
LOGIC-BASED FORMULA MANAGEMENT STRATEGIES
IN AN ACTUARIAL CONSULTING SYSTEM

Tasacad Sivasanltaran
Matthias Jake

March 1984
Revised December 1984

Working Paper Series
Stern #IS-84-44

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

LOGIC-BASED FORMULA MANAGEMENT STRATEGIES

IN AN ACTUARIAL CONSULTING SYSTEM

Abstract

In many decision support systems, multiple decision methods
and models must be combined for solving a complex problem.
Expertise is required for selecting, adapting and coordinat-
ing appropriate models. This paper describes the design and
implementation of a knowledge-based model management system
called the Actuarial Consulting System (ACS). The ACS supports
actuaries in making pricing decisions in the domain of life
insurance. Actuarial knowledge is organized using a graph
formalism called Formula Derivation Network (FDN), represented
in Prolog as a hierarchy of predicates. On the user level, a
Problem Analyzer converts a problem specification by the user
into a search problem on the stored collection of FDNs. Using
different search strategies, including human expert rules, the
Surface Planner generates an efficient solution strategy
(sequence of models). At the lowest level, a Plan Executor
retrieves or requests model data and issues appropriate function
calls to a subroutine library.

Keywords; model management, logic-based decision support
systems, actuarial science, life insurance, hierarchical
knowledge base management, expert systems,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

1 INTRODUCTION

A research effort at New York University investigates the integration of

artificial intelligence (AI) methods into existing decision support systems

(DSS) [Jarke & Vassiliou 841. One part of the project studies the interaction

between expert systems and large existing databases [Vassiliou et al. 84;

Jarke et al. 841, another one specific aspects of business expert systems,

focusing on expert systems for insurance underwriting [Clifford et al. 851.

This paper describes work on a third subproject that investigates the

combination of A1 methods with quantitative models, in particular, intelligent

model management.

In complex decision situations, it will often be necessary to coordinate

the application of multiple decision models for solving a problem. Decision

Support Systems need a model management component [Elam et al. 80; Sprague &

Carlson 821 that handles the tasks of identifying appropriate models from a

problem description, sequencing their application, and instantiating them with

the necessary data.

The paper describes the design and implementation of a prototype model

management system that supports actuaries in their work, In an insurance

company, actuaries are responsible for evaluating the risks of providing

insurance for life contingencies, such as death, disability, or retirement.

The system -- called the Actuarial Consulting System (ACS) -- structures life
insurance problems by organizing appropriate formulas and models, evaluating

premiums, and explaining possible solution methods. The focus of the present

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

paper are the model selection and combination capabilities of the system;

details of other features are provided in [Sivasankaran 841.

Several other authors have addressed model management issues. Following

[Bonczek et al. 821, three stages of model management systems can be

distinguished. In the simplest case, the user must procedurally state an

algorithm to solve the problem at hand. In the second stage, the user may

select among a set of pre-specified models provided by the system. Several

high-level languages have been proposed for this purpose. A good example is

Blanningts El9823 relational model management which views a model as a

relation between input and output data and implements model sequences by joins

between these relations.

The ACS uses a similar, although graph-based high-level model description

but actually falls into the third category of [Bonczek et al. 821: it

automatically selects a combination of models, guided by its knowledge base

and by a high-level problem specification provided by the user. This approach

requires the use of A 1 techniques. In principle, a pure resolution-based

system such as Prolog [Clocksin & Mellish 821 could be used for this task; see

also [Bonczek et al. 81 1 for an exploration of this option.

However, it has been observed that pure resolution systems do not provide

sufficient control of the solution planning process [Dolk & Konsynski 831. For

example, it may turn out to be very costly to execute models concurrently with

the reasoning process if the results may subsequently have to be discarded due

to backtracking.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

Consequently, the ACS -- although implemented in Prolog -- employs a more
hierarchical control structure. On a surface level, a planner selects

applicable models and manipulates them into a feasible and efficient solution

plan. This level uses a graph-based knowledge representation that facilitates

the search for solution strategies and the evaluation of alternatives. No

number-crunching is involved at this level and Prologts unification

capabilities, augmented by cost estimates for additional search space

reduction, prove very helpful.

Once a promising plan has been established, the execution level

instantiates the required data values and executes the models selected by the

planner. This level may need access to databases and mathematical libraries

for which Prolog may not be the ideal programming tool; coupling with external

systems may become necessary [Jarke & Vassiliou 841. If not all required data

are available, control is returned to the surface planner which may either try

an alternative strategy, or invoke a fact acquisition subsystem designed to

obtain missing information (or at least directions where to find it) from the

user.

