
INTRODUCTION TO QUERY PROCESSING

Matthias Jarke
Graduate School of Business Administration

New York University

~ifr~en Koch , Joachim W. Schmidt
Fachbereich Informatik, Johann Wolfgang Goethe-Universitat

Dantestr, 9, 6000 Frankfurt 1, West Germany

March 1984

Center for Research on Information Systems
Computer Applications and Information Systems Area

Graduate School of Business Administration
New York University

Working Paper Series

CRIS 1 7 3

GBA #84-48(~~)

Published in W. Kim, D. Reiner, D. Batory (eds.), Query Processing in
Database Systems, Springer-Verlag, 1984.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

INTRODUCTION TO QUERY PROCESSING

3

Abstract. Query processing in databases can be divided into two steps:
selecting an 'optimal' evaluation strategy, and executing it. We first present
elementary nested loop and relational algebra algorithms for query execution and
point out some opportunities for improving their performance. A survey of
optimization strategies, structured in query transformation techniques and
access planning methods, follows. Finally, extensions for special-purpose query
systems are briefly addressed.

1.0 PERFORMANCE CONSIDERATIONS IN DATABASE SYSTEMS

Database management systems (DBMS) are now a widely accepted tool for
reducing the problem of managing a large collection of shared data for
application programmers and end users. The user interacts with the system by
submitting requests for data selection (queries) or manipulation (updates).
Both kinds of operations frequently involve access to data described to the
system in terms of their properties rather than their location. A sequence of
queries or updates which is logically a single unit of interaction with the
database is called a transaction.

To fulfill its mission, a DBMS must be efficient in the sense that it
minimizes the consumption of human and machine resources for processing
transactions submitted to it. The costs of human resources in utilizing a DBMS
are determined, among other factors, by the power and friendliness of the
language provided to each type of user (application programmer or end user), and
by the system's response time. The goals of language power and fast response
time may be in conflict since it is often difficult to implement a powerful
language construct efficiently. It is the task of the database implementor to
reduce this potential problem.

Machine resources used by the DBMS include the storage space for data and
access paths in secondary memory, as well as for main memory buffers, and the
time spent by the CPU and channels for data transfer to and from secondary
memory and other computers (in distributed databases). The trade-off between
these cost components is influenced by the architecture of the database system.

This work was supported in part by the Deutsche Forschungsgemeinschaft under
grant no. SCHM 450/2-1.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 2

In a geographically distributed DBMS with relatively slow communication
lines between the sites where data reside and the sites where requests
originate, communication delay dominates the costs while the other factors are
only relevant for local suboptimization. In centralized systems, the emphasis
is on minimizing secondary storage accesses (transfer channel usage), although
for complex queries the CPU costs may also be quite high. Finally, in locally
distributed DBMS's, all factors have similar weights resulting in very complex
cost functions.

There is also a higher-level trade-off between user and machine cost
components CAPER831. An effort to minimize response time is reasonable only
under the assumption that user time is the most important bottleneck resource.
Otherwise, direct cost minimization of machine resource usage can be attempted,
Fortunately, user and machine-oriented goals are largely complementary; where
goal conflicts arise, they can often be resolved by assigning limits to the
availability of machine resources (e.g., main memory buffer space).

Exact optimization of these cost factors is usually not only
computationally infeasible but also prevented by the lack of precise database
statistics, i.e., information about the size of data objects and the
distribution of data values. Nevertheless, it is customary to use the term
query optimization for the heuristic selection of strategies to improve the
efficiency of executing individual queries. Database management systems can
support the achievement of efficiency by providing the following subsystems:

1. a physical design environment which allows the physical structure of the
database to be adapted to an expected usage pattern [MARC841 ;

2, a transaction management mechanism that allows multiple access sequences to
be executed concurrently but without mutual interference that would lead to
inconsistent data [GRAY81 I ;

3. a query processing subsystem that evaluates queries efficiently within the
constraints created by the two previous mechanisms.

This chapter addresses the question of how to construct a query processor for a
relational DBMS (other types of database systems will be considered briefly) .
We first discuss how high-level language queries can be represented in the DBMS
(section 2). Next, we contrast two elementary algorithms for processing a given
query, and present examples and a general framework for improving their
efficiency (section 3). In sections 4 and 5, two basic strategies within this
framework will be investigated: the transformation of a query into a form that
can be evaluated more efficiently, and the generation of a good access plan for
the fast evaluation of a given representation form. Environments where
conventional query processing is not sufficient will be reviewed in section 6.

2.0 QUERIES AND QUERY LANGUAGES

Many user interfaces can be constructed on too of the same database system.
This paper will use a relational framework. We briefly review relational data
structures and integrity constraints before focusing our attention on the
representation of relational queries; for more background on the relational
model of data, the reader is referred to the literature (e.g., lMAIE831,
lULLM821). In the relational model, data are organized in tables or relations.
The columns of the tables are called attributes; all values appearing in an
attribute are elements of a common domain. The rows of the tables are called
records, tuples, or simply relation elements.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 3

In addition to these structural properties, relational databases must often
satisfy certain semantic integrity constraints. For example, a frequent type of
integrity constraint has the format: "if any two tuples of relation R agree in
attributes Al, ..., Am, then they must also agree in attributes B1. Bn." In
this case, we say that A1 , .1. Am functionally determine ~ 1 , . , Bn.
Moreover, if B1, ..., Bn represents all attributes of R. we sav that Al. Am
form a k& of R, provided there is no proper subset' of ~ 7 , . . . , ' ~ m Chat
functionally determines Rl, ..., Bn.

A relational database schema and examples of a query formulated in a number
of popular query languages are provided in Figure 2-1. The database (which will
be used throughout this paper) describes EMPLOYEES, the DEPARTMENTS and managers
they work for, and the OFFICES they are using. One employee can have several
offices and each office can be occupied by several employees; the OFFICE-USE
relation describes the assignment of employees to offices.

I Relational Database Schema (keys are underlined): I
I I
I EMPLOYEE (E, ename, marstat, salary, dno) I
I DEPARTMENT(*, dname, mgr) I
I OFFICE (floor, room, capacity) I
I OFFICE-USE(=, floor, room)
I

I
I

I
I Example Query in English:

I
I

I I
I names of single employees in the computer I
I department who make less than $40000.- I
I I
I I
I SQL: I
I I
I SELECT ename I
I FROM EMPLOYEE I
I WHERE salary < 40000 AND marstat = single AND I
I dno = (SELECT dno I
I FROM DEPARTMENT I
I WHERE dname = 'computer1)
I--

I
I

I QUEL: 1
I I
I RANGE OF e IS EMPLOYEE I
I RANGE OF d IS DEPARTMENT I
I RETRIEVE (e-ename) WHERE I
1 e-salary < 40000 AND e.marstat = single AND I
I e.dno = d.dno AND d.dname = 'computer1
I-------------_--

I
I

I Query by Example: I
I I
I EMPLOYEE eno ename marstat salary dno
I ...
I p. single <40000 5
I
I DEPARTMENT dno dname mgr
I ..
I 15 - computer

Figure 2-1: Examples of end user query languages

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 4

Query interfaces like the ones shown in Figure 2-1 may cater to different
groups of database users (novices or experts, casual or frequent). For query
processing purposes, it is useful to map all of these interfaces into a common
intermediate language and have the query processor deal only with that language.
Such a language should be powerful enough to express a large class of queries.
It should also have a well-defined theoretical basis in order to allow the query
processor to specify efficiency-oriented query transformations. If very
powerful end user interfaces must be supported, it may be necessary to provide
full programming capabilities with the intermediate language -- a database
programming language LSCHM831. This paper will describe query processing
methods in the framework of the (tuple) relational calculus, integrated into the
database programming language, Pascal/R [SCHM~~]. This language is not meant to
be a user-friendly query language for end users but allows for a uniform
description of most existing query processing methods.

The relational calculus LCODD721 is a non-procedural notation for defining
a query result through the description of its properties. The representation of
a query in relational calculus consists of two parts: target list and selection
expression. The selection expression specifies the contents of the relation
resulting from the query by means of a first-order predicate i . , a
generalized Boolean expression possibly containing existential and universal
quantifiers). The target list defines the free variables occurring in the
predicate, and specifies the structure of the resulting relation. The reader
can use the following example to relate the relational calculus representation
to his or her favorite query language from Figure 2-1.

Example 2-1:

Names of single employees in the computer department
who make less than $40000.

[<e.ename> OF EACH e IN EMPLOYEE:
e.salary < 40000 AND e.marstat = single
AND
SOME d IN DEPARTMENT

(d.dno = e.dno AND d.dname = 'computert)]

In the target list, i.e., in the subexpression preceding the colon, the range of
the (free) variable e is restricted to elements of the EMPLOYEE relation. The
EMPLOYEE relation is therefore called the range relation of e. The term
'<e.ename>' indicates that only the names of employees are retained in the
result .

