
Templar: A Knowledge-Based La
for Software Specifications
Using Temporal Logic

ALEXANDER TUZHILIN

New York University

lguage

A software specification language Templar is defined in this article. The development of the

language was guided by the following objectives: requirements specifications written in Templar

should have a clear syntax and formal semantics, should be easy for a systems analyst to develop

and for an end-user to understand, and it should be easy to map them into a broad range of

design specifications. Templar is based on temporal logic and on the Activity-Event-Condition-

Activity model of a rule which is an extension of the Event-Condition-Activity model in active

databases. The language supports a rich set of modeling primitives, including rules, procedures,

temporal logic operators, events, activities, hierarchical decomposition of activities, parallelism,

and decisions combined together into a cohesive system.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifics-

tions—languages; methodologies; D.2.1O [Software Engineering]: Design—methodologies;

representation; H. 1.10 [Models and Principles]: General; 1.2.4 [Artificial Intelligence]:

Knowledge Representation Formalisms and Methods—representation languages; temporal log~c

General Terms: Design, Languages

Additional Key Words and Phrases: Activities, events, rule-based systems, specification lan-

guages, temporal logic, time

1. INTRODUCTION

In one of the first steps in the systems development life cycle the systems

analyst (SA) interviews the end-user in order to understand how the real-

world system to be automated works. Typically, the end-user describes such a

system in a natural language. Usually, these descriptions tend to be impre-

cise, incomplete, and even inconsistent. Therefore, the job of the SA is to

understand what the end-user says and to help him or her clarify the

Permission to make digital/hard copy of part or all of this work for personal or classroom use is

granted without fee provided that copies are not made or distributed for profit or commercial

advantage, the copyright notice, the title of the publication, and its date appear, and notice is

given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on

servers, or to redistribute to lists, requires prior specific permission and/or a fee.

@ 1995 ACM 1046-8188/95/0700-0269 $03.50

Author’s address: Information Systems Department, Stern School of Business, New York Univer-

sity, 44 West 4th Street, New York, NY 10012; email: atuzhilin@stern. nyu.edu.

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995, Pages 269-304,

270 . Alexander Tuzhllin

description of the system. The process of interaction with the end-user

consists of the following steps [Dubois et al. 1991]:

—Elicitation. In this step the SA collects information about the end-user

problems in the form of informal descriptions of the system, often ex-

pressed in a natural language.

—Modeling. In this step, the SA takes the informal descriptions of the

system obtained from the end-user in the previous step and builds a

conceptual model of the system. This model should “match” the end-user

descriptions obtained in the elicitation step.

—Analysis. In this step, the SA detects problems in the model developed in

the previous step, such as omissions and inconsistencies.

—Validation. In this step, the SA resolves the end-user problems detected

in the previous step. The analyst also presents to the end-user the model

developed in the modeling step to make sure that there are no misunder-

standings between the analyst and the end-user regarding the model. If

the end-user approves the description of the real-world system presented

by the analyst, then the model is complete (we use the term “completeness”

in an informal sense here). Otherwise, the SA has to adjust the conceptual

model, and the process of interaction between the SA and the end-user

enters a new cycle.

These steps are repeatedly applied one after another, starting with the

Elicitation step, in the order shown with solid lines in Figure 1. This means

that the SA gets the feedback from the end-user only in the validation step.

In order to facilitate the process of faster development of a conceptual model

that matches the end-user needs, it is important to get the feedback from the

end-user as early as possible in the model development loop in Figure 1. To

emphasize this closer interaction between the end-user and the SA in the

conceptual model development process, we added two dashed lines to Figure

1. The arrow from Modeling to Elicitation in Figure 1 means that the SA

develops parts of the model of the system during the interviewing process and

asks the end-user questions based on the partial model developed so far. The

arrow from Modeling to Validation in Figure 1 means that the SA explains

(and even shows in some cases) the partial model of the system to the

end-user and gets the end-user feedback in an interactive fashion.

To achieve this mode of closer interaction between the SA and the end-user,

the modeling language that the SA uses should satisfy the following require-

ments.

(1) The language should be “powerful” and specifier friendly so that the SA
can develop conceptual models quickly (ideally, during the interviewing

process or shortly after it).

(2) The language should be end-user friendly so that both the SA can show
specifications written in this language to the end-user and the end-user

can understand them with minimal help from the SA.

ACM Transactions on Information Systems, Vol. 13, No, 3, July 1995,

Templar: AKnowledge-Based Language . 271

CL---cJ

uAnalysis

Fig.1. Themodel ofinteractions between theend-user andthe systems analyst.

These two requirements will allow the SA to develop conceptual models

quickly and explain them to the end-user with fewer problems.

After a conceptual model is developed, and it is understood which part of

the system has to be automated [Davis 1990], the system development life

cycle proceeds to the design stage. It is generally not clear until the design

stage which design specification language is better suited for design specifica-

tions. Therefore, the requirements specification language should satisfy the

following condition:

(3) The language should be independent of specific design specification lan-

guages, and it should be equally easy to map specifications written in this

language into a broad range of design specification languages. For exam-

ple, it should be equally easy to map requirements specifications into

object-oriented design specifications (e.g., TaxisDL [Borgida et al. 1993]),

as well as into set-theoretic specifications language (e.g., Z language

[Spivey 19881), or into a wide-spectrum specifications (e.g., V language
[Smith et al. 1985]). This will allow the systems developer to postpone the

decision of choosing the design specification language until the design

stage.

It is also important that the requirements specification language has a

formal semantics because we want these specifications to be formally vali-

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995.

272 . Alexander Tuzhllin

dated and because it makes it easier to map them into formal design

specifications. Therefore, our next requirement states that

(4) The language should have a formally defined semantics.

We propose a specification language Templar that satisfies the four condi-

tions stated above. We have developed the language for use primarily in the

requirements specification stage of the life cycle, i.e., for describing a concep-

tual model of a system in the problem analysis substage [Davis 1990] and for

writing software requirements specifications (SRS) based on this model.

However, the language can also be used in the design stage of the life cycle

for a certain class of applications that will be described in Section 3.10.

A Templar specification consists of a set of rules and a set of activity

specifications. It explicitly supports rules, events and activities, time and

temporal logic, hierarchical decomposition of activities, sequential and paral-

lel activities, static and dynamic constraints, decisions, data-modeling ab-

stractions of aggregation and generalization [Tsichritzis and Lochovsky 1982],

and user-defined modeling constructs. To illustrate the use of Templar, we

consider the following rule:

If a customer comes to a branch of a bank while the branch is closed, and the
branch has ATM machines, then he or she should use an ATM machine.

It can be stated in Templar as:

when arrives (customer, branch)

while close(branch)

if has_atm(branch)

then-do use_ atm(customer, branch)

This rule is interpreted as follows. When an (instantaneous) event

arrives (customer, branch) occurs, and if it occurs while the activity

close(branch) is in effect (i.e., the branch was closed in the past but has not

reopened yet), and if the condition has_ atm(branch) holds, then perform the

activity use _atm(customer, branch) (that lasts over some period of time).

Although Templar is a general-purpose specification language, it is espe-

cially well suited for the specifications of systems changing over time because

the language is based on temporal logic and has extensive features support-

ing time.
Requirements specification languages for systems evolving over time were

developed before by other researchers. In the next section we present the

previous work on the subject and describe how this work is related to our

language design goals presented above. The rest of the article is organized as

follows. In Section 3 we present Templar in an informal way through the

series of examples. In Section 4 we describe formally the syntax and the

semantics of the language. In Section 5, we present two case studies of using

Templar for the specifications of “real-world” systems. Finally, in Section 6

we describe some techniques for validating Templar specifications.

