
AN EMPIEUCAL TEST OF OBJECT-BASED

OUTPUT MEASUREMENT METRICS IN A COMPUTER

AIDED SOFTWARE ENGINEERING (CASE) ENVIRONMENT

Rajiv D. Banker

Robert J. Kauffman

Rachna Kumar

Department of Information, Operations, and Management Sciences

Leonard N. Stern School of Business, New York University

44 West 4th Street, New York, NY 10012

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-24

AN EMPIRICAL TEST OF OBJECT-BASED
OUTPUT MEASUREMENT METRICS IN A COMPUTER

AIDED SOFTWARE ENGINEERING (CASE) ENVIRONMENT

by

Rajiv D. Banker
Arthur Andersen Professor of Accounting and Information Systems

Carlson School of Business
University of Minnesota

Robert J. Kauffman
Assistant Professor of Information Systems

Leonard N. Stern School of Business
New York University

and

Rachna Kurnar
Doctoral Program in Information Systems

Leonard N. Stern School of Business
New York University

September, 1991

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working P a ~ e r Series

STERN IS-91-24

Forthcoming in Journal of Management Information Systems.

We wish to acknowledge Mark Baric, Gene Bedell, Tom Lewis and Vivek Wadhwa for the access they provided to
data on software development projects and managers' time throughout our field study of CASE development at the
First Boston Corporation and SEER Technologies. Jon Turner helped us to formulate this research at an early stage
with ideas that are central to this paper. Dani Zweig provided useful suggestions on the content and presentation of
the ideas. We appreciated the helpful critiques of four anonymous reviewers. We also wish to thank Eric Fisher,
Charles Wright and Vannevar Yu for assisting with the data collection. Finally, we thank the National Science
Foundation for partial funding of the data collection under grant #SES-8709044. All errors in this paper are the
responsibility of the authors. An earlier version of this paper was published in the Proceedings of the 1991 Hawaii
International Conference on Systems Sciences, January 1991.

Key Words And Phrases: CASE, computer aided software engineering, cost estimation, function point
analysis, object-based metrics, object point analysis, productivity measurement, reuse, software development,
software economics, software metrics.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

0 BIOGRAPHIES OF THE AUTHORS

RAJIV D. BANKER holds the Arthur Andersen Chair in Accounting and Information
Systems at the Carlson School of Management, University of Minnesota. He received a
doctorate from Harvard Business School, specializing in planning and control systems.
He currently serves on the editorial boards of six journals and as co-editor of the Journal
of Productivity Analysis. He has published over 40 refereed articles. His research
interests include strategic cost management, measuring the business value of information
technology, assessing software development and maintenance productivity and the
economics of information.

ROBERT J. KAUFFMAN is an Assistant Professor at the Stern School of Business at
New York University, where he has taught since 1988. He completed his masters degree
in international affairs at Cornell University, and was later employed as an international
lending and strategic planning officer at a large money center bank in New York City.
He received a doctorate in Information Systems from the Graduate School of Industrial
Administration, Carnegie Mellon University in 1988. His current program of research
involves developing new methodologies for measuring the business value of a broad
spectrum of information technologies, using techniques from management science and
economics. He has published refereed articles in MIS Quarterly, Journal of Management
Information Systems, Information and Software Technologies, and elsewhere.

RACHNA KUMAR is currently in the Doctoral Program in Information Systems at the
Stern of Business, New York University. She received the Master of Science degree in
Physics and Mathematics from the University of Allahabad, India in 1981. Her current
research interests focus on productivity measurement and cost estimation for computer
aided software engineering environments (CASE). Her dissertation work involves a field
study of the performance of object-based productivity metrics in the various CASE life
cycle phases.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

* AN EMPIRICAL TEST OF OB JECT-BASED OUTPUT MEASUREMENT METRICS

IN A COMPUTER AIDED SOFTWARE ENGINEERING (CASE) ENVIRONMENT

ABSTRACT

Existing output measurement metrics for cost estimation and development productivity

need to be re-examined to determine their performance in computer aided software

engineering (CASE) development environments. This paper critiques and empirically

evaluates four approaches to the measurement of outputs. Two of the metrics, raw

function counts and function points, are based on the function point analysis methodology

pioneered by Albrecht and Gaffney at IBM (ALBR83). The second two, object counts

and object points, are based on a new approach -- object points ana2ysk -- that is

introduced here for the first time. The latter metrics are specialized for output

measurement in object-based CASE environments that include a centralized object

repository. Estimation results for nineteen large-scale CASE projects show that the new

metrics have the potential to yield as accurate, yet easier to obtain estimates than

function points-based measures.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

1. INTRODUCTION

The productivity impacts and business value implications of computer aided software

engineering (CASE) tools are of increasing concern to information systems researchers

and practitioners in the software development community. However, convincing results

in this area have been difficult to obtain (NORM89, BANK91B). The lack of results can

be attributed to a number of difficulties ranging from poor data availability to limitations

of current evaluation approaches (KEME89, KEYE91). Thus there is substantial

motivation to conduct research on measurement approaches that are conducive to

building a cumulative base of valid and reliable estimates for the outputs and process of

CASE development. a
1.1. The Research Problem: Estimation and Productivity Assessment in CASE

Environments

A survey recently conducted by SoJiware Magazine reported that only 13% of the firms in

a sample of 196 CASE-using firms surveyed had a productivity measurement program of

any kind in place (BOUL89). Surveys such as this one indicate the need for

measurement approaches that identify and substantiate CASE-related productivity

improvements. Appropriate measurement approaches will not only allow comparisons

across different CASE development environments, they will also increase the

* effectiveness of management control systems that aim to improve strategic cost

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

2

management by more carefully tracking software development productivity (BANK91A).

However, before measurement can proceed, robust metrics must be established as

measurement units. Existing measurement approaches were developed and validated

for third generation language (3GL) software development environments. The CASE

development environment, however, differs in two ways (SENN90):

* structural@, since systems can reuse the designs and functionality of existing

systems through reusable software modules and routines; and,

* functional@, since the tools that support CASE software development are quite

0 different than those used in traditional development, and actually change the

process itself.

Thus, although well-established methods should be used to improve our understanding of

CASE productivity, they also must be scrutinized and, if necessary, recalibrated to ensure

they remain valid under a new set of development conditions.

This paper examines the issue of output measurement for object-based software in a

computer-aided software engineering environment. It critiques and empirically evaluates

four approaches to the measurement of outputs. Two of the metrics, raw function counts

and function points, are based on the function point anaZysk methodology developed by

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

5

Albrecht and Gaffney at IBM. Function points measure the intrinsic size of the outputs

of software development (ALBR83). The second two, object counts and object points, are

based on a new approach -- object points anaZysis -- that is introduced here for the first

time. This approach involves counting software objects that have been developed. The

metrics are specialized for output measurement in object-based CASE environments that

include a centralized object repository. The central premises of these four metrics are

reviewed in Table 1.

