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LOGIC-BASED FORMULA MANAGEMENT STRATEGIES 

IN AN ACTUARIAL CONSULTING SYSTEM 

Abstract 

In many decision support systems, multiple decision methods 
and models must be combined for solving a complex problem. 
Expertise is required for selecting, adapting and coordinat- 
ing appropriate models. This paper describes the design and 
implementation of a knowledge-based model management system 
called the Actuarial Consulting System (ACS). The ACS supports 
actuaries in making pricing decisions in the domain of life 
insurance. Actuarial knowledge is organized using a graph 
formalism called Formula Derivation Network (FDN), represented 
in Prolog as a hierarchy of predicates. On the user level, a 
Problem Analyzer converts a problem specification by the user 
into a search problem on the stored collection of FDNs. Using 
different search strategies, including human expert rules, the 
Surface Planner generates an efficient solution strategy 
(sequence of models). At the lowest level, a Plan Executor 
retrieves or requests model data and issues appropriate function 
calls to a subroutine library. 

Keywords; model management, logic-based decision support 
systems, actuarial science, life insurance, hierarchical 
knowledge base management, expert systems, 
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1 INTRODUCTION 

A research effort at New York University investigates the integration of 

artificial intelligence (AI) methods into existing decision support systems 

(DSS) [Jarke & Vassiliou 841. One part of the project studies the interaction 

between expert systems and large existing databases [Vassiliou et al. 84; 

Jarke et al. 841, another one specific aspects of business expert systems, 

focusing on expert systems for insurance underwriting [Clifford et al. 851. 

This paper describes work on a third subproject that investigates the 

combination of A1 methods with quantitative models, in particular, intelligent 

model management. 

In complex decision situations, it will often be necessary to coordinate 

the application of multiple decision models for solving a problem. Decision 

Support Systems need a model management component [Elam et al. 80; Sprague & 

Carlson 821 that handles the tasks of identifying appropriate models from a 

problem description, sequencing their application, and instantiating them with 

the necessary data. 

The paper describes the design and implementation of a prototype model 

management system that supports actuaries in their work, In an insurance 

company, actuaries are responsible for evaluating the risks of providing 

insurance for life contingencies, such as death, disability, or retirement. 

The system -- called the Actuarial Consulting System (ACS) -- structures life 
insurance problems by organizing appropriate formulas and models, evaluating 

premiums, and explaining possible solution methods. The focus of the present 
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paper are the model selection and combination capabilities of the system; 

details of other features are provided in [Sivasankaran 841. 

Several other authors have addressed model management issues. Following 

[Bonczek et al. 821, three stages of model management systems can be 

distinguished. In the simplest case, the user must procedurally state an 

algorithm to solve the problem at hand. In the second stage, the user may 

select among a set of pre-specified models provided by the system. Several 

high-level languages have been proposed for this purpose. A good example is 

Blanningts El9823 relational model management which views a model as a 

relation between input and output data and implements model sequences by joins 

between these relations. 

The ACS uses a similar, although graph-based high-level model description 

but actually falls into the third category of [Bonczek et al. 821: it 

automatically selects a combination of models, guided by its knowledge base 

and by a high-level problem specification provided by the user. This approach 

requires the use of A 1  techniques. In principle, a pure resolution-based 

system such as Prolog [Clocksin & Mellish 821 could be used for this task; see 

also [Bonczek et al. 81 1 for an exploration of this option. 

However, it has been observed that pure resolution systems do not provide 

sufficient control of the solution planning process [Dolk & Konsynski 831. For 

example, it may turn out to be very costly to execute models concurrently with 

the reasoning process if the results may subsequently have to be discarded due 

to backtracking. 
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Consequently, the ACS -- although implemented in Prolog -- employs a more 
hierarchical control structure. On a surface level, a planner selects 

applicable models and manipulates them into a feasible and efficient solution 

plan. This level uses a graph-based knowledge representation that facilitates 

the search for solution strategies and the evaluation of alternatives. No 

number-crunching is involved at this level and Prologts unification 

capabilities, augmented by cost estimates for additional search space 

reduction, prove very helpful. 