The remainder of this paper describes the ACS in more detail. Section 2

briefly reviews the range of actuarial problems to be supported by the ACS.

Section 3 presents knowledge representations for actuarial concepts and

problem solving strategies. In section 4, the layered architecture of the ACS

is described; more details on the main model management component -- the
surface planner -- are provided in section 5. Section 6 demonstrates the usage

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

of the system by a comprehensive example and section 7 reviews the status of

the system and outlines extensions currently under design.

2 MODEL MANAGEMENT IN ACTUARIAL SCIENCE

The statistical study of the contingencies of human life, such as death,

disability, or retirement forms the foundation of actuarial science. Experts

in this field are called actuaries. The actuary must estimate the

probabilities of occurrence of contingent events as a basis for calculating

premiums, reserves, annuities, etc., for insurance and other financial

operations. For the solution of problems involving these contingencies, an

actuary requires some quantitative measure of their effects. In problems

involving financial calculations, the actuary also requires a set of

principles by which probabilistic measurements may be combined with interest

functions to produce monetary values [Jordan 751.

The actuarial domain deals with a large number of formulas, equations,

and models, many of which are intertwined with one another. At several points

of the actuarial problem-solving process, expertise is needed. First, the

actuary must comprehend and formulate the problem in terms of insurance

concepts, and of the available data like mortality rates, interest rates,

commutation function values and health related risk scores. Expertise is also

required for choosing, transforming and sequencing an efficient set of

applicable formulas. Generally, the actuary must develop an overall solution

plan before any actual computation, because many actuarial problems require

several formulas to be transformed and combined in a particular sequence.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

Knowing the solution strategy beforehand helps avoid cycling and redundant

computation, Knowledge is finally needed for deciding whether to access tables

of pre-stored data, to compute these values because direct computation is

cheaper than accessing the tables or even the only method, and when to

override default value table access by user-specified data.

The ACS represents the different actuarial concepts, formulas, and

heuristics of problem-solving in a carefully organized knowledge base. The

knowledge base must support at least the following functions:

1. Compute the premium for an insurance benefit or mix of benefits

2. Assess feasibility of the benefits

3. Explain the result by showing which models :were applied in which
sequence

4, Allow the user to modify the reasoning process

5. If a certain problem cannot be solved, point out why. Also ask for
values which, if supplied, can solve the problem.

The ACS is not intended to replace an actuary but to assist in life

insurance problems by serving as a 'intelligent calculatort, i.e,, a decision

support tool. It was built for expert users and may not be suitable for a

user unfamiliar with the basic concepts of life contingencies theory.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

3 STRUCTURAL MODEL OF ACTUARIAL DOMAIN KNOWLEDGE

Actuarial theory is usually represented as a conglomeration of

interrelated actuarial concepts. Each actuarial concept has a unique notation

representing an individual insurance-related idea which can take a numerical

value. Two examples are provided, below. This section will discuss the

representation of actuarial concepts and their relationships in the ACS.

Concept Notation Description

Mortality Rate qx Probability
a life aged x
will die in one year

Reserve Net worth of a policy
for a life aged x
in a pool of premium receipts
as at the end of tlth year

Sample Value

A hierarchy of formalisms called Formula Derivation Net (FDN), Individual

Concept Structure (ICS) , and Derivation Structure (DS) capture

interrelationships among the actuarial concepts. FDN1s, ICS's and DS are

defined as directed labelled graphs. A FDN consists of a set of interconnected

nodes with each node representing an actuarial concept. FDNs are of three

types: One-Sided, Mutual, and Collective (Fig. 1) .

One-sided m. If a concept is derivable from another one but not vice

versa, such a relation is called a one-sided link. For example, in Fig. 1 (a)

the actuarial concept 1, represents the number of people alive at age x out of

a group which started off with lo at age zero. tpx is the probability that a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

l i f e aged x w i l l survive t years. 1, cannot be computed from tpx a lone because

two values (1, and lx+t) of the former concept a r e needed t o compute t h e

latter. '

Mutual l i n k . If two concepts are de r ivab le from each o t h e r , we have a

mutual l i n k . For example, i n Fig. I (b) , i r and d r are t h e i n t e r e s t and

d iscount rates respect ive ly . A s shown i n t h e f i g u r e , i f e i t h e r ir o r d r is

known, one can f ind the o the r using t h e formula indica ted above t h e arrow. Not

a l l mutual l i n k s have t o be s to red e x p l i c i t l y s i n c e the system suppor t s

c e r t a i n simple a lgebra ic formula transformations similar t o those i n MACSYMA.