The selection expression following the colon defines constraints on the
free variable. First, two restrictive terms determine that only single
employees with a salary of under $40000 are of interest. Second, a quantified
subexpression must be satisfied (read: "there exists some DEPARTMENT tuple, say
d, such that.. . " 1. A join term, relating EMPLOYEES to their DEPARTMENTS, is
AND-connected to another restrictive term that restricts attention to computer
departments. The comparison operators usually allowed in terms are =, o, <, >,
<=, and >=.

The relational calculus allows variables to be bound to different range
relations. For example, variable e is bound to EMPLOYEE and variable d is bound
to DEPARTMENT. In addition to the logical operator AND, the operators OR and
NOT can also be used in predicates. The following two examples illustrate more
complex queries, using universal quantifiers and multiple tuple variables over
one relation.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 5

Example 2-2:

Names of departments where all employees earn less than $40000.

[<d.dname> OF EACH d IN DEPARTMENT:
ALL e IN EMPLOYEE

(e.salax-y < 40000 OR e.dno <> d.dno)l

Example 2-3:

Employees who make less than $40000 and have an office on the same floor
where their manager has one.

[EACH e IN EMPLOYEE: e .salary < 40000 AND
SOME empoff IN OFFICE-USE

(empoff.eno = e-eno
AND
SOME d IN DEPARTMENT

(d.dno = e.dno
AND
SOME mgroff IN OFFICE-USE

(mgroff.floor = empoff.floor AND mgroff.eno = d.mgr)))l

A relational calculus query is said to be in prenex normal form if its selection
expression is of the form

SOME/ALL rl IN re11 ... SOME/ALL rn IN reln (M)
where M is a quantifier-free predicate (i.e., a Boolean expression) called the
matrix. For instance, queries expressed in QUEL (see Figure 2-1) are always in
prenex normal form. If, furthermore, M is of the form

(Tll AND ... AND Tlk) OR ... OR (Tml AND ... AND Tmk)
(where the Tij are terms) the query is said to be in disjunctive prenex normal
form (DPNF) . The query in Example 2.2 is in DPNF while those in the other two
examples are not. The set of all Tij for a given i is called the i-th
conjunction of the matrix; a query which contains only one conjunction is
called a conjunctive query [CHAN77 1.

In [CODD72] the relational calculus was introduced as a yardstick of
expressive power. A representation form is said to be relationally complete if
it allows the definition of any query result definable by a relational calculus
expression. Relational completeness has to be considered a minimum requirement.
An often-cited example for a conceptually simple query which goes beyond
relational completeness is "find the employees reporting to manager Smith at any
level." Furthermore, users often request aggregated summary data which cannot be
described in pure relational calculus. For example, a query for "offices with
free capacity" requires a count function over the relation OFFICE-USE to be
computed. However, the extension of relational calculus by aggregate functions
is rather straightforward [KLUG82al.

Thus far, we have considered queries in their role as requests by end
users. Queries are also used as part of update transactions which change the
stored data based on their current value. For example, an update request,
"raise by 5% the salaries in all departments where nobody earns more than
$40000.-", would involve answering the query given in Example 2-2. Moreover,
query-like expressions are used internally in a DBMS to express integrity
constraints or access rights [STON75 1. Such a constraint might be: "a manager
is entitled to at least one non-shared office." An 'intelligent' DBMS could
apply this constraint to rephrase a query for "offices with free capacityw in a
way that does not count space in the private offices of managers.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 6

3.0 QUERY PROCESSING AND A GENERAL OPTIMIZATION FRAMEWORK

There have been two principal approaches to constructing a general query
evaluation algorithm for relational databases: the direct interpretation of
calculus expressions as nested loop procedures, and the translation of typical
subexpression patterns into operations of a relational algebra. In this
section, we review both approaches and then state a general framework, in which
improvements to each procedure and hybrids between them can be described. The
direction of such improvements is indicated by means of examples.

3.1 Nested Loop Solutions

Any query processing algorithm must state how the target list and the
selection expression of a query will be evaluated. The most straightforward
algorithm translates the relational calculus query into a nested loop. For
describing this procedure, we employ a PASCAL-like database programming language
which offers a FOR EACH construct that retrieves single tuples in
system-determined sequence, and can evaluate quantifier-free Boolean
expressions. The language also provides mechanisms to declare relational
variables, to assign values (relations) to them, and to insert new subrelations
using the operator, :+.

A query of the form

[<fl, ..., fn> OF EACH r IN rel: pred(r)]

translates to the program:

result : RELATION OF RECORD fl: ...; fn: ... END;
BEGIN
result := [I; (* the empty relation *)
FOR EACH r IN re1 DO
IF bool(pred(r)) THEN result :+ [<r.fl, ..., r.fn>l

END

This extends easily to the case of more than one variable in the target list.
The quantifier-free Boolean expression, bool(pred(r)), is derived recursively
from the quantified selection predicate, pred(r), by creating Boolean functions
for each quantifier in pred(r), as indicated in the following example.

Example 3-1 :

The query of Example 2-1 would translate into the program:

result : RELATION OF RECORD ename: ... END;
FUNCTION some-d(e) : Boolean;
BEGIN
some-d := false;
FOR EACH d IN DEPARTMENT DO
some-d := some-d OR d.dname = tcomputert AND d.dno = e.eno

END;

BEGIN
result := [I;
FOR EACH e IN EMPLOYEE DO
IF e.salary < 40000 AND e.marstat = single AND some-d(e)
THEN result : + [<e. ename> I

END.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 7

A closer look at this simple procedure reveals a number of efficiency problems
which should be solved by query optimization methods. Four points of attack
will be mentioned, some of which will be studied in more detail later.

1. The semantics of quantifiers can be taken into account when implementing the
functions. For example, the loop in function some-d could stop, after the
first DEPARTMENT tuple satisfying both conditions has been retrieved:

FUNCTION some-d(e) : Boolean;
BEGIN
reset (DEPARTMENT) ;
REPEAT read (DEPARTMENT)
UNTIL eor(DEPARTMENT) OR

DEPARTMENTA.dname = fcomputerf AND
DEPARTMENTA.dno = e.dno;

some-d := NOT(eor(DEPARTMENT))
END ;

2. If indexes or other fast access paths are available, the implementation of
the function, some-d, can make use of them. For example, if a primary index
exists for the DEPARTMENT relation, only one access to the corresponding
DEPARTMENT tuple is required for each EMPLOYEE tuple,

3. The method does not fully utilize available buffer space. Modern computer
systems retrieve data from secondary storage in blocks rather than
tuple-by-tuple, and can often keep more than one block in main memory
simultaneously. This can be exploited by executing the algorithm block-wise
rather than record-at-a- time [KIM8OI, possibly in conjunct ion with buffer
management strategies LSACC82 I .

4. Each call of the function, some-d, retrieves all tuples of the DEPARTMENT
relation (until one qualifies, at least). It can be seen from the
expression that only DEPARTMENT tuples with dname=tcomputerl can possibly
qualify. It may therefore be useful to first extract the corresponding
subrelation, and then have the function, some-d, work on that subrelation
rather than on the complete DEPARTMENT relation.

Generalizations of these ideas can be found in many query optimization
algorithms . For example, the decomposition algorithm used in INGRES [WONG76 I
combines a general nested loop procedure (called 'tuple substitutionf) with the
pre-evaluation of separable subexpressions as in the last strategy mentioned
(called 'detachmentt).

3.2 Algebraic Solutions

Translating a query into a sequence of high-level operations provides a
widely used alternative to nested loop algorithms. The relational algebra
ECODD721 includes general set operations as well as specialized relational
operators. The restriction operator evaluates a query whose selection
expression contains one restrictive term. For example,

RESTRICT (DEPARTMENT, dname= 'computer) =
[EACH d IN DEPARTMENT: d .dname = ' computer l

The projection operator constructs a vertical subset of a relation:

PROJECT (EMPLOYEE, [ename 1) =
[<e.ename> OF EACH e IN EMPLOYEE: true]

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 8

The join operator permits two relations with at least one comparable attribute
to be combined into one, e.g.,

JOIN (EMPLOYEE, dno = dno, DEPARTMENT) =
[EACH e IN EMPLOYEE, EACH d IN DEPARTMENT: e .en0 = d .dno 1

If no restriction is placed on the combination of tuples, the join degenerates
to a Cartesian product.