Once a promising plan has been established, the execution level 

instantiates the required data values and executes the models selected by the 

planner. This level may need access to databases and mathematical libraries 

for which Prolog may not be the ideal programming tool; coupling with external 

systems may become necessary [ Jarke & Vassiliou 841. If not all required data 

are available, control is returned to the surface planner which may either try 

an alternative strategy, or invoke a fact acquisition subsystem designed to 

obtain missing information (or at least directions where to find it) from the 

user. 

The remainder of this paper describes the ACS in more detail. Section 2 

briefly reviews the range of actuarial problems to be supported by the ACS. 

Section 3 presents knowledge representations for actuarial concepts and 

problem solving strategies. In section 4, the layered architecture of the ACS 

is described; more details on the main model management component -- the 
surface planner -- are provided in section 5. Section 6 demonstrates the usage 
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of the system by a comprehensive example and section 7 reviews the status of 

the system and outlines extensions currently under design. 

2 MODEL MANAGEMENT IN ACTUARIAL SCIENCE 

The statistical study of the contingencies of human life, such as death, 

disability, or retirement forms the foundation of actuarial science. Experts 

in this field are called actuaries. The actuary must estimate the 

probabilities of occurrence of contingent events as a basis for calculating 

premiums, reserves, annuities, etc., for insurance and other financial 

operations. For the solution of problems involving these contingencies, an 

actuary requires some quantitative measure of their effects. In problems 

involving financial calculations, the actuary also requires a set of 

principles by which probabilistic measurements may be combined with interest 

functions to produce monetary values [Jordan 751. 

The actuarial domain deals with a large number of formulas, equations, 

and models, many of which are intertwined with one another. At several points 

of the actuarial problem-solving process, expertise is needed. First, the 

actuary must comprehend and formulate the problem in terms of insurance 

concepts, and of the available data like mortality rates, interest rates, 

commutation function values and health related risk scores. Expertise is also 

required for choosing, transforming and sequencing an efficient set of 

applicable formulas. Generally, the actuary must develop an overall solution 

plan before any actual computation, because many actuarial problems require 

several formulas to be transformed and combined in a particular sequence. 
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Knowing the solution strategy beforehand helps avoid cycling and redundant 

computation, Knowledge is finally needed for deciding whether to access tables 

of pre-stored data, to compute these values because direct computation is 

cheaper than accessing the tables or even the only method, and when to 

override default value table access by user-specified data. 

The ACS represents the different actuarial concepts, formulas, and 

heuristics of problem-solving in a carefully organized knowledge base. The 

knowledge base must support at least the following functions: 

1. Compute the premium for an insurance benefit or mix of benefits 

2. Assess feasibility of the benefits 

3. Explain the result by showing which models :were applied in which 
sequence 

4,  Allow the user to modify the reasoning process 

5. If a certain problem cannot be solved, point out why. Also ask for 
values which, if supplied, can solve the problem. 

The ACS is not intended to replace an actuary but to assist in life 

insurance problems by serving as a 'intelligent calculatort, i.e,, a decision 

support tool. It was built for expert users and may not be suitable for a 

user unfamiliar with the basic concepts of life contingencies theory. 
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3 STRUCTURAL MODEL OF ACTUARIAL DOMAIN KNOWLEDGE 

Actuarial theory is usually represented as a conglomeration of 

interrelated actuarial concepts. Each actuarial concept has a unique notation 

representing an individual insurance-related idea which can take a numerical 

value. Two examples are provided, below. This section will discuss the 

representation of actuarial concepts and their relationships in the ACS. 

Concept Notation Description 

Mortality Rate qx Probability 
a life aged x 
will die in one year 

Reserve Net worth of a policy 
for a life aged x 
in a pool of premium receipts 
as at the end of tlth year 

Sample Value 

A hierarchy of formalisms called Formula Derivation Net (FDN), Individual 

Concept Structure ( ICS) , and Derivation Structure (DS) capture 

interrelationships among the actuarial concepts. FDN1s, ICS's and DS are 

defined as directed labelled graphs. A FDN consists of a set of interconnected 

nodes with each node representing an actuarial concept. FDNs are of three 

types: One-Sided, Mutual, and Collective (Fig. 1 ) . 

