farber (1988), 

Stinchcombe and White (1990) and Chui and Li (to appear). These studies show that if 

the network's activation functions obey an explicit set of assumptions (which vary from 

one paper to another), then the network can indeed be shown to be a universal approxima- 

tor. For example, Gallant and White (1988) proved that a network with "cosine squasher" 

activation functions possess all the approximations properties of Fourier series representa- 

tions. Hornik et al., (1989) extended this result and proved that a network with arbitrary 

squashing activation functions are capable of approximating any function of interest. Most 

Center for Digital Economy Research 
Stem School of Business 
Working Paper IS-92-13 



recently, Hornik (1991) has proven two general results, as follows: 

Hornik Theorem 1: Whenever the activation function is bounded and non-constant, 

then, for any finite measure p,  standard multilayer feedforward networks can approximate 

any  function i n  L P ( p )  (the space of all functions on Rn such that JRn If (x)IPdp(x)  < CO) 

arbitrarily well, provided that su@ciently many  hidden units. are available. 

Hornik Theorem 2: Whenever the activation function is continuous, bounded and non- 

constant, then, for arbitrary compact subsets X 5 Rn, standard multilayer feedforward 

networks can approximate any continuous function on  X arbitrarily well with respect to  

uni form distance, provided that suficiently many  hidden units are available. 

In this paper we generalize in particular Hornik7s Theorem 2 by establishing necessary and 

sufficient conditions for universal approximation. In particular, we show that a standard 

multilayer feedforward network can approximate any continuous function to any degree of 

accuracy if and only if the network's activation function is not polynomial. In addition, 

we emphasize and illustrate the role of the threshold value (a parameter of the activation 

function), without which the theorem does not hold. The theorem is intriguing because (a) 

the conditions that it imposes on the activation function are minimal; and (b) it embeds, 

as special cases, alI the activation functions that were reported thus far in the literature. 
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2 Mult ilayer feedforward networks 

The genera architecture of a multilayer feedforward network consists of an input layer 

with n input-units, an output layer with m output-units, and one or more hidden layers 

consisting of intermediate processing-units. Since a mapping f : R" -+ Rm can be computed 

by rn mappings f j  : Rn i R, it is (theoretically) suificient to focus on networks with one 

output-unit only. In addition, since our findings require only a single hidden layer, we will 

assume hereafter that the network consists of three layers only: input, bidden, and output. 

One 
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In the figure, the weights-vector and the threshold value associated with the j-th processing- 

unit are denoted wj,. and Bj, respectively. The weights-vector associated with the single 

output-unit is denoted P ,  and the input-vector is denoted x. With this notation, we see 

that the function that a multilayer feedforward network computes is: 

k being the number of processing-units in the hidden layer. Hence, the family of func- 

tions that can be computed by multilayer feedforward networks is characterized by four 

parameters, as follows: 

1. The number of processing-units, denoted k; 

2. The set of weights {wij), one for each pair of connected units; 

3. The set of threshold values {Bj), one for each processing-unit; 

4. An activation function (7 : R -+ R, same for each processing-unit. 

In what follows, we denote the space of these parameters A =< k, {wij), {Bj),a >, and 

a particular quadruple of parameters is denoted w E A. The network with n input-units 

which is characterized by w is denoted Nu(n), but for brevity we will drop the n and use 

the notation A(,. Finally, the function that & computes is denoted fw : R -+ Rn, and the 

family of all such functions is denoted 3={ fwlw E A). 
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Our objective is thus to find all the functions that may be approximated by multilayer 

feedforward networks of the form N;. In order to do so, we will characterize the closure 
- 
F=closure{f,lw E A). This closure is based on some metric defined over the set of 

functions from Rn to R, described in the next section. 

3 Definitions 

Definition 1: 

A metric on a set S is a function d : S x S -+ R such that: 

1. d(s , t )  2 0 

2. s = t if and only i f  d ( s , t )  = 0 

3. d(s,  t )  = d(t ,  s )  

4. d(s ,  u )  r_< d(s, t )  + d(t ,  u). 