Example 3-2:

The complete query of Example 2-1 corresponds to

PROJECT(RESTRICT(RESTRICT(JOIN(EMPLOYEE,
dno = dno,
RESTRICT(DEPARTMENT, dname = computer ')) ,

salary < 40000),
marstat = single),

[ename I 1

Note that the existential quantification of the variable, d, is evaluated by
applying a projection operator to the result of the join. Similarly, a more
complex operation called division can be used for universal quantification.

We give below a general translation algorithm introduced in [CODD72] and
refined by [PALE72 I . It translates a relational calculus query given in DPNF to
a sequence of algebra operations. The query from Example 2-1 serves as an
illustration. Note the production and manipulation of major intermediate
results that distinguishes algebraic methods from pure nested loop solutions.

1. Evaluate restrictive and join terms applying restriction and join operations
to the range relations of the variables involved.

intl := RESTRICT (DEPARTMENT, dname='computert)
int2 := JOIN (EMPLOYEE, dno=dno, DEPARTMENT)
int3 : = RESTRICT (EMPLOYEE, salary<40000)
int4 := RESTRICT (EMPLOYEE, marstat=single)

2. Combine the results of step 1 for all terms appearing in one conjunction by
means of join or Cartesian product operatkons. This step evaluates the
AND-connection of terms within each conjunction.

int5 := JOIN (intl, dno=dno, int2)
int6 := JOIN (int5, eno=eno, int3)
int7 := JOIN (int6, eno=eno, int4)

3. Construct the union of the conjunction results computed in step 2. If a
particular variable is missing in a certain conjunction, it can be added by
another Cartesian product operation between the conjunctionfs result and the
range relation of the missing variable. This step evaluates the
OR-connection between conjunctions and thus completes evaluation of the
matrix (and is therefore not required in our example).

4. Evaluate the quantifiers from right to left using projection for
existentiallv quantified variables and division for universally quantified
variables.

int8 := PROJECT (int7, [attributes of EMPLOYEE relation])

5. Evaluate the target list.

result : = PROJECT (int8, [enamel)

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 9

The algebraic approach partitions the query optiraization problem into two
tasks: translating the query into a 'good1 sequence of operations, and
optimizing the implementation of each operation. Strategies for the former
subproblem will be considered in section 4. Here, we briefly address the
implementation of algebra operations. In particular, by introducing the join
operation we gain the freedom for considering an alternative to the nested loop
solution and its derivatives: the merge m. In this method, the two
relations to be joined are sorted by the same attribute and then scanned
concurrently to find all pairs of matching tuples.

The implementation of merge join is slightly more complex than it would
seem from this simple description. If neither of the two join attributes is a
key to its relation (i.e., the join implements a many-to-many relationship),
intermediate relations may have to be built. From the program sketch provided
in Figure 3-1, it is evident that the choice of which is the 'inner1 and the
'outerf relation will influence the size of these intermediate results.
However, in Example 3-2, where dno is a key to DEPARTMENT, no intermediate
relations are needed if DEPARTMBNT is chosen as the 'inner1 relation.

...
I (* outer, inner : the two relations to be joined I
I outerA, innerA : buffers for the last read elements I
I outerA.f, innerA.g : the join attributes I
I current : a variable indicating the current join value I
I joinresult : a relation whose attribute set is the union I
I of the attribute sets of outer and inner *)
I---

I

I BEGIN
I
I

I sort(outer by f); sort(inner by g); I
I reset (ou ter) ; reset (inner) ; I
I read(outer) ; read(inner) ; I
I joinresult := [1;
I REPEAT

I
I

I WHILE NOT (eor(inner) OR eor(outer) OR outerA.foinnerA.g) DO I
I IF outerA.f < innerA.g W N read(outer) ELSE read(inner1; I
I IF NOT (eor (inner) OR eor(outer)) I
I m N BEGIN (* Cartesian product of joining subrelations *) I
I intermediate := [I ; current := outerA.f; I

WHILE innerA.g = current AND NOT (ear(inner)) DO
BEGIN

I intermediate : + [innerA 1 ;
I read(inner)
1 END;

WHILE outerA.f = current AND NOT (eor(outer)) DO
BEGIN

I FOR EACH irec IN intermediate DO I
I joinresult :+ [<outerA, irec>l; I
1 read(outer)

END
I

I
END

I
I I
I UNTIL eor(outer) OR eor(inner)
I END.

I

... I

Figure 3-1: A merge (equi-)join algorithm for m:n relationships

Methods can be devised to compress the intermediate results required in
algebraic methods. Attributes not appearing in the query can be removed by an
initial projection operation, or a tuple identifier can substitute for a
complete relation element [PALE721. Where Cartesian product operations are
required, it is even possible to represent all elements of a relation by a
special value cJAR~821. However, the advantages of data compression must be
traded off against the costs of decompressing the final query output.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 10

Naive use of the relational algebra has one severe disadvantage: it
separates operations which could easily be executed in a parallel or pipelined
fashion. For instance, the last two projections in the translation example
above could be combined into one projection (as shown in Example 3-2). One way
out of this dilemma is the explicit introduction of parallel processing LYA0791.
Alternatively, one can provide more powerful operations. Examples include the
semi join operation (see section 4.4, below), and the graft and prune operations
for evaluating quantified queries proposed in LDAYA831.

3.3 Integrated Solutions: A General Optimization Framework

Many query optimization heuristics have emerged from each of the two basic
query processing strategies presented in the previous subsections. Such
heuristics were often developed as efficiency-enhancing add-ons to implemented
DBMS. The two approaches overlap only partially in their coverage of query
optimization opportunities. In addition, researchers identified classes of
queries for which fast special-purpose algorithms exist. It is the task of a
query optimization subsystem to identify and compare the applicable strategies
for each query. However, the amount of optimization is restricted by the goal
to minimize the overall costs, including the cost of the optimization itself.

There seems to be a need for an integrated framework in which all of the
ideas can be brought into play in a structured manner. We utilize such a
framework to organize our survey of query optimization techniques:

1, Apply logical transformations to the query representation that standardize,
simplify, and ameliorate the query to streamline the evaluation and to
detect applicable special-case procedures.

2. Map the transformed query into alternative sequences of operations, i.e.,
generate a set of candidate 'access plansf.

3. Compute the overall cost for each access plan, select the cheapest one, and
execute it.

Transformation strategies are to a large degree independent of the database
state at a given time, .and thus can be applied mostly at compile time. The
richness of the access plans generated and the optimality of the choice,
however, are dependent upon the degree of knowledge about current physical
database characteristics. Most of the access plan evaluation should therefore
be performed at runtime; nevertheless, due to implementation difficulties,
access plans are often completely generated at compile time LSELI791. A
meta-database (e.g., an augmented data dictionary) must maintain general
information about the database structure and statistical information about the
database contents.

4.0 TRANSFORMATION OF QUERY REPRESENTATIONS

A query can be represented in a number of semantically equivalent
relational calculus expressions. Some are better suited for efficient
evaluation than others. The strategies resented in this section try to convert
a given expression into a better one. They standardize and simplify a query,
and assign it (where possible) to a class of queries for which fast algorithms
exist. Some of the transformations presented below are syntactic in nature;
they rely on general equivalence of language expressions whose validity is
independent of any particular query or database. In contrast, semantic
transformation strategies utilize knowledge about a particular database or
application, often represented by integrity constraints.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 11

4.1 Specialized Query Representations

While the principle underlying all of these transformations is readily
explained in the relational calculus framework, special-purpose representations
have been proposed in which certain transformation algorithms are easier to
describe. In particular , the so-called tableau representation [AHOS79 I ,
[SAG181 1 is used in the simplification of a query, whereas object and operator
query graphs are mostly applied in detecting special cases of queries.

Figure 4-1 gives a tableau representation of Example 2-1. Tableaux are a
tabular notation for a subset of relational calculus queries characterized by
containing only AND-connected terms and no universal quantifiers. The columns
of a tableau correspond to the attributes of the underlying database. The first
row of the matrix serves the same purpose as the target list of a relational
calculus expression. The other rows describe the predicate.

eno ename marstat salary dno dname mgr

..
I bl a2 single <40000 b2 I EMPLOYEE
I b2 computer b3 I DEPARTMENT

Figure 4-1: Tableau representation of Example 2-1

The symbols appearing in a tableau are distinguished variables denoted ai
(corresponding to free variables), nondistinguished variables denoted bj
(corresponding to existentially quantified variables), constants (corresponding
to the constants in restrictive terms), blanks, and tags (indicating the range
relation). A join term is indicated by having the same variable appear in
different rows. Tableaux serve as a convenient notation for simplifying a large
class of queries; an example will be given in.section 4.3.