One-sided m. If a concept is derivable from another one but not vice 

versa, such a relation is called a one-sided link. For example, in Fig. 1 (a) 

the actuarial concept 1, represents the number of people alive at age x out of 

a group which started off with lo at age zero. tpx is the probability that a 
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l i f e  aged x w i l l  survive  t years. 1, cannot be computed from tpx  a lone  because 

two values (1, and lx+t)  of  the  former concept a r e  needed t o  compute t h e  

latter. ' 

Mutual l i n k .  If two concepts are de r ivab le  from each o t h e r ,  we have a 

mutual l i n k .  For example, i n  Fig. I ( b ) ,  i r  and d r  are t h e  i n t e r e s t  and 

d iscount  rates respect ive ly .  A s  shown i n  t h e  f i g u r e ,  i f  e i t h e r  ir  o r  d r  is 

known, one can f ind  the  o the r  using t h e  formula indica ted  above t h e  arrow. Not 

a l l  mutual l i n k s  have t o  be s to red  e x p l i c i t l y  s i n c e  the  system suppor t s  

c e r t a i n  simple a lgebra ic  formula transformations similar t o  those  i n  MACSYMA. 

Col lec t ive  w. Here we have a s i t u a t i o n  where a concept can be 

expressed i n  terms of more than one o the r  concept: This  is represented  by an  

AND graph [Nilsson 821. consider  t h e  formula i n  Fig. 1 ( c )  where Ax r e p r e s e n t s  

t h e  present  value of $1 insurance on a l i f e  aged x and a i ' r e p r e s e n t s  t h e  

present  value of a l i f e  annui ty  payable a t  t h e  beginning o f  each year .  

i n s e r t  Fig. 1 about here  

The d i f f e r e n t  FDNs t h a t  compute t h e  same goal  concept are combined i n t o  

an  Individual  Concept S t r u c t u r e  (ICS), The ICS d e f i n e s  t h e  d i f f e r e n t  p a t h s  

through which a goal  concept can be derived.  The over lay  o f  a l l  ICSs is a 
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state-space representation of the stored actuarial knowledge that will be 

referred to as the Derivation Structure (DS). The DS represents the total 

static knowledge of a particular implementation of the expert system. A 

portion of a DS is shown in Fig. 2. 

insert Fig. 2 here 

Each FDN is represented in Prolog using a $$can - findtt predicate at the 

surface level and an ffevaluateff predicate at the execution level. The general 

structure of these predicates is as follows: 

can - find ( Goal-ca tegory-concept , Computation - procedure-iden t if ier , 
if known(Required concepts)). 

evaluate (conputat ion - procedure - identifier , Required - concepts, Result ) . 

For example, consider the above FDN for Ax (denoted [cap,a,x] in Prolog). The 

findft predicate, shown below, stores the knowledge that the concepts Ax, - 
ai; and dr are interrelated, in particular, that Ax can be solved for if the 

other two are known. The predicate also keeps an identifier denoting the 

formula connecting these concepts (0311 in the example below). The ttevaluatew 

predicate represents a procedure which instantiates the concepts numerically 

and invokes the formula execution. In this simple example, the computation 

can be easily expressed in Prolog itself and no external function call is 

necessary. 
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can-find([001 ,cap,a,X], 031 1, if-known ([[012,a,tremma,~], [503,dr]])). 

evaluate(0311, Dr , A-tremma-x ,Cap-a-x ) : - 
member( [012,a, tremma,X, is, Val1 1 ,Conceptswith value,Rest 1 ) , 
member ( [ 503, dr , is, Val2 1 , Concepts-wi th-value , ~ist2 ) , 
Cap-a-x is ( 1 - Dr*A - tremma - x ) . 

Knowledge representations similar to the ones proposed here have been 

used in expert systems for organic synthesis and geology. Expert systems in 

the area of synthesis of organic compounds, such as LHASA [Corey & Wipke 691, 

SECS [Wipke et al. 771 and SYNCHEM [Gelernter et al. 771 use synthesis trees 

to organize the body of knowledge about chemical reactions. Synthesis routes 

that create the desired target molecule are viewed as AND/OR branches of the 

synthesis tree. The tree descends from the goal node representing the 

compound to be synthesized to the terminal node6 representing the starting 

chemical compounds. The' branches connecting the nodes represent possible 

chemical reactions. 