INSERT TABLE 1 ABOUT HERE

We present estimation performance results of the four alternative metrics in terms of

their ability to predict software development effort. Estimation ge~omance in this

research refers to the ability of a software output measurement metric to accurately

predict the amount of software development labor consumed in a project. This will

enable us to assess the extent to which each of the rnetrics actually measures the size of

the software. Our results show that the new metrics have the potential to yield as

accurate, yet easier to obtain estimates than function points-based measures.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

1.2. Function Points As An Output Metric

Function points is a metric for the size of the output delivered by the software

development process. A function point is defined as one end-user business function

(&BR83). This metric was originally employed as a means to track productivity, which

is usually measured in terms of function points delivered per person month of

development effort. Subsequent research has investigated the ability of a priori estimates

of function points to predict the effort required for developing software, and function

points repeatedly has been shown to be a good estimator (mME87, LOW90, RUD084).

The function point analysis procedure requires the analyst to identify the occurrences of

@ each of five unique function types. These include External Inputs, External Outputs,

Logical Internal Files, External Inte$aces and Queries delivered by the software. For the

purposes of this research, we call the sum of all function type occurrences the RAW-

FUNCTION-COUNTS (RFC). In a standard function point analysis, however, this

number is not used. Instead, instances of each function type are identified and then

weighted with numbers that reflect the level of development complexity of a given

function type. These weighted values are then summed to arrive at FUNCTION-

COUNTS (FC). FUNCTION-COUNTS is then adjusted using ratings on fourteen

complexity factors that reflect the complexity of the system requirements and the overall

software development environment. The adjustment factor is called the TECHNICAL-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

* COMPLEXIT-FACTOR (TCF). Finally, FUNCTION-POINTS (FP) is calculated as

FUNCTION-COUNTS * TECHNICAL-COMPLEXITY-FACTOR. (Appendix 1 gives

further details about the content of the complexity levels that lead to FUNCTION-

COUNTS and the characteristics that describe the environmental complexity captured by

the TECHNICAL-COMPLEXITY-FACTOR.)

A number of reasons support the choice of function points as the primary measurement

approach to be evaluated. First, the function points metric is widely accepted as a de

facto industry standard (ALBR83, JONE86, SYM088, LOW9O). Although there are a

variety of approaches to counting function points, including the ESTIMACS (RUBI83),

SPQR (JONE86), MARK I1 (SYM088), International Function Point Users Group * (IFPUG) (IFPU88) and IBM (IBM89) standards, generally the rules for counting

function points have been rigorously defined and agreed upon by their more enthusiastic

users (DREG89, IFPU88). This is especially true for the IFPUG standard. For example,

Software Magazine recently reported on the sharp increase in IFPUG's membership, and

the contribution that the organization has made towards the increasing standardization of

the measurement of function points (KEYE91).

Second, function points also has advantages over source-lines-of-code methods of

software output size estimation. Function points can be estimated earlier in the

development cycle, and are independent of the language and technology used (ALBR83,

JONE88, LOW90). Kemerer (KEME87) reports that function points led to a smaller

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

@ average error rate in estimating software applications, when compared to alternate

output measurement methods, including the popular source-lines-of-code-based models,

COCOMO and SLIM, and ESTIMACS.

Third, a major concern is that measures for software development outputs be robust

across different people who make the estimates and across different estimation methods.

More recent research by Kemerer (KEME90) suggests that function points meets both of

these requirements. He showed that function points are reliable within plus or minus

10% under both circumstances. Apparently the market has already recognized this, since

most CASE customers with measurement plans apparently are basing their productivity

metrics on function points (BOUL89). *
1.3. Data and the CASE Environment Examined in the Study

We obtained data on nineteen projects from a large investment bank in New York City.

The projects were developed and implemented with CASE over a two-year period.

Table 2 presents an overview of some representative projects from this sample.

INSERT TABLE 2 ABOUT HERE

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

The CASE tool that was used to develop these applications evolved as a multi-million

dollar, internally developed software project. Its objective was to increase the

responsiveness of the firm's software development operations, and to reduce the risk that

whatever software was built would become rapidly obsolete. The cornerstone of the

firm's software development strategy was to promote software reusability. (For

additional details of the firm's strategy, see BANK91B.)

The firm's CASE tool set exhibits many of the features of an Integrated CASE

Environment (ICE) (BANK90). In this research, we will use the term ICE: to refer to

application development using CASE tools that automate a set of activities that span the

entire life cycle of software development. Such automation begins with tools to support * the earlier stages of analysis and design, and continues into ;he later stages of code

construction and testing. As a result, ICE allows for the reuse of designs and code in

primary development, as well as in maintenance.

The type of CASE environment present when applications are developed dictates the

variety and range of automated software engineering facilities available for programming.

ICE provides powerful development support utilities, including entity-relationship

modeling, screen and report painters, and 3CL module-integration tools, Its unique

features include:

0
* an object-based approach to applications development. Application

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

programmers use structured, standardized, and rigorously defined objects

and modules as building blocks to encode the functionality required for

applications;

* a centralized repository that stores all modules and objects developed for

applications;

* storage of the application's structure as an abstract object hierarchy in the

repository. This high level structural representation of the application

defines the relationships among the objects that deliver the functionality of

each ICE a~~lication.

The remainder of this paper is organized as follows. Section 2 critiques function point

analysis from the perspective of development in CASE environments. It also discusses

our rationale for testing the RAW-FUNCTION-COUNT metric for CASE-developed

systems, as a short-form variation of FUNCTION-POINTS. Section 3 presents a new

approach to gauging the outputs of software development for object-based CASE

environments: object points ana2ysk. The OBJECT-COUNTS and OBJECT-POINTS

metrics are discussed in detail. Then, in Section 4, the results of our empirical evaluation

of the four output metrics are presented. Section 5 concludes with a consideration of the

requirements that must be met for software output size metrics to better support the

e measurement and estimation of productivity in systems developed using CASE.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

@ 2. FUNCTION POINTS FROM A CASE PERSPECTIW% A CRITIQUE

How do function points stand up to the challenge of measuring software output size in an

object-based CASE environment? What portions of the function point analysis

procedure present problems that can be overcome using revised metrics? In this section,

we will argue that each step in the calculation of function points (as presented in

Appendix 1) needs to be reassessed in light of the relevant CASE characteristics.

2.1. Step 1 -- Identification of Function Types

First, the classification scheme used in the identification of the five function types is not

intuitive for CASE-developed software. The components of the function points

procedure (external inputs, external outputs, external interfaces, queries and logical

internal files) do not follow naturally from the building blocks of an object-based CASE

environment like ICE. In this development environment, the objects themselves define

the functionality of the application. This is shown in the high level structure chart of a

typical ICE application presented in Figure 1.

INSERT FIGURE 1 ABOUT HERE

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

@ The CASE methodology used in object-based ICE development also enforces

rnodularization of application code. When modules and objects are the building blocks of

CASE applications, identification of the five function types will force the analyst lo

expend significant effort to examine the code associated with a module or an object.

Moreover, a sizeable portion of the code may have originated from a powerful feature of

CASE: the ability to generate code. A programmer or analyst who has not written the

actual code and done only the logical design would be forced to deal with the

automatically generated code. Such code may not closely match what the person would

have written. Thus, analyzing CASE-generated code would be an onerous, and most

likely, an inefficient task. This process would likely result in subjectivity and inconsistency

in the classification of the function types, as well as require a large amount of time and * effort on the part of the analyst.