If we take S to be a set of functions, the metric d ( f , g )  will enable us to measure the 

distance between functions f,g E S. 

Definition 2: 

The closure of a set S of a metric space ( X ,  d )  is defined as follows: 
- 

closure(S) = S = { t  ~ V E  > 0,3s E S ,  d(s ,  t )  < E ) .  
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Definition 3: 

A function u defined almost everywhere with respect to Lebesgue measure v on a measurable 

set R in Rn is said to be essentially bounded on 0 (u E LW(R)) ,  if lu(x)l is bounded almost 

everywhere on 0. We denote u E LW(R) with the norm 

11 u l l L = ( n ) =  inf{Alv{x : lu(x)l > A} = 0) = ess sup lu(x)l. 
xEQ 

Definition 4: 

A function u defined almost everywhere with respect to Lebesgue measure on a domain R (a 

domain is an open set in Rn) is said to be locally essentially bounded on R (u E Lcc(R)) ,  

if for every compact set K C R, u E Lm( l - ) .  

Definition 5: 

We say that a set F of functions in LCc(Rn) is dense in C ( P )  if for every function 

g E C(R") and for every compact set K c R", there exists a sequence of functions fj E F 

such that 

lim 1 1  - f j  I ~ L w ( K ) =  0. 
3-+= 

Hence, if we can show that a given set of functions F is dense in C(R"),  we can conclude 

8 
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that for every continuous function g E C(Rn) and each compact set K c Rn, there is 

a function f E F such that f is a good approximation to g on K. In this paper we 

take C(Rn) to be the family of Peal world" functions that one may wish to approximate 

with feedforward network architectures of the form N,. F is taken to be the family of 

all functions implied by the network's architecture, namely the family (I), when w runs 

over all its possible values. The key question is this: under which necessary and sufficient 

conditions on a will the family of networks N be capable of approximating to any desired 

accuracy any given continuous function? 

4 Results 

Let M denote the set of functions which are in LZc(R) and have the following property. 

The closure of the set of points of discontinuity of any function in M is of zero Lebesgue 

measure. This implies that for any a E M, interval [a, b], and S > 0, there exists a finite 

number of open intervals, the union of which we denote by U, of measure 6, such that a is 

uniformly continuous on [a, b]\U. We will use this fact. Note that we do not demand the 

existence of one-sided limits at points of discontinuity. 

We then have the following result: 
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Theorem. 1: 

Let a E N .  Set 

C,=span{a(w-x+6)  : W E  R n , 6 ~ R ) .  

Then En is dense in C(Rn) if and only if a is not an algebraic polynomial (a.e.). 

Assume p is a non-negative finite measure on Rn with compact support, absolutely contin- 

uous with respect to Lebesgue measure. Then C, is dense in L q p ) ,  1 < p < m, if and only 

if a is not a polynomial (a.e.). 

We recall that P ( p )  is the set of all measurable functions f such that: 

The following proposition is worth stating as it is a simple consequence of Theorem 1 and 

some known results. 

Proposition 3: 

If a E M is not a polynomial (a.e.), then 

t=,(A) = span{a(Aw . x  + 6) : A, 8 E R,w E A) 

is dense in C(Rn) for some A c Rn if and only if there does not exist a non-trivial 
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homogeneous polynomi~l vanishing on A. 

5 Discussion and Conclusion 

First, we wish to illustrate why the threshold element is essential in the above theorems. 

Consider the activation function (without a threshold) a(x) = sin(x). This function is 

not a polynomial; In addition, it is continuous, bounded, and non-constant. Now, the 

set {sin(w . x)lw IE R) consists of only odd functions ( a ( x )  = .-v(-x)). Thus, an even 

function like cos(x) cannot be approximated using this family in [-I, I], implying that 

{sin(w x)Jw E R) is not dense in C([-l,l]). This could be corrected by adding to 

the family sin(.) functions with a threshold (offset) element (e.g. sin(x + :) = cos(x)). 