Figure 4-2 shows an object graph for the relational calculus expression in
Example 2-1, and Figure 4-3 gives an operator graph, corresponding to the
equivalent relational algebra expression of Example 3-2. Nodes in object graphs
represent objects, such as (relation) variables and constants. Edges describe
terms that these objects are to fulfill [PALE72], CWONG761. Operator graphs
describe an operator-controlled data flow. They represent operators as nodes
and connect them by edges, indicating the direction of data flow from existing
data structures to the desired result [SMIT75], [YA079 1.

...
I e.ename o
I

I
I

I --------- ---------- I
I

I e.salary ~ E A c H ~ I N I e.dno=d.dno ISOMEdIN 1 d.dname= I
I *,------,--- /EMPLOYEE I------------- /DEPARTMENTI---------*
I < 40000 --------- ---------- I

'computer' I
I I I
1 * e.marstat=single ... I

Figure 4-2: An object graph representing the calculus query.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 12

...
I o result (output) I

I
ename (projection) I

I
salary<40000 (restriction) I

K I
I

marstat = single (restriction) I
I I
I I
I dno (join I
I I
I I
I o dname='computert (restriction) I
/ (access) EMPLOYEE I
I I
I o DEPARTMENT (access) 1
-

Figure 4-3: An operator graph representing the algebra query.

4.2 Standardization Of Query Representations

Most query evaluation algorithms initially transform a given query into
some standard representation in order to obtain a uniform starting point from
which optimization can be attempted. Most standard forms utilize prenex normal
form, as introduced in section 2. For example, standardization of SQL queries
[KIM~~] removes the distinction between joins and nesting in that language,
replacing nested expressions by joins. SDD- 1 [BERN8 1 c 1 and Pascal/R [JARK82 1
standardize relational calculus queries further into DPNF, in order to
facilitate the decomposition of a query into independently evaluable
subexpressions. (However, there may be cases where such a decomposition leads
to unnecessary operations [GRAN~~ 1.) INGRES [WONG76 1 prefers a conjunctive
normal form to achieve fast rejection of tuples which do not satisfy the matrix.

Example 4- 1 :

The standardization of the expression in Example 2-1 involves the application
of a quantifier movement rule:

predl AND SOME r IN re1 (pred2) = SOME r IN re1 (predl AND pred2).

The repeated application of this transformation leads to the DPNF:

[EACH e IN EMPLOYEE:
SOME d IN DEPARTMENT
(e.salary < 40000 AND e.marstat = single AND
e .dno = d .dno AND d .dname = computer) 1

4.3 Simplification Of Query Representations

Even in standard form, a query may be phrased in many ways, in particular,
with differing degree of redundancy. The query optimizer should try to avoid
unnecessary operations caused by redundant predicates. One might argue that
users are unlikely to formulate queries with redundant predicates. However,
there is no assurance. Moreover, the query submitted to the DBMS may be a
translation from a higher-level end user interface (e.g., a natural [OTTH82] or
deductive language [RE1~78 1) , which utilizes views defined on the schema of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 13

stored database relations. Queries on views are normally translated into
queries on stored relations by substituting the expression defining a view for
the view identifier and renaming variables appropriately [STON75]. Such a
direct translation, however, can produce unnecessarily complex queries.

Example 4-2:

Consider the following query as a direct translation from the natural
language query: "what are the names of single computer people in a tax
bracket under 50%?"

E<c.ename> OF EACH c IN compemp:
c.marstat = single AND SOME t IN tax50 (t .en0 = c.eno) 1

Let the views, compemp and tax50, be defined as:

compemp = [EACH e IN EMPLOYEE:
SOME d IN DEPARTMENT (e .dno = d .dno AND d .dname = computer) 1

tax50 = [EACH e IN EMPLOYEE:
e.marstat = single AND e.salary < 40000
OR
e.marstat = married AND e.salary < 800001

After view substitution and standardization, the query becomes

[<c.ename> OF EACH c IN EMPLOYEE:
SOME d IN DEPARTMENT SOME t IN EMPLOYEE
(c.dno = d.dno AND d.dname = 'computer1 AND c.marstat = single AND
t.marstat = single AND t.salary < 40000 AND c.eno = t-eno
OR
c.dno = d-dno AND d.dname = 'computerf AND c-marstat = single AND
t .marstat = married AND t .salary < 80000 AND c.eno = t .en01 1

Would the reader recognize our simple standard example in this monster? Yet,
this is precisely the task of query simplification. For expressions containing
no universal quantifiers, tableau techniques can be used for simplification.
Such a query can be broken down into conjunctive subqueries. Thus, two tableaux
result from Example 4-2 (Figure 4-4).

eno ename marstat salary dno dname mgr

...
I b ' a2

single b2 b3 I EMPLOYEE
b3 computer b4 / DEPARTMENT

Ibl b5 single <40000 b6 I EMPLOYEE

eno ename marstat salary dno dname mgr

...
I bl a2 single b2 b3 / EMPLOYEE
1 b3 computer b4 I DEPARTMENT
Ibl b5 married <80000 b6 I EMPLOYEE

Figure 4-4: Tableaux for view query

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 14

The first tableau produces the same result as the one in Figure 4-1. To
see why, we need to know that eno (as a key of the EMPLOYEE relation)
functionally determines ename, marstat, salary, and dno in all rows tagged
EMPLOYEE. Since bl appears in in the eno columns of rows 1 and 3, we can
substitute a2 for b5, <40000 for b2, and b3 for b6, such that the two rows
become equal. Applying a syntactic simplification rule, pred AND pred <==> pred
(which holds for any predicate -- see Figure 4-5(a)), one of the duplicate rows
can subsequently be dropped; the resulting tableau equals the one in Figure
4-1, except for renaming of nondistinguished variables. The second tableau
represents the empty relation. Using the same reasoning as before, the entries
in the marstat column of rows 1 and 3 should be equal -- a contradiction with
the actual tableau.

The relational calculus basis for syntactic simplification is given by
idempotency rules (Figure 4-5(a)). A sophisticated application of such rules is
complicated by the fact that they apply to arbitrary subexpressions which may be
at a higher level than individual terms. A prerequisite for high-level
simplification is therefore the recognition of common subexpressions, to which
the rules can be applied. [HALL~~] describes heuristics that detect common
subexpressions using a bottom-up merge procedure in an operator graph.

For certain classes of queries, efficient algorithms exist that minimize
the number of rows in a tableau (and thus the number of join operations in the
underlying query) [AHOS~~~. As the above example demonstrates, the application
of semantic integrity constraints yields further opportunities for
simplification [JARK84b1, 10TTH82 I , REIN^^], [SAG181 I, based on relational
database theory (see, e.g., [MAIE831) . More sophisticated applications of
semantic constraints also cover the access planning step (section 5), using
AI-based heuristic deduction for what has been called semantic
optimization [KING81 I, [HAM80 1. Semantic rules (guard condi tion-2 I?=
finally be used in horizontally distributed databases to locate relevant data,
and thus to simplify queries in the sense that only sites are accessed where
relevant data actually reside.

Additional opportunities for simplification arise if empty relations
(Figure 4-5(b)) or the semantics of the comparison operators are considered. Of
particular interest is transitivity [ROSE80 1. Joins can be simplified to
restrictions by constant propagation

r.A op s.B AND s.B=const ==> r.A op const

or an expression can be proven unsatisfiable in cases such as

r.A > s.B AND s.B >= t.C AND t.C >= r.A.

...
I (a) simplification: some idempotency rules 1
I I
I pred OR pred <==> pred pred AND pred <==> pred 1
I pred OR NOT(pred) <==> TRUE pred AND NOT(pred) <==> FALSE I
I pl OR (pl AND p2) <==> pl pl AND (pl OR p2) <==> pl I
1 pred OR FALSE <==> pred pred AND FALSE <==> FALSE I
I pred OR TRUE <==> TRUE pred AND TRUE <==> A
I-__---------_--

I
I

I (b) simolification: rules for emotv relations I
I I
I [<r.Al,..,r.An> OF EACH r IN [I: pred] <==> [I 1
I SOME r IN [I (pred) <==> FALSE I
I ALL r IN [I (pred) <==> TRUE ... I

Figure 4-5: Simplification rules in relational calculus

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 15

4.4 Improvement Of Query Representations

For many queries, the choice of differing original formulations or
simplification strategies may lead to different evaluation costs. Further
transformations try to improve a query representation by detecting special
cases, for which fast algorithms exist. In section 3.2, we observed that a
sequence of projections from the same relation can be combined into one, The
same holds for sequences Ilf restriction operations. Such enhanced operations
will tend to be profitable if either none or all of the participating attributes
are indexed. If there is a mixture of indexed and nonindexed attributes, the
difference in performance will be smaller.

Join o~erations are more complex than restriction or ~ro.iection. It is - -
therefore often useful to execute one-variable operations as earlv possible
[SMIT751 in order to reduce the input size of subsequent joins. There may be a
conflict between this heuristic and the previous one; the optimal solution
depends on file structures and join algorithms used by the query processor.

