
TEMPORALLY ACTIVE DATABASES :=
ACTIVE DATABASES $- TIME

by

Alex Tuzhilin
Assist ant Professor

Information Systems Department
Leonard N. Stern School of Business

New York University
New York. NY 10003

December 1991

Center for Research on Information Systems
Information Systems Department

Leonard N. Stern School of Business
New York University

Working P a ~ e r Series

STERN IS-91-43

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

Temporally Active Databases := Active Databases + Time

Abstract

A method of adding time to active databases is described in this paper. This is achieved
by incorporating operators of temporal logic, temporal actions, and different temporal clauses
into the Event-Condition-Action model of a rule. In addition, a temporal recognize-act cycle
is described and new temporal conflict resolution strategies are proposed. A conflict avoidance
strategy for temporal rules is also described.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

1 Introduction

There has been much work done recently on studying active databases [dMS88, MD89, WF90,

SJGPSO, HCKWSO, GJ91, SPAM911. However, few of the existing proposals deal with the temporal

domain. In the initial description of the HiPAC project [Dea88], the importance of supporting

temporal constructs is explicitly stated. However, in the subsequent description of HiPAC system

[MD89], the authors do not specify how to incorporate time into their model. Another active

database, Ode [GJSl], supports timed triggers. Once activated, a timed trigger must fire within

some time period; otherwise a timeout action, if any, is executed. Nevertheless, both systems

provide only initial approaches to the subject of incorporating time in active databases.

On the other hand, many applications of active databases deal with the temporal domain. For

example, in a banking application, we may need to state a rule that if a customer deposits an out-of-

state check to his/her account, it cannot be withdrawn for 7 working days. Also in a stock trading

system, we may want to say that if a stock has been steadily declining in the past 5 hours, then it

should be sold. In addition, we also believe that the support for time in active databases can be

useful in manufacturing, communication, process control, and command and control applications.

In this paper, we study temporally active databases. We assume that rules contain predicates

that change over time, and also include actions that occur over some periods of time. For example,

the following statement

after a customer deposited a check to his/her bank account and if the customer had a

good banking record in the past, then clear the check within the next 24 hours.

can be expressed as a temporal rule:

after insert deposited~checks(customer, check)
if not sometime-past bad-check(customer)
then insert sometime (within 24hours) cleared~checks(customer , check)

where sometime-past P (x) is a temporal operator that is true when the temporal predicate P (x)

was true sometime in the past, and insertsometime (within T) P(x) is a temporal action that

says that x is inserted in predicate P within the next T time units. This rule says that if the insert

operation occurred on the relation deposited-checks in the past, and if the customer has not

written bad checks in the past, then the insert operation will occur on the relation cleared-checks

within the next 24 hours.

As illustrated by this example, we consider three temporal categories: predicates, events and

actions. Temporal predicates, such as deposited-checks and cleared-checks, change over time,

2
Center for Digital Ecol lol~~y Research
Stern School o f Business
W o r h g Paper IS-91-43

and their instances form a temporal database ICW83, Sno87, Gad88, TC901. Temporal events, such

as inser t deposited-checks (customer, check), occur instantaneously in time and correspond

to the events in active non-temporal databases [dMS88, MD89, WF90, SJGPSO, GJ91, SPAM911.

However, temporal actions differ from the actions in the non-temporal case. A temporal action

is an update operation with some temporal constraint attached to it. For example, the ac-

tion insert-sometime (within 244ours) cleared-checks (customer, check) inserts the tu-

ple (customer, check) into relation cleared-checks sometime within the next 24 hours, and the

action insert-and-keep (for T = Gmonths) CD(customer, account, amount) inserts a new

certificate of deposit in the CD relation and keeps it there for six months (this means that no dele-

tions of the newly inserted tuple can occur for six months). The exact semantics of temporal actions

will be defined in Section 4.

In the previous example, the temporal clause a f te r says that the rule can fire only after some

temporal event or action occurred in the past, e.g. after the tuple (customer, check) has been

inserted into the predicate deposited-checks.

In general, temporal rules check if certain conditions hold at present or held in the past, and

also if certain temporal events or actions happen at present or occurred in the past. If all the

conditions stated in the rule are true then the temporal rule "fires" and schedules some temporal

actions in the future. By allowing temporal actions and operators of temporal logic [Kro87] to

appear in the antecedent part of a rule and by supporting additional temporal clauses, such as

before, af ter , and while, we extend the traditional ECA model of a rule [MD89] to the Action-

Event-Condition-Action (AECA) model of a temporal rule in active databases.

We make the following contributions in this paper. First, we extend the ECA model of an active

rule to incorporate time. This is achieved by supporting temporal operators, temporal actions, and

before, af ter , and while clauses in the antecedent part of a rule, and temporal actions in the

consequent part of a rule. Second, we describe a temporal recognize-act cycle including some

temporal conflict resolution strategies and a method of compressing relevant parts of the past

database history to the present. Finally, we describe a method that avoids conflicts among rules

for the temporal conflict resolution strategies presented in the paper.

We are interested in the real time active databases. This means that it is generally not known

when an update operation will actually occur once an update is issued. For example, it is not

known when a customer record will be updated by an ATM machine because other users are trying

to access database concurrently. This gives rise to a hard problem of meeting real-time temporal

constraints, such as assuring that the customer record will be updated within 5 seconds.

Since the main objective of this paper is to describe the syntax and the semantics of temporally

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-43

active rules, we do not address the problem of real-time scheduling of temporal actions to meet

various temporal constraints. Therefore, we make a simplifying assumption that all the database

updates occur instantaneously. In the ATM application, this amounts to an instantaneous update

of the customer record assuming there are no conflicting actions scheduled before. This assumption

is valid if times specified in temporal actions are much greater than an average time it takes t o do

an update. For example, if a temporal action deposits a check into a bank account and keeps it for

3 business days, then the amount of time it takes to perform the deposit transaction (usually a few

seconds) is negligible in comparison to three days. Furthermore, the assumption is also valid if we

deal with a single user database that does not require concurrency control. In this case, a database

is usually updated faster than in the case when a concurrency control mechanism is in place.

Another problem which we do not address in the paper is the issue of integration of transactions

and temporal rules. Since both transactions and rules occur in time, it becomes an interesting

problem how to integrate them in a coherent manner. We leave the problems of real-time scheduling

and tra.nsaction support as a topic of future research and will briefly touch upon them in Section 7.