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995

Templar: AKnowledge-Based Language . 273

2. RELATED WORK

There have been many requirements specification languages proposed in the

literature. Since we are especially interested in the specifications of systems

changing over time and in how rules can be used in such specifications, we

will primarily consider those specification languages that support time and

rules, such as RML [Borgida et al. 1985; Greenspan 1984], Telos [Mylopoulos

et al. 1990], Tempora [Loucopoulos et al. 1990], ERAE [Dubois et al. 1991],

TRIO [Ghezzi et al. 1990], INFOLOG [Fiadeiro and Sernadas 1986], MAL

[Jeremaes et al. 1986], and RDL [Gabbay et al. 1991]. In particular, we want

to know how well each of these languages satisfies the four design objectives

stated in the introduction—i.e., are they end-user friendly; are they formal;

and can they be easily mapped into a broad range of design specification

languages?

ERAE is a requirements specification language based on multisorted tem-

poral logic supporting events, partial functions, metric temporal operators,

and specification-structuring mechanisms such as contexts [Dubois et al.

1991]. ERAE satisfies our objective (4) since it has a rigorously defined

semantics. It also satisfies objective (3): ERAE specifications can be mapped

without significant problems into a broad range of design specification lan-

guages because it has general-purpose modeling primitives such as predi-

cates and events. For example, if we want to write design specifications in

TaxisDL (TDL) that satisfy requirements specifications written in ERAE,

then it can be done without significant difficulties because predicates and

events in ERAE can be simulated within the object-oriented framework of

TDL [Borgida et al. 1993].

However, ERAE rules have the if-then structure and do not support

activities, decomposition of activities into subactivities, and the combination

of activities and events with temporal clauses when, while, before, and

after (as was demonstrated in the example in the introduction). For this

reason, ERAE specifications require various techniques to encode certain

end-user statements. For example, the statement “when a package arrives in

the source station” [Dubois et al. 1991, p. 360] is expressed in ERAE as

location(p) = SourceStation A 0 ~ location(p) = SourceStation [Dubois et al.

1991, p. 425], i.e., that at present the package p is at the source station and

that at the previous time moment (0) it was not, which is an indirect

definition of the event arrival. Note that if Duboise et al. introduced the event

“arrival” then this still would not solve encoding problems because, most

likely, we would have to identify location of the package and would need rules

describing how event “arrival of a package” is related to the predicate

identifying its location. We believe that if ERAE supported various temporal

clauses, such as where, while, before, and after, and supported activities

(happening over time) directly in the language, this would have eliminated
some of the encoding problems ERAE users have to face. In addition to the

encoding problem, ERAE has a mathematical syntax which might be difficult

to read and understand by a nontechnical end-user. Therefore, the ERAE

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995.

274 . Alexander Tuzhilin

specification method does not fully satisfy requirements (1) and (2) stated in

the introduction.

INFOLOG [Fiadeiro and Sernadas 1986] is another specification language

based on many-sorted predicate temporal logic supporting temporal triggers

and events. INFOLOG triggers have the form (trigger):: (transition pattern),
where trigger is an event variable and where transition pattern is an event

structure consisting of individual events (atomic transitions) combined to-

gether using sequencing, alternative, and concurrency operators. As ERAE,

INFOLOG satisfies our objective (4) since it has a rigorously defined seman-

tics. Furthermore, it also satisfies objective (3): INFOLOG specifications can

be mapped relatively easily into a broad range of design specification lan-

guages for the same reasons as ERAE specifications can.

However, INFOLOG has the same limitations as ERAE: it only supports

events and does not support activities; it also does not support the combina-

tion of activities and events with temporal clauses while, before, and after.

This means that INFOLOG specifications should use similar encoding tech-

niques to model end-user requirements as EREA does. For example, IN-

FOLOG has to use some encoding methods to model the statement presented

in the introduction (if a customer comes to a branch of a bank while the

branch is closed. . .). Furthermore, INFOLOG has also a rigorous mathemati-

cal syntax that might be difficult to read and understand by a nontechnical

end-user. Therefore, INFOLOG, as ERAE, does not fully satisfy requirements

(1) and (2).

TRIO [Ghezzi et al. 1990] is still another specification language based on

temporal logic. TRIO uses the linear predicate temporal logic with operators

Futr(A, t) and Past (A, t) that have the following meaning. Futr(A, t) is true

now if A will be true t time units from now. Also, Past(A, t) is true now if A

was true t time units before. It is shown by Ghezzi et al. how the standard

operators of temporal logic (necessity, possibility, etc.) can be expressed in

terms of Futr and Past. A TRIO specification is just a closed TRIO formula,

i.e., any formula being temporally and classically closed.

As in the cases of INFOLOG and ERAE, TRIO is a rigorously defined and

powerful specification language that can be mapped into a broad range of

design specification languages. In fact, it is easier to map TRIO specifications

into various design languages than ERAE or INFOLOG because it is based

only on temporal predicates and does not support events. However, it does

not fully satisfy requirements (1) and (2) for the same reasons as for IN-

FOLOG and ERAE: TRIO does not directly support such important concepts
as events, activities, and the interaction between events and activities and

various temporal clauses; it also has a rigorous mathematical syntax that is

hard to understand for a nontechnical end-user.

RDL [Gabbay et al. 1991] is still another specification language based on

the intuitionistic propositional temporal logic. RDL specifications consist of a

set of rules of the form

antecedent about the past + consequent about the future.

ACM Transactions on Information Systems, Vol 13, No 3, July 1995

Templar: AKnowledge-Based Language . 275

RDL satisfies our third and fourth requirements for the same reasons as

TRIO does. However, RDL is less powerful than TRIO because it is based on

propositional logic, while TRIO is based on predicate logic. Furthermore, RDL

does not satisfy our first and second requirements for the same reasons as for

TRIO.

RML [Borgida et al. 1985; Greenspan 1984] is a requirements specification

language based on the object-oriented framework and multisorted first-order

logic. An RML specification consists of a set of interrelated object definitions.

RML distinguishes three types of objects, i.e., entity, activity, and assertion.

Also, RML supports time, but unlike TRIO, ERAE, INFOLOG, and RDL, it is

based on first-order rather than on temporal logic. Moreover, RML has a

formal semantics, as described by Greenspan [1984].

However, RML does not fully satisfy some of the objectives stated in the

introduction. Greenspan tries to design RML so that specifiers could organize

knowledge in a natural and convenient fashion and make RML specifications

easily understood by end-users. Although he achieves his objective in many

respects, RML specifiers still have to use some encoding techniques in their

specifications. For example, the statement “a new patient’s location after he

has been admitted is the ward to which he is being admitted” [Borgida et al.

1985, p. 87] has to be rephrased as “at the end of an ADMIT event, the value

of the toWard property of the ADMIT event equals the value of the location

property of the patient being admitted” [Borgida et al. 1985, p. 87, footnote]

and is expressed in RML as:

toWard of ADMIT at end(ADMIT) =
location of (newPatient of ADMIT at end(ADMIT)) at end(ADMIT)

We believe that this kind of statement would require less encoding if RML

were based on temporal logic, especially since the English statement has

conjunction “after” in it.1 Also, RML does not fully satisfy our third objective

because it is more difficult to map requirements specifications written in

RML into a broad range of design specification languages than for some of the

previously considered specification languages, such as ERAE or TRIO, mainly

because RML supports a wide range of knowledge representation primitives.