Col lec t ive w. Here we have a s i t u a t i o n where a concept can be

expressed i n terms of more than one o the r concept: This is represented by an

AND graph [Nilsson 821. consider t h e formula i n Fig. 1 (c) where Ax r e p r e s e n t s

t h e present value of $1 insurance on a l i f e aged x and a i ' r e p r e s e n t s t h e

present value of a l i f e annui ty payable a t t h e beginning o f each year .

i n s e r t Fig. 1 about here

The d i f f e r e n t FDNs t h a t compute t h e same goal concept are combined i n t o

an Individual Concept S t r u c t u r e (ICS), The ICS d e f i n e s t h e d i f f e r e n t p a t h s

through which a goal concept can be derived. The over lay o f a l l ICSs is a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

state-space representation of the stored actuarial knowledge that will be

referred to as the Derivation Structure (DS). The DS represents the total

static knowledge of a particular implementation of the expert system. A

portion of a DS is shown in Fig. 2.

insert Fig. 2 here

Each FDN is represented in Prolog using a $$can - findtt predicate at the

surface level and an ffevaluateff predicate at the execution level. The general

structure of these predicates is as follows:

can - find (Goal-ca tegory-concept , Computation - procedure-iden t if ier ,
if known(Required concepts)).

evaluate (conputat ion - procedure - identifier , Required - concepts, Result) .

For example, consider the above FDN for Ax (denoted [cap,a,x] in Prolog). The

findft predicate, shown below, stores the knowledge that the concepts Ax, -
ai; and dr are interrelated, in particular, that Ax can be solved for if the

other two are known. The predicate also keeps an identifier denoting the

formula connecting these concepts (0311 in the example below). The ttevaluatew

predicate represents a procedure which instantiates the concepts numerically

and invokes the formula execution. In this simple example, the computation

can be easily expressed in Prolog itself and no external function call is

necessary.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

can-find([001 ,cap,a,X], 031 1, if-known ([[012,a,tremma,~], [503,dr]])).

evaluate(0311, Dr , A-tremma-x ,Cap-a-x) : -
member([012,a, tremma,X, is, Val1 1 ,Conceptswith value,Rest 1) ,
member ([503, dr , is, Val2 1 , Concepts-wi th-value , ~ist2) ,
Cap-a-x is (1 - Dr*A - tremma - x) .

Knowledge representations similar to the ones proposed here have been

used in expert systems for organic synthesis and geology. Expert systems in

the area of synthesis of organic compounds, such as LHASA [Corey & Wipke 691,

SECS [Wipke et al. 771 and SYNCHEM [Gelernter et al. 771 use synthesis trees

to organize the body of knowledge about chemical reactions. Synthesis routes

that create the desired target molecule are viewed as AND/OR branches of the

synthesis tree. The tree descends from the goal node representing the

compound to be synthesized to the terminal node6 representing the starting

chemical compounds. The' branches connecting the nodes represent possible

chemical reactions.

In PROSPECTOR [Duda et a1 . 78 1, an expert system in the field of geology,
domain knowledge is represented in a so-called inference network. The nodes

represent assertions about entities in the domain. The arcs between the nodes

represent either inference rules or provide a context for testing another

assertion. The system propagates the user's initial assertions through the

inference network and on that basis selects one of its pre-stored geological

models to guide its search for discovering what minerals can possibly be

identified.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

Domain Name of Data Structure Nodes

Organic Synthesis Tree
Synthesis

Compounds

Geology Inference Network Assertions

Insurance Derivation Structure Actuarial
concepts

Connecting Links

Chemical Reactions

Inference Rules

Actuarial Formulas

Table 1. Comparison of Knowledge Representations

An interesting distinction between the data structures used in organic

synthesis systems and the ACS is that the insurance data structure can

automatically insert derived links (see Section 5) between nodes, without

requiring the explicit representation of each possible type of link between

the different nodes representing the actuarial concepts. A major difference

between the data structures in geology and insurance is that in the insurance

domain the relationships among the nodes are exact formulas whereas in geology

the inference rules have uncertainty factors measures associated with them. On

the other hand, the number of possibly interacting actuarial functions seems

to be larger than in the very modular PROSPECTOR system.