2 Background: Some Concepts from Temporal Logic

The syntax of a predicate temporal logic is obtained from the first-order logic by adding various

future temporal operators such as sometime-future (o), always-future (a), next (o), unt i l and

their past "mirror" images sometime-past (A), always-past(.), previous (a), and since to its

syntax [Kro87]. For example, sometime-future A is true now, if A is true at some time in the

future, and always-future A is true now if A is always true in the future. Note that function

symbols are allowed in temporal logic formulas since they are based on first-order logic. The

temporal logic consisting of the temporal operators listed above is called the U;S temporal logic

[GMSIJ~.

However, we will also consider other temporal operators in this paper, such as before, a f te r ,

while [Kro87], and bounded temporal operators [Tuzglb]. The meaning of some of the bounded

temporal operators is presented in Fig. 12. Furthermore, we will consider several derived bounded

operators that are obtained from the bounded operators by making specific assumptions about

the bounds for these operators. The meaning of some of the derived operators for the bounded

operator sometime-future is presented in Fig. 2. The meanings of derived operators for bounded

operators sometime-past, always-future, and always-past is defined similarly to the meanings

of derived operators for sometime-future presented in Fig. 2. Furthermore, it follows from the

'It stands for the operators Until and Since.
'Note that times TI and T2 in the second operator in Fig. 1 are reversed because we assume that T2 occurred

before TI in the past.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

sometimefuture (from TI to T2) A : is true now if A will be true at some time in the future
between times TI and Tz

sometime-past (from TI to T2) A : is true now if A was true at some time in the past between
times T2 and Tl

always-future (from Tl to T2) A : is true now if A will always be true in the future between
times TI and T2

always-past (from TI to T2) A : is true now if A was always true in the past between
times T2 and TI

Figure 1: Bounded Operators of Temporal Logic.

sometime-future (for T) A : sometime-future (from 0 to T) A

sometime-future A : sometime-future (for co) A

sometime-future (at T) A : sometime-future (from T to T) A

sometime-future (at next) A : sometime-future (at 1) A

Figure 2: Derived Operators for the Bounded Operator sometime-future.

results in [Kro87] and [Kam68] that the temporal operators considered in this paper have the same

expressive power as the operators of the U;S logic.

3 Action-Event-Condition-Action Model of a Temporal Rule

Rules in active databases are based on the Event-Condition-Action (ECA) model [MD89]. To

incorporate time into the structure of a rule, we extend this model to the Action-Event-Condition-

Action (AECA) model. To define the AECA model, we introduce some preliminary concepts first.

In active non-temporal databases, there are two primary types of actions: insertions and

deletions3. Temporally active databases have a richer set of actions. If TI and 1'2 are temporal

variables, constants, or expressions, if TI 5 T2, if now is the time when an action occurs, and if P

is a temporal predicate, then we consider the following set of basic temporal actions:

1. insertand-keep (from TI to T2) P(xl , . . . ,x,). This action says that the tuple (xl, . . . , x,)

3We assume that an update can be defined a delete followed by an insert.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

is inserted in predicate P at time now + TI and is kept there until the time now + T2. This

action guarantees that the tuple (a1,. . . , x,) cannot be removed from predicate P between

the times now + Tl and now + T2.

2. insertsometime (from TI to Ti) P(xl, . . . ,x,). This action says that the tuple (xl, . . . , x,)

is inserted in predicate P sometime between now + 7; and now + T2. It does not specify

precisely at what time the insertion will take place. Different methods of insertion will be

described in Section 4.2 when semantics of temporal rules will be defined.

3. delete-and-keep (from TI to T2) P(xl , . . ., x,). This deletion action is similar to in-

sertand-keep. Tuple (xl,. . . , x,) is deleted from predicate P at time now $. TI, and it

cannot be reinserted back until time now + T2.

4. deletesometime (from TI to T2) P(xl , . . .,x,). This deIetion action is similar to in-

sert sometime, but deals with deIetions instead of insertions.

As was mentioned in the introduction, we make a simplifying assumption that all the insertions

and deletions in the database happen instantaneously. For example, if the action insertand-keep

(from TI to T2) P(xl , . . . , x,) is scheduled from time now + TI to time now + z, then we assume

that the tuple (xl,. . . , x,) will actually be inserted into predicate P at time now + TI (and will

stay there until now + T2).

We derive additional temporal actions from these four basic actions as follows:

r insertand-keep (for T) P(xl , . . . ,x,) as insertand-keep (from 0 to T) P(xl , . . . , x,)

r insertand-keep (forever) P(xl , . . . , x,) as insertand-keep (from 0 to oo) P(xl , . . . , x,);

this temporal operator corresponds to the standard necessity operator of temporal logic

r insert (at T) P(xl , . . . , x,) as insertand-keep (from T to T) P(x1, . . . , x,)

r insert P(xl , . . ., x,) as insert (at 0) P(xl , . . ., 2,)

insert (at next) P(xl , . . . , x,) as insert (at 1) P(xl , . . . , x,)

We define other derived temporal actions, such as insertsometime (for T) P(xl , . . . , x,), in-

sertsometime (forever) P(xl , . . . , x,), deleteandkeep (for T) P(xl, . . . , s,), delete-and-keep

(forever) P(xl , . . . , x,), delete (at T) P(xl, . . . , x,), delete P(xl, . . . , x,), similarly to the derived

insertion actions. Note that the action insertsometime (forever) corresponds to the standard

possibility operator o of temporal logic.

Center for Digital Economy Research
Stem School of Business
Worlung Paper IS-91-43

A rule in an active non-temporal database has an Event-Condition-Action structure [MD89]

and does not support actions in its antecedent part. We extend this concept for temporally active

rules to make actions depend not only on the events and conditions but also on other actions. We

define a rule of the Action-Event-Condition-Action (AECA) type as

[if conditions]
[when events]
[while actions]
[before events I actions]
[af te r events I actions]
t h e n combination of actions

where condit ions is a conjunction of literals and past temporal literals, events is a conjunction

of events, and a c t ions is a conjunction of actions. We defined conditions and actions already; so,

we define events now.