For example, it would be more difficult to map RML requirements specifica-

tions into the design specification language Z [Spivey 1988] than it would be

to map TRIO specifications into Z. The reason for that is that object-oriented

constructs of RML are mapped into set-theoretic constructs of Z, and this

requires a paradigm shift from the rich knowledge representation world of

RML objects to the simpler world of Z values.

Telos [Myloupoulos et al. 1990] is an extension of RML and, therefore, is

also based on the object-oriented framework. Telos extends RML by improv-

ing RML facilities for representing and reasoning about temporal knowledge,

provides more general forms of generalization and classification abstractions

than RML does, supports linguistic extensions through the definition of

lSee Prior [1967] for an argument as to why temporal logic provides a more user-friendly

approach to time than the first-order 10gic.

ACM Transactions on Information Systems, Vol. 13, No 3, July 1995.

276 . Alexander Tuzhilin

metaattributes, and provides support for deductive rules and integrity con-

straints. All these features added to RML make Telos a powerful require-

ments specification lang-sage that is relatively easy for the specifier to use.

Also, Telos has a rigorously defined semantics.

However, Telos does not fully satisfy some of the objectives stated in the

introduction. First, it is more difficult to map requirements specifications

written in Telos into a broad range of design specification languages than for

some of the previously considered specification languages, such as ERAE or

TRIO, for the same reasons as it is for RML. Second, Telos does not fully

satisfy requirements (1) and (2) because the SA still has to do a certain
amount of encoding. Although Telos supports Allen’s [1984] time interval

temporal logic, it does not support point-based operators of temporal logic, as

INFOLOG, ERAE, TRIO, and RDL do. For instance, the example in

Mylopoulos et al. [1990, p. 333] saying that an author cannot referee his own

paper is stated in Telos as:

(v Y / F’erson)(y = paper. author - =(3 t/ Time)y = paper. referee [at t])

This expression is contrasted with an equivalent temporal logic expression

that provides a more user-friendly treatment of time:

(V Y / Person)(y c paper. author = always_ in_the_future y @paper. referee)

Furthermore, Telos rules have the if-then structure and do not support

when, while, before, and after clauses. Without these clauses and without

the full support of temporal logic, Telos specifications require various encod-

ing techniques to specify end-user requirements involving time.

Tempera [Loucopoulos et al. 1990] is still another specification language

supporting time, complex objects, an extended entity-relationship (E-R) data

model, and deductive rules. As in Tel OS, it also represents a rich modeling

language. However, it also does not fully satisfy some of the requirements

stated in the introduction. The rule structure of Tempera supports temporal

logic, events, the when clause, and is based on the Event-Condition-Action

model of a rule [McBrien et al. 1991]. Therefore, it provides a more user-

-friendly rule structure than other languages considered so far. However,

Tempera supports only events and conditions and does not support activities.

This means that activities occurring over time require some type of encoding

in Tempera. For example, Tempera rules have to use some encoding tech-

niques to model statement “while an activity lasts . . . ,“ such as the one

presented in the introduction. Therefore, Tempera violates, to a certain

extent, our second objective because the end-user has to understand encoding
techniques used by the SA. Moreover, Tempera depends heavily on the E-R

data model and complex objects. This makes it more difficult to map require-

ments specifications written in Tempera into design specifications that use

other paradigms, such as the object-oriented paradigm (e.g., language TDL

[Borgida et al. 1993]), than for such language as TRIO (because TRIO is
based only on temporal predicates that can be easily simulated in most of the

modeling paradigms). Therefore, Tempera specifications do not fully satisfy

our third objective to provide a specification language that can be mapped

into a broad range of design specification languages.

ACM Transac’uons on Information Systems, Vol. 13, No. 3, July 1995

Templar: AKnowledge-Based Language o 277

MAL (Modal Action Logic) [Jeremaes et al. 1986] is still another require-

ments specification language that forms the basis of the FOREST project

[Goldsack and Finkelstein 19911. At the heart of MAL is the first-order logic

which is extended with agent/action modalities, deontic expressions, tempo-

ral operators similar to Allen’s [1984] interval operators, and action combina-

tors. MAL is a rigorously defined and powerful requirements specification

language. Furthermore, MAL specifications can be mapped into certain de-

sign specification languages. For example, a restricted set of MAL specifica-

tions can be mapped into Prolog [Costa et al. 1990]. However, it requires more

effort to map MAL specifications into various design specification languages

than such languages as TRIO [Ghezzi et al. 1990] or RDL [Gabbay et al.

1991], because MAL supports various additional constructs, such as agents,

actions, permission and obligation operators, temporal operators, and action

combinators, that make such mapping more complicated than in the cases of

TRIO and RDL. Although MAL is a relatively specifier-fi-iendly language, as

the case study of a real-time operating system kernel in Goldsack and

Finkelstein [1991] shows, its end-user (and to some extent specifier) friendli-

ness can be improved. For example, the statement “if the kernel performs a

dispatch operation, and if the clock ticktocks n times and the occurrence of p

executing still exists, then time overrun has happened” is stated in MAL

[Goldsack and Finkelstein 1991, Axiom 10, p. 112] as:

[kernel, dispatch(p)loccurrence(p,execute) ~ (occurrence(clock ,tick ;tock’) -+
[clock ,tick ;tock ~]tbne_expired)

Since MAL’s temporal model is exclusively interval based and therefore does

not support instantaneous events, it encodes the English statement “the

process p has been executing for n time units since the kernel performed a

dispatch operation” with the statement saying that the time interval defined

by n ticks of the clock is contained in the time interval defined by the

execution of process p. Also, MAL has a technical syntax that is difficult for a

nontechnical end-user to understand. Therefore, MAL does not fully satisfy

requirements (1) and (2).

Statecharts [Harel 1988] is still another specification language for model-

ing complex reactive systems. It is based on the visual formalism of struc-

tured state diagrams (statecharts) and is successfully used in modeling

various complex reactive systems. The language has a rigorously defined

semantics, is relatively specifier and end-user friendly, and we believe that

Statecharts specifications can easily be mapped into various specification

languages since they are based on such a fundamental concept as finite-state

automata. However, statecharts are based exclusively on the visual approach

to specifications and therefore inherit some of the known limitations of the

visual approach. As Harel [1992, p. 131 admits “.. . the job [of development of

a “perfect” specification language] is far from complete. Some aspects of the

modeling process have not been as forthcoming as others in lending them-

selves to good visualization. Algorithmic operations on variables and data

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995.

278 . Alexander Tuzhilin

structures, for example, will probably remain textual. In addition . . . some of

the less obvious connections between the various parts of the system models

are not easily visualized.” Therefore, in this article we deal with an alterna-

tive (textual) approach to user-friendly specifications that is based on rules

and temporal logic.

The work of Lansky and Georgeff [1986] on representing procedural knowl-

edge and of Allen [19841 on the theory of action and time is also related to

Templar, although not as directly as the other languages discussed in this

section. The discussion of how this work is related to Templar can be found in

Tuzhilin [1993].

In summary, we examined several requirements specification languages

that support time and rules. Some of these languages, such as INFOLOG,

ERAE, TRIO, and RDL, are based on temporal logic. Most of these languages

have a rigorous semantics and have a high expressive power. However, they

are not designed in such a way that the systems analyst can write require-

ments specifications in these languages quickly (either during the interview-

ing process or shortly after it) and can show them to the end-user and expect

him or her understand these specifications with minimal help. The reason for

that is that these languages require encoding to specify certain end-user

requirements and that some of them have the syntax that is difficult for an

end-user to understand. To solve these problems, we developed a specification

language Templar that we will describe now.