Example 4-3:

The algebra expression in Example 3-2 can be improved to

PROJECT (RESTRICT (JOIN (EMPLOYEE,
dno = dno,
RESTRICT(DEPARWNT, dname = 'computer) ,

salary < 40000 AND marstat = single),
[ename 1)

and further to

PROJECT (JOIN (PROJECT (RESTRICT (EMPLOYEE,
salaryc40000 AND marstat=single),

[ename,dnol),
dno = dno,
PROJECT (RESTRICT (DEPARTMENT,

dname='computerl),
[dnol) 1,

[enanel

In the relational calculus representation, a (partial) order can be imposed on
the execution of subexpressions using so-called (range-)nested expressions
IJARK831. The range relation concept of the relational calculus is extended to
include relation-valued expressions, rather than just relation names. The
following transformation rules may be used to generate a nested expression.

[EACH r IN rel: p1 AND p21 <==> [EACH r IN [EACH r' IN rel: pl]: p21
SOME r IN re1 (pl AND p2) <==> SOME r IN [EACH r1 IN rel: pl] (p2)
ALL r IN re1 (NOT(p1) OR p2) <==> ALL r IN [EACH r1 IN rel: pl 1 (p2)

The object graph of a nested query contains the extended range expression in its
nodes (Figure 4-61. If pl contains only restrictive terms, nested expressions
represent the heuristic of evaluating one-variable expressions first.

Example 4-4:

The second version of Example 4-3 corresponds to:

[<e.ename> OF EACH se IN [<e.ename, e.dno> OF EACH e IN EMPLOYEE:
e.salary<40000 AND e.marstat=single]:

SOME cd IN [<d .dno> OF EACH d IN DEPARTMENT:
d.dname='computerl]

(cd.dno = se.eno)]

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 16

An interesting property of range-nested expressions is that they can be
easily generalized beyond restrictive predicates. Let p2 contain a quantified
subexpression over a certain variable, say s, the matrix of which (possibly
after internal range nesting) consists of only one join term, linking s to r.
In this case, the (extended) range expression of s can be evaluated
independently and only the result of it must be passed on for processing the
join term, For example, in the query of Example 4-4, we can create a (hopefully
very small) list of dnots and then test the EMPLOYEE tuples only against this
list, rather than against the complete DEPARTMENT relation.

The stepwise reduction approach represented by nested expressions was first
introduced for non-quantified variables in the INGRES decomposition algorithm
[WONG76] : if two subexpressions overlap in a single variable, one of them can
be detached and evaluated separately. [YOUS79 1 presents experimental evidence
for the advantages of this heuristic in terms of processing time. Subquery
detachment has captured wide-spread attention especially in distributed
databases since it may reduce considerably the amount of data transfer if the
detached subexpression is executed at a different site from the rest of the
query. In the algebra representation, a new operator, semi join [BERN8lal, was
introduced to map the idea:

SEMIJOIN (rell, f = g, re12) =
[EACH rl IN rell: SOME r2 IN re12 (r1.f = r2.g)I

Thus, a semijoin is 'half of a joint, i.e., its result corresponds to that of a
join between re11 and re12, projected back on the attributes of rell. The ideas
of nested expressions, query detachment, and semijoin are closely related to the
object graph representation of queries. As it turns out, a query can be
completely resolved by a sequence of semijoins if and only if there exists an
equivalent formulation whose object graph is a tree EGOOD821. Examples 2-1 and
2-2 are such 'tree queriesf, whereas Example 2-3 is a 'cyclict query (Figure
4-6). Techniques for recognizing and processing cyclic queries are treated in
[KAME384 I .

There are cycles which can be transformed into equivalent acyclic query
graphs. Such cycles include those which (a) are introduced by transitivity
[YUOZ79 I, lBERN8la 1 ; (b) contain certain combinations of inequality join term
edges BERN^^ b I , [025080 1 ; (c) are "closedtt by universally quantified variables
[JARK83]; (dl contain variables that can be decomposed by use of functional
dependencies [KAME383 I .

I ---------------- ------------ I
I I EACHeIN I e.dno=d.dno I EACHdIN I I
I I EMPLOYEE: I----------------- I DEPARTMENT I 1
I I e.salary<40000 I I I I
I ----------------
I I
I I empof f . eno
I I = e.eno
I I
I --------------- --------------- I
I I EACH empof f I empof f . f loor = I EACH mgrof f I I
I I IN OFFICE-USE I ----------------- I IN OFFICE-USE I I
I ------_________ mgroff.floor --------------- ... I

Figure 4-6: Cyclic object graph for Example 2-3

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 17

5.0 ACCESS PLANNING

The transformation step reduces the number of possible evaluation
algorithms for a query to those for which efficient execution can be expected.
Nevertheless, a large number of possibilities remain. The query optimizer can
sequence the operations and it can choose the best implementation for each one.
Typically, the optimization of access plans is a three-step process. The steps
may be interleaved with each other and sometimes also with the transformation
step.

1. Generate reasonable logical access plans, i.e., operator graphs of the
improved query representation. Often, monadic operations are removed from
the graph to focus on the most expensive tasks: the execution of join
operations [ROSE82 I.

2. Augment the logical access plans by details of the physical representation
of data (location of data, sort orders, existence of physical access paths,
statistical information).

3. Apply a model of access and processing costs to select the cheapest access
plan.

5.1 The Role Of Physical Database Structures

The evaluation of access plans depends heavily on the physical database
structure. In the simplest case, the database is centralized. There may,
however, still be a choice between access to base data or some auxiliary direct
access structures. Additionally, the sequence of operations has to be
determined in a way that minimizes the number of secondary storage accesses.

Evaluating queries over distributed databases requires the additional
consideration of communication costs; the main goal becomes the reduction of
data transfer between sites, even at the expense of more local processing. A
typical example is the implementation of a join as a sequence of two semijoins
[BERN8lal in a vertically distributed database, in which whole relations or
projections thereof reside on one site. If there is also horizontal
fragmentation (i .e., restrictions of a relation reside on one site IULLM82 I,
[GAVI821), projection and restriction may also become distributed operations.

A general strategy for distributed query processing is the decomposition of
a query into subqueries to be executed where the data reside, as contrasted to
the collection of all required data at one site, where the whole query is
subsequently executed fCERI821. Subqueries can be processed in parallel on
different machines; therefore, the optimizer has a choice of minimizing either
response time or resource consumption (e.g., total communication delay
[APER831). If database fragments overlap [MAIE83], there is often a choice of
where to retrieve certain data. The answer depends on the relative speed of
processors and communication channels: do we have a homogeneous or a
heterogeneous network? For example, it may make sense to have complex
operations executed at a large computer even if a copy of the data is available
on a local personal computer. The topology of the network may also influence
the complexity of access planning. In an arbitrary network, queueing delay is a
major cost factor lEPST781 which can only be influenced by global decisions.

Finally, a host computer or computer network can delegate the storage
management functions of database processing to separate database machines. In
the software backend approach LMARY801, the DBMS is transferred to a stand-by
general-purpose computer that executes all database operations. This approach
is relatively cheap and permits parallel execution of other tasks on the host

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 18

computer. However, in very database-intensive applications, the database
machine itself, or its communication channels to the host, can become a system
bottleneck.

In such a case, a hardware backend can be employed lLANG781, iOZKA821 that
brings on-board logic close to the stored data in order to implement query
optimization strategies, such as early evaluation of restrictions and
parallelism. A hardware backend typically consists of a set of cooperating
parallel processors. The division of labor between these processors can be
deterained by partitioning the database into cells CSU791 or by partitioning the
query evaluation algorithm into functions [DEW179 1. The introduction of such
hardware devices can lead to new algorithms for implementing operations, such as
joins or semi joins [vALD~~].

5.2 Generation And Selection Of Access Plans

Example 5- 1 :

Suppose our example company plans to concentrate all computer personnel. on
the fifth floor. Hence, managers of all computer departments with employees
assigned to offices outside the fifth floor should be assembled for a
meeting. Assume that each database relation resides in a different site, and
that sites are connected by slow communication lines so that local processing
cost can be neglected in the optimization. After applying all the
transformations proposed in section 4, the access planning subsystem receives
the following query: .