An event can be of two types. First, it can be a usual insert or delete event as defined in a

non-temporal case [MD89, WFSO, SJGP901, such as i n s e r t P (x ,y ,z) or d e l e t e Q (x , y , z) . Sec-

ond, it can be a beginning or an end of a temporal action. For example, begin. inser tand-keep

(from TI t o T2) P (x l , . . . , x,) is an event indicating that the action in se r t and -keep (from

TI t o T2) P(x1,. . .,x,) has just started. This event occurs at the time when the action be-

gins, and it happens instantaneously, as all events do. Similarly, end. inser t s o m e t i m e (from TI

t o T2) P(xl , . . . , x,) is an event indicating that the action i n s e r t s o m e t i m e (from TI t o T2)

P(x l , . . . , x,) has just finished. It occurs at the time when the action ends, and it also happens

instantaneously. An example of an event associated with the end of a temporal action will be

presented in Example 2,

Temporal clauses are divided into antecedent and consequent clauses. If, when, before,

while, and af te r are antecedent clauses and t h e n is a consequent clause. I f clause tests if some

conditions involving the present and the past instances of predicates hold, w h e n clause tests if

certain events occur at the moment, while clause tests if certain temporal actions are happening

at present (e.g. while the meeting lasts, keep the lights on), a f te r clause tests if certain events or

actions happened in the past, and before clause tests if certain events or actions have not happened

yet. Examples of these clauses will be provided below. We assume that the antecedent clauses refer

to the past and to the present and the consequent clause refers to the present and the future. In

case that both the antecedent and the consequent clauses refer to the present the rule is reduced

to the standard non-temporal rule.

Temporal actions are combined together in the t h e n clause of a rule either in a sequential or

a parde l fashion. If two actions A1 and A2 are combined sequentially with the ";" operator, i.e.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

Al; A2, then it means that the action A2 is executed immediately after the action A1 is finished.

Furthermore, two actions A1 and Az are executed concurrentlyif they are combined with the parallel

operator i.e. Al llA2. We define an update as a delete sequentially followed by an insert.

To illustrate temporal rules described above, consider an example of a banking application. Let

customer(cname,caddr) be a relation describing the list of customers of a bank and account(cname,

type, id, balance) be a relation describing the accounts opened at a bank by its customers. Then

the following rules illustrate various features of the AECA model of a temporal rule.

Example P When a customer opens a 6 month CD account, he/she cannot close it for 6 months.

if customer(cname,ca.ddr)
when insert account (cname, "CD-6", cdaumber , amount)
then insertand-keep (for 180-days) account(cname, "CD-6", cdaumber, amount)

This example shows the Event-Condition-Action structure of a rule, Also, it sllows the appli-

cation of the insertand-keep operator. It says that the tuple (cname, ' 'CD-6' ' , cdnumber,
amount) is inserted in the relation account now and will be kept there for the next 180 days.

Finally, the rule shows an example of an event insert in the when clause.

0

The next example illustrates the AECA model of a temporal rule, the sequential operator in

the then clause, and the use of the end-of-action operator.

Example 2 After a CD has expired, see if there is a better CD. If there is one, invest the same

amount in it as in the expired CD.

If interestrates(CDtype,rate,period) is a relation specifying interest rates and maturity

periods of different types of CDs then the rule can be expressed as

after insert and-keep account (cname, CDrate, CDnumber, amount)
if interestsates(CDtype,newrate,period) and newrate > CDrate
then delete account(cname,CDrate, CDnumber, amount);

insertand-keep (for period) account(cname, best(newrate), newnumber(), amount)

where the function best selects the best CD rate out of the list of existing rates, and the function

newnumber() assigns a number to the new CD. This rule says that after the insert-and-keep

activity is finished (i.e. the CD expired), and if there are CD7s with better rates, then select the

best CD out of them, delete the record for the old CD and insert the record for the newly selected

CD.

This rule illustrates the AECA model of a temporal rule by referring to past actions in its

Center for Digital Economy Research
Stem School of Business
Worlung Paper IS-91-43

antecedent part (the after clause)*. This rule also illustrates the use of the sequential operator

";". It says that the action insert-and-keep account must follow the action delete account. In

this simple example, the first action occurs instantaneously. However, the sequence of actions can

occur over time in general.

The same rule can be expressed somewhat differently. Instead of saying "after action in-

sertand-keep account," we can say "after the end of action insertand-keep account" using the

end operator described above, i.e.

after ead.insert -andkeep account (cname, CDrate, CDnumber, amount)

0

The next example shows the use of the bounded temporal operator insertsometime.

Example 3 If a monthly statement is sent t o a credit card customer, then lie or she will pay tlie

bill sometime within 7 to 30 days (in this simplified example we assume that the customer must

pay the total amount within the specified period).

If bi l l ing(cname, b i l l ing-per iod , amount-due) is a relation describing the bills sent to

customers over various billing periods and payments (cname , bi l l ing-per iod , amountdue) is

the relation describing customer payments then the rule can be expressed as

when insert billing(cname, billing-period, amount-due)
then insertsometime (from 7 to 30) payments(cname, billing-period, amount-due)

The next example iUl~strates the use of parallel and sequential operators and the past temporal

operators in "if" conditions.

Example 4 If a customer opens an account and he or she has never had an account with the bank

in the past then create a new record for the customer (otherwise an old record will be updated).

If app l i ca t ion(cname , caddr , checking, chid, chdep, saving, s i d , sdep) is a relation describ-

ing the information a customer provided on the application, then the rule can be expressed as

4Notice that the action in the after clause is specified without temporal bounds f r o m TI t o Tz since in this case
we just want to know if the action ever occurred in the past. In general, we d o w both bounded and unbounded
actions in before and after clauses.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

if application(cname,caddr,checking,chid,chdep,saving,sid,sdep) and
not sometime-past customer(cname,prevaddr)

t h e n inser t (at next) customer(cname,caddr);
(insert (at next) account (cname, checking, chid, chdep) 1 1
inser t (at next) account(cname, saving, sid, sdep))

This rule illustrates several points. First, the temporal operator sometime-past determines if

the customer had an account in the past. Second, the sequential composition operator '"" says that

the customer information is inserted into his or her checking and savings accounts right after the

customer record is created. Finally, the data is inserted into the savings and the checking accounts

concurrently.