Second, a straightforward gauge of function types will be prone to double-counting the

labor consumed in developing systems with CASE. The central repository in ICE offers

the developer significant opportunities to reuse code (NUNA89). Reused code adds to

the functionality a system delivers without requiring much additional effort. So, when

function points are used for measuring the functionality or size of a CASE-delivered

system, any related software development effort estimates should be adjusted to reflect

the functionality added by reused code that did not require commensurate effort.

* Thus, although the five function types represent the intrinsic functionality of CASE-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

a1

developed systems, it would be useful to have a mechanism that translates functionality

into the more natural building blocks of modules and objects in an object-based CASE

environment. In related research, we have investigated a solution to the problem of

mapping between CASE objects and the function types (BANK90). The proposed

mapping forms the basis of automating function points analysis in ICE. This could

effectively circumvent the problems of effort, time and inconsistency in manually counting

the function points of CASE-delivered systems. However, estimation of function points

remains inefficient and unintuitive in such CASE environments.

2.2. Step 2 -- Classification into Simple, Average and Complex Types

Classification of the instances of the five function types into three levels of complexity is

the second step in function point analysis. This procedure yields FUNCTION-COUNTS.

The original complexity weights that distinguish the different complexity levels were

determined by Albrecht in the 1970s by trial and error (ALBR83). Symons (SYMO88)

concluded that a new set of weights might need to be calibrated for any new technology,

or new development environment. Clearly CASE qualifies as a technology that differs

from the traditional 3GL development activities for which Albrecht's weights were

initially developed.

It is useful to keep in mind that the rationale for decomposing each function type into

simple, average and complex levels came from a realization that each represented a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

12 a different level of functionality delivered to the user. For cost estimation purposes, this

translates into different amounts of time to code each complexity type. However, when

CASE development techniques are used, the differential between the time required to

code a simple type and a complex type may not be as large as in a 3GL development

environment. The ability to do object-based development, to reuse code and to generate

code may contribute to an increased uniformity in the levels of effort required for

developing different complexity types.

Our proposition, then, is that the complexity differentials in CASE FUNCI'ION-

COUNTS may not lead to a significant improvement in estimating the actual

development labor consumed. Thus, the complexity classification used in function points

analysis may not only need recalibration, but in fact, may not be worth the extra effort

when little or no gain in estimation performance is made. In CASE environments that

exhibit some of the characteristics of ICE, it may be worthwhile to consider a simpler,

aggregate count for each of the five function types, without further classification by

complexity level.

Other problems with the classification of function types into three levels of complexity

include increased subjectivity and measurement effort. Level of experience in software

programming -- and by analogy, with CASE tools -- affects an analyst's perception of the

complexity of a function type (LOW90). The time and effort involved in achieving this

0
subclassification through CASE-generated documentation further adds to the cost of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

counting function points.

23. Step 3 -- Adjusting FUNCTION-COUNTS by the TECHNICAL-

COMPLEXITY-FACTOR

Symons (SYM088) advocates a more open-ended approach to the specification of the

factors affecting the environmental complexity of software development activities.

Availability of CASE utilities such as automatic code generation, graphics generation and

screen painting may reduce the development labor required to implement applications

that would score high in terms of the TECHNICAL-COMPLEXITY-FACTOR (TCF)

score. (Refer to Exhibit 1 for details about the components of TCF.) Moreover, in the

integrated CASE environment we have been studying, reuse affects development effort

far more than any other factor (BANK91B). In short, not all of the fourteen factors on

the list for traditional 3GL development may still be relevant in CASE-based system

development.

As a result, TCF may not explain a significant portion of the variation in labor consumed

in developing a CASE-based software application. So the time and effort spent in

calculating TCF would not be of value. (Note in Exhibit 1 that TCF can take on values

in the range of .65 to 1.35, and thus can adjust the final number of function points no

more than 35%.)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

14

@ Thus, it is worthwhile to assess the predictive ability of TCF and its components. At the

same time, the effect of software reusability reuse needs to be considered in more detail

for the measurement procedure to be appropriate for CASE.

2.4. RAW-FUNCTION-COUNTS: A Proposed Short Form Variation of Function Points

Based on interviews with ICE software development managers and this critique, we

propose RAW-FUNCTION-COUNTS, a short form variation of FUNCTION-POINTS as

a candidate metric appropriate for measuring outputs from object-based CASE

environments. This metric is defined as follows:

5

RAW- FUNCTION- COUNTS = C FUNCTION- TYPE- INSTRNCESt
t=l

where

FUNCTION-WE-INSTANCES = total number of instances offunction ype t in an
application;

t = function types (External Inputs, External Outputs,
Queries, External Inte$aces and Logical Internal
Files).

Step 1 from the function points analysis procedure is retained in the calculation of the

RAW-FUNCTION-COUNTS metric. However, once all of the instances of the five

function types have been identified, a simple sum is computed. Note that, unlike

function point analysis, RAW-FUNCTION-COUNTS are not separated into different

complexity levels, and weighted as in Step 2, nor are they ad~usted for external

complexity as in Step 3.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

IJ

@ We will soon present results to compare RAW-FUNaION-COUNTS and FUNCTION-

POINTS in terms of their ability to predict development labor for ICE projects. This

comparison will provide justification for the proposed elimination of Steps 2 and 3 from

the function points procedure as a means of saving time and effort, without significant

loss in the predictive power of cost estimation for ICE projects.

3. A NEW APPROACH TO OUTPUT SIZE MEASUREMENT FOR CASE

The data we have available on nineteen investment banking projects developed using

ICE offers an interesting opportunity to test these metrics. Though we have indicated at

the outset that object-based ICE may not be representative of all CASE tools available in

the market today, nevertheless object-based and object-oriented development methods

increasingly are utilized in CASE environments.' Further, they are widely believed to

represent the standard analysis and design, and construction methodologies for software

development in the 1990s (BOUL.9, COLD90).

lThe term object-based CASE is used to distinguish development environments like
ICE, and the reader should not confuse this development environment with those which
use the object-oriented approach. The primary differences are: (1) object-based
development does not allow instances of object classes to be classes themselves; and (2)
the objects used in object-based CASE have no special "inheritance properties"
associated with the object-oriented approach. The interested reader should refer to
BOOC89 for additional details on the distinctions between the object-based and object-
oriented approaches. In addition, MEYE88 provides a thorough discussion of the object- * oriented paradigm of software construction.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

@ 3.1. Object-Based Development in ICE

ICE applications are comprised of objects that act as building blocks, which the

programmer uses to synthesize the functionality required by an application system.

Objects provide specific, well-defined functionality in handy, ready-to-use chunks of code.

Definitions and code contents of all such objects are stored in the central repository which

enforces standardization conventions regarding the definitions of objects of various types.

An object need only be written once, and all subsequent applications that need to deliver

similar functionality can make use of the relevant object from the repository. Thus, if a

system needs to deliver functionality not already embodied in an existing object, a new

object may be created according to the standard conventions for its definition. This

discipline in the object storage and application version-management features of the

central repository streamlines the process of creating software by enabling the reuse of

existing objects.