Moreover, if a is an entire function, there exist sufficient and necessary conditions on a 

under which Theorem 1 will hold without a threshold (for a more general discussion see 

Dahmen and Micchelli (1987). On the other hand the threshold may have absolutely no 

effect. Take for example the function a(x) = ex, 

The essential role of the threshold in our analysis is interesting in light of the biological 

backdrop of artificial neural networks. Since most types of biological neurons are known 

to fire only when their processed inputs exceed a certain threshold value, it is intriguing to 

note that the same mechanism must be present in their artificial counterparts as well. 
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In a similar vein, our finding that activation functions need not be continuous or smooth also 

has an important biological interpretation, since the activation functions of real neurons 

may well be discontinuous, or even non-elementary. These restrictions on the activation 

functions have no bearing on our results, which merely require "non-polynomiality." 

As Hornik (1991) pointed out, "whether or not the continuity assumption can entirely be 

dropped is still an open and quite challenging problem." We hope that our results solve 

this problem in a satisfactory way. 

6 Proofs 

We use the following definition to prove our main results: 

Pefinition 6: 

For a function u we denote by  supp(u) the set supp(u) = { x ~ u ( z )  # 0 ) .  

Proof of Theorem 1: 

We divide the proof into a series of steps. 

Step 1. If a is a polynomial, then C, is not dense in C(R"). 
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If a is a polynomial of degree k, then a(w x + 0) is a polynomial of degree k for every w 

and 8, and in fact C, is exactly the set of algebraic polynomials of degree at most k, thus 

C ,  cannot be dense in C(Rn).B 

In what follows we always assume that (T is not a polynomial. 

Step 2. If Cl is dense in C(R), then C, is dense in C(Rn). 

The space V = span{ f  (a . x) I a E Rn, f E C(R)) is dense in C ( P ) .  This follows in 

various ways, see e.g. Dahmen and Micchelli (1987)) Chui and Li (to appear), Vostrecov 

and Kreines (1961), Lin and Pinkus (preprint). Now, let g E C(R") and K c R" be any 

compact subset of Rn. V is dense in C(Ii'). Thus given e > 0 there exist f; E C(R)  and 

a' E Rn, i = I , .  . . , k, such that 

for all x E K. Now {ai - x I x E K )  5 [a;, P;] for some finite interval [q, &3, i = 

1,. . . , k. Since C1 is dense in [a;,@;], i = 1,. . . , k, there exist constants qj, wij and Brj, 

j = 1 ,..., m;, i = 1 ,..., k, such that 

for all y E [a;, Pi].  Thus 

for all x E K. Thus C1 dense in C(R) implies that C, is dense in C(Rn). I 
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Step 3. If a E Cm (the set of all functions which have derivatives of all order), then C1 

is dense in C(R). 

If a E CW(R) then since [a((w + h)x + 8) - a(wx + 6)Jlh E El for every w,0 E R and 

h j: 0, it follows that &a(wz + 0) E F. By the same argument $a(ws + 8) E F for 

all k E I? (and all w, 0 E R). Now -$~(uIx + 0) = ~ ~ a ( ~ ) ( w x  + 8), where a(k) denotes 

the kth derivative of a, and since a is not a polynomial there exists a Bk E R such that 

~ ( ~ ) ( 8 ~ )  # 0. Thus 

This implies that contains all polynomials. By Weierstrass's Theorem it follows that 
- 
El contains C ( K )  for each K c R. That is, El is dense in C(R). I 

Step 4. For each ip E C,", (C" function with compact support), a r ip E F. 

We first recall that 

is the convoIution of a and c p ,  and is well-defined. We prove Step 4 constructively. (If a 

were continuous this could easily be proven using a soft analysis approach.) 