4 Execution of Temporally Active Rules

In this section, we describe the recognize-act cycle for temporally active rules. As in the non-

temporal case, the cycle consists of the matching, conflict resolution and execution steps. In the

matching step, the antecedents of the rules are matched against the current and the past states of

the database and against the previous events and actions, and the set of actions to be scheduled

for the execution is determined. In the conflict resolution step, conflicts are resolved among the

conflicting actions, and the selected actions are scheduled for the execution. Finally, the scheduled

actions are executed in the execution step. The detailed description of the temporal recognize-act

cycle will be presented in Section 4.2.

The temporal recognize-act cycle differs from the non-temporal case in the following respects.

First, the matching is done not only against the current state of the database but also against its

past history because conditions in the if clause can have past temporal operators and because the

a f te r clause also refers to the past. Second, for any type of an interpreter, including the sequential

one such as the 0PS5 interpreter, there will always be conflicts between INSERTS and DELETES

because the conflicting actions are scheduled at different moments of time.

In this paper, we make an assumption, standard for active databases, that, once a tuple is

inserted in the database, it is kept there until it is explicitly deleted from it.

In the matching part of the cycle, the entire past history of the database has to be examined in

general. Clearly, this makes the whole approach impractical in the database context. To "save7' it,

we first describe a method that compresses the "relevant" parts of the past history to the present

so that the matching part of the cycle can be performed efficiently.

Center for Digital Economy Research
Stern School of Business
W o r h g Paper IS-91-43

4.1 Compressing the Past History to the Present

The main idea of the compression technique is to replace arbitrary temporal rules with an "equiv-

alent" set of rules containing only the previous operator. Since this operator refers only to the

preceding time moment, there is no need to search an arbitrarily distant past in this case.

Given a set of temporal rules, we introduce a set of auxiliary predicates and modify temporal

rules using the following guidelines. Each expression of the form sometime-past P(xl , . . . , x,) in

a rule gives rise to predicate Pt(xl . . . , x,) and the rule

if P(x1,. . . ,%)
then insert P1(xl . . . , x,)

The predicate Pt(xl . . . , x,) will remain true forever because it will remain true until it is explicitly

deleted (which will never happen). Therefore, Pt(xl . . . , x,) is true if and only if sometime-past

P(xl , . . . , x,) is true. For this reason, we replace all the occurrences of the expression some-

time-past P (x l , . . . , x,) in rules with an equivalent predicate Pt(xl . . . , a,).

Example 5 To illustrate the conversion process, consider the rule from Example 4. It is converted

to rules:

if application(cname,caddr,checking,chid,chdep,saving,sid,sdep) and
not past~customer(cname,prevaddr)

then insert (at next) customer(cname,caddr);
(insert (at next) account(cname, checking, chid, chdep) 11
insert (at next) account(cname, saving, sid, sdep))

if customer(cname,caddr)
then insert past -customer(cname,caddr)

In this example, past~customes(cname,caddr) will remain true since the first time the tuple

(cname , caddr) was inserted in it.

Similarly, each expression of the form always-past P(xl, . . . , a,) gives rise to predicate

PU(xl , . . . , 3,) and an additional rule:

if Pf1(x1,. . . , x,) and not P(xl , . . . , x,)
then delete PU(xl, . . . , x,)

The value of PIt at the initial moment of time is equal to the value of P at that time. Again, once

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

a tuple is inserted in PI1, it will always stay there until it is explicitly deleted from the relation.

Therefore, P1'(xl, . . . , x,) is true at some time if and only if always-past P(xl , . . . , x,) is true at

that time.

An expression of the form sometime-past (for T) P(x l , . . . , x,) gives rise to predicate

P1'(xl,. . . , x,), an auxiliary predicate P1(xl,. . . , x,, t), and the following rules:

if
then

if
then

if
then

if
then

P(xI , . - + xn)
insert P1(xl,. . . , x,, T) ; insert P1'(xl,. . . , x,)

p1(x1 ., xn, t)
delete (at next) P1(xl, . . . , x,, t) I I
insert (at next) Pf(xl, . . . , x,, t - 1)

P1(xl, . ..,xn,O)
delete P1'(xl,. . . , x,); delete P1(xl,. . . , X n , 0)

pl(xl , . . . , x,, T) and P1(xl,. . . , x,, t) and 0 < t < T
delete P1(xl, . . . , x,, t)

Notice that in this last case, we explicitly used function symbols in rules (decrementing T by 1).

Elimination of other past temporal operators, such as always-past , sometime-past (from

Tl to Tz), is done in a similar way and is omitted because of space limitations.

Finally, past temporal actions can be encoded with present events. For example, the temporal

clause after insertand-keep P(xl , . . . , x,) can be replaced with the temporal clauses

when end-insertand-keep P(xl , . . . , x,)
then insert P1(xl, . . . , x,)

Conversion of other temporal clauses, such as after insert-sometime P(xl , . . . , x,), after

delete-and-keep P(xl , . . . , x,), is done in a silnilar manner.

4.2 Temporal Recognize-Act Cycle

After the relevant past has been compressed to the present as explained in Section 4.1, we are ready

to describe the temporal recognize-act cycle. A temporal recognize-act cycle is described in Fig. 3.

It consists of matching, conflict resolution, and execution steps. We describe each step in turn now.

In the first step, antecedents of temporal rules are matched against the present and the past

state of the database and against the present and past events and actions. Since the relevant past

was compressed to the present with the method described in Section 4.1, this means that the rules

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

1. Match antecedents of all the rules against the current and compressed relevant past states of
the database. Determine the actions S to be scheduled for the execution.

2. Find conflicts among actions in S and between actions in S and previously scheduled actions
and resolve these conflicts. Schedule for the execution those actions in S that passed the
conflict resolution phase.

3. Select the scheduled actions with the shortest remaining time and execute them.

Figure 3: Temporal Recognize-Act Cycle

have to be matched only against the current state of the database. Therefore, the matching can

be done exactly as for the non-temporal case. This means that any non-temporal interpreter for

existing rule-based systems can be used for that purpose including the interpreters described in

[BFK86, KT89, WF90, SJGP90, HCKW90, TK911.