In PROSPECTOR [Duda et a1 . 78 1, an expert system in the field of geology, 
domain knowledge is represented in a so-called inference network. The nodes 

represent assertions about entities in the domain. The arcs between the nodes 

represent either inference rules or provide a context for testing another 

assertion. The system propagates the user's initial assertions through the 

inference network and on that basis selects one of its pre-stored geological 

models to guide its search for discovering what minerals can possibly be 

identified. 
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Domain Name of Data Structure Nodes 

Organic Synthesis Tree 
Synthesis 

Compounds 

Geology Inference Network Assertions 

Insurance Derivation Structure Actuarial 
concepts 

Connecting Links 

Chemical Reactions 

Inference Rules 

Actuarial Formulas 

Table 1. Comparison of Knowledge Representations 

An interesting distinction between the data structures used in organic 

synthesis systems and the ACS is that the insurance data structure can 

automatically insert derived links (see Section 5) between nodes, without 

requiring the explicit representation of each possible type of link between 

the different nodes representing the actuarial concepts. A major difference 

between the data structures in geology and insurance is that in the insurance 

domain the relationships among the nodes are exact formulas whereas in geology 

the inference rules have uncertainty factors measures associated with them. On 

the other hand, the number of possibly interacting actuarial functions seems 

to be larger than in the very modular PROSPECTOR system. 

4 IMPLEMENTATION MODEL OF ACTUARIAL DOMAIN KNOWLEDGE 

An actuary when faced with an insurance problem often goes about 

structuring a solution strategy intuitively. Computerizing this task requires 

an understanding of the actuarial problem solving process. Rather than relying 

on a collection of individual expert rules, a general implementation model of 

this process was developed. This 'model of model managementf -- shown in Fig. 
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3 -- a l s o  s e r v e s  as the  con t ro l  s t r u c t u r e  f o r  the  ACS. I t  has  t h e  fol lowing 

components. 

1. Problem Analyzer 

2. Surface  Planner 

3. Plan Executor 

4. Database 

5. Knowledge Base 

6. Blackboard 

i n s e r t  Fig. 3 about here 

We s h a l l  b r i e f l y  d i scuss  each of  these  components. 

Problem Analvzer. This component accep t s  a problem statement from t h e  

user  and a t t empts  t o  determine what the  user  is t r y i n g  t o  s o l v e  f o r ,  and what 

c o n s t r a i n t s  have t o  be kept  i n  mind while developing a so lu t ion .  In  

i n t e r p r e t i n g  a problem statement,  t h e  Problem Analyzer searches  f o r  a set o f  

key words. The problem statement is broken i n t o  t h r e e  pa r t s :  t h e  goa l  

category insurance concept,  the  type o f  insurance  b e n e f i t ,  and the  c o n s t r a i n t s  

set by t h e  user.  Such i n t e r p r e t a t i o n  of  t h e  problem w i l l  be r e f e r r e d  t o  as 

generat ing a problem context .  Later, it w i l l  be seen t h a t  the  user  has  t h e  
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oppor tuni ty  t o  impose f u r t h e r  c o n s t r a i n t s  o r  t o  restate e x i s t i n g  ones dur ing  

t h e  problem-solving process. 

Surface  Planner. The t a sk  of  t h e  Surface Planner is t o  develop a workable 

s o l u t i o n  s t r a t e g y  f o r  the  problem context  generated by t h e  Analyzer. Using t h e  

set o f  "can - f ind"  p red ica tes  i n  t h e  knowledge base together  with c o s t  

estimates f o r  formula execution,  it develops an optimal  network o f  der ived 

l i n k s  from t h e  Derivation S t r u c t u r e  t h a t  w i l l  symbolical ly s o l v e  t h e  problem 

(Fig. 4) .  A derived l i n k  a s s o c i a t e s  d i f f e r e n t  a c t u a r i a l  concepts t r a n s i t i v e l y  

through one o r  more mediating concepts. For example, i n  Fig. 5, t h e  d o t t e d  

l i n e s  i n d i c a t e  the  derived l i n k .  Although o r i g i n a l l y  A, is represented  i n  

terms of d r  and a;'and each i n  tu rn  is represented i n  terms o f  ir  and ax, i t  

is poss ib le  t o  use these  sequen t i a l  dependencies t o  de r ive  a new l i n k  t h a t  

d i r e c t l y  connects Ax t o  i r  and ax.  