Without loss of generality, assume that suppcp C [-a,a], and that we wish to prove that 

we can uniformly approximate a * c p  from C1 on [-a, a]. We will prove that 
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uniformly converges to a + tp on [-a, a], where 

and Ayi=  ? , i = l ,  ..., m. 

Let -2a - 1 _< zl < - . < z, 5 2a  + 1 denote the points of discontinuity of a in [-2a - 

1,2a  -+ I]. Given E > 0, we first choose S > 0 so that: 

For this given S > 0, we know that there exists a finite number r(6) of intervals, the measure 

of whose union U is 6, such that a is uniformly continuous on [-2a, 2a]\U. We now choose 

m sufficiently large so that rnS > ar(6), and: 

b) If Is -t l  5 %, then 

c) If s, t E [-2a, 2a]\li, and 1s - t 1 < E, then 

All these conditions can be satisfied. (b) follows from the uniform continuity of 9. By 

assumption a is uniformly continuous on [-2a, 2a]\U and thus (c) holds. 
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Fix x E [--a, a]. Set A; = [Y;-~,  y;], (yo = a). NOW 

since suppcp c [-a, a]. If x - Ai does not intersect the U, then from (c), 

Thus if we sum over those A; for which this holds we get an error of at most E. 

Let us now consider those intervals A; for which (a: - A;) n U # 0.. We denote such intervals 

by A;. Since U bas measure 6 and is composed of r(6) intervals, the total length of the zi 
intervals is at most 6 + %r(6). By our choice of n, we have that 6 + %r(6) 5 56. Thus 

from (a), 
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and from (b) 

Thus we obtain 

for all x E [-a, a] .l 

Step 5. If for some cp E C,CO we have that a * cp is not a polynomial, then C1 is dense in 

C(R)- 

From Step 4, a *cp  E F. It thus follows that (a* cp)(wx + 6 )  is also in F, for each w, B E R. 

Now for a and any cp E C$', we have a * cp E C*, see Adams (1975, pages 29-31). Thus 

from Step 3, if a * cp is not a polynomial then C1 is dense in C(R).I 

We therefore now assume that a * cp is a polynomial for all c p  E Co"J. We will conclude from 

this fact that a is itself a polynomial (a.e.). 

Step 6. If for all cp E CocQ, a * cp is a polynomial, then there exists an rn E N such that a * cp 
is a polynomial of degree at most rn for all cp E Cp. 

For any a < b, define the set of functions C,CO[a, b] to be the set of all CF functions with 

support in [a, b]. We first prove the claim in the case of cp E CocQta, b]. We define a metric 
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p on CF [a, b] by: 

where IIylln = C~=OSUP~E[~,F,I lcp(j)(x)1. C,"[a, b] with the p metric is a complete metric 

vector space (Frkchet space). 

By assumption a * cp is a polynomial for any cp E CF[a, b] 

Define: 

Vk = {cp E CF[a, b] I degree(a * cp) 5 k).. 

We have that Vk is a closed subspace, C Vktl, and 

a3 

U Vk = C,"[a, b]. 
k=O 

As C,"[a, b] is a complete metric space, by Baire's Category Theorem (Bachman and Narici 

( 1 9 7 2 , ~ ~  77)) there exists an integer m such that Vm = C,OO[a, b] (Cp[a, b] is of the second 

category and therefore some V, contains a non-void open set. Because V, is a vector 

space thus Vm = CF[a, b]). This completes the proof for the C,"[a, b] case. For the general 

case we note that the number rn does not depend on the interval [a, b]. This can be seen 

as follows, By translation m depends at most of the length of the interval. Let [A, B] 

be any interval. For cp E CFfA, B] we can find cp; E C,"[a;, b;] , i = 1, . . . , k, such that 

k [A, B] E u!==,[a;, b;], b; - a; = b - a and cp = ~ i k , ~  cp;. Thus a * cp = Ci=, a * cp;, and for 

every i = 1,. . . , k, a * cp; is a polynomial of degree less than or equal to rn. Therefore 
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Step 7. If u*cp is a polynomial of degree at most m for all p E CF, then a is a polynomial 

of degree at most rn (a.e.1. 