In Step 2 of the cycle, conflicts between temporal actions generally scheduled at different

periods of time are resolved. For example, one action can be insertand-keep (from 20 to 40)

P(al , . . . , a,) and another delete-and-keep (from 15 to 25) P(a l , . . . , a,). Notice that this type

of conflict differs from the conflicts among rules in the non-temporal case. In the non-temporal

case, conflicts are resolved among the tuples instantiated at the same time moment. For example,

0PS5 interpreter selects only one instantiated tuple out of the set of instantiated tuples. Once

this tuple is selected, there can be no conflicts, and the interpreter proceeds to execute the rule.

In the temporal case, the conflicts still can exist among actions scheduled at diflerent moments of

time, even if the interpreter selects only one instantiated tuple at a time. Ebr example, the action

delete-and-keep (from 15 to 25) P(a l , . . .,a,) could be scheduled at time t = 8 and the action

insert-and-keep (from 20 to 40) P(a l , . . . , a,) at time t = 12. We describe different conflict

resolution strategies in Section 4.3, including a new conflict resolution strategy arising from the

fact that actions occur over a period of time. Once the conflicts are resolved, the remaining actions

are scheduled to be executed at some future time moments.

In the selection stage of Step 3, we find all the scheduled actions with the minimal "remaining"

time. For example, if the current time is t = 12, and the action delete-and-keep (from 15 to 25)

P(a l , . . .,a,) was scheduled (at time t = 15), and there are no actions scheduled between times

t = 12 and t = 15, then select that action for the execution together with other actions scheduled

at that time.

In the execution stage of Step 3, the actions selected in the previous stage of Step 3 are

executed in real time. At this stage, actual insertion and deletion commands are issued by the

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

interpreter and later performed by the transaction manager. In this paper, we made a simplifying

assumption that we do not consider time delays associated with concurrent executions of multiple

transactions, and, therefore, assume that insertions and deletions occur instantaneously. This

assumption significantly simplifies the execution of scheduled actions. Nevertheless, we do not

describe the real-time scheduler in this paper because we plan to do it in a subsequent paper when

we relax the simplifying assumption stated above and consider concurrent transactions.

4.3 Conflict Resolution Strategies

In this section, we describe how conflicts can be resolved for temporally active rules. First, we

describe various semantics of conflicts and then the methods t o resolve them.

4.3.1 Semantics of Conflicts

If two potentially conflicting actions are of the type Keep, i.e. are i n se r t and -keep and

delete-and-keep, then the conflict occurs when their time intervals intersect. Specifically, in-

s e r t a n d - k e e p (from TI to T2) P(a l , . . . , a,) conflicts with de l e t eand-keep (from T3 to T4)

P(a l , . . . , a,) if and only if intervals [TI, Tz] and [T3, T4] intersect.

For conflicts between actions of type Keep and sometime, e.g. when in se r t and -keep conflicts

with delete-sometime, we consider the following two types of conflicts. Let keep action occur

over the interval [7;, T2], and sometime action occur over the interval [T3,T4].

The intersection semantics of conflicts says that the two actions conflict when intervals [TI, T2]

and [T3, T4] intersect. Intuitively, it says that if a keep action overlaps with a sometime action then

the sometime action cannot be scheduled at any arbitrary time in the interval [T3, T4] and must be

restricted to some smaller time domain. However, the programmer who wrote the temporal rules,

may count on the fact that the sometime action can occur anywhere in [T3, T4]. To assure his/her

expectations, the programmer may select the intersection semantics.

The containment semantics of conflicts says that the two actions conflict when interval [TI, T2]

contains interval [T3,T47. Intuitively, it says that if keep action is scheduled during the whole

time interval of sometime action, then the sometime action cannot occur at any point in this time

interval. Clearly, this means that sometime action is invalid, and the two actions conflict.

The last type of conflict occurs between two sometime actions. In this case, we also consider

two types of semantics for conflicts. As in the previous case, if two sometime actions occur at time

intervals [Tl,T2] and [T3, T4] then they conflict if

1, intervals [TI, T2] and [T3,T4] intersect

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

4.3.2 Conflict Resolution

In the previous section, we identified situations when conflicts occur between temporal actions. In

this section, we present methods for resolving these conflicts.

There have been several conflict resolution strategies proposed for non-temporal active databases.

One such strategy orders rules (either partially or totally) according to their precedence. Then the

qualifying rules with the highest precedence are selected. This is the conflict resolution strategy

adopted in Starburst [11CLS90] and POSTGRES [SJGPSO]. The conflict resolution strategy of

0PS5 is based on several tuple selection criteria that take into account structural properties of

rules and recency of tuple insertions into the database [BFKSG]. If all these criteria fail to resolve

the conflict, a single instantiation is chosen a t random. Still another conflict resolution strategy

initially proposed in [KT891 and later extended in [TKSl] operates on the consequent part of a

rule. It assumes that the insertion of a tuple has a precedence over its deletion if the database

does not contain the tuple and the deletion has a precedence over the insertion if the tuple exists

in the database. The intuitive justification for this strategy is presented in [TK91]. Furthermore,

de Maindreville and Simon [dMS$S] describe a conflict resolution strategy (within a rule), such

that if an INSERT conflicts with a DELETE, then both actions are canceled. Finally, Ioannidis

and Sellis [IS89] describe some conflict resolution strategies for rules assigning values to virtual

attributes. Furthermore, they classify three types of conflicts: conflicts occurring either a t the rule

or the antecedent or the consequent levels [IS$9].

These non-temporal conflict resolution strategies are also applicable to temporally active

databases. Furthermore, the conflict resolution strategy of 0PS5 based on the recency of tuple

insertions illto the database can be supported in a more direct way for the temporal case.

In addition to the strategies borrowed from the non-temporal case, we propose the following

temporal conflict resolution strategy TCRS in which conflicts are resolved at the consequent level

(using terminology of [ISSS]):

If the actions of two rules conflict, then select the action of the rule that fired first. If

both rules are fired at the same time then apply any conflict resolution strategy for the

non-temporal case, e.g. cancel the conflicting actions or select the conflicting action

from the rule with the higher precedence.

For example, if rule R1 fired the action insert~nd-keep (from 10 to 20) P (a l , . . . , an) a t

time t = 5 and the rule Rz fired the action deleteand-keep (from 15 to 25) P(a l , . . . , a,) at time

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

t = 8 then the first action has a precedence over the second action because rule R1 was fired before

rule R2.