3. OVERVIEW OF TEMPLAR

Templar features will be introduced with examples based on the description

of an IFIP Working Conference [One 1982, Appendix A]. Organization of a

working conference involves several activities: sending a call for papers,

receiving paper submissions and registering these submissions, sending pa-

pers to be refereed, receiving reports back from referees, making

acceptance/rejection decisions, and so on.

A Templar specification consists of a set of rules and activities that will be

described in turn below. We start with the most-basic features of the lan-

guage in Section 3.1 and introduce additional features in the subsequent

sections.

3.1 Basics of Templar Rules

A Templar rule is based on the Actiuity-Eu.nt-Condition -Acti.ity (AE(7A)

model. AECA is an extension of the Event-Condition-Action (ECA) model of

rules in active databases [de Maindreville and Simon 1988; McCarthy and

Dayal 1989; Stonebraker et al. 1990; Widom and Finkelstein 1990] and of

rule-based design methodologies in information systems [McBrien et al.

1991].

The following is an example of a Templar rule. To make an example simple,

we consider a rule of the ECA type and describe an AECA rule in Example

3.3.1.

ACM Transactions on Information Systems, Vol. 13, No 3, July 1995.

Templar: AKnow[edge-Based Language . 279

Example 3.1.1. The user specification

When a reviewer receives a paper to be refereed, which was sent by the
conference program chairperson, he/she evaluates the paper and sends it back
to the chair.

is expressed with the Templar rule

when end.send(paper, chairperson, reviewer)

if referees (paper, reviewer)

then Iocated(paper,reviewer)

then-do review(paper,reviewer); send (paper, reviewer, chairperson).

This rule is interpreted as follows: when an event end.send (paper, chairper-
son, reviewer) occurs (reviewer receives a paper) and if the condition

referees(paper, reviewer) is true then (1) set the postcondition located(paper, re-
viewer) to be true and (2) start the activities review(paper,reviewer) and

send (paper, reviewer, chairperson) sequentially (i.e., when the first activity fin-

ishes, start the second one).

This rule illustrates three major modeling primitives in Templar: activities,

events, and conditions. Activity is a process that occurs over time, e.g., a

paper is being reviewed by a reviewer for some time. An event is a change to

the system state that occurs instantaneously, e.g., a reviewer receives a paper

at some moment in time. Prefix “end” in “end.sen~ in Example 3.1.1 specifies

the event “activity send(paper,chairperson, reviewer) has finished.” A condi-

tion is a logical formula that describes the state of the system, e.g., predicate

referees (paper, reviewer) indicates that, in the current state of the system,

objects paper and reviewer are engaged in relationship referees.
The rule presented above consists of clauses when, if, then, and then-do.

We distinguish among state, temporal, and action types of clauses. A state

clause describes the state of the system (the working conference in our case).

If and then clauses are examples of a state clause. A temporal clause

specifies how different events and activities relate to each other in time.

When and after are examples of a temporal clause. Finally, the action clause

states imperatively what activities will have to be done. Then-do is an

example of an action clause.

Each clause deals with only one type of a modeling primitive: when clause

pertains to events, if and then clauses to conditions, and then-do clause to

activities.2 This means that in the previous rule referees and located are

predicates; review and send are activities; and end.send is an event (the end

of an activity). This relationship between types of clauses and types of

modeling primitives that can appear in them forces the user to think more

structurally when writing specifications.

We also impose a safety restriction [Unman 1988] on Templar rules: a

variable appearing in an action clause of a rule (e.g., then, then-do, etc.)

must also appear positively in a state clause (e.g., when, if, etc.) of the rule.

2When we define the syntax of Templar formally and introduce all the clauses in Section 4.1, we

will explain in Figure 3 how clauses correspond to modeling primitives.

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995.

280 . Alexander Tuzhilin

For example, the previous rule was safe, whereas the rule when

receives (paper, chairperson, author) then-do send (paper, chairperson, reviewer)
is not safe (because the variable reviewer does not appear in the when

clause).

3.2 Atomic and Composite Activities

Templar distinguishes between atomic and composite activities. A composite

activity consists of subactivities. For instance, the activity review(paper, re-
viewer) from Example 3.1.1 consists of reading the paper and then evaluating

it. This statement can be expressed in Templar with an activity specification

as illustrated in the following example.

Example 3.2.1. A specification for the activity review can be stated in

Templar as

activity review(paper: Papers, reviewer: Reviewers)

read (paper, reviewer)

evaluate(paper, reviewer)

end_ activity

where Papers and Reviewers are elementary sorts in the multisorted model of

Templar that we adopt from the ERAE model [Dubois et al. 1991].

Following the ERAE model, we define multiple sorts as follows. We start

with a set of elementary sorts, i.e., sort names and singletons. Then the set of

derived sorts is obtained as a closure of the elementary sorts under the

operations of union and intersection. For example, the derived sort person is
defined as man u woman. Sorts can be considered as types in programming

languages. Each attribute of a temporal predicate and each parameter in an

activity specification considered in Templar must belong to a certain sort. For

instance in the previous example the variable paper belongs to the sort

Papers and variable reviewer to the sort Reviewers.
An activity specification can be compared to a procedure in conventional

programming languages or to a method in object-oriented programming,

except that it is defined in terms of temporally oriented modeling primitives

(activities). We will describe the structure of an activity specification in detail

in Section 4.1.

An atomic activity cannot be divided into subactivities. It is defined with a

future temporal predicate which specifies how a predicate changes over time.

We will define temporal predicates in detail in Section 3.5. For example,
consider the activity specification

activity read(paper: Papers, reviewer: Reviewers)

T = reading _time(paper,reviewer)

reading(paper, reviewer) for_time T

end_ activity

where reading _time(paper, reviewer) is a decision function that specifies how

much time it takes a reviewer to read a paper (we will define decision

functions in Section 3.9), and reading is a predicate that changes over time.

ACM Transactions on Information Systems,Vol. 13, No. 3, July 1995

Templar: AKnowledge-Based Language . 281

Then “reading(paper, reviewer) for_time T“ is a future temporal predicate

stating that the predicate reading (paper, reviewer) will be true for the next T

time units. This expression is based on the bounded temporal operator

for_time [Tuzhilin 1993] (also called metric operator by Koymans [1990]).

The temporal predicate “reading(paper, reviewer) for_time T“ defines an

atomic activity.

Templar allows the mixture of composite and atomic activities inside an

activity specification. For example, the composite activity review(paper, re-
viewer) can be rewritten as

activity review(paper: Papers, reviewer: Reviewers)
T = reading _time(paper,reviewer)
reading(paper,reviewer) for_time T
evaluate(paper, reviewer)

end_ activity

Since subactivities in an activity specification can also be composite activi-

ties, Templar supports the process of hierarchical decomposition of a complex

activity into progressively more simple subactivities.

Templar also allows multiple subactivities in the then-do clause of a rule.

For instance, the then-do clause in Example 3.1.1 has two subactivities

review (paper, reviewer) and send (paper, reviewer, chairperson). Alternatively,
these two subactivities could be combined into one composite activity, and the

then-do clause would refer only to this single activity.

The combination of activity specifications and rules makes Templar a

powerful specification method. If Templar specifications had only rules then

they could contain hundreds of rules, and it would be difficult for the

end-user (and often for the developer) to understand clearly how the rules

interact. On the other hand, if Templar specifications consisted only of

activities, then it could be difficult to describe the control logic with only the

if-then-else statements for certain applications. With Templar specifica-

tions, the user has the flexibility of combining rules and activities in such a

way that there are much fewer rules than for the strictly rule-based methods,

and activity specifications tend to be small, simple, and easy to understand,

as the case studies in Section 5 will demonstrate.