The central repository stores information about the different kinds of objects used in

applications developed with the tool. Examples of object types defined for the CASE

tool we studied are: RULE SETS, 3GL MODULES, SCREEN DEFINITIONS and

USER REPORTS. Each object type is defined rigorously in order to make the process

of software development conducive to object reuse. A RULE SET is a collection of

instructions and routines written with the high level language of the CASE tool. A

RULE SET would be thought of as "the program" if this were 3GL development. As

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

1 /

such, RULE SETS offer the developer extensive flexibility in encoding functionality and

generally allow all of the most commonly required functions to be constructed. For more

complex or uncommon functions, a 3GL MODULE object can be constructed or reused.

A 3GL MODULE most often represents a pre-compiled procedure, originally written

using a third generation language. A SCREEN DEFINITION is the logical

representation of an on-screen image, and delivers to the user the functionality that

would normally be associated with the user interface. Finally, a USER REPORT means

much the same as it does in development environments other than ICE.

All objects associated with an application are functionally organized into an object

hierarchy, which is stored in the central repository. An application consists exclusively of

@ these objects and each application can be identified by a high-level BUSINESS

PROCESS at the root of the hierarchy. A BUSINESS PROCESS calls other RULE

SETS, which in turn use other RULE SETS or 3GL MODULES. These in turn can

communicate with a SCREEN DEFINITION, or create a USER REPORT. (Figure 1,

presented earlier, provides the reader with an idea of the relationships among the

objects.)

The relationships between objects (which RULE uses which 3GL MODULE, which

SCREEN invokes which MEW, etc.) are themselves stored in the central repository.

Collectively, the set of object instances and relationships between them make up the

* model of an application, and this model subsequently can be used by an analyst to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

I8

identify the objects and the object instances that comprise an application. Identification

of such objects has two important benefits. First, this process follows the natural building

process of CASE systems, is intuitive, and therefore has the potential to be more

accurate and consistent. Second, the representation of the application stored in the

repository can be utilized to facilitate the automation of object identification. Such

automation would lead to considerable savings in the effort and cost involved in

collecting information. about the objects used, and motivate implementation of revised

procedures for CASE output measurement.

3.2. Object Point Analysis: A New Direction for Software Output Size Metrics

Do objects represent the functionality of an ICE application? Will knowing the number

of objects that comprise a system provide sufficient information to estimate the labor

required to build it? Is object point anaZjsis a useful analogy for function point analysis in

development environments like ICE? We will argue that the size and functionality

delivered by an ICE application can be derived from the aggregation of the objects used

to build it.

To explore these questions further, we conducted two sets of interviews with managers

and analysts experienced in the use of ICE within the organization. The first set involved

Delphi sessions in which groups of four or five project managers were asked to estimate

the time required to build a small application involving a wide variety of functionality

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

a requirements. The Delphi sessions were taped for later analysis. To expand on the

themes that unified the approaches used for reaching group estimates of development

labor, we conducted a second set of individual follow-up interviews. Project managers

responsible for developing and estimating projects were asked more focused questions

regarding how they would estimate development labor using ICE objects as the basis of

their estimates.

The results of our Delphi sessions and individual interviews indicated that project

managers employ estimation heuristics to assess the number of different types of objects

that need to be developed for a project. Use of heuristics by experts for the estimation

of software development costs has been reported previously in other development

environments (VICI89). Using these heuristics, an ICE project manager initially

estimates the number of RULE SETS, 3GL MODULES, SCREEN DEFINITIONS and

USER REPORTS that he believes will comprise the application software that is to be

delivered.

However, similar to the function types in function points, different objects exhibit

different levels of complexity and functionality, and also require different amounts of

development labor to construct. The project managers we interviewed classified

occurrences of object types into three levels of complexity. Each complexity level within

an object type was regarded as requiring a different number of days to develop. Project

e managers9 object-effort estimates are summarized in Table 3 below in terms of the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

* average time required to build o given object type.

INSERT TABLE 3 ABOUT HERE

We utilize the means of their relative effort estimates for the object complexity levels

because we have not yet fully explored the set of dimensions upon which the managers

classify objects into complexity levels. A deeper investigation into the nature of heuristics

for estimation and classification of objects in ICE environments is required in order to

specify dimensions of object complexity. We will then be in a position to generate * objecteffort tables from a database of actual projects developed with ICE.

Two new object-based output measures are suggested by our analysis. The first,

OBJECT-COUNTS, is determined by summing the instances of individual objects of the

four types. The second, OBJECT-POINTS, is determined by weighting each object type

by the development effort associated with it shown in Table 3. OBJECT-COUNTS and

OBJECT-POINTS are defined more formally below:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

4

OBJECT- COUNTS = C OBJECT- INSTANCE,
t=l

4

OBJECT- POINTS = C OBJECT- INSTANCE, * OBJECT-EFFORT- WEIGHT,
t=l

where

OBJECT-INSTANCE, = total number of instances of object type t in an ICE
application;

OHECT-EFFORT- WEIGHT = average development effort associated with object
type t, based on project manager heuristics;

t = object type (RULE SE7: 3GL MODULE,
SCREEN DEFINITION and USER REPORT).

@
Hereafter, we will refer to OBJECT-COUNTS and OBJECT-POINTS as object points

anaQsis metrics.

4. EVALUATION OF ALTERNATE METRICS FOR MEASURING CASE OUTPUTS

We next compare the object points analysis metrics, OBJECT-COUNTS and OBJECT-

POINTS, with the function point analysis-related metrics, RAW-FUNCTION-COUNTS

and FUNCTION-POINTS, as candidates for the measurement of outputs in ob~ect-based

CASE development.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

4.1. Modeling Output Metric Performance

To test the performance of the four metrics for estimation of software development

labor, we estimated a set of regression models of similar functional form to predict

development efsort in terms of each of the output metrics. The regression results can be

used to indicate the extent to which a given output metric is able to explain the variance

in development effort, after it has been adjusted to reflect the beneficial leverage on

productivity created by including reused code. When high levels of reuse are observed,

the resulting functionality of a system alone will not be a very good predictor of the labor

required to build it: reused code does not require an equivalent amount of labor input

to construct and to implement.

a
For the functionality embodied in the reused code to be reflected in the development

labor logged against the project, we adjusted PERSON-MONTHS of effort by a factor

that represents a rough estimate of the leverage on development productivity provided by

reused code (BANK90). This adjustment can be effected using a metric called REUSE-

LEVERAGE. This measure for reuse is based on a second metric called NEW-ONECT-

PERCENT9 that we have proposed in related CASE productivity research (BANK91B).

NEW-OBJECT-PERCENT is meant to provide a reading on the portion of an

application that must be built from scratch in a CASE environment that supports

reusability. As the value for NEW-OBJECT-PERCENT approaches 100%, no leverage

e is created.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

L3

@ Formal definitions for NEW-OBJECT-PERCENT and REUSE-LEVERAGE are given

below:

NEW-OB JECT -PCT =
NUMBER-UNIQUE-OBJECTS-BUILT-FOR-APPLICATION
TOTAL-NUMBER-OBJECTS-COMPRISING- APPLICATION

REUSE -Lh'VERAGE =
I

NEW -0B JECT -PCT

Our metrics for measuring reuse agree with the reuse measurement approaches

advocated by Neighbors (NEIG84) for 3GL environments. REUSE-LEVERAGE, as the

inverse of NEW-CODE-PERCENT, measures the average number of times application

ob~ects are reused within an application (BANK9O). This is a leverage metric, which

@ means that the functionality delivered through reusable software would odd to the

required labor estimates, if it were necessary to built the same functionality from scratch.