Intuitively, the T C R S strategy says that once an action is scheduled for a future execution,

the commitment is made to execute it at some later time, and the scheduled action cannot be

canceled5.

5 Conflict Avoidance Strategies

It was shown in [TK91] for the non-temporal case that it is possible to avoid conflicts by writing an

equivalent set of non-conflicting rules. In this section, we extend this idea to the temporal domain.

As an initial approach to the problem, we impose the following restrictions on the structure

and semantics of rules. First, we assume that the consequent part of a rule contains a single action.

Second, we restrict our consideration only to the intersection semantics of conflicts between keep

and sometime actions as defined in Section 4.3.1. Third, we assume that rules contain only if and

then clauses (i.e. no when, before, and after clauses). We are currently working on the ways to

relax these three assumptions.

Each conflict resolution strategy gives rise to its own set of equivalent non-conflicting rules. To

be specific, we selected the temporal conflict resolution strategy T C R S described in Section 4.3.2.

However, as will be pointed out later, the same approach is applicable to some other conflict

resolution strategies considered in that section.

In the rest of this section, we describe a method that replaces two conflicting rules with an

equivalent set of non-conflicting rules. Let rule R1 be

if Q1(~17.*. ,~n,T17T2)
then insert-and-keep (from TI to T2) S(xl , . . . , xn)

and rule R2 be

if Q2(~17. . - xn,T3,7'4)
then delete-and-keep (from T3 to T4) S(x l , . . . , x,)

In these rules, Q1 (xl, . . . , x,, TI, T2) and Q2(x1, . . . , xn, T3, T4) are conditions rather than predi-

cates. They define conjunctions of predicates, optionally preceded by negations and by temporal

operators. Furthermore, we assume that TI, T2, T3, and T4 do not change over time and that

5Notice that we do not consider concurrency control here. Therefore, this kind of commitment is different from
the commitment of transactions.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

TI < T2 and T3 < T4.

Let AT be the (absolute) time difference between the times rules R1 and R2 are fired. For

example, if rule R1 is fired at time t = 10 and rule R2 at time t = 15 then AT = 5.

Then rules R1 and R2 conflict in the following situations:

1. Let R1 be fired before R2 and T4 < TI. Then R1 and R2 conflict iff Tl - T4 < AT < T2 - T3.

2. Let R1 be fired before R2, TI < 11.i and T3 < T2. Then R1 and R2 conflict iff 0 < AT < T2-T3.

3. Let R2 be fired before R1 and T2 < T3. Then R1 and R2 conflict iff T3 - T2 < AT < T4 - TI.

4. Let R2 be fired before R1, T3 < T2 and TI < T4. Then R1 and R2 conflict iff 0 < AT < T4 - TI .

5. Let R1 be fired at the same time as R2. Then R1 and R2 conflict iff T3 < T2 and TI < T4.

These five possibilities cover all the conflicting situations because in the two remaining cases

(a) when R1 is fired before R2 and T2 < T3, and (b) when R2 is fired before R1 and T4 < T I , the

rules do not conflict.

We replace the rules R1 and R2 with the set of equivalent rules for the conflict resolution

strategy TCRS in two stages. In the first stage, we replace them with the set of pseudo-rules that

are not directly supported by the syntax of the rules as defined in Section 3. In the second stage,

we replace each pseudo-rule with the set of real temporally active rules. Finally, we show that the

resulting set of rules is equivalentqo rules R1 and R2 and does not have conflicts.

The pseudo-rules that replace rules R1 and R2 in the first stage are shown in Fig. 4. To

simplify the notation, we drop arguments in expressions for S , Q1, and Q2. We always as-

sume that S has arguments S(x l , . . . , x,), Q1 arguments Q l (x l , . . . , x,,Tl, T2), and Q2 arguments

Q2(x17. - . , 5,, T3,T4).

Pseudo-rule 1 says that if rule R2 is fired now and rule R1 was fired in the past so that the two

rules conflict, then rule R1 has a precedence over rule R2 and, therefore, tlze pseudo-rule 1 performs

insertion. It corresponds to the conflict situation 1 described above. Similarly, pseudo-rule 2 says

that if R2 is fired now and R1 in the past so that the two rules do not conflict then the action of

rule R2 is carried out. Pseudo-rules 1 and 2 are applicable to the cases when T4 < TI . Pseudo-rules

3 and 4 are similar to pseudo-rules 1 and 2 but are applicable to the cases when T3 < T2 A T1 < T4.

Pseudo-rules 3 corresponds to the conflict situation 2. Pseudo-rules 5 , 6, 7, and 8 are similar to

the first four pseudo-rules but take care of the situation when rule R1 is fired now and rule R2

'TWO sets of rules are equivalent if, for any initial state of the database, they always produce the same sequences
of predicates over time. Formal details of this definition can be found in [TKgl].

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

if Q2A sometime-past(from TI - Tq to T2 - T3) Q1 A T4 < T1
I .

then insertand-keep (from TI to T2) S

if Q2 A 1 sometime-past(from TI - Tq to T2 - T3) Q1 A 71,1 < T l
2.

then delete-and-keep (from T3 to T4) S

if Q2 A +&A sometime-past(from 0 to T2 - T3) Q1 A T3 < T2 A T l 5 T4
3. then insertand-keep (from T1 to T2) S

if Q2 /\ -tQ1 A 1 sometime-past(from 0 to T2 - T3) Q1 A T3 < T2 A T1 < T4
40 then deleteand-keep (from T3 to Tq) S

if QIA sometime-past(from T3 - T2 to T4 - TI) Q2 A T2 < T3
5.

then deleteand-keep (from T3 to T4) S

if Q1 A 1 sometime-past(from T3 - T2 to T4 - TI) Q2 A T2 < T3
'* then insertand-keep (from TI to T2) S

if Q1 A 7 Q 2 ~ sometime-past(from 0 to Tq - TI) Q2 A T3 5 T2 A TI < T4
7.

then deleteand-keep (from T3 to Tq) S

if Q1 A 1Q2 A 1 sometime-past(from 0 to Tq - TI) Q2 A 273 < T2 A TI I: T4
" then insertand-keep (from Tl to T2) S

if Q2 A sometime-pastQ1 A T2 < T3
9.