i n s e r t  Fig. 4 and Fig. 5 about he re  

Plan Executor. This component i n h e r i t s  t h e  s o l u t i o n  method developed i n  

t h e  previous s t ep .  I t  then accesses  t h e  knowledge base and selects t h e  

' eva lua te f  p red ica tes  corresponding t o  t h e  formulas t o  be used. I t  

i n s t a n t i a t e s  t h e  parameters with numeric va lues  and carries ou t  t h e  

computations i n  order  t o  g e t  the  r e s u l t .  I t  can a l s o  access  d a t a  base va lues  

i f  necessary, o r  reques t  missing da ta  from t h e  user  ( s e e  s e c t i o n  6.4). 
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Database. The database consists of numerical values for actuarial 

concepts and other important factors, such as interest rates. The ACS 

contains a specialized data dictionary facility to manage those of the values 

stored within the Prolog knowledge base. External storage of table values, and 

access to customer data will be provided through a Prolog-database connection 

[Vassiliou et al. 84; Jarke et al. 843. 

Knowledge m. The knowledge base component (Fig. 6) contains static and 
dynamic rules used by the previously described subsystems. Static rules 

identify the types of insurance benefits , actuarial notations and table values 

of interest, as well as textbook formulas. Dynamic rules deal with the 

knowledge about developing efficient problem-solvjng strategies by selecting 

and manipulating formulas, evaluating alternative ,solution methods and 

computing them. 

Blackboard. This is a working space which serves as a scratchpad for the 

Problem Analyzer, the Surface Planner and the Plan Executor. It helps to 

create data structures, erase them and modify them dynamically during the 

process of problem solving. The original problem statement, its analyzed 

version, intermediate steps during a long search and intermediate results can 

all be stored for future references. 

insert Fig. 6 about here 
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5 Surface Planning Strategies 

Three types of strategies have been incorporated in the Surface Planner: 

basic breadth-first search, cost-based search, and human expert rules. 

Prolog's standard depth-first search appears less suitable for most actuarial 

problems since many problems will have solutions which are only a few steps 

deep but not immediately obvious. 

The basic breadth-first search contains a simple heuristic that attempts 

first to use formulas in which a partial match between given data and required 

values exists. The objective of using breadth-first is to limit the total 

number of formulas to be employed by trying directly applicable formulas 

upfront. Only when it is realized that no direct formulas exist, the problem 

is decomposed into layers of subgoals. In other words, different lines of 

reasoning are examined in parallel at each step in the decomposition of the 

problem and no commitment is made to any specific strategy right from the 

beginning. 

If the user is unhappy with the proposed solution strategy displayed 

after the basic breadth-first search, the Planner employs a cost-based search 

for alternative solution plans. The idea is to find a solution method which 

would be the cheapest for the Plan Executor to work with. Cost estimates are 

based on the number of formulas needed in each solution method, the number of 

input concepts and the amount of computation involved in using each. Thus, a 
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solution sequence which involves more formulas might be preferred to a shorter 

sequence with costly computations. 

While these two basic methods employ backward chaining, the Surface 

Planner can also make leaping conclusions like a typical human expert based on 

certain rules of thumb or experience used by actuaries. This may be called 

shortcutting the plan development and is simply implemented by adding new FDNs 

for the expert rules. While the scheme chosen for knowledge representation 

makes the implementation of these rules easy, the more difficult part is the 

precise statement of the circumstances under which these shortcuts (often 

approximations) are applicable. For example, consider the computation of a 

premium for a pension plan subject to the condition that in the event of death 

the premiums be returned with interest. An expert actuary can use a 'tricky1 

factor aiGn / s;', obviating a long sequence of computations (see the Appendix 

for an explanation). Such heuristics have to be used with care only if the 

problem context warrants them. 

6 AN EXAMPLE 

Since the user interface has not been the primary concern of this 

research to date, input is provided to the system following a relatively 

simple structured English format: 

FIND <goal category concept> FOR <type of insurance benefit> 

[ GIVEN <constrained concept values> I .  