4 IMPLEMENTATION MODEL OF ACTUARIAL DOMAIN KNOWLEDGE

An actuary when faced with an insurance problem often goes about

structuring a solution strategy intuitively. Computerizing this task requires

an understanding of the actuarial problem solving process. Rather than relying

on a collection of individual expert rules, a general implementation model of

this process was developed. This 'model of model managementf -- shown in Fig.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

3 -- a l s o s e r v e s as the con t ro l s t r u c t u r e f o r the ACS. I t has t h e fol lowing

components.

1. Problem Analyzer

2. Surface Planner

3. Plan Executor

4. Database

5. Knowledge Base

6. Blackboard

i n s e r t Fig. 3 about here

We s h a l l b r i e f l y d i scuss each of these components.

Problem Analvzer. This component accep t s a problem statement from t h e

user and a t t empts t o determine what the user is t r y i n g t o s o l v e f o r , and what

c o n s t r a i n t s have t o be kept i n mind while developing a so lu t ion . In

i n t e r p r e t i n g a problem statement, t h e Problem Analyzer searches f o r a set o f

key words. The problem statement is broken i n t o t h r e e pa r t s : t h e goa l

category insurance concept, the type o f insurance b e n e f i t , and the c o n s t r a i n t s

set by t h e user. Such i n t e r p r e t a t i o n of t h e problem w i l l be r e f e r r e d t o as

generat ing a problem context . Later, it w i l l be seen t h a t the user has t h e

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

oppor tuni ty t o impose f u r t h e r c o n s t r a i n t s o r t o restate e x i s t i n g ones dur ing

t h e problem-solving process.

Surface Planner. The t a sk of t h e Surface Planner is t o develop a workable

s o l u t i o n s t r a t e g y f o r the problem context generated by t h e Analyzer. Using t h e

set o f "can - f ind" p red ica tes i n t h e knowledge base together with c o s t

estimates f o r formula execution, it develops an optimal network o f der ived

l i n k s from t h e Derivation S t r u c t u r e t h a t w i l l symbolical ly s o l v e t h e problem

(Fig. 4) . A derived l i n k a s s o c i a t e s d i f f e r e n t a c t u a r i a l concepts t r a n s i t i v e l y

through one o r more mediating concepts. For example, i n Fig. 5, t h e d o t t e d

l i n e s i n d i c a t e the derived l i n k . Although o r i g i n a l l y A, is represented i n

terms of d r and a;'and each i n tu rn is represented i n terms o f ir and ax, i t

is poss ib le t o use these sequen t i a l dependencies t o de r ive a new l i n k t h a t

d i r e c t l y connects Ax t o i r and ax.

i n s e r t Fig. 4 and Fig. 5 about he re

Plan Executor. This component i n h e r i t s t h e s o l u t i o n method developed i n

t h e previous s t ep . I t then accesses t h e knowledge base and selects t h e

' eva lua te f p red ica tes corresponding t o t h e formulas t o be used. I t

i n s t a n t i a t e s t h e parameters with numeric va lues and carries ou t t h e

computations i n order t o g e t the r e s u l t . I t can a l s o access d a t a base va lues

i f necessary, o r reques t missing da ta from t h e user (s e e s e c t i o n 6.4).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

Database. The database consists of numerical values for actuarial

concepts and other important factors, such as interest rates. The ACS

contains a specialized data dictionary facility to manage those of the values

stored within the Prolog knowledge base. External storage of table values, and

access to customer data will be provided through a Prolog-database connection

[Vassiliou et al. 84; Jarke et al. 843.

Knowledge m. The knowledge base component (Fig. 6) contains static and
dynamic rules used by the previously described subsystems. Static rules

identify the types of insurance benefits , actuarial notations and table values

of interest, as well as textbook formulas. Dynamic rules deal with the

knowledge about developing efficient problem-solvjng strategies by selecting

and manipulating formulas, evaluating alternative ,solution methods and

computing them.

Blackboard. This is a working space which serves as a scratchpad for the

Problem Analyzer, the Surface Planner and the Plan Executor. It helps to

create data structures, erase them and modify them dynamically during the

process of problem solving. The original problem statement, its analyzed

version, intermediate steps during a long search and intermediate results can

all be stored for future references.

insert Fig. 6 about here

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

5 Surface Planning Strategies

Three types of strategies have been incorporated in the Surface Planner:

basic breadth-first search, cost-based search, and human expert rules.