then delete-and-keep (from T3 to T4) S

if Q2 A lsometime-pastQ1 A T2 < 113
lo. then delete-and-keep (from T3 to Tq) S

if Ql A sometime-pastQ2 A T4 < TI
11' then insertand-keep (from TI to T2) S

if Q1 A lsometime-pastQ2 A T4 < TI
12' then insert-and-keep (from TI to T2) S

if QlAQzAT3 F T2AT1 ST4
13' then do nothing

Figure 4: Pseudo-rules that Avoid Conflicts.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

was fired in the past. Pseudo-rules 5 and 7 correspond to the conflict situations 3 and 4 described

above. Furthermore, pseudo-rules 9 and 10 say that if T2 < T3 and rule R2 is fired now then there

can be no conflict between inserts and deletes. Therefore, the deletion operation from rule R2 is

carried out in these two pseudo-rules. Pseudo-rules 11 and 12 take care of the similar situation

but pertaining to rule R1. Finally, pseudo-rule 13 is a "vacuous" rule saying that if rules R1 and

R2 are fired at the same time and conflict then, based on the conflict resolution strategy TCRS,

insert and delete operations are canceled. Notice that if we adopt any other conflict resolution

strategy for the case when the two rules are fired simultaneously, all we have to do is to change the

pseudo-rule 13.

The rules presented in Fig. 4 are pseudo-rules because most of them have a temporal operator

in front of an expression or a negation in front of an expression. For example, the statement

sometime-past (from 0 to Tq - TI) Q2(xl,. . . , x,, T3, 714) is illegal in our language.

In stage 2 of the conversion process, the pseudo-rules from Fig. 4 are replaced with legal

temporally active rules. To illustrate the replacement process, consider the pseudo-rule 1 in Fig. 4,

where Q1 is a conjunction of some temporal literals PI A . . . A P,. The pseudo-rule can be replaced

with the following set of real rules, where R is an auxiliary temporal predicate:

if Q2A sometime-past(from TI - T4 to T2 - T3) R A T4 < T1
then insertand-keep (from TI to T2) S

if (;2 1

then insert R

if previous Pi A -Pi
t hen delete R

(for i = 1,. . ., n)

The last two rules make the expression Q1 to be equivalent to predicate R. The same technique

that replaces pseudo-rules with a set of real rules is applicable to other pseudo-rules in Fig. 4.

Combining all these observations together, we state the following result:

Theorem 1 For the conflict resolution strategy TCRS, conflicting rules R1 and R2 can be con-

verted into an equivalent set of non-conficting rules.

Sketch of Proof: By inspection, conflicting pseudo-rules in Fig. 4 are mutually exclusive. Fur-

thermore, if we disjunct all the "if" parts of these pseudo-rules then we can simplify the resulting

expression to Q1 V Q2. This means that the pseudo-rules from Fig. 4 are collectively exhaustive:

they cover all the possibilities when rules R1 and R2 can fire. Furthermore, these pseudo-rules are

designed so that they resolve conflicts exactly as the conflict resolution strategy T C R S would do.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

a

Although the rules in Fig. 4 are designed for the conflict resolution strategy TCRS, they can

be changed to accommodate other conflict resolution strategies considered in Section 4.3.2.

6 Related Work

An idea to add time to active databases was first expressed in [Dea88]. However, the subsequent

description of the HiPAC project [MD89] does not specify how to do this. Also, Ode [GJ91]

supports timed triggers in the way described in the introduction. Timed triggers are similar to our

i n s e r t s o m e t i m e and delete-sometime temporal actions. However, temporal rules presented in

this paper also support other types of temporal actions in the consequent part of a rule as well as

in the antecedent part. In addition, they support temporal predicates, different types of temporal

operators, and the AECA model of a rule.

Temporally active databases are also related to temporal logic programming (TLP) systems,

such as Templog [AM89], MetateM [BFG+89], Temporal Prolog [KKN+90] and PTL [Tuzglb].

Both approaches combine rules and temporal logic. However, they differ in the same way as

production systems differ from deductive databases. Temporally active databases deal with events

and actions, and TLP systems with facts. Furthermore, the two systems have different types of

semantics. For example, the concept of conflict resolution is not applicable to TLP systems at all.

Furthermore, temporally active databases are related to the requirements specification lan-

guage Templar [Tuzgla]. As in the case of temporal logic programming, both systems use rules

and temporal logic. However, rules described in this paper deal with database updates, whereas

Templar rules specify some high-level requirements specification activities which can consist of

smaller subactivities. Tlzis means that Templar does not deal with the issues of scheduling, resolv-

ing conflicts and executing temporal rules, as the system described in this paper does.

Finally, the technique compressing the relevant parts of past history of a database to the

present state was proposed by other researchers for some temporal logic programming systems.

Kato et al [KKN+SO] describe a method that converts a temporal logic program with past necessity,

previous, af ter , next , future necessity, a tnex t , and unt i l operators to an equivalent temporal

logic program with only the previous operator. Similarly, Baudinet converts Templog programs

to its equivalent fragment TL1 containing only the next operator [Bau89]. Similar observation was

made by Chomicki [Cho91] when he described a method to compress the past history of a temporal

database to the present state for a set of dynamic integrity constraints. In this paper, we extended

the approach from [KI<N+9O] to temporally active databases.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

7 Conclusions and Future Work

In this paper, we studied temporally active databases. They differ from active non-temporal

databases in several ways. First, actions in temporally active databases can occur over some peri-

ods of time. Second, antecedents of temporal rules examine both the current state of the database

and its past history, as well as the past actions and events. Third, consequents of temporal rules

specify actions that will occur in the future, assuming that antecedents are true.

To support these additional characteristics of temporally active databases, we proposed to ex-

tend the traditional ECA model to a more general Action-Event-Condition-Action (AECA) model.

AECA model of a temporal rule differs from the ECA model in that it supports actions both in the

antecedent and the consequent part of a rule, in that it admits additional temporal clauses, such

as before, af ter , and while, and in that it supports operators of temporal logic.

Addition of time to active databases also affects the recognize-act cycle. To make the recognize-

act cycle practical, we described a method that compresses the past history of the database to

the present. We also adjusted non-temporal conflict resolution strategies to incorporate time.