[<c.mgr> OF EACH cd IN [EACH d IN DEPARTMENT:
d.dname = 'computert]:

SOME e IN EMPLOYEE
(e.dno = cd.dno AND
SOME not5 IN [<o.eno> OF EACH o IN OFFICE-USE:

o-floor o 51
(not5.eno = e.eno))l

Obviously, this is a simple chain query (a special case of tree queries)
which can be solved from inside out. This solution requires transferring
eno's of employees not working on the fifth floor, say 5000, from the
OFFICE-USE site to the EMPLOYEE site, and dnots for such employees, say 100,
from the EMPLOYEE site to the DEPARTMENT site. The two computer departments
among these are located -- at a total cost of 5100 transfers.
Fortunately, there is an alternative strategy which also involves semijoins
but does not follow the quantifier sequence directly: (a) transfer the dno's
of the, say, 5 computer departments from the site of the DEPARTMENT relation
to the site of the EMPLOYEE relation; (b) transfer the, say, 250 eno's and
dnots of the employees working in these five departments to the OFFICE-USE
site (cost is 255 if a hierarchical data representation is chosen during the
transfer, 500 for a relational representation); (c) check which of these
eno's relate to .offices outside the fifth floor and send their (two) dnols
back to the DEPARTMENT site. The total cost of this strategy is 262
(respectively 507) transfers, about 5% of the above straightforward strategy.

The example illustrates two points. First, the query optimizer must plan its
access strategy and cannot rely on universal heuristics; second, to do its job,
it needs information about database statistics or at least estimates. (For
example, in guessing the 250 enots above we assumed uniform distribution of
employees over departments.) Under these requirements, there are several
different ways to proceed.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 19

First, each alternative access plan can be generated and evaluated
completely before executing the query. This approach can cover parallel or
feedback evaluation strategies in a realistic way but the optimization effort is
high. Therefore, complete planning has been proposed only for restricted
environments: two-variable expressions [~A079]; monadic operations in
horizontally distributed databases [GAVI82 1 ; completely homogeneous networks
[HEVN79 I, [CHUH82 1 ; chain queries [CHIU8 1 I and tree queries [GOUD8 1 1, [CHIU80 1 ;
and star computer networks [KERS82]. Even some of these have to resort to
heuristic methods for reasons of complexity. Other researchers develop
heuristic methods from the beginning [CHEU82], [YUCH83]. System R and R* limit
the feasible join strategies to permit exhaustive search [SELI79], [SELI801.

Practical systems often plan hierarchicall~, generating an access plan
sequentially from subplans at various levels. For example, System R [CHAM8 1 1,
[SELI791 generates a plan for a nested SQL query by optimizing each query block,
and then linking all these subplans. In the distributed systems, SDD-1
[BERN8 lc 1 and Multibase [SMIT81 I, the levels are global access planning, and
local query optimization at each site.

The cost of strategies can also be computed incrementally concurrently with
their generation. This approach allows whole families of strategies with common
parts to be evaluated in parallel and thus reduces the costs of optimization
considerably. For example, [ROSE82 1 suggest retaining only the minimal-cos t way
to each intermediate result while discarding other ways as soon as their
non-optimality is detected. A similar approach is followed by the commercial
INGRES version [KO0182 I.

An extension of the incremental approach is a dynamic query optimization
procedure. The idea derives from the observation that, at each step in query
processing, the optimizer need only select the next operation optimally. To
guarantee overall optimality, only the consequences of this decision for the
rest of the algorithm must be estimated. A dynamic procedure has actual
information about the sizes of all its operands including intermediate results.
This information can also be used to update the estimates of the remaining
steps. System R re-calculates the full cost of each strategy after each
operation; however, it limits the search space by allowing only one
intermediate result, essentially making the operator graph look like a list
structure. (As noted in section 3.3, System R also performs this procedure at
compile time and, therefore, cannot make use of information about the size of
intermediate results.) INGRES YO US^^ 1 and , SDD- 1 [BERNSIC 1 permit multiple
intermediate results but employ greedy heuristics with little or no lookahead
beyond the next operation.

5.3 Problems Of Cost Estimation

We have demonstrated the need for quantitative information about the
database. Unfortunately, such information is not very easy to obtain. In
particular, the size of intermediate data structures to be retrieved or
transfered is difficult to estimate. General estimation methods require
detailed database statistics [MUTH~~]; where they are missing, simplifying
assumptions must substitute for them. A valid parameter system for estimating
the size of intermediate results under such assumptions [RICH811 must have
measurable input parameters but its formulas must be general enough to apply to
intermediate results at any level. For estimation purposes, the database state
at query time is seen as the result of a random process that generates tuples
from the Cartesian product of the attribute universes (governed by integrity
constraints). A universe is a finite subset of the attribute domain that covers
all actual values in the database (e.g., the domain of salary (integer) is
restricted to a universe by the salary range in a company). [RICH811 presents a
parameter system that computes the result size for any sequence of relational

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 20

algebra operations, under the assumption that the size of all the universes and
of each possible projection are known. Estimates for the size of projections,
given the semantic constraints of the database and the sizes of universes and
database relations, are derived in [GELE821.

The relationship between the size of intermediate results and the number of
actual secondary storage accesses depends on the physical storage structures
involved, the size of buffers, and the proportion of relation elements to be
accessed. If all elements of an operand of size N have to be accessed to find
the desired elements, the optimal number of secondary storage accesses is
approximately N/B where B is the blocking factor of the operand. [WHAN83]
estimates the number of accessed pages under random placement assumptions. If
direct access is used with optimal clustering, the number of secondary storage
accesses to retrieve n elements is reduced to n/B.

The traditional uniformity and randomness assumptions about value
distributions and tuple placements tend to overestimate costs and thus to bias
the query optimizer against the use of direct access structures [CHRI81].
However, the more sophisticated techniques require more statistical 'information
about the database. The question of how to maintain such information with
tolerable overhead is not yet fully resolved.

6.0 EXTENSIONS

Additional requirements and opportunities for query optimization arise
outside the traditional framework of processing single relational queries. Some
query languages permit expressions that are more powerful than those expressible
in relationally complete languages [CHAN82 1 ; others work on objects that are
more complex than.the flat records of the relational model. Other chapters in
this book address these problems in depth; in the sequel, we provide a brief
overview.

The first extension to be mentioned here is the simultaneous optimization
of multiple related queries, which can follow two approaches. First, the
evaluation of common subexpressions can be shared among queries; subexpressions
accessing the same.physica1 data page can do so with a single secondary storage
access [SHNE76 I, [JARK84aI. Second, a system for multiple query optimization
can invest in the creation of physical access paths, such as sorting or a

temporary indexes, which pay off for the batch as a whole but would not be
justifiable for any single query [ROUS82]. Finally, intermediate results of
some queries can be stored for later use as partial results of other queries
[FINK82]. Little is known about detailed results in this area. [KIM841 and
[JARK84al describe preliminary architectures and language constructs, and a
number of ongoing research projects are described in [IEEE821.

Particular needs for query optimization arise when a DBMS is interfaced
with artificial intelligence systems, such as expert systems or natural language
systems EREIT781. For example, expert systems try to simulate the behavior of a
human expert in a specific and usually narrow domain. With the increasing
popularity of expert systems in the business world, the need arises for them to
obtain information about real-world facts from a corporate database [VASS84 I.
Instead of duplicating the database for the expert system, coupling existing
DBMS with the expert system can be attempted [JARK84cI. Once such a connection
exists, it can also be employed in the reverse direction, namely to enhance an
existing database system with deductive capabilities [NIC083]. Both directions
of interaction, however, do not use stored data directly but require inference
procedures to work on them [MINK78 I.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 21

A reasoning task submitted to the A1 system usually translates into a
sequence of related database calls. Optimization techniques include: the
combination of multiple tuple-oriented database calls into set-oriented
operations [KUNI82 I, [VASS831; the simplification of such retrieval requests
[JARK84bI) lOTTH821; the reorganization of stored knowledge, with the objective
of simulating improvement heuristics like the ones discussed in section 4.4
[WARR81]; and the use of intermediate results for multiple query optimization
[GRAN811, [JARK84a1, which is especially useful in executing recursive database
calls [HENS@+ 1 , MINK^^ I.

Several application areas require specialized data structures for efficient
manipulation. CAD/CAM and text rocessin focus on modelling objects that are
much more complex than flat r~d:-7. One way to address this problem
is to define complex structures on top of a conventional database, allowing
multiple views of the structures and substructures [JOHN83]. Another approach
is the extension of the traditional relational model by non-first normal form
relations lSCHE82 I , in which attribute values can be complex data structures
such as arrays or even relations, making the data model recursive [LAME84 1.
Query optimization for such ex tensions is an interesting, little researched
area.

In statistical databases, data could in principle be stored as standard
relations since most statistical data are represented in tables anyway.
However, the size and redundancy of such tables [SHOS821, the large number of
null entries for attributes that are not applicable to particular relation
elements, the difficulty to distinguish between attribute names (category
attributes) and attribute values, and the need for computing summary data
[KLUG82bl lead to new techniques for user interfaces, data modeling, and query
evaluation [EGGE80 1 , [OZS084 I , [S H O S ~ ~ I .