3.3 Activity-Event-Condition-Activity Rules

The rule from Example 3.1.1 has the Event-Condition-Activity (ECA) struc-

ture. This structure is extended to the Activity-Event-Condition-Activity

(AECA) structure in Templar by supporting while, before, and after tempo-

ral clauses as the following example shows.

Example 3.3.1. Assume the organizers of the conference have a rule:

While a submitted paper is being reviewed, any request to withdraw the paper
will be granted by the program chairperson.

ACM Transactions on Information Systems,Vol. 13,No. 3, July 1995.

282 . Alexander Tuzhilin

This requirement can be expressed in Templar as

while do_reviewing(chairperson,paper)

when withdrawai_request (paper)

if submission (paper, author, status)

then-do withdraw(paper, author)

where do_ reviewing (chairperson, paper) is the activity of sending a paper by

the program chairperson for reviewing; submission(paper, author, status) is a

condition stating that an author submitted a paper to the conference; wkh-

drawal _ request (paper) is an event indicating that the request to withdraw

the paper was received; and withdraw(paper, author) is an activity of withdraw-

ing a paper from the conference.

This rule says that while a certain activity lasts, and when an event occurs,

and if a condition holds, then do a new activity. In this rule, unlike the rule

from Example 3.1.1, the activities in the then-do clause depend not only on

some conditions and events but also on some other activities. Therefore, we

call this type of rule the Activity-Event-Condition-Activity (AECA) rule be-

cause it generalizes the Event-Condition-Activity (ECA) model of a rule by

—allowing activities in the antecedent part of the rule;

—supporting not only when, if, and then clauses of the ECA model but

several additional clauses, such as while, before, after, and various other

user-defined clauses;

—providing a comprehensive support for time based on temporal logic.

In summary, AECA rules can be viewed as an extension of the ECA model

of a rule to support the temporal domain.

3.4 Procedural Specifications in Templar

In Section 3.3, we considered a rule of an AECA type and in Section 3.1 its

restricted ECA version. In general, only the action part of the rule is

mandatory in a rule, and all other clauses are optional. For example, the
“topmost” activity specifying that a conference has to be organized may not

require any preconditions and can be expressed in Templar as

then-do organize_ conference

or, using the then-do operator implicitly, as

organ ize_conference.

If only the action part of a rule is specified then it is reduced to a procedure.

Therefore, in the extreme case, Templar specifications may contain no rules

at all, and only procedures. This provides the user with the range of options

and gives him or her extra flexibility for writing specifications based on rules,

procedures, and the combination of rules and procedures.

ACM TransactIons on Information Systems, Vol. 13, No, 3, July 1995

Templar: AKnowledge-Based Language . 283

3.5 Temporal Predicates

Templar predicates can change over time. For example, if a paper is submit-

ted to a journal today, then the predicate submit(paper,journal) is true today,

and was not true yesterday or a week ago. Similarly, it may not be true in two

years from now assuming that the submission process will be over by that

time. Therefore, these types of predicates are called temporal [Kroger 1987],

and their semantics is defined with a temporal structure [Kroger 1987] that

describes how their instances change over time. The reader is referred to

Kroger [1987] and Manna and Pneuli [1992] for in-depth descriptions of

temporal structures and temporal logic in general.

Temporal predicates can take temporal operators, such as possibil-

ity —sometimes _in_the_f’uture (0), necessity—always_ in_

the_ future (•) [Manna and Pneuli 1992], bounded necessity —for_time T,

bounded possibility —within_time T [Koymans 1990; Tuzhilin 1992], and

their past mirror images can be applied to temporal predicates. Examples of

future temporal operators are send (paper,A,B) for_time 3days (send a paper

from person A to person B, and let it travel for 3 days), always _in_the_fu-

ture not submit(paper,journal) (never submit paper to journal in the future).

Examples of past temporal operators are within_past _time 6months vaca-
tion(person) (a person had a vacation sometime within the past 6 months),

always _in_the _past not visited (person, Australia) (never before, a person

visited Australia).

Temporal predicates and temporal operators can appear in the clauses if

and then. If clause takes past temporal operators, and then takes future

operators. The following example shows how temporal predicates can be used

in Templar rules.

Example 3.5.1. The rule

Only the original papers can be submitted to the conference, i.e., if a paper has
been published in some journal in the past, it has to be rejected.

can be expressed in Templar as:

if submission(paper, author, status) and

sometimes_ in_the_past published(paper, author,journal)
then-do reject(paper,author)

3.6 Static and Dynamic Constraints

Templar supports static [Nicolas 1982] and dynamic [Casanova and Furtado

1984; Hulsmann and Saake 1991; Lipeck and Saake 1987] constraints by

specifying rules only with if and then clauses. The static constraint, also

called invariant, does not have any temporal operators in neither the head

nor the body of a rule. For example, the following static constraint

A paper can have only one specific status at a time

can be expressed in Templar as:

if submission(paper, author, status) and submission(paper, author, status’)

then status = status’

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995.

284 . Alexander Tuzhilin

A dynamic constraint is defined as an if-then rule where some predicates

take temporal operators. For example, the following dynamic constraint

If a paper has been published already, it cannot appear in any other publication

in the future.

can be expressed in Templar as:

if publkhed(publlcation, paper, author) and list_ of_publlcations(publication’)

and publication # publication’

then always_ in_the_future not published(publlcation’, paper, author)

where predicate list _ of _ publications guarantees safety of the rule by restrict-

ing the universe of all possible publication outlets to a finite set.

3.7 Structuring Mechanisms in Templar

Templar supports structuring mechanisms of aggregation and generalization

as follows. Generalization is supported exactly as in ERAE by using multi-

sorted temporal logic that allows derived sorts [Dubois et al. 1991]. For

example, if the sort Papers is defined as the union of Regular_ papers and

Invited _ papers then Papers is the generalization of these two sorts. Assume it

is declared that a variable x belongs to a sort, and assume that we want to

state that it should belong to a specialization of this sort. For example,

assume that x belongs to Papers, and we want x to be an invited paper. In

this case, we follow the approach of ERAE and make a statement x in

Invited _ papers, where in is an interpreted membership predicate.

Aggregation is supported in Templar by the use of x.y notation. For

example, an address can be defined by the street address, city, state, and zip.

We can say in Templar that a person lives in New York as address.city =‘ New

York’. Note that the sort of the expression x. y is determined by the sort of

variable y. For example, the sort of address.city is Cities.

3.8 User-Defined Modeling Constructs

Templar allows the SA to define his or her own language constructs, assum-

ing that an appropriate semantics is specified for these constructs. For

example, assume that the SA wants to define the temporal predicate since

[Manna and Pneuli 1992] as a user-defined operator (assuming it is not the

part of the language). To do this, the SA can define B since C in terms of the

temporal variable x (not appearing anywhere else in the specification), the

temporal structure of which is defined with the following rules:

if C then X

if B and not C and previous X then X

if B and not C and not previous X then not X

if not B and not C then not X

Additionally, the SA can state some of the properties of the user-defined

construct if he or she feels that the definition of the construct is somewhat

cryptic. In the previous example, the SA could define since in the standard

way, as in Manna and Pnueli [1992], in addition to the rules listed above.

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995.

Templar: AKnowledge-Based Language . 285

These user-defined constructs are macros in the sense that the semantics

of these constructs is specified in terms of the substitution of their definitions

into Templar programs. Thus, user-defined constructs do not extend the

expressive power of Templar; they only make Templar specifications easier to

read and write.