Furthermore, we described the types of conflicts that can occur in the temporal case and proposed

a method t o resolve them. Finally, the temporal dimension requires new conflict avoidance methods,

and we described an initial solution to this problem.

I11 future research we plan to extend the conflict avoidance strategy presented in this paper to a

more general setting when other clauses, such as when, while, before, and af ter , are allowed in a

rule, and when the containment semantics is assumed for the conflicts between keep and sometimes

actions.

We also plan to work on adding a transaction model to temporal rules and on the integration

of temporally active databases with real-time concurrency control. This will enable us to support

atomicity of transactions and ~nultiple users of active databases. To support real-time concurrency

control, we have to find ways to integrate scheduling of future actions with the real-time transaction

processing to be able to meet real-time deadlines set by the programmer writing rules. We believe

that the work on the real-time transaction processing [AGM88, KSSSO] can serve as a starting point

for that.

8 Acknowledgments

The author wishes to thank H. V. Jagadish for discussions of some of the issues in this paper and

also for providing many useful comments about an earlier draft of the paper. Re is also gratful to

Jim Clifford for reading an earlier draft of the paper.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

References

[AGM88] R. Abbott and H. Garcia-Molina. Scheduling real-time transactions: a performance

evaluation. In International Conference on Very Large Databases, pages 1-12, 1988.

[AM891 M. Abadi and Z. Manna. Temporal logic programming. Journal of Symbolic Compu-

tation, 8:277-295, 1989.

[Bau89] M. Baudinet. Temporal logic programming is complete and expressive. In Symp. on

Principles of Programming Languages, pages 267-280, 1989.

[BFG+89] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: A frame-

work for programming in temporal logic. In Stepzuise Refinement of Distributed Sys-

tems, pages 94-129. Springer-Verlag, 1989. LNCS 430.

[BFK86] L. Brownston, R. Farrell, and E. Kant. Programming Expert Systems in OPS5: an

Introduction to Rule-Based Programming. Addison-Wesley, 1986.

[Chogl] J. Chomicki. History-less checking of dynamic integrity constraints. Unpublished

manuscript, 1991.

[CW83] J. Clifford and D. S. Warren. Formal semantics for time in databases. TODS, 8(2):214-

254, 1983.

[Dea88] U. Dayal and et al. The HiPAC project: Combining active databases and timing

constraints. ACM SIGMOD Record, 17(1):51-70, 1988.

[dMS88] C. de Maindreville and E. Simon. Modelling non deterministic queries a~nd updates

in deductive databases. In International Conference on Very Large Databases, pages

395-406,1988.

[Gad881 S. I<. Gadia. A homogeneous relational model and query languages for temporal

databases. TODS, 13(4):418-448,1988.

[GJ91] N. H. Gehani and H. V. Jagadish. Ode as an active database: Constraints and triggers.

In International Conference on Very Large Databases, 1991.

[GM91] D. Gabbay and P. McBrien. Temporal logic and historical databases. In International

Conference on Very Large Databases, 1991.

[HCKW9O] E.N. Hanson, M. Chaabouni, C.H. Kim, and Y.W. Wang. A predicate matching algo-

rithm for database rule systems. In Proceedings of ACM SIGiWOD Conference, pages

271-280, 1990.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

[HCLS90] L. Haas, W. Chang, G.M. Lohman, J. McPherson, P.F. Wilms, G. Lapis, B. Lindsay,

H. Pirahesh, M. Carey, and E. Shekita. Starburst mid-flight: As the dust clears. IEEE

Transactions on Knowledge and Data Engineering, 2(1):143-160,1990,

[IS891 Y.E. Ioannidis and T.K. Sellis. Conflict resolution of rules assigning values to virtual

attributes. In Proceedings of ACM SIGMOD Conference, pages 205-214, 1989.

[Kam68] H. Kamp. On the Tense Logic and the Theory of Order. PhD thesis, UCLA, 1968.

[K K N + ~ O] D. Kato, T. Kikuchi, R. Nakajima, J. Sawada, and H. Tsuiki. Modal logic program-

ming. In VDM and Z - Formal Methods in Software Development. Springer-Verlag,

1990. LNCS 428.

[Kro87] F. Icroger. Temporal Logic of Programs. Springer-Verlag, 1987. EATCS Monographs

on Theoretical Computer Science.

[KSSSO] H.F. Korth, N. Soparka.r, and A. Silberschatz. Triggered real-time databases with

consistency constraints. In International Conference on Very Large Databases, pages

71-82, 1990.

[KT891 2. M. Kedem and A. Tuzhilin. Relational database behavior: Utilizing relational dis-

crete event systems and models. In Proceedings of PODS Symposium, 1989.

[MD89] D. McCarthy and U. Dayal. The architecture of an active, object-oriented database

system. In Proceedings of ACM SIGMOD Conference, 1989.

[SJGPSOJ M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules, procedures, cashing

and views in database systems. In Proceedings of ACM SIGMOD Conference, pages

281 - 290,1990.

[Sno87] R. Snodgrass. The temporal query language TQuel. TODS, 12(2):247-298, 1987

[SPAM91] U. Schreier, H. Pirahesh, R. Agrawal, and C. Mollan. Alert: an architecture for trans-

forming a passive DBMS into an active DBMS. 111 International Conference on Very

Large Databases, 1991.

[TC90] A. Tuzhilin and J. Clifford. A temporal relational algebra as a basis for temporal

relational completeness. In International Conference on Very Large Databases, pages

13-23, 1990.

[TK91] A. Tuzhilin and Z. M. Kedem. Modeling dynamics of databases with relational discrete

event systems and models. Working Paper IS-91-5, Stern School of Business, NYU,

1991.

Center for Digital Ecollol~~y Research
Stern School of Business
W o r h g Paper IS-91-43

[Tuzgla] A. Tuzhilin. Templar: A knowledge representation language for requirements specifi-

cations. Working Paper IS-91-27, Stern School of Business, NYU, 1991.

[Tuz9lb] A. Tuzhilin. Temporal logic as a simulation language. In Proceedings of the Interna-

tional Conference on Artificial Intelligence and Simulation, New Orleans, Louisiana,

April 1991.

[WF90] J. Widom and S. J. Finkelstein. Set-oriented production rules in relational database

systems. In Proceedings of ACM SIGMOD Conference, pages 259 - 270, 1990.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-91-43