Finally, heterogeneous distributed database systems (e.g., ISMIT81 1)
require the submission of queries to different data models such as networks or
hierarchies. The point here is to go beyond a simple translation and to address
optimization issues CDAYA821, lKATZ821. One problem in these 'navigational
models is the existence of information-bearing access paths, which may have to
be used to compute a join. A complementary problem, however, is to avoid
following unnecessary access paths by simplifying queries during the translation
process. View processing mechanisms similar to those discussed in section 4.3
can be used for this purpose [REIN84 I.

REFERENCES

[AHOS79] Aho, A.V., Sagiv, Y., Ullman, J.D, "Efficient optimization of a class
of relational expressions", @ Transactions 3 Database Systems 4 (1979),
435-454.

[APER83] Apers, P.M.G., Hevner, A.R., Yao, S.B. "Optimization algorithms for
distributed queries", IEEE Transactions - on Software Engineering SE-9 (1983),
57-68.

 BERN^^^] Bernstein, P.A., Chiu, D.M. "Using semi-joins to solve relational
queriesw, Journal of the ACM 28 (1981) , 25-40.
[BERN8lb] Bernstein, P .A., Goodman, N. "The power of inequality semi joins",
Information Systems 6 (1981) , 255-265.
[BERN81cl Bernstein, P.A., Goodman, N., Wong, E., Reeve, C.L., Rothnie, J.R.
"Query processing in a System for Distributed Databases (SDD-I)", fi
Transactions on Database Systems 6, (1981), 602-625.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 22

ECERI821 Ceri, S., Pelagatti, G. NAllocation of operations in distributed
databases", IEEE Transactions on Computers C-31 (1982), 1 19- 128.

[CHAM811 Chamberlin, D.D., Astrahan, M.M., Lorie, R.A., Mehl, J.W., Price, T.G.,
Schkolnick, M., Selinger, P.G., Slutz, D.R., Wade, B.W., Yost, R.A. "Support
for repetitive transactions and ad-hoc queries in System R", ACM Transactions
Database Systems 6 (1981) , 70-94.
lCHAN771 Chandra, A.K., Merlin, P.M. tqOptimal implementation of conjunctive
queries in relational databases", Proceedings 9th ACM Symposium on Theory of
Computation, Boulder, Co., 77-99.

[CHAN82] Chandra, A.K., Harel, P, "Structure and complexity of relational
queriesn, Journal of Computing System Sciences 3 (1982), 99- 128.

[CHEU82 1 Cheung, T. -Y. method for equi join queries in distributed relational
databases", IEEE Transactions on Computers (1982), 746-75 1.

[CHIU811 Chiu, D.M., Bernstein, P.A., Ho, Y .C. "Optimizing chain queries in a
distributed database system", TR-01-81, Harvard University, 1981.

[CHIU801 Chiu, D.M., Ho, Y .C. ItA methodology for interpreting tree queries into
optimal semi-join expressionstt, Proceedings ACM-SIGMOD Conference, Santa Monica
1980, 169-178.

[CHRI811 Christodoulakis, S. "Estimating selectivities in data bases", Ph.D.
thesis, Univ. of Toronto, 1981.

[CHUH821 Chu, W.W., Hurley , P, ttOptimal query processing for distributed
database sys ternst1, IEEE Transactions on Computers C-31 (1982) , 835-850.
[CODD72] Codd, E,F. **Relational completeness of data base sublanguages", in
Courant Computer Science Symposia Data Base Systems, Prentice Hall 1972.

[D A Y A ~ ~ 1 Dayal , U. , Goodman, N. "Query optimization for CODASYL database
systems", Proceedings ACM-SIGMOD Conference, Orlando 1982, 138-150.

[DAYA~~ 1 Dayal , U. "Evaluating queries with quantifiers: a horticultural
approach", Proceedin s ACM Symposium on Principles of Database Systems, Atlanta + 1983, 125-13

[DEWI~~] DeWitt, D. J. "Query execution in DIRECT", Proceedings ACM-SIGMOD
Conference, Boston 1979, 13-22.

[EGGE~O 1 Eggers , S . , Shoshani , A. "Efficient access of compressed data",
Proceedings 6th VLDB Conference, Montreal 1980, 205-21 1 .
[EPST781 Epstein, R. , Stonebraker , M. , Wong, E. "Distributed query processing
in a relational data base system", Proceedings ACM-SIGMOD Conference, Austin
1978.

 FINK^^ 1 Finkelstein, S. *tCommon expression analysis in database applicationstt,
Proceedings ACM-SIGMOD Conference, Orlando, 1982, 235-245.

r~AV182 1 Gavish, B., Se~ev, A. "Query optimization in distributed computer , -
systemsh, in ~koka, J. (ed.), Managemen-t of Distributed Data ~rocessi-ng,
North-Holland 1982, 233-252.

EGELE821 Gelenbe, E., Gardy, D. "The size of projections of relations
satisfying a functional dependency", Proceedings 8th VLDB Conference, Mexico
City 1982, 325-333.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 23

[GOOD821 Goodman,. N., Shmueli, 0. "Tree queries: A simple class of relational
queries", - ACM Transactions on Database Systems 7 (1982), 653-677.

[GOUD811 Gouda, M.G., Dayal, U.D. "Optimal semi join schedules for query
processing in local distributed database systemsff, Proceedings ACM-SIGMOD
Conference, Ann Arbor 198 1 , 164- 175.
[GRAN8 1 1 Grant, J., Minker , J. ffOptimization in deductive and conventional
relational database systems", in Gallaire, H., Minker, J., Nicholas, J.M.
(eds.), Advances & Database Theory, Plenum 1981, 195-234.

 GRAY^^] Gray, J. "The transaction concept: virtues and limitations",
Proceedings 7th VLDB Conference, Cannes 1981, 144-154.

[HALL761 Hall, P.A.V. "Optimization of a single relational expression in a
relational databaseN, Journal - of Research Develeopment 20 (1976),
244-257.

[HAMM~OI Hammer, M., Zdonik, S. "Knowledge-based query processing", Proceedings
6 th VLDB Conference, Montreal 1980, 137- 147. --
[HENS~~] Henschen, L., Naqvi, S. "On compiling queries in recursive first-order
databases", Journal of the ACM 2 (1984), 47-85.

[HEVN79 1 Hevner , A .R., Yao, S.B. "Query processing on a distributed database",
IEEE Transactions 1 Software Engineering SE-5 (1979) , 177- 187. -
[1EEE82] Special Issue on Query Optimization, IEEE Database Engineerinq 5, 3
(1982).

J A R K ~ ~ 1 Jarke, M., Schmidt, J. W. "Query processing strategies in the PASCAL/R
relational database management systemw, P~OC~~~~~~S-ACM-SIG%D Conference,
Orlando 1982, 256-264.

[JARK83] Jarke, M., Koch, J, IfRange nesting: a fast method to evaluate
quantified queries", Proceedings ACM-SIGMOD Conference, San Jose 1983, 196-206.

[J A R K ~ ~ ~] Jarke, M. vCommon subexpression isolation in multiple query
optimization", this volume.

[~ARK84bl Jarke, M., Clifford, J., Vassiliou, Y. "An optimizing PROLOG
front-end to a relational query system", Proceedings ACM-SIGMOD Conference,
Boston 1984.

[JARK84cl Jarke, M. , Vassiliou, Y. "Couulin~ expert systems with database
management systems", in ~eitman, W. (ed:) , irtificial- Intelligence Applications
for Business, Ablex, Norwood/NJ 1984, 65-85. -
(JOHN831 Johnston, H.R., Schweitzer, J.E., Warkentine, E.R. "A DBMS facility
for handling structured engineering entities", Proceedings Database Week
Engineering Design Applications Conference, San Jose 1983, 3-12.

[KAMB~~] Kambayashi , Y., Yoshikawa, M. "Query processing utilizing dependencies
and horizontal decompositiontf, Proceedings ACM-SIGMOD Conference, San Jose 1983,
55-67

[KAMB84] Kambayashi, Y. ffProcessing cyclic queriesff, this volume.

(KATZ821 Katz, R., Wong, E. "Decompiling CODASYL DML into relational queriesw,
ACM Transactions on Database Systems 7, 1 (1982), 1-23. -

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 24

[KERS~~] Kerschberg, L., Ting, P.D., Yao, S.B. "Query optimization in star
computer networksw, ACM Transactions on Database Systems 7, 4 (1982), 678-71 1.
[KIM801 Kim, W. "A new way to compute the product and join of relationsw,
Proceedings ACM-SIGMOD Conference , Santa Monica 1980, 179- 187.
[KIM821 Kim, W. "On optimizing an SQL-like nested query", ACM Transactions on
Database Systems 7 (1982), 443-469.