The key words FIND and FOR are essential while GIVEN is optional 
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(indicated by the square bracket), depending on whether the user wishes to 

specify some concepts or constrained values to be used during the problem 

solving stage. All the possible goal category concepts, types of insurance 

benefits and constrained concepts are stored with their input patterns in the 

knowledge base. Slots are provided to store numeric parameter values supplied 

in the problem specification. 

In Prolog, these concepts take the form of predicates, A few sample 

predicates are shown below. The capital letters indicate instantiable 

variables. The numbers are concept identifiers provided for control purposes 

and may be ignored for now. 

Goal  category concepts 

possible-goal ( [net, single, premium 1 ) . 
possible-goal ( [reserve ,at, the, end, of ,T, years 1 ) . 
possible-goal( [amount ,of ,paid, up, insurancesat ,duration ,TI ) . 

Types of benefit 

possible-benef i t ( [ 6 13 1, [F, dollar, N, year, endowment, payable, 
at,the,end,of ,year,of ,death]). 

possible-benefit( [6 151 fidollar ,whole, life ,annuity ,payable, 
at, the, end, of, year, of, death, wi th ,payments, guaranteed , for ,N, years 1 ) . 

Constrained concept values : 

possible-value( [012 1, [a, tremma, X ,  is,Val] ) . 
possible-value( [ 50 1 I, [interest, rate, is, Val 1 1. 
possible-value( [ 609 1, [commission ,C, pc , of ,gross ,premium 1 ) . 

In the sequel, the solution of a particular actuarial problem concerning 

a whole life insurance premium will be traced through the components of 

Problem Analyzer, Surface Planner, and Plan Executor. 
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6.1 Problem Analyzer 

The Problem Analyzer breaks the problem into its three parts. Each is 

understood by matching the input with the pre-stored 'possiblef patterns, and 

then converted into the appropriate actuarial notations. The Analyzer shows 

the generated problem context (i .e., the Goal, the type of Benefit, and the 

Constraint definitions) and stores them on the blackboard for future 

reference. Suppose, the user submits the following problem (user inputs are 

underlined). 

I ?-problem. 

I :  find the net single premium for a 10000 dollar whole life insurance 
payable & the end of year of death given age- 35,a tremna 45 
8,10 v 35 is 1 and @ is 10 pc. 

Goal = net single premium 

Benefit = 1 10000 dollar' whole life insurance payable at the end of 
year of death 

Given concepts are 
[[601,age,351,[12,a,tremma,45,is,81,E124, 10,v,35,is, 11,[501 ,ir,is, 1011 
Yes 

6.2 Surface Planner 

The Surface Planner first retrieves the problem context from the 

blackboard and removes numeric values for specific insurance concepts 

temporarily, in order to conduct a purely symbolic planning process. Then, it 

identifies the actuarial problem to be solved by combining the goal category 

concept and the type of insurance benefit. In our example, the Planner 

combines the goal category concept 'net single premiumf with the type of 
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insurance benefit 'whole life insurance payable at the end of year of death1 

to form the corresponding uniquely identifiable actuarial goal tcap-a-xt. For 

this purpose, the knowledge base contains a class of predicates called 

'notation - equivalents1 which determine what type of goal categories can be 

combined with which type of insurance benefits to yield feasible actuarial 

concepts. The predicate selected for our example is shown below. 

notation - eqvt ( [net ,single, premium 1, [F, dollar, whole, life, insurance, payable, 
at,the,end,of ,year,of ,death], COO1 ,cap,a,x I). 

Once the actuarial goal has been precisely identified, the Planner tries 

to find ways of solving for it using the given concept constraints (without 

values). It searches through the can-find([OOl,cap,a,xI, ..., if - known(...)) 
predicates. Each predicate either represents a directly applicable formula 

for computing cap-a-x or a manipulated form which can be used to compute 

cap - a - x if the proper algebraic transformations are applied. In our example, 

the Planner has three choices available in the knowledge base (first three 

lines below). 

In the absence of particular "expertisew providing immediate shortcuts, 
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the Planner tests the applicable rules with the heuristic of focusing the 

search on predicates where parts of the necessary values are known from the 

input data. Thus, since ir (interest rate) is known from the input data, the 

third rule is chosen and a-x is set as a subgoal. The fourth rule above is 

applied in turn and a new subgoal a-tremma-x is created. After examining 

several alternatives of finding a-tremma - x (not shown above), the fifth rule 

is applied successfully. Note that this rule refers to a manipulated form of 

the textbook formula t-V-x = 1 - a - tremma - x+t / a-tremma-x. The successful 

paths finally form a complete solution strategy. 