Of course, in CASE development with opportunities to reuse existing software, this

additional labor need never be expended. Thus, in order to use existing metrics that

capture the functionality of the outputs of software development to predict the labor

needed, we adjust PERSON-DAYS expended by multiplying it by REUSE-LEVERAGE.

The estimation model we used to compare the various output metrics has the following

mathematical form:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

24

PERSON-MONTHS *

+ (82 * OUTPUT-METRIC * DUMMY2) + €

where

PERSON-MONTHS = number of person months of development labor
consumed in construct the project;

REUSE-LEVERAGE = total number of objects used in an application
divided by the number of unique objects used in
the application;

OUTPUT-METRIC = application output, as measured by FUNCTION-
POINTS, RA W-FUNCTION-COUNTS OIUECT-
COUNTS or OIUECT-POINTS;

DUMlMI1 = 1 if project was constructed in Year 1, and 0
otherwise;

= d ifproject was constructed in Year 2, and 0
otherwise;

80, 81, 82 = parameters to be estimated in the regression;

€2 = a normal@ distributed error term.

A model incorporating the binary variables, DUMMY1 and DUMMY2, enables us to

represent information about the relative productivity of the twelve projects constructed in

Year 1, when the CASE tool itself was itself under construction, and the seven projects

developed later in Year 2. Year 2 projects tended to be much larger development

efforts, where the power of a more well-developed CASE development tool set was

evident and higher levels of reuse were observed. As a result, each of the years of ICE

a project development exhibited different productivity levels. Our study of Year 2 projects

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

@ indicated a substantial gain in productivity when compared to Year 1 projects

(BANK91B). Clearly, developers' use of the tool had begun to mature by Year 2. The

model specified above accounts for this difference in development productivity over the

two years,

4.2, Estimation Performance Results

Data for the measures used to estimate the regression models discussed above are

presented in Table 4. Our first step was to examine correlations between the output

metrics. Table 5 presents the correlation results.

INSERT TABLES 4 AND 5 ABOUT HERE

The correlation between RAW-FUNCTION-COUNTS and FUNCTION-POINTS was

.981, while the correlations between the function point metrics and the ob~ect-based

metrics, OBJECT-COUNTS and OBJECT-POINTS, were somewhat lower (.889

maximum). Since function point analysis is well-established and well-validated,

correlations between FUNCTION-POINTS and the object-based metrics are an

indication of the convergent validiy of the proposed metrics. Low correlations, on the

other hand, could mean that the proposed metrics are not good measures of the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

26 * construct that function points purports to measure, namely application functionality that

is delivered to the user. Alternatively, low correlations could indicate that the proposed

object-based metrics complement FUNCTION-POINTS by measuring a construct that is

ignored by FUNCTION-POINTS.

For our data set, the easier to collect RAW-FUNCTION-COUNT metric potentially

could be as useful a measure of output as FUNCTION-POINTS, if estimation accuracy

can be maintained. The same, however, may not be true for the object point analysis

metrics. OBJECT-COUNTS and OBJECT-POINTS may measure a different aspect of

the applications' functionality, or an entirely different characteristic of the output that we

have not yet identified.

Our next step was to examine the quality of the development effort estimates produced

by the metrics. Regression results for the four estimation models discussed above are

presented in Table 6, including information about the estimated parameters and the fit of

the models in terms of R2.

INSERT TABLE 6 ABOUT HERE

e The RAW-FUNCTION-COUNTS and FUNCTION-POINTS metrics were estimated to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

explain about 76% and 75% of the variance in PERSON-MONTHS * REUSE,

respectively. The similarity between the two metrics' estimation performance is readily

explained. Projects in the data set exhibited relatively similar values for the

TECHNICAL-COMPLEXITY-FACTOR representing the conlplexity of the

implementation environment: this did not vary much across the applications. Thus, the

results support the proposition that estimating complexity differentials for ICE-delivered

FUNCTION-COUNTS may not lead to substantial improvement in estimating

development labor.

OBJECT-COUNTS demonstrated a similar performance in estimating PERSON-

MONTHS * REUSE. R2 for the estimation model involving OBJECT-COUNTS fell to

70%, a 6.7% decrease from FUNCTION-POINTS. The OBJECT-POINTS metric

performed marginally better than OBJECT-COUNTS; it demonstrated the ability to

explain 73% of the variance in the output metric, approximating the performance of

FUNCTION-POINTS. Once again, the regression results indicate the goodness of fit of

the model, and thereby provide evidence in support of the estimation pe$ormance of the

metrics. These results, however, are inconclusive insofar as whether one metric is better

than the other as a measure of the intrinsic size and functionality of the CASE-developed

software. A larger data is required to answer this question.

To give the reader a sense of the estimation qualities of each of the four metrics,

estimates for development labor for the nineteen projects were calculated based on the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

28

@ coefficients obtained from the regression models. These estimates are shown in Table '7.

along with the actual values of PERSON-MONTHS of development labor.

INSERT TABLE 7 ABOUT HERE

The third category of results is derived from an interpretation of the parameter estimates

(Bo, B1 and B2). The majority of the parameters obtained from these models were

positive and significantly different from zero. A side result of the modeling approach we

have used is that it provides information on the productivity gain ratios between Year 1 a and Year 2 development. based on the estimated parameters from the regressions.

Table 8 presents the productivity gain ratios, R1/B2, for each of the output metrics

estimations.

-

INSERT TABLE 8 ABOUT HERE

Although the Year 1 to Year 2 productivity gain ratios exhibit considerable variance, they

generally demonstrate the extent to which productivity increased in the firm's use of

CASE over the two years. The low end of the range of productivity gain ratios is about

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

29

2.44 times for RAW-FUNCTION-COUNTS. Using FUNCTION-POINTS and OBJECT-

COUNTS as estimators led to the largest estimated productivity ratios between the years.

One possible interpretation of these differences is that RAW-FUNCTION-COUNTS

underestimates output because it treats the labor requirements of different complexity

levels uniformly. However, as the functionality and complexity embodied in Year 2

projects increased, underestimation of output by RAW-FUNCTION-COUNTS increased

more than proportionately. As a result, the productivity gain ratio estimated by RAW-

FUNCTION-COUNTS were the least. FUNCTION-POINTS, while accurately capturing

the higher functionality of the more complex applications developed in Year 2, may tend

to overstate the labor required to create them. The mean of the productivity gain ratio

corresponding to the four metrics was 3.68, and this was most closely matched by the

@ productivity gain ratio of OBJECT-POINTS at 3.21. Thus, each of the models provides

clear evidence for the extent of productivity gains observed as use of the CASE tool

matured in the firm.

5. CONCLUDING REMARKS

Our investigation into the performance of two function point analysis-related metrics and

two object-based metrics suggests that there may exist viable alternate approaches for

measuring the outputs of the CASE-development process. This study was conducted as

a an exploratory investigation to provide us with a basis for further developing

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

30 * measurement approaches for object-based CASE environments. The reader should bear

in mind that conclusions regarding the performance of the alternative metrics that we

examined in this study were obtained based on nineteen software development projects

drawn from a single organization. As such, our findings should be interpreted within the

limited validity of the study.