From Step 6, 

J a ( z  - y)cp(k+l)(y)dy = 0 

for all ip E CF. From standard results in Distribution Theory, see e.g. Friedman (1963, 

pages 57-59) , u is itself a polynomial of degree at most rn (a.e.). I 

Remark  1. Step 6 is one of those folklore results we were rather surprised not to have 

succeeded in finding in the literature. There are other proofs thereof. 

Remark  2. A reading of the proof of Theorem 1 shows that the problem of approximating 

a function g on some compact I< of Rn from En can almost be divided into two parts. One 

part is the approximation of g(x) by functions of the form C;fi(ai . x) where the fi are 

functions in C(R). The other is the approximation of f; on the appropriate set from El. 

Since C(R) is separable, one can choose 0 E C(R) so that for each and every f E C(R) 

and any interval [a, b], 

0 = inf max lf(x) - cu(wx +@)I. 
c,w,8 aLx<b 

That is, only one "processing unit" is needed. However there remains the problem of 

approximating g(x) by xi fi(ai x) (these latter are called ridge functions or plane waves) 

which seems to be the more difficult problem. 
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Remark 3. If a has a jump discontinuity, say at 0, and is continuous in [-7,O) and 

(0, q]  (some q > 0) with limx,o+ a(x) and l iqdo-  a(x) existing and unequal, then one can 

obtain Theorem 1 almost directly (from after Step 2). That is, given any f E C(R) and 

any K compact in R, it is possible to approximate f from C1 on K. Constants are in C1 

(ca(B)),  and thus choosing w E {-1,l) and multiplying by a constant we can assume that 

lim a(x) = 0, lim a(x) = 1 
x-ro- 2--+o+ 

Letting w -+ 0 in ~ ( w x ) ,  we can then prove that the function x E z, where ~ ( x )  = 0 for 

x < 0, and ~ ( x )  = 1 for x > 0. It is now easy to see how linear combinations of x and its 

translates can uniformly approximate any continuous function on any finite interval (and 

thus any compact subset of R). 

Proof of P ro~os i t i on  2: 

If a is a polynomial of degree rn, then C, is contained in the set of polynomial of total 

degree < rn, and thus cannot be dense in LP(p), 1 < p < CQ. 

Let K denote the support of p. C(K) is dense in LP(p)  (see e.g. Adams (1975, p. 31),) 

and C, is dense in C(K) in the uniform norm. Thus given f E LP(p) and e > 0 there 

exists a g E C(K) such that 

llf - 9llL~(,) 2 €12, 

and for this given g E C(K) there exists an h E C, such that 
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where c = p l I ~ ( ~ ) .  Thus Ilg - h l l L ~ ( p )  < ~ / 2 ,  and 

Ilf - hllLP(p) 5 lIf - sIILP(P) + 119 - hllL~(I1) 5 &-  

Proof of Proposition 3: 

In Vostrecov and Kreines (1961) (see also Lin and Pinkus (preprint)) can be found the fact 

that for given A c R" 

is dense in C ( F )  if and only if there does not exist a non-trivial homogeneous polynomial 

vanishing on A. Now span{a(Aw x $0)  I A, I9 E R) C span{ f (w . x) I f E C(R)) for 

every w E A. This proves the necessity. To prove the sufficiency assume M(A) is dense in 

C(Rn) and use the argument as given in Step 2 of the proof of Theorem 1 to show that if 

C1 is dense in C(R) then Cn(A) is dense in C(Rn). I 

Acknowledgement. The proof of Step 4 as given herein is due to Y. Benyamini to whom 

we are most appreciative. 
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