I ?- soln plan. 

We have to find [l ,cap,a,351 
We know values of [501,ir] 
We need values of 1 1 ,a, 35 1 
- then we can use formula/s : 
cap-a-x = [I-ir.a-XI / 1+ir 

Note that We can-find [12,a,tremma,35] 
if - known([[12,a,tremma,451,[124,10,~,3511) 

using t v x = 1 - a-tremma x+t / a tremma x 
Note that- We can-find [1l;a,351 i? - knownT[12,a,tremna,351) 
using a-tremma-x = 1 + a - x 
Yes 

6.3 Plan Executor 

The Plan Executor first retrieves the solution strategy developed by the 

Planner, represented on the blackboard as a list of formula identifiers. 

Letters are attached to the formula numbers to identify transformation to be 

applied to the textbook formulas. In our problem, the solution strategy is 

represented by the predicate, strategy( [0506B,0210~,0312] ) . The numeric part 
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of the first identifier 0506B indicates to the Plan Executor that the textbook 

formula is t-V-x = 1 - a-tremma-x+t / a-tremma-x in a manipulated form. The 

Plan Executor calls the corresponding evaluation predicates one at a time. 

Each ffevaluatetf predicate contains or calls the procedure for computing the 

corresponding formula and can retrieve the numerical inputs either from the 

problem context or from the data base. Finally, the computed values are 

combined and the numerical solution to the problem is computed. 

6.4 Fact Acquisition 

If not enough information is available to solve a problem, the above 

procedure will notice this either at the Surface Planning or at the Execution 

level. In this case, the system will ask for additional information. Three 

cases can be distinguished (Fig. 7). In the first case, the user does not care 

how the problem is to be solved or where the input data come from. For 

example, a user may just ask for the premium for a standard policy. In this 

case (denoted I in Fig. 71, the system will only fail if the goal set by the 

user cannot be computed from any data available in the database. The fact 

acquisition subsys tem of the ACS [ Sivasankaran 84 1 will make an educated guess 

which data the user might be able to provide; if that fails again, the Surface 

Planner will develop an alternative plan and ask for its missing data until 

either a solution is found or the user decides to give up. 

insert Fig. 7 about here 
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In case 11, the user specifies which concepts are constrained but wishes 

to use default values for the constraints. The defaults should be available 

from the database; if not the system will ask the user for data. However, 

there is no need for the system to look for alternative strategies without 

being told so since that would be against the wishes of the user. 

Finally, in case 111, the user provides at least some of his own data to 

override default values (e.g., mortality rates) stored in the database. Two 

possible problems may occur in this case. One the one hand, the user may 

forget to specify a certain concept or to mention it at all; the above 

procedures can be used to add the missing informatlon. On the other hand, the 

problem may be overconstrained, leading to contradictions and leaving the 

problem unsolvable. For example, the user may put upper limits to the premium 

payment capability and lower limits to the policy amount that are not 

compatible. The fact acquisition system will in this case try to point out 

where the contradiction lies so that the user can correct the input. 

7 CONCLUSIONS 

The ACS has demonstrated the usefulness of a layered knowledge base 

architecture for model management even in a logic programming environment. 

The performance advantages obtained by this kind of architecture increase if 

the models are more complex than the simple examples shown in the paper. The 

architecture of the system has also proven a good tool to combine exact 
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mathematical knowledge ( a s  i n  the  textbook formulas) with human exper t  

problem-solving heur is t ics .  

The current  prototype of the  ACS has a reper to i re  of 95 a c t u a r i a l  

concepts and 175 formulas which covers approximately 80% of a l l  a c t u a r i a l  

concepts appl icable  t o  s ing le  l i f e  po l i c i e s  [Jordan 751. The about 600 

formulas f o r  the  multiple-l ife case a r e  being added t o  the  system. Most of t he  

f a c t  acquis i t ion  subsystem described i n  sect ion 6.4 is a l s o  operational,  Both 

t h i s  par t  and the  human expert shor tcut  r u l e s  a r e  being expanded, based on 

experience with using the system. Experiments with a number of textbook and 

real-world ac tua r i a l  problems have demonstrated t ha t  the  system is capable of  

f inding and explaining ra ther  'c leverf  solut ions  t o  some problems, i n  some 

case solut ions  t ha t  the expert posing the  problem had not thought of before. 