Prolog's standard depth-first search appears less suitable for most actuarial

problems since many problems will have solutions which are only a few steps

deep but not immediately obvious.

The basic breadth-first search contains a simple heuristic that attempts

first to use formulas in which a partial match between given data and required

values exists. The objective of using breadth-first is to limit the total

number of formulas to be employed by trying directly applicable formulas

upfront. Only when it is realized that no direct formulas exist, the problem

is decomposed into layers of subgoals. In other words, different lines of

reasoning are examined in parallel at each step in the decomposition of the

problem and no commitment is made to any specific strategy right from the

beginning.

If the user is unhappy with the proposed solution strategy displayed

after the basic breadth-first search, the Planner employs a cost-based search

for alternative solution plans. The idea is to find a solution method which

would be the cheapest for the Plan Executor to work with. Cost estimates are

based on the number of formulas needed in each solution method, the number of

input concepts and the amount of computation involved in using each. Thus, a

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

solution sequence which involves more formulas might be preferred to a shorter

sequence with costly computations.

While these two basic methods employ backward chaining, the Surface

Planner can also make leaping conclusions like a typical human expert based on

certain rules of thumb or experience used by actuaries. This may be called

shortcutting the plan development and is simply implemented by adding new FDNs

for the expert rules. While the scheme chosen for knowledge representation

makes the implementation of these rules easy, the more difficult part is the

precise statement of the circumstances under which these shortcuts (often

approximations) are applicable. For example, consider the computation of a

premium for a pension plan subject to the condition that in the event of death

the premiums be returned with interest. An expert actuary can use a 'tricky1

factor aiGn / s;', obviating a long sequence of computations (see the Appendix

for an explanation). Such heuristics have to be used with care only if the

problem context warrants them.

6 AN EXAMPLE

Since the user interface has not been the primary concern of this

research to date, input is provided to the system following a relatively

simple structured English format:

FIND <goal category concept> FOR <type of insurance benefit>

[GIVEN <constrained concept values> I .

The key words FIND and FOR are essential while GIVEN is optional

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

(indicated by the square bracket), depending on whether the user wishes to

specify some concepts or constrained values to be used during the problem

solving stage. All the possible goal category concepts, types of insurance

benefits and constrained concepts are stored with their input patterns in the

knowledge base. Slots are provided to store numeric parameter values supplied

in the problem specification.

In Prolog, these concepts take the form of predicates, A few sample

predicates are shown below. The capital letters indicate instantiable

variables. The numbers are concept identifiers provided for control purposes

and may be ignored for now.

Goal category concepts

possible-goal ([net, single, premium 1) .
possible-goal ([reserve ,at, the, end, of ,T, years 1) .
possible-goal([amount ,of ,paid, up, insurancesat ,duration ,TI) .

Types of benefit

possible-benef i t ([6 13 1, [F, dollar, N, year, endowment, payable,
at,the,end,of ,year,of ,death]).

possible-benefit([6 151 fidollar ,whole, life ,annuity ,payable,
at, the, end, of, year, of, death, wi th ,payments, guaranteed , for ,N, years 1) .

Constrained concept values :

possible-value([012 1, [a, tremma, X , is,Val]) .
possible-value([50 1 I, [interest, rate, is, Val 1 1.
possible-value([609 1, [commission ,C, pc , of ,gross ,premium 1) .

In the sequel, the solution of a particular actuarial problem concerning

a whole life insurance premium will be traced through the components of

Problem Analyzer, Surface Planner, and Plan Executor.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

6.1 Problem Analyzer

The Problem Analyzer breaks the problem into its three parts. Each is

understood by matching the input with the pre-stored 'possiblef patterns, and

then converted into the appropriate actuarial notations. The Analyzer shows

the generated problem context (i .e., the Goal, the type of Benefit, and the

Constraint definitions) and stores them on the blackboard for future

reference. Suppose, the user submits the following problem (user inputs are

underlined).

I ?-problem.

I : find the net single premium for a 10000 dollar whole life insurance
payable & the end of year of death given age- 35,a tremna 45
8,10 v 35 is 1 and @ is 10 pc.