5.1. Contributions

*

The results of this study are summarized in Table 9.

INSERT TABLE 9 ABOUT HERE

Two alternative measurement approaches exhibited strong potential for further

development and validation in object-based CASE environments. The RAW-

FUNCTION-COUNTS metric proved to be comparable to FUNCTION-POINTS in

terms of its estimation performance, and it is readily implemented with less effort and at

a lower cost. We also achieved considerable success in our test of the OBJECT-

COUNTS and OBJECT-POINTS metrics as estimators for software development labor.

Both approach the estimation capabilities exhibited by FUNCTION-POINTS, though

they better match the ways that ICE developers think about the software they build.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

31

Our approach to estimating the productivity gain ratios from the use of CASE in Year 2

versus Year 1 also has important managerial implications for research on CASE

productivity. Although the number of data points available for our analysis was small,

the lessons and insights obtained by studying them carefully can help to build a broader

base of results and experience in the area of CASE productivity assessment. Combining

the results of this research with results we have obtain in related work provides

considerable evidence to suggest that the use and availability of key development

facilities made available with the CASE tool affect productivity. This effect is most likely

enhanced by the wider range of opportunities for reuse and a development environment

that is more stable and better understood by developers.

@ At this stage, we have no information about whether the results would also hold true in

other integrated CASE development environments. This research question can only be

investigated using data sets that involve multiple organizations. However, we believe that

some of the characteristics of the development environment we studied and utilized in

testing the metrics are present in other object-based CASE environments. These include

the use of objects that represent application functionality, opportunities to reuse code

and a centralized repository. If these are available to developers, then there is a

reasonable likelihood that our results will generalize to other CASE environments.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

* 5 2 . Future Research

In future research, we intend to further develop object points analysis as an output size

measurement approach that is tailored to and built into the object-based CASE

development process. The first step we will take is to examine another more detailed

object-based metric in which each object is weighted by the approximate time it takes to

construct. Our Delphi sessions and individual project manager interviews suggested that

project managers may further distinguish among the complexity levels of the various

objects that they build into ICE applications (similar to the function type complexity

levels of function point analysis). Additional work needs to be done to identify the

dimensions of the objects that define their complexity levels. Our intent is to extend the

@ analogy between function point analysis and object point analysis based on empirical

evidence. Perhaps this line of investigation wilI also enable us to determine the set of

circumstances under which metrics that capture application functionality perform better

as cost estimators than metrics that identify application objects. To reach this research

goal, we hope to study a larger set of projects within the same organization and to extend

our analyses to the projects of other organizations that have implemented object-based

ICE.

Another open question is the automation of object points analysis. Object point analysis

reporting tools should be deployed to analyze the changing contents of the repository as

e an application is constructed. Since objects were found to match project managers9

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

mental model of the functionality of software developed with object-based CASE,

information about objects would be useful to promote improved software development

process control. The measurement of OBJECT-POINTS, and another variation that

involves weights for the complexity of objects that make up the application, can be

automated at low cost, once we have solved the problem of dimensioning object

complexity. (See BANK90 for a discussion of how function point analysis and code reuse

analysis can be automated within ICE.)

When senior managers of software development operations have such tools available, the

stage is set for new approaches to the management of software development activities --

process management and process control (HUMP90). To date, the process of tracking

@ software development operations has largely been based on single point estimates of cost

and productivity, for example, made at the inception and completion of a project. But,

the data made available by automating the measurement process as a project proceeds

through the development life cycle offer many possibilities for rich and insightful analyses

that cannot be conducted using traditional performance tracking approaches.

Management can increase its effectiveness by proactively fine-tuning the process of

software development at the project level as it occurs, rather than adjusting it for future

development (KEYE91).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

REFERENCES

ALBR83 Albrecht, A. J. and Gaffney, J. E. "Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science Validati~n,'~
IEEE Transactio~zs on Software Engineering, 96, November 1983, pp. 639-
647.

BANK90 Banker, R. D., Fisher, E., Kauffman, R. J., Wright, C., and Zweig, D.
"Automating Software Development Productivity Metrics," Working Paper,
Center for Research on Information Systems, Stern School of Business,
New York University, October 1990.

BANK91A Banker, R, D., and Kauffman, R. J. "Automated Software Metrics,
Repository Evaluation and Software Asset Management: New Perspectives
for Computer Aided Software Engineering Environments," Working Paper,
Center for Research on Information Systems, Stern School of Business,
New York University, March 1991.

BANK9lB Banker, R. D., and Kauffman, R. J. "Reuse and Functionality: An
Empirical Study of Integrated Computer Aided Software Engineering
(ICASE) Technology at the First Boston Corporation," MIS Quarterly, Fall
1991.

BOUL89 Bouldin, B. M. "CASE: Measuring Productivity -- What Are You
Measuring? Why Are You Measuring It?," Software Magazine, 9:10, August
1989, pp. 30-39.

BOOC89 Booch, G. "What is and What Isn't Object-Oriented Design," Ed
Yburdon's Software Journal, 2:7-8, Summer 1989, pp. 14-21.

DREG89 Dreger, J. B. Function Point Analysis, Prentice Hall, Englewood Cliffs, NJ,
1989.

GOLD90 Goldstein, D.G. "Object Oriented Programming," DEC Professional, 92,
February 1990.

HUMP90 Humphrey, W. S. Managing the Software Process. Addison-Wesley
Publishing, New York, NY, 1990.

IBM89 Application Development Productivity Strategy, World-wide IBM User Group,
Application Development Joint Project, June 1989.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

Proceedings of the International Function Points Users Group, International
Function Points Users Group, 1988.

Jones, T. C. Programming Productivity, McGraw-Hill, 1986.

Jones, T. C. "A New Look At Languages", ComputerWorEd, November 1988.

Kemerer, C. F. "An Empirical Validation of Software Cost Estimation
Models," Communications of The ACM, 305, May 1987, pp. 416-429.

Kemerer, C. F. "An Agenda For Research in the Managerial Evaluation Of
Computer-Aided Software Engineering (CASE) Tool Impacts," Proceedings
of m e 22nd Hawaii International Conference on Systems Sciences, Hawaii,
IEEE, January 1989.

Kemerer, C. F. "Reliability of Function Points Measurement: A Field
Experiment," Working Paper, Sloan School of Management, MIT,
December 1990.

Keyes, J. "Peeling Back Layers of the Quality Equation," Software
Magazine, 11:6, May 1991, pp. 43-61.

Lowg G. C., and Jeffrey, I). R. "Function Points in the Estimation and
Evaluation of the Software Process," IEEE ITiansactions on Software
Erzgineering, 16:l, January 1990, pp. 64-71.

Meyer, B. Object-Oriented Software Construction, Prentice Hall Publishers,
New York, NY, 1988.

Neighbors, J.M. "The DRACO Approach to Constructing Software From
Reusable Components," IEEE Transactions on Software Engineering, SE-
105, September 1984, pp. 564-574.