The user-defined modeling constructs are needed because Templar sup-

ports various modeling primitives that make the language easy to use for the

system analyst and easy to understand for the end-user. However, different

applications may require additional modeling constructs, not defined in Tem-

plar, that vary across these applications. If all of these modeling constructs

are added to Templar, then the language will be overburdened with many

modeling primitives, and quite a few of them will not be needed in many

applications. Therefore, Templar supports a “core” of modeling primitives,

and the modeling primitives not included in Templar and definable in terms

of the “core” primitives can be included as user-defined constructs.

3.9 Other Properties of Templar

In this section, we consider several additional features of Templar, such as

parallel activities, external events, events defined by explicit specifications of

time, periodic events, temporal precedence operators before and after,

decisions, and cancellations of and constraints on activities.

Example 3.9.1. Consider the following rule:

When the program committee chair receives a paper before the submission
deadline, the chair registers the paper, sends it to the reviewers and sends the
acknowledgment letter to the author (at the same time as sending it to the
reviewers).

It is expressed in Templar as

when receives (chairperson, paper, author)

before submkAon_deadline

then Iocated(paper,chairperson)

then-do register _paper(paper,author);

(dktribute_ paper_ to_ reviewers(paper, chairperson)
IIsend –acknowledgment(chairperson,paper,author))

The rule from Example 3.9.1 illustrates several important features of

Templar. First, it provides an example of the parallel operator (11). This

operator specifies that the corresponding activities occur simultaneously. For

instance, activities distribute_ paper_ to_ reviewers (paper, chairperson) and

send _acknowledgment(chai rperson, paper, author) occur in parallel in Exam-

ple 3.9.1. Second, the rule illustrates the use of temporal precedence operators

before and after. The clause before specifies that the reviewing process can

start only if the paper is received by the program chair before the submission

deadline (determined by the temporal constant submission _deadline). Third,
the rule shows how time can be referenced explicitly in Templar rules. The

temporal constant submission _deadline (e.g., 6/22/98) defines the temporal

event “the submission deadline is reached,” and the rule can be fired only

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995.

286 . Alexander Tuzhilin

before this event occurs. Fourth, the rule provides an example of an external

event: receives (chairperson, paper, author). This event did not occur as a result

of starting or ending of any internal activity but occurred because of some

activity external to the system.

The next example shows how Templar supports periodic temporal events.

Example 3.9.2. The rule

Every Monday, the program chair examines review reports sent to him/her by
the referees.

can be expressed in Templar as:

when every Monday

then-do examine_ reports (chairperson)

Also, Templar supports decisions which are nontemporal specifications.

For example, when the program committee chair receives a paper, he or she

decides who should review it and then sends the paper to the selected

reviewers. In this case, select_ reviewers (paper, chairperson, Reviewers) is a
decision, which we assume happens instantaneously in time. Decisions are

specified by the systems analyst and are needed to model atemporal phenom-

ena in Templar, such as selection of reviewers, decisions which papers to

accept and which to reject, how to group accepted papers into sessions, etc.

Since decisions do not involve time, they can be specified in any temporal or

nontemporal specification language (not necessarily Templar). Alternatively,

if the SA does not think that a formal description of a decision is important to

the specification of systems requirements, then the decision can be specified

informally (e.g., in a natural language) because it does not affect the temporal

part of Templar specifications. For example, it may not matter for the overall

specification of an IFIP Working Conference how reviewers of a paper are

selected by the conference chair (as long as there is an effective procedure of

doing this).

As we stated, Templar is based on temporal logic. However, it is important

sometimes to refer to time explicitly, as the next example will show. There-

fore, we allow explicit reference to the time of an event in Templar using the

time prefix. The next example illustrates the use of this construct and the

then-dent-do and then-cancel clauses that respectively support cancella-

tions of and constraints on activities.

Example 3.9.3. The rule

If a paper was submitted to a journal and the reviews were not received by the

author within 1.5 years, then withdraw the paper from the journal and never

submit it to the journal again.

can be expressed in Templar as:

if now—time.begin. submission(paper, author, journal) >
18months

then-cancel submission (paper, author, journal)

then-dent-do sometimes_ in_the_future submission(paper, author, jour-
nal)

ACM TransactIons on Information Systems, Vol. 13, No. 3, July 1995.

Templar: AKnowledge-Based Language . 287

where now is the symbol specifying the present time; submission is an
activity; begin. submission(paper, author,journal) defines the event when the

paper was submitted; and prefix time specifies the time when this event

occurred. The clause then-cancel specifies that the currently scheduled

activity submission (paper, author, journal) should be canceled, and the clause

then-dent-do imposes a constraint stating that the activity submission
should never occur for this author, paper, and journal in the future.

Finally, Templar supports namings of the events associated with beginning

and ends of activities. For examlple, the event end send from Example 3.3.1

can be called arrive by the user.

3.10 Templar as a Design Language

We described Templar as a requirements specification language so far. How-

ever, Templar can also be used in the design stage of the software life cycle

for certain applications because it has a formally defined semantics (to be

presented in Section 4.2) and because it supports decomposition of activities

into subactivities which is the primary activity during the design stage of an

information system.

Templar is especially useful as a design language for those applications in

which data are stored in an active database [Maindreville and Simon 1988;

McCarthy and Dayal 1989; Stonebraker et al. 1990; Widom and Finkelstein

1990] in the implemented system. For example, McCarthy and Dayal describe

how a stock trading application can be modeled with active databases. Since

the rule structure of Templar subsumes the EC!A rule structure of active

databases, it is clear that Templar is suitable for the design of the applica-

tions that have data to be stored in an active database.

In this section, we provided an informal overview of the language Templar.

In the next section, we formally introduce the syntax of the language and

define its semantics.

4. FORMAL DESCRIPTION OF TEMPIAR

In this section, we formally define the specification language Templar. Sec-

tion 4.1 presents the syntax of the language and Section 4.2 its semantics.

4.1 Syntax of Templar

Templar specifications consist of a set of predicate declarations, a set of rules,

and a set of activity specifications. Since Templar is based on multisorted

temporal logic, all of its predicates must be declared so that it is clear what

sorts are involved in their definitions. In order to do so, we have to specify the

list of sorts that are used in the specification. We adopt the syntax of ERAE

for declaring sorts and predicates [Dubois et al. 1991] and will not present it

in the article.

The syntax of a Templar rule is defined with the BNF grammar, the
topmost portion of which is presented in Figure 2. The complete description of

this grammar can be found in Tuzhilin [1993]. As Figure 2 shows, a Templar

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995,

288 . Alexander Tuzhilin

rule

head-of-rule

head-clause

then-clause

do-clause

dent -do- clause

cancel-clause

next-activity

body-of-rule

body-clause

..—..—

..—..—

.._..—

.._..—

..—..—

.._..—

.._,.—

.._..—

.._..—

.._..—

[body-of-rule] head-of-rule

head.clause { head-clause }

then-clause \ do-clause \ dent-do-clause I cancel-clause

then future-conditions

then-do activity { next-activity }

then-dent-do activity { next-activity }

then-cancel activity { next-activity }

; actiwty { next-activity } I II activity { next-activity)

{ body-clause }

if past _conditions

while activities

when events

before activities I before events

after activities I after events

user-defined-operator activities / user-defined-operator events

Fig. 2. Topmost part of the syntactic definition of a rule.

clauses
1

conditions if, then

events when, before, after

activities then-do, then-dont-do, then-cancel, while, before, after

Fig. 3. Types of clauses.

rule consists of a collection of clauses that are divided into the body and the

head clauses. There can be more than one clause of the same type in a rule

(e.g., one before clause refers to activities and another to events). However,
each clause deals only with an entity of one type: either with an activity, or

an event, or a condition. Therefore, clauses provide a natural way to separate

activities from events and from conditions and force the Templar user to

think in these terms. Figure 3 shows the relationship between clauses and

activities, events, and conditions.