Goal = net single premium

Benefit = 1 10000 dollar' whole life insurance payable at the end of
year of death

Given concepts are
[[601,age,351,[12,a,tremma,45,is,81,E124, 10,v,35,is, 11,[501 ,ir,is, 1011
Yes

6.2 Surface Planner

The Surface Planner first retrieves the problem context from the

blackboard and removes numeric values for specific insurance concepts

temporarily, in order to conduct a purely symbolic planning process. Then, it

identifies the actuarial problem to be solved by combining the goal category

concept and the type of insurance benefit. In our example, the Planner

combines the goal category concept 'net single premiumf with the type of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

insurance benefit 'whole life insurance payable at the end of year of death1

to form the corresponding uniquely identifiable actuarial goal tcap-a-xt. For

this purpose, the knowledge base contains a class of predicates called

'notation - equivalents1 which determine what type of goal categories can be

combined with which type of insurance benefits to yield feasible actuarial

concepts. The predicate selected for our example is shown below.

notation - eqvt ([net ,single, premium 1, [F, dollar, whole, life, insurance, payable,
at,the,end,of ,year,of ,death], COO1 ,cap,a,x I).

Once the actuarial goal has been precisely identified, the Planner tries

to find ways of solving for it using the given concept constraints (without

values). It searches through the can-find([OOl,cap,a,xI, ..., if - known(...))
predicates. Each predicate either represents a directly applicable formula

for computing cap-a-x or a manipulated form which can be used to compute

cap - a - x if the proper algebraic transformations are applied. In our example,

the Planner has three choices available in the knowledge base (first three

lines below).

In the absence of particular "expertisew providing immediate shortcuts,

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

the Planner tests the applicable rules with the heuristic of focusing the

search on predicates where parts of the necessary values are known from the

input data. Thus, since ir (interest rate) is known from the input data, the

third rule is chosen and a-x is set as a subgoal. The fourth rule above is

applied in turn and a new subgoal a-tremma-x is created. After examining

several alternatives of finding a-tremma - x (not shown above), the fifth rule

is applied successfully. Note that this rule refers to a manipulated form of

the textbook formula t-V-x = 1 - a - tremma - x+t / a-tremma-x. The successful

paths finally form a complete solution strategy.

I ?- soln plan.

We have to find [l ,cap,a,351
We know values of [501,ir]
We need values of 1 1 ,a, 35 1
- then we can use formula/s :
cap-a-x = [I-ir.a-XI / 1+ir

Note that We can-find [12,a,tremma,35]
if - known([[12,a,tremma,451,[124,10,~,3511)

using t v x = 1 - a-tremma x+t / a tremma x
Note that- We can-find [1l;a,351 i? - knownT[12,a,tremna,351)
using a-tremma-x = 1 + a - x
Yes

6.3 Plan Executor

The Plan Executor first retrieves the solution strategy developed by the

Planner, represented on the blackboard as a list of formula identifiers.

Letters are attached to the formula numbers to identify transformation to be

applied to the textbook formulas. In our problem, the solution strategy is

represented by the predicate, strategy([0506B,0210~,0312]) . The numeric part

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

of the first identifier 0506B indicates to the Plan Executor that the textbook

formula is t-V-x = 1 - a-tremma-x+t / a-tremma-x in a manipulated form. The

Plan Executor calls the corresponding evaluation predicates one at a time.

Each ffevaluatetf predicate contains or calls the procedure for computing the

corresponding formula and can retrieve the numerical inputs either from the

problem context or from the data base. Finally, the computed values are

combined and the numerical solution to the problem is computed.

6.4 Fact Acquisition

If not enough information is available to solve a problem, the above

procedure will notice this either at the Surface Planning or at the Execution

level. In this case, the system will ask for additional information. Three

cases can be distinguished (Fig. 7). In the first case, the user does not care

how the problem is to be solved or where the input data come from. For

example, a user may just ask for the premium for a standard policy. In this

case (denoted I in Fig. 71, the system will only fail if the goal set by the

user cannot be computed from any data available in the database. The fact

acquisition subsys tem of the ACS [Sivasankaran 84 1 will make an educated guess

which data the user might be able to provide; if that fails again, the Surface

Planner will develop an alternative plan and ask for its missing data until

either a solution is found or the user decides to give up.

insert Fig. 7 about here

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

In case 11, the user specifies which concepts are constrained but wishes

to use default values for the constraints. The defaults should be available

from the database; if not the system will ask the user for data. However,

there is no need for the system to look for alternative strategies without

being told so since that would be against the wishes of the user.