 KIM^^ 1 Kim, W. "Global optimization of relational queries: a first stepn,
this volume.

[KING81 1 King, J.J. "QUIST: A system for semantic query optimization in
relational data bases", Proceedings 7th VLDB Conference, Cannes 1981, 510-517.

[K L U G ~ ~ ~] Klug, A. "Equivalence of relational algebra and relational calculus
query languages having -aggregate functionsn, ~ournal of the ACM 29 (1982) ,
699-7 17.

[K~UG82bl Klug, A. ttAccess paths in the 'Abe' statistical query facility",
Proceedings ACM-SIGMOD Conference, Orlando 1982, 161-173.

[KO01821 Kooi, R., Frankforth, D. "Query optimization in INGRES" , in [IEEE82 1.

I~UN1821 Kunifu.ji, S., Yokota, H. tlProlo~ and relational databases for Fifth
Generation ~ompcter systemsw, .~roceedin~s-workshop on Logical Bases for Data
Bases, Toulouse, December 1982.

[LAME84 1 Lamersdor f , W. "Recursive data models for non-conventional database
applications", Proceedings IEEE COMPDEC Conference, Los Angeles 1984.
[LANG78 1 Langdon, J. 3. "A note on associative processors for data management",
ACM Transactions Database Systems 3 (1978), 148-158. -
[LORI~~] Lorie, R., Kim, W., McNabb, D., Plouffe, W., Meier, A. "Supporting
complex objects in a relational system for engineering databases", this volume.

 MARC^^] March, S. T. "Physical database design: techniques for improved
database performancew, this volume.

[MAIE~~] Maier , D., The Theory of Relational Databases, Computer Science Press
1983.

[MARY801 Maryanski, F. J. "Backend database systems", $J Computing Surveys 12
(1980), 3-26.

[MINK~~I Minker , J. "Search strategy and selection function for an inferential
relational systemN, $J Transactions 2 Database Systems 3 (1978), 1-31.

E~1NK831 Minker , J., Nicolas, J.-M. "On recursive axioms in deductive
databases", Information Systems 8 (1983), 1- 13.

[W 8 3 1 Muthuswamy , B., Kerschberg, L. "Distributed query optimization using
detailed database statisticsw, unpublished manuscript, Univ. of South Carolina,
May 1983.

fNIC0831 Nicolas, J. -M. , Yazdanian, K. "An outline of BDGEN: a deductive
DBMS", -in Mason, ' R.E. ied.) , Information Processinq Q, North-Holland,
Amsterdam 1983, 71 1-717.

COTTH821 Ott, N., Horlaender, K. "Removing redundant joins in queries involving
viewstt, IBM Heidelberg Scientific Center Technical Report TR-82.03.003, 1982.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 25

rOZKA821 Ozkarahan, E.A. "Database machines/ comouter-based distributed
databases", proceedin s Second International ~ympbsium on Distributed Databases,
Berlin 1982, d
[OZS0801 Ozsoyoglu, M., Yu, C.T. "On identifying a class of database queries
that can be processed efficientlyN, Proceedings IEEE COMPSAC Conference, October
1980, 453-46 1

[OZS084 1 Ozsoyoglu, M. , Ozsoyoglu, G. "A query language for statistical
databases", this volume.

 PALE^^ 1 Palermo, F. P . "A data base search problem", Proceedings 4th Computer
and Information Science Symposium, Miami Beach 1972, 67-101. -
[REIN841 Reiner, D., Rosenthal, A. "Querying relational views of networksw,
this volume.

[REIT78 1 Rei ter , R. *9Deductive question-answering on relational data basesn, in
Gallaire, H. , Minker , J. (eds.) , Logic and Databases, Plenum 1978, 149- 178.
 RICH^^] Richard, P. "Evaluation of the:size of a query expressed in relational
algebra", Proceedings ACM-SIGMOD Conference, Ann Arbor 1981, 155- 163.

[ROSE~O 1 Rosenkrantz, D. J . , Hunt, M.B. "Processing conjunctive predicates and
queries", Proceedings 6 th VLDB Conference, Montreal 1980, 64-74.

[ROSE82 1 Rosenthal, A. , Reiner , D. "An architecture for query optimization" ,
Proceedings ACM-SIGMOD Conference, Orlando 1982, 246-255.

[ROUS~~ 1 Roussopoulos , N. "View indexing in relational databases", ACM
Transactions on Database Systems 7 (1982), 258-290.
ESACC821 Sacco, G.M., Schkolnick, M. "A mechanism for managing the buffer pool - -

in a relational database system using the hot set model", Proceedings 8th
Conference, Mexico City 1982, 257-262.

[SAG181 1 Sagiv, Y., of Queries & Relational Databases, UMI
Research Press, Ann

[SCHE82 1 Schek, H.-J., Pistor, P. "Data structures for an integrated database
management and information retrieval sys ternw, Proceedings 8 th VLDB Conference,
Mexico City 1982, 197-207.

fSCHM771 Schmidt, J. W. "Some high-level language constructs for data of type
relation", g3J Transactions - on Database Systems 2 (1977), 247-261.

[SCHM831 Schmidt, J. W., Mall, M. "Abstraction mechanisms for database
programming", Proceedings ACM-SIGPLAN Symposium Programming Language Issues
in Software Systems, San Francisco 1983. -
[SELI79] Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, P.A., Price,
T.G. "Access path selection in a relational database management systemH,
Proceedings ACM-SIGMOD Conference, Boston 1979, 23-34.

[SELI801 Selinger , P.G., Adiba, M. "Access path selection in distributed
database systems", IBM Research Report RJ2283, August 1980.

[SHNE76 1 Shneiderman, B. , Goodman, V. "Batched searching of sequential and
tree-structured files" , g3J Transactions Database Systems 1 (1976), 260-275.

[SHOS82] Shoshani, A. "Statistical database: characteristics, problems, and
some solutionsM, Proceedings 8th VLDB Conference, Mexico City 1982, 208-222.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

Page 26

[SMIT~~] Smith, J.M., Chang, P.Y .T. "Optimizing the performance of a relational
algebra database interfacett, Communications of the ACM 18 (1975), 568-579. ----
[SMIT~~] Smith, J.M., Bernstein, P.A., Dayal, U., Goodman, N., Landers, T., Lin,
K.W.T., Wong, E. "MILTIBASE -- integrating heterogeneous distributed database
systemsM, Proceedings AFIPS 1981 , 487-499.
 STO ON^^ 1 Stonebraker , M. "Implementation of integrity constraints and views by
query modification", Proceedings ACM-SIGMOD Conference, San Jose 1975, 65-77.

ESU79 1 Su, S. Y. "Cellular logic devices : concepts and applicationsu, gEJ
Computer 12 (19791, 11-25.

[ULLM~~I Ullman, J.D. , Principles of Database Systems, Computer Science Press
1982.

[VALD84 1 Valduriez , P . , Gardarin, G. ItJoin and semi join algorithms for a
multiprocessor database machinew, 9 Transactions Database Systems 9 (1984),
133-161.

[VASS831 Vassiliou, Y., Clifford, J., Jarke, M. "How does an expert system get
its data?I1, Proceedings 9th VLDB Conference, Florence 1983, 70-72.

EVASS841 Vassiliou, Y., Clifford, J., Jarke, M. "Database access requirements
of knowledge-based systemsw, this volume.

EWARR811 Warren, D.H.D. "Efficient processing of interactive relational data
base queries expressed in logicN, Proceedin~s 7th VLDB Conference, Cannes 1981, --
272-283.

[WHAN~~ 1 Whang , K. -Y. , Wiederhold , G. , Sagalowicz, D. "Estimating block
accesses in database organizations: a closed noniterative formulaw,
Communications of the ACM 26 (1983), 940-944.

[WON13761 Wong, E., Youssefi, K. nDecomposition - a strategy for query
processing", ACH Transactions on Database Systems 1 (1976) , 223-241 .
EYA079 1 Yao, S.B. "Optimization of query evaluation algorithmsN, 9
Transactions on Database Systems 4 (1979), 133- 155.
[YOUS79 1 Youssef i , K., Wong, E. "Query processing in a relational database
management systemw, Proceedings -- 5th VLDB Conference, Rio de Janeiro 1979,
409-4 17.

cYUCH831 Yu, C.T., Chang, C.C. "On the design of a query processing strategy in
a distributed database environmentw, Proceedings ACM-SIGMOD Conference, San Jose
1983, 30-39.

[YUOZ~~I Yu, C.T., Ozsoyoglu, M. "An algorithm for tree query membership of a
distributed queryw, Proceedings IEEE COMPSAC Conference, November 1979, 306-3 12.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-84-48