One of the  major next s teps  i n  t h i s  work is t o  improve the  user i n t e r f ace  

so  t h a t  i t  can be used with less t ra ining.  In pa r t i cu l a r ,  we are focusing on 

the development of an interface f o r  tu tor ing a c t u a r i a l  s tudents  i n  t h e i r  

preparations for  the o f f i c i a l  a c tua r i a l  exams. Some i n i t i a l  experiments with 

the ex is t ing  prototype have already shown tha t  the  ACS can support t h i s  

process e f fec t ive ly  by permitting the student t o  compare multiple poss ib le  

solut ion s t r a t e g i e s  i n  terms of t h e i r  elegance and computational cos t s .  

However, the system w i l l  need more f l e x i b i l i t y  i n  its user in te r face  t o  become 

a usable tutoring tool.  
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Appendix 

Explanation o f  t h e  Factor  ai;n / si' 

Problem : Find t h e  n e t  annual premium payable f o r  n y e a r s  f o r  a pension 

cover of  $1 per annum issued t o  a l i fe  aged x ,  with t h e  f i rs t  pension payment 

n years  after d a t e  of i s s u e  and with the  provision t h a t ,  i f  t h e  insured d i e s  

within the n year period,  t h e  n e t  premiums paid are t o  be re tu rned  with 

compound i n t e r e s t  t o  the  end of  t h e  year  o f  death.  

( i )  The mathematical s o l u t i o n  is shown below : 
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( i i )  A l t e rna t ive  h e u r i s t i c  reasoning : 

Imagine t h e  insured su rv ives  the  n years  t o  age x+n. The same pension 

b e n e f i t  i f  issued a t  age x+n w i l l  c o s t  a;Gn d o l l a r s .  Suppose t h e  prospect ive  

pensioner while a t  age x decides  t o  wait till age x+n and then buy the pension 

coverage a t  t h i s  cos t .  However, let  him c r e a t e  a s ink ing  fund by depos i t ing  an  

amount $P annual ly  i n t o  a bank account, P being s o  chosen t h a t  over n y e a r s  

the  annual depos i t s  would accumulate with i n t e r e s t  t o  $ a;;n . According t o  

the  theory of  compound i n t e r e s t ,  i n  order  t o  accumulate $1 over n yea r s  with 

i n t e r e s t ,  the  annual deposi t  should be 1/s;: 'Hence, t o  accumulate a;Gn 

d o l l a r s ,  $P has t o  be a;;n / si: 

$P is the  so lu t ion  t o  our problem s i n c e  

1. I f  such an amount is deposi ted annually it w i l l  accumulate over n 
years  t o  the  p r i c e  of  the  pension plan a t  age x+n which amount can 
be used then t o  buy t h e  pension b e n e f i t  

2. In  case he/she d i e s  before  reaching age x+n, t h e  annual  d e p o s i t s  o f  
$P made u n t i l  then can be withdrawn as i f  they had gone i n t o  a bank 
account. 
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One-sided link Mutual link 

Figure 1: Links in Formula Derivation Networks 
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- Transformation of standard formulas 
CcCt Multiple values of concept for different ages 

Figure 2: A Simple Derivation Structure 
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USER INTERFACE 1 

Figure 3 

The Model o f  Model Management 
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Figure 4 

The Solution Planner Component 

I Class of predicates 
I used : 
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Figure 5: A Derived Link 
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KNOWLEDGE BASE 

STATIC 

DYNAMIC 

Knowledge about the user interface 

Types of goal category concepts 

Types of insurance benefits 
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Formulas 

Formula Derivation Nets 

Evaluation/computation procedures 
I 

Data base (table) values I 

Rules on problem recognition 

Rules on selecting the formulas I 
Rules on manipulating the formulas I 
Rules on creation and deletion of 
intermediate strategies/results 

Figure 6: Structure of Knowledge Base 
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