Finally, in case 111, the user provides at least some of his own data to

override default values (e.g., mortality rates) stored in the database. Two

possible problems may occur in this case. One the one hand, the user may

forget to specify a certain concept or to mention it at all; the above

procedures can be used to add the missing informatlon. On the other hand, the

problem may be overconstrained, leading to contradictions and leaving the

problem unsolvable. For example, the user may put upper limits to the premium

payment capability and lower limits to the policy amount that are not

compatible. The fact acquisition system will in this case try to point out

where the contradiction lies so that the user can correct the input.

7 CONCLUSIONS

The ACS has demonstrated the usefulness of a layered knowledge base

architecture for model management even in a logic programming environment.

The performance advantages obtained by this kind of architecture increase if

the models are more complex than the simple examples shown in the paper. The

architecture of the system has also proven a good tool to combine exact

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

mathematical knowledge (a s i n the textbook formulas) with human exper t

problem-solving heur is t ics .

The current prototype of the ACS has a reper to i re of 95 a c t u a r i a l

concepts and 175 formulas which covers approximately 80% of a l l a c t u a r i a l

concepts appl icable t o s ing le l i f e po l i c i e s [Jordan 751. The about 600

formulas f o r the multiple-l ife case a r e being added t o the system. Most of t he

f a c t acquis i t ion subsystem described i n sect ion 6.4 is a l s o operational, Both

t h i s par t and the human expert shor tcut r u l e s a r e being expanded, based on

experience with using the system. Experiments with a number of textbook and

real-world ac tua r i a l problems have demonstrated t ha t the system is capable of

f inding and explaining ra ther 'c leverf solut ions t o some problems, i n some

case solut ions t ha t the expert posing the problem had not thought of before.

One of the major next s teps i n t h i s work is t o improve the user i n t e r f ace

so t h a t i t can be used with less t ra ining. In pa r t i cu l a r , we are focusing on

the development of an interface f o r tu tor ing a c t u a r i a l s tudents i n t h e i r

preparations for the o f f i c i a l a c tua r i a l exams. Some i n i t i a l experiments with

the ex is t ing prototype have already shown tha t the ACS can support t h i s

process e f fec t ive ly by permitting the student t o compare multiple poss ib le

solut ion s t r a t e g i e s i n terms of t h e i r elegance and computational cos t s .

However, the system w i l l need more f l e x i b i l i t y i n its user in te r face t o become

a usable tutoring tool.

Acknowledgments

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

The authors are grateful to Jim Clifford for many useful suggestions in

the early phases of this work. Thanks are also due to the referees whose

comments greatly improved the presentation of this material.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

Appendix

Explanation o f t h e Factor ai;n / si'

Problem : Find t h e n e t annual premium payable f o r n y e a r s f o r a pension

cover of $1 per annum issued t o a l i fe aged x , with t h e f i rs t pension payment

n years after d a t e of i s s u e and with the provision t h a t , i f t h e insured d i e s

within the n year period, t h e n e t premiums paid are t o be re tu rned with

compound i n t e r e s t t o the end of t h e year o f death.

(i) The mathematical s o l u t i o n is shown below :

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

(i i) A l t e rna t ive h e u r i s t i c reasoning :

Imagine t h e insured su rv ives the n years t o age x+n. The same pension

b e n e f i t i f issued a t age x+n w i l l c o s t a;Gn d o l l a r s . Suppose t h e prospect ive

pensioner while a t age x decides t o wait till age x+n and then buy the pension

coverage a t t h i s cos t . However, let him c r e a t e a s ink ing fund by depos i t ing an

amount $P annual ly i n t o a bank account, P being s o chosen t h a t over n y e a r s

the annual depos i t s would accumulate with i n t e r e s t t o $ a;;n . According t o

the theory of compound i n t e r e s t , i n order t o accumulate $1 over n yea r s with

i n t e r e s t , the annual deposi t should be 1/s;: 'Hence, t o accumulate a;Gn

d o l l a r s , $P has t o be a;;n / si:

$P is the so lu t ion t o our problem s i n c e

1. I f such an amount is deposi ted annually it w i l l accumulate over n
years t o the p r i c e of the pension plan a t age x+n which amount can
be used then t o buy t h e pension b e n e f i t

2. In case he/she d i e s before reaching age x+n, t h e annual d e p o s i t s o f
$P made u n t i l then can be withdrawn as i f they had gone i n t o a bank
account.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

REFERENCES

1. J3arr A. and Feigenbaum E.A. Eds., The Handbook of Artificial
Intelli~ence, HeurisTech Press, William Kaufmann, Stanford 1982