Furthermore, the user can define his or her own clause operators as long as

the semantics of these operators is defined precisely. These operators are

denoted as “user-defined-operator” in Figure 2. For example, the user can

define such operators as unless, atnext [Kroger 1987], and so on. As was

explained in Section 3.8, Templar treats user-defined operators as macros.
These user-defined operators provide extra flexibility in describing real-world

systems in terms that are more natural.

The syntax of activity specifications is defined with the BNF rules, the

topmost portion of which is presented in Figure 4. The complete description of

the grammar of Templar activities can be found in Tuzhilin [1993]. As Figure

4 shows, an activity specification consists of a list of statements. The for-

statement is needed for iterations (to be able to express statements of the

form “for each element. . . perform some activity”). If-statement is not strictly

necessary because the activity containing this statement can be expressed in

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995

Templar: AKnowledge-Based Language . 289

activity -spec

statement-list

statement

..—,.—

.._..—

..—.,—

if-statement ..—

for-statement :=

parallel-statement ::=

decision-statement :=

activity name [(parameters)] statement-list end.activity

statement { ; statement }

composite-activity

atomic-activity

if-s tat ement

for-statement

parallel-statement

decision-statement

if condition then statement-list else statement-list end_if

foreach variable suchthat condition do statement-list end_ for

statement-list II statement-list

[variable =] name (parameters)

Fig.4. Topmost part of thesyntactic definition ofactitity specification.

terms of rules and activities without if-statement. However, it was added as a

convenience for the user. Activities occur either sequentially or in parallel.

Semicolon (;) is the operator delineating sequential activities, and parallel

bars (11)is the operator delineating parallel activities.

As was pointed out in Section 3.2, we distinguish between atomic and

composite activities. An atomic activity is defined as a future temporal

predicate. For example, deliver(paper,referee) for_time T, where deliver is a
predicate indicating that the paper is being delivered to the referee for T time

units, is an atomic activity. A composite activity consists of several subactivi-

ties and requires an activity specification that describes the decomposition of

the composite activity into several subactivities.

4.2 Semantics of Templar

In this section we define the semantics of Templar by mapping Templar

specifications into some intermediate representation and then defining the

semantics of the resulting specifications. In the first step of the conversion

process, we map a Templar specification into an equivalent specification

without composite activities. After that, we replace atomic activities by the

corresponding temporal predicates and then provide the semantics of the

resulting specification. We start with the process of removal of composite

activities.

4.2.1 Removal of Composite Activities. Composite activities occur in then-

do, then-dont-do, then-cancel, when, before, after, and while clauses.

We will show how composite activities in these clauses can be replaced with

subactivities that comprise them. We assume, without loss of generality, that

the head of a rule contains only a single activity because multiple activities

in the head of a rule can be grouped into a single composite activity contain-

ing these subactivities.
We will recursively consider various decompositions of activities into subac-

tivities. We start with the sequential composition.

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995.

290 . Alexander Tuzhilin

Sequential Composition of Activities. Let the composite activity comp-
activity consist of subactivities activityl; activity2.

Assume that comp-activity occurs in the then-do clause of a rule, i.e., the

rule has the form

(rest-of-rule)

then-do comp-activity

where (rest-of-rule) consists of all the clauses of the rule except the clause

then-do comp-activity. Then this rule is replaced with the following two rules:

(rest-of-rule)

then-do activityl

then flag

when end.activityl

if flag

then-do activity2

then not flag

where flag is a predicate, containing all the variables from (rest-of-rule), that
does not occur anywhere else in the program.

Assume that comp-acthity occurs in the then-dent-do clause of a rule. Let

the rule have the form

(body-of-rule)

then-dent-do comp-activity

(rest-of-rule)

Then the rule is replaced with the following rules

(body-of-rule)

(rest-of-rule)

(body-of-rule)

if begin. activityl

then flag

when end.activityl

if flag

then-dent-do activity2

then not flag

where flag is a predicate, containing all the variables from < bod y-of-rule),

that does not occur anywhere else in the program.
If comp-activity occurs in the then-cancel clause of the rule (rest-of-rule)

then-cancel activityl; activity2 then the rule is replaced with the rules

(rest-of-rule)

then-cancel activityl

(rest-of-rule)

then-cancel activlty2

ACM Transactions on Information Systems, Vol 13, No, 3, July 1995

Templar: AKnowledge-Based Language . 291

In other words, we assume that the cancellation of a composite activity and of

all of its subactivities happens at once.

If comp-activity occurs in the while clause of a rule, then the clause while

comp-activity is replaced with while activityl or activity2. If comp-activity

occurs in the before clause then before comp-activity is replaced with before

activityl. If comp-activity occurs in the after clause then after comp-activity is
replaced with after activity2.

If comp-activity occurs as part of the end.comp-activity event then this event

is replaced with end.activity2, and if it occurs as part of the begin .comp-activity

event, then this event is replaced with begin .activityl.

Parallel Composition of Activities. Assume that a composite activity

comp-activity consists of subactivities activityl IIactivity2. If comp-activity occurs

in the then-do clause of a rule (rest-of-rule) then-do comp-activity then this

rule is replaced with the following rules:

(rest-of-rule) then-do activityl

(rest-of-rule) then-do activity2

If comp-activity occurs in the then-dent-do clause of a rule then the rule is

replaced with:

(rest-of-rule) then-dent-do activityl

(rest-of-rule) then-dent-do activity2

If comp-activity occurs in the then-cancel clause of a rule then the rule is

replaced with:

(rest-of-rule) then-cancel activityl

(rest-of-rule) then-cancel activity2

If comp-activity occurs in the while clause of a rule, then the clause while

comp-activity is replaced with while activityl or activity2. If comp-activky

occurs in the before clause then before comp-activity is replaced with before

activityl (or equivalently with before activity). If comp-activity occurs in the

after clause then after comp-activity is replaced with after activityl or

activity2.

If comp-activity occurs as part of the begin. comp-acthity event then this

event is replaced with begin .activityl (or equivalently with begin .actMty2),

and if it occurs as part of the end .comp-activity event that this event is

replaced with max{end.activityl, end.activity2}.

IF-Statement. Assume that a composite activity comp-activity consists of

the IF-statement if cond then stat-list-1 else stat-list-2 end_ if.

If comp-activity occurs in the then-do clause of a rule (rest-of-rule) then-do

comp-activity then this rule is replaced with the following equivalent rules:

(rest-of-rule)

if cond

then-do stat-l ist-1

(rest-of-rule)
if not cond

then-do stat-l ist-2

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995.

292 . Alexander Tuzhilin

Very similar rules replace comp-activity appearing in the then-dent-do

and then-cancel clauses, and therefore, we omit their conversion here.

If comp-activity occurs in the while clause of a rule, then the rule contain-

ing the clause while comp-activity is replaced with two rules. In the fh-st rule,

the while clause is replaced with two clauses (if cond while stat-list-1) and in

the second rule with the clauses (if not cond while stat-list-2). Before and

after clauses are handled similarly, and therefore we omit their conversion

here.

Finally, if comp-activity occurs as part of the begin. comp-activity event in a

rule, then this rule is split into two rules. The first rule is obtained from the

original rule (1) by adding the clause if cond to it and (2) by replacing all the

events begin. comp-activity in the original rule with the events begh.stat-list-l.