Norman, R. J., and Nunamaker, J. F. Jr. "CASE Productivity Perceptions of
Software Engineering Professionals," Communications of the ACM, 329,
September 1989, pp. 1102-1108.

Nunamaker, J. F. Jr., and Chen, M. "Software Productivity: A Framework
of Study and an Approach to Reusable Components," Proceedings of the
22nd Hawaii International Conference on System Sciences, Hawaii, IEEE,
January 1989, pp. 957-958.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

36

RUB183 Rubin, H. A. "Macroestimation of Software Development Parameters: The
ESTIMACS System", IEEE Softfair Conference on Software Developenk
Tools, Techniques and Alternatives, 1983.

RUD084 Rudolph, E. E. "Evaluation of a Fourth Generation Language", Proceedings
of ACS and IFIP Joint Symposium on Information Systems," April 1984, pp.
148-165.

SENN90 Senn, J. A, and Wynekoop, J. L. "Computer Aided Software Engineering
(CASE) in Perspective." Working Paper, Information Technology
Management Center, College of Business Administration, Georgia State
University, 1990.

SYR.1088 Symons, C. R. "Function Point Analysis: Difficulties and Improvements,"
IEEE Transactions on Software Engineering, 14:1, January 1988, pp. 2-10.

WCI89 Vicinanza, S., Mukhopadhyay, T., and Prietula, M. J. "Software Effort
Estimation: A Study of Expert Performance," Working Paper 89-002,
Center for the Management of Technology, Graduate School of Industrial
Administration, Carnegie Mellon University.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

APPENDIX 1. THE FUNCTION POINT ANALYSIS PROCEDURE

STEP 1: Identification of Function Types.

Identify each functionality unit and classify it into five user function types:

* External Outputs are items of business information processed by the
computer for the end user.

* External Inputs are data items sent by the user to the computer for
processing, or to make additions, changes or deletions.

* Queries are simple outputs; they are direct inquiries into a database or
master file that look for specific data, use simple keys, require immediate
response, and perform no update functions.

* Logical Internal Files are data stored for an application, as logically viewed
by the user.

* Extental Interface Files are data stored elsewhere by another application,
but used by the one under evaluation.

This step yields a count for each of the five different function types. (For the purposes
of this research, we refer to the sum of the count of the five function types as RAW-
FUNCTION-COUNTS (RFC). The reader should note that this metric is never
calculated within the function points analysis procedure.)

STEP 2: Classification of Simple, Average and Complex Function Types.

The individual counts by function type are further classified into three complexity levels
(Simple, Average, Complex) depending on the number of data elements contained in
each function type instance and the number of files referenced. Each function
complexity subtype is weighted with numbers reflecting the relative effort required to
construct the function. For example, according to Albrecht's weighting scheme, a Simple
Input Type would be weighted by 3, while a Complex Input Type would be weighted by
4. Additional details about the FUNCTION-COMPLEXITY-SCORES follow:

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

38

APPENDIX 1. THE FUNCTION POINT ANALYSIS PROCEDURE (continued)

FUNCTION-CO UNTS (FC) summarizes the weighted counts for the five function types
as follows:

FUNCTION
TYPE (f)

Inputs
outputs
Interfaces
Queries
Files

FmCTION- TYPE, * FUNCTION- COMPLEXITY-SCOREc.
t=l c=1

FUNCTION-COMPLEXITY-SCORES (C)

Simple Average Complex

3 4 6
4 5 7
5 7 10
3 4 6
7 10 15

a
STEP 3: Adjusting FUNCTION-COUNTS by TECHNICAL-COMPLEXITY-FACTOR.

The adjustment factor reflects application and environmental complexity, expressed as
the degree of influence of fourteen "application characteristics" (f) listed below. Each
characteristic is rated on a scale of 0 to 5 (COMPLEXITY-FACTOR-VALUE), and then
all scores are summed. The TECHNICAL-COMPLEXITY-FACTOR (TCF) = .65 +
(-01 * c,=, ,, ,, COMPLEXITY-FACTOR-VALUEf). The fourteen factors are shown
below.

1. Data Communications
2. Distributed Functions
3. Performance
4. Heavily-used Config.
5. Transaction Rate
6. On-line Data Entry
7. End-User Efficiency

8. On-line Update
9. Complex Processing
10. Re-Usability
11. Installation Ease
12. Operational Ease
13. Multiple Sites
14. Facilitate Change

Finally, FUNCTION-POINTS (FP) are calculated as FC * TCF. a
Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

@ TABLE 1. FOUR OUTPUT METRICS FOR CASE COST ESTIMATION AND
DEVlELOPMENT PRODUCTIVITY MEASUREMENT

METRIC DESCRIPTION OF CENTRAL PREMISES OF PROPOSED METRIC

RAW- * Represents a simple count of the five function types from function
FUNCTION- point analysis: Inputs, Outputs, Queries, Interfaces and Files.
COUNTS * Function type weighting and environmental complexity measures

associated with FUNCTION-POINTS may lead to over-estimates of
labor required.

* CASE development tends to make most tasks less labor-intensive.
* This metric differs from FUNCTION-COUNTS in function point

analysis; FUNCTION-COUNTS incorporates multiple levels of
complexity, according to which each function type are weighted.

FUNCTION- * Recognizes that functionality, as opposed to source-lines-of-code,
POINTS may provide best estimate of development effort consumed.

* Five primitive function types common to all software were proposed
by Albrecht (ALBR83).

* Function types are weighted according to relative complexity in a
given application. Weighted scores are summed, and adjusted by an
environmental complexity score, resulting in FUNCTION-POINTS.

* FUNCTION-POINTS is the base case for this analysis.

OBJECT- * Analogous to RAW-FUNCTION-COUNTS in function point
COUNTS analysis.

* Represents a simple count of all objects in application's object
hierarchy stored in repository.

* Objects in object-based CASE development environment offer a
conceptually simple measure of functionality.

* Results of our field study suggest that CASE development methods
tend to reduce relative complexity of creating software functionality.

* Objects only counted, not weighted to distinguish different levels of
functionality that would require different levels of labor.

OBJECT- * Analogous to FUNCTION-POINTS, however, utilizes weighted
POINTS OBJECT-COUNTS instead of FUNCTION-COUNTS.

* Weights applied to OBJECT-COUNTS were determined based on
extensive project manager interviews and group estimation sessions.

* Managers interviewed rejected premise that weighted object
estimates required further adjustment to represent environmental

0
complexity of CASE development.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

TABLE 2. AN OVERVIEW OF SOFTWARE PROJECTS DEW3LOPED USING ICE

APPLICATION DESCRIPTION

Dealer's Clearance Designed to improve operational and treasury management
productivity by automating settlement, providing on-line, real-
time display of clearances, and projected end-of-day securities
and cash balance positions.

- -

General Ledger Interface A table-driven, self-balancing system that automatically posts
entries from every transaction processing system included in
NTPA. As a result, manual reconciliations are never
required.

Firm Inventory/ Maintains information for firm-wide management of foreign
Foreign Securities securities and currencies. Tracks individual trade lots and can
& Currencies determine profit and loss using various trading accounting

bases. ' Floor Broker Manages fee and discount information for all brokers used by
the firm. The system maintains payment histories linked to
exchange, broker and trading volume.