2. Blanning, R., "Language Design for Relational Model Managementff, in
S.K.Chang, Ed., Management and Office Information Systems, Plenum
Press 1982

3. Bonczek Re, Holsapple C. and Whinston A.B., "A Generalized Decision
Support System Using Predicate Calculus and Network Data Base
Management", Operations Research 29, 2 (1981)

4. Bonczek R., Holsapple C. and Whinston A.B., "The Evolution from MIS
to DSS: Extension of Data Management to Model Managementtt, in
M-Ginzberg, E.A.Stohr, W.Reitman, Eds., Decision Support Systems,
North-Holland 1982

5. Clifford J., Jarke M., and Lucas H.C., "Designing Expert Systems in
a Business Environment", submitted for publication

6. Clocksin W.F., and Mellish C.S., Programming Prolog, Springer-
Verlag 1981

7. Corey E.J and Wipke W.T, "Computer Assisted Design of Complex
Organic Synthesisw, Science l66, 1969

8. Dolk D.R. and Konsynski B.R., "Knowledge Representation for Model
Management Systems", Working Paper, University of Arizona 1983

9. Duda R., Caschnig J., Hart P., Konolige K., Reboh R., Barrett P.,
Slocum J., "Development of the PROSPECTOR consultation system for
mineral exploration", SRI Projects 5821&6415, SRI International,
1978

10. Elam J.J., Henderson J.C. and Miller L.W., 'IModel Management
Systems: An Approach to Decision Support in Complex Organizationsw,
Proc. First Intl. Conf. on Information Systems, 1980

11. Gelernter H.L., Sanders A.F., Larsen D.L., Agarival K.K., Boivie
R.H., Spritzer R.H., Searleman J.E., "Empirical Explorations of
SYNCHEMw, Science w, 1977

12. Jarke M., Clifford J. and Vassiliou Y., "An Optimizing Prolog Front-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

End to a Relational Query Systemw, Proc. ACM-SIGMOD Intl. Conf. on
Management of Data, Boston 1984

13. Jarke M. and Vassiliou, Y., "Coupling Expert Systems with Database
Management Systemslf, in W.Reitman, Ed., Artificial Intelli~ence
Applications for Business, Ablex, Norwood, NJ, 1984

14. Jordan C.W., Life Contingencies, The Society of Actuaries, Chicago
1975

15. Nilsson N., Principles of Artificial Intelli~ence, Springer 1982

16. Sivasankaran T., Intelligent Model Management in an Actuarial
Consulting System, Ph.D. thesis, New York University 1984

17. Sprague R.H. and Carlson E.D., Building Effective Decision Support
Systems, Prentice-Hall 1982

18. Vassiliou, Y., Clifford, J., Jarke, M., Access to Specific
Declarative Knowledge in Expert System: The Impact of Logic
Programming", Decision Support Systems 1, 1 (1984).

19. Wipke W.T, Braun H., Smith G., Choplin F. and Sieber W., "SECS-
Simulation and Evaluation of Chemical Synthesis: Strategy and
Planning", in Wipke W.T. and House W.J.(Eds.), Computer-assisted
Organic Synthesis, American Chemical Society, Washington D.C. 1977

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

One-sided link Mutual link

Figure 1: Links in Formula Derivation Networks

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

- Transformation of standard formulas
CcCt Multiple values of concept for different ages

Figure 2: A Simple Derivation Structure

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

USER INTERFACE 1

Figure 3

The Model o f Model Management

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

from
Problem Analyzer

Problem
Context

solution
Strategy

Strip numerical values

KNOWLEDGE BASE BLACKBOARD

Generate single actuarial
concept goal

Retrieve Problem Context

Use Can - find-If known
predicates

Select corresponding
formulas

Arrange the sequence
of formulas

Figure 4

The Solution Planner Component

I Class of predicates
I used :

notation-eqvt ([. . . I) .
can find-if known. I - -

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

Figure 5: A Derived Link

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

KNOWLEDGE BASE

STATIC

DYNAMIC

Knowledge about the user interface

Types of goal category concepts

Types of insurance benefits

Actuarial notations

Formulas

Formula Derivation Nets

Evaluation/computation procedures
I

Data base (table) values I

Rules on problem recognition

Rules on selecting the formulas I
Rules on manipulating the formulas I
Rules on creation and deletion of
intermediate strategies/results

Figure 6: Structure of Knowledge Base

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-44