The second rule is obtained from the original rule in a similar way by adding

the clause if not cond to it and replacing all the events begin. comp-activity

with the events begin .stat-list-2. Since the event end.comp-activity is replaced

in a way very similar to the event begin .comp-activity, we omit its description

here.

FOREACH Statement. Assume that a composite activity comp-activity

consists of the statement foreaeh arg suchthat condit do stat-1ist end_ for.

If comp-acthity occurs in the then-do clause of the rule (rest-of-rule) then-do

comp-activity then this rule is replaced with:

(rest-of-rule)

if condit

then-do stat-list

Similar transformations are applicable to then-dent-do and then-cancel

clauses.

If comp-activity occurs in the while clause of the rule while (comp-activity)

(rest-of-rule), then the rule is replaced with the rule

while stat-list

if condit

<rest-of-rule)

where condit contains the variable that does not occur anywhere else in the

rule except the stat-list. For example, if comp-activity is foreach x suchthat

S(X) do B(x,y) end_ for then the rule is replaced with the following rule

(assuming Xr does not occur anywhere else in the rule):

while B(x’,y)
if S(x’)

(rest-of-rule)

If comp-activity occurs as part of the begk.comp-actbdy event of a rule,

then this rule is modified by adding the clause if condit to the rule (where

condit contains the variable that does not occur anywhere else in the rule)

and by replacing begk. comp-activity with begin stat-list (this is the case

because all the instances of activities in the stat-list begin at the same time).

Finally, if comp-activky occurs as part of the end .comp-activity event of a rule,

ACM Transactions on Information Systems,Vol. 13, No 3, July 1995,

Teunplar: AKnowledge-Based Language . 293

then this rule is modified as follows. Intuitively the end of activity comp-activ-
ity occurs when all of the activities in the stat-list are finished. We will

illustrate the replacement strategy for end .comp-activity using the following

example that can easily be extended to the general case. Assume we have a

rule

when end.comp-activity

then-do activity

where comp-acthity is

foreach x suchthat S(x) do B(x) end_ for

Then this rule is replaced with the rules:

when end.B(x)

if s(x)

then s’(x)

if S==jt

then-do activity

then not S’(x)

The first rule adds tuples to the new predicate S’. As time passes and

activities for different values of x finish, the size of S’ grows. The second

“rule” checks whether S’ becomes equal to S. It is a pseudorule since its

syntax is not supported by Templar (we represented it this way for clarity);

but it can be easily replaced by an equivalent valid Templar rule. If S’

becomes equal to S, this means that all activities B(x) have finished for the

values of x satisfying S(x), and thus the end of CornP-activity occurred.

We considered all the composite statements in activity specifications by

now and, therefore, completed the process of recursive replacements of com-

posite activities with its subactivities. This process can be continued recur-

sively until only atomic activities are left in the rules of the program.

Example 4.2.1.2. Consider the rule from Example 3.1.1:

when end.send(paper, chairperson, reviewer)

if referees (paper, reviewer)

then Iocated(paper,reviewer)

then-do review(paper,reviewer); send (paper, reviewer, chairperson)

where activity review, as defined in Example 3.2.1, is

activity review(paper,reviewer)

read (paper, reviewer)

evaluate(paper, reviewer)

end _ activit y

and activity send is

activity send (what ,from,to)
T = transfer_ time(what,from,to)

not Iocated(what,from) IItransfer (what,to) for_time T

end_ activity

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995.

294 . Alexander Tuzhilin

As a first step in the conversion process, we replace the sequential composi-

tion of activities in the then-do clause of the rule. As a result, we obtain the

following rules:

when

if

then

then-do

then

when

if

then-do

then

end.send(paper, chairperson, reviewer)

referees (paper, reviewer)

Iocated(paper,reviewer)

review(paper, reviewer)

flagl (paper, chairperson, reviewer)

end.review(paper, reviewer)

flagl (paper, chairperson, reviewer)

send (paper, reviewer, chairperson)

not flagl (paper, chairperson, reviewer)

(RI)

(R2)

After that, we break the composite activity review into its subactivities.

Rule (RI) produces the following two rules:

when end.send(paper, chairperson, reviewer)

if referees (paper, reviewer)

then Iocated(paper,reviewer)

then-do read (paper, reviewer)

then flagl (paper, chairperson, reviewer) and

flag2(paper,chairperson, reviewer)

when end.read(paper, reviewer)

if flag2(paper,chai rperson,reviewer)

then-do evaluate (paper, reviewer)

then not flag2(paper,chairperson, reviewer)

(Rll)

(R12)

Since end-review coincides with end.evaluate, rule (R2) is converted to rule

(R3):

when end.evaluate(paper, reviewer)

if flagl (paper, chairperson, reviewer)

then-do send(paper,reviewer, chairperson)

then not flagl (paper, chairperson, reviewer)

(R3)

Finally, we have to eliminate activity send from rules (Rll) and (R3).

According to our conversion rules, end.send(paper, chairperson, reviewer)
equals rmm{end(not Iocated(paper,chai rperson)), end (transfer(paper, reviewer)

for_time transfer_ time(paper,chairperson, reviewer))}.
If we assume that sending papers in the mail never happens instanta-

neously, i.e., transfer_ time(paper,chairperson, reviewer) is never equal to O,

then

end,send (paper, chairperson, reviewer) = end(transfer(paper, reviewer)

for_time transfer_ time(paper,chairperson, reviewer))

ACM Transactions on Information Systems, Vol. 13, No 3, July 1995

Templar: AKnowledge-Based Language . 295

Making this substitution, we obtain the following final set of rules out of

rules (Rl 1), (R12), and (R3) (in the process, we also split rule (R3) into two

rules because send in (R3) consists of two parallel activities):

when end. (transfer(paper, reviewer) for_time

transfer_ time(paper,chairperson, reviewer))

if referees (paper, reviewer)

then Iocated(paper,reviewer) and flagl (paper, chairperson, reviewer)

and flag2(paper,chairperson, reviewer)

then-do read (paper, reviewer)

when end.read(paper, reviewer)

if flag2(paper,chairperson, reviewer)

then-do evaluate(paper, reviewer)

then not flag2(paper,chairperson, reviewer)

when end. evaluate(paper, reviewer)

if flagl (paper, chairperson, reviewer)

then not Iocated(paper,chairperson) and

not flagl (paper, chairperson, reviewer)

when end.evaluate(paper, reviewer)

if flagl (paper, chairperson, reviewer)

then transfer(paper, reviewer) for_time

transfer_ time(paper,chairperson, reviewer) and

not flagl (paper, chairperson, reviewer)

4.2.2 Semantics of the Intermediate Specifications. In the previous section

we replaced composite activities with atomic activities. Since an atomic

activity is defined with a temporal predicate, in the next step we replace

atomic activities with such predicates.

We describe the conversion process clause-by-clause. Atomic activities in

the then-do clause are replaced with the corresponding temporal predicates

(since an atomic activity is defined in terms of a temporal predicate), and the

then-do clause is replaced with the then clause. If an atomic activity

appears in the then-dent-do clause then this clause is replaced with the

cIause then not temp-pred icate, where tern p-predicate is the temporal predi-

cate defining that atomic activity. Furthermore, if an atomic activity appears

in the then-cancel clause then this clause is replaced with the clause then

not-prec temp-predicate, where temp-predicate is defined as for the then-

dent-do case, and not-prec is a negation operator that has a special

meaning to be defined below in this section.

Activities can also appear in while, before, and after clauses. The only

changes in these clauses result from the replacement of atomic activities with

the corresponding temporal predicates. Finally, activities