Product Master This system supports identification of financial products
across business areas. It enables each business group to
classify and process securities according to its own business
requirements, and it allows trading areas to establish new
product types in the process of conducting business.

Real-time Firm Inventory Trading management uses this system to monitor trading
positions, exposures, and intraday profit and loss by product,
account, desk, department, or firm-wide. This system also
enables traders to set up and monitor a strategy by linking
several positions.

Note: This table is adapted from Banker and Kauffman (BANBIB).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

* TABLE 3. PROJECT MANAGER DEVELOPMENT EFFORT HEURISTICS

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

PROJECT MANAGER EFFORT
HEURISTICS (AVERAGE)

RULE SETS

3GL MODULES

SCREEN DEFINITIONS

USER REPORTS

3 days

10 days

2 days

5 days

TABLE 4. DATA FOR FOUR SOFIlliARE DEVELOPMENT OUTPUT METRICS

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

OBJECT-
COUNTS

202
2 7
59
74
46

6 9
7 7
2 9
2 7
7 1

2 9
5 7

368
187
335

2 3
478
619
2 59

159.79

619

FUNCTION-
POINTS

2250.08
170.56
300.14
264.60
1273.70

352.50
494.08
97.92
148.41
385.14

1092.00
241.82
3812.40
1772.40
3475.20

135.00
5876.25
3712.80
886.58

1407.45

5876.25

OBJECT-
POINTS

1768
144
499
600
2 7 1

523
231
87
123
376

124
276
2258
1262
2023

163
2698
3657
1915

999.89

3657

RAW-
FUNCTION-
COUNTS

522
5 1
8 2
64

286

108
6 5
24
2 7
83

234
46
559
372
587

2 8
865
608
194

252.89

865

COUNT

NEW-
OBJECT-
PERCENT

23.2%
100.0%
54.3%
35.1%
61.0%

49.3%
48.1%
93.1%
96.2%
69.0%

44.8%
45.7%
26.6%
34.7%
29.2%

78.1%
23.1%
16.1%
32.8%

50.5%

100,0%

 YEAR^/
PROJ, YEAR 2

PROJECT?

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18

YEAR 1 : 12
YEAR 2: 7

YEAR 1
YEAR 1
YEAR 1
YEAR 1
YEAR 1

YEAR 1
YEAR 1
YEAR 1
YEAR 1
YEAR 1

YEAR 1
YEAR 1
YEAR 2
YEAR 2
YEAR 2

YEAR 2
YEAR 2
YEAR 2

- -

1 19 1
MEAN

MAX

YEAR 2

- -
- -

-- - - - - - -

TABLE 5, OUTPUT METRICS CORRELATION MATRIX

OUTPUT METRICS

RAW-FUNCTION-

FUNCTION-POINTS

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

@ TABLE 6. RESULTS FOR ESTIMATION PERFORMANCE OF METRICS

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

REPORTED
VALUE OF
R-SQUARED

.76

.75

.70

.73

COEFFICIENT ESTIMATES
OUTPUT (SIGNIFICANCE LEVELS)
MEASUREMENT
METRIC no n 1

0.39
(.001)

0.09
(.001)

1.13
(.001)

0.13
(.001)

RAW-FUNCTION-COUNTS

FUNCTION-POINTS

OBJECT-COUNTS

OBJECT-POINTS

82

0.16
(.001)

0.02
(.001)

0.25
(.001)

0.04
(,001)

13.14
(.26)

14.88
(.20)

-2.80
(085)

12.63
(.31)

45 * TABLE 7. ACTUAL AND ESTIMATED LABOR USING FOUR OUTPUT METRICS

Note 1: In each case above, the estimated coefficients presented in Table 6 were applied
to the output metric data from Table 4 utilizing the model shown below --

PERSON-MONTHS * REUSE-LEVERAGE = RO + (Bl * OUTPUT-METRIC * D U .)

+ (R2 * OUTPUT-METRIC * DUMMY2) + €

Since the application of the estimated coefficients to the data yields (PERSON-
MONTHS * REUSE-LEVERAGE), the final step is to divide by the reuse measure,
REUSE-LEVERAGE, to arrive at estimated PERSON-MONTHS of software
development labor.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

* TABLE 8. YEAR 1 AND YEAR 2 PRODUCTIVITY RATIOS BASED ON ESTIMATED
PARAMETERS

Note: The productivity gain ratio is computed as 13,/Bz. The values presented in table
should be interpreted as the ratio of additional labor required in Year 1 compared
to what was required in Year 2.

PRODUCTIVITY GAIN RATIO:
OUTPUT MEASUREMENT YEAR 1 VERSUS YEAR 2

(BASED ON B PARAMETERS)

Center for Digital Economy Research
Sterri School of Business
IVorking Paper 19-91-24

RAW-FUNCTION-COUNTS

FUNCTION-POINTS

OBJECT-COUNTS

OBJECT-POINTS

0.39/0.16 = 2.44

0.09/0.02 = 4.50

1.13/0.25 = 4.52

0.13/0.04 = 3.25

47

@ TABLE 9. STUDY FINDINGS: FOUR OUTPUT METRICS FOR CASE OUTPUT
MEASUREMENT

METRIC OVERALL PERFORMANCE OF THE PROPOSED METRIC

RAW- *
FUNCTION-
COUNTS *

Performed approximately as well as FUNCTION-POINTS in
estimating development labor, explaining 76% of the variance.
Tends to understate the productivity gain ratio for Year 2 to Year 1
projects at 2.44 times; probably due to lack of treatment of
complexity of functions counted.
Relatively high correlation between RAW-FUNCTION-COUNTS
and FUNCTION-POINTS possible since TECHNICAL
COMPLEXITY-FACTORS for ICE project did not vary much.
Given the small difference in estimation performance, RAW-
FUNCTION-COUNTS should be a candidate short-form metric for
use with ICE projects.

FUNCTION- *
POINTS

Base case metric for this research explained 75% of variance in
development labor.
Year 2 to Year 1 productivity gain ratio estimated at 4.50 times.
Thus, FUNCTION-POINTS provides a good, though costly and
labor-intensive metric to collect.

OBJECT- * OBJECT-COUNTS performed the poorest of the four metrics,
COUNTS explaining only 70% of the variance of development labor.

* Project manager interviews and Delphi estimation sessions suggested
that it makes sense to weight objects by object type to capture
construction complexity.

* Provided high end estimate of Year 2 to Year 1 productivity gain
ratio at 4.52 times, similar to FUNCTION-POINTS.

* Given the ease and low cost of use, OBJECT-COUNTS appears to
provide a useful metric for ICE software development project
management.

OBJECT- * OBJECT-POINTS appear to provide a slight improvement over
POINTS OBJECT-COUNTS in estimation performance; the former metric

explained 73% of the variance of development labor.
* OBJECT-POINTS most closely matches the mean of the four Year

2 to Year 1 productivity gain rations, 3.68, at 3.25 times.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

48

FIGURE 1. REPOSITORY OBJECTS IN THE INTEGRATED CASE ENVIRONMENT

Business
Function

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-91-24

Process #1 Process #2 Process 63
(Application (Application (Application

L --------- ----------
I* I +I +I
I
I

SET B SET A SET C
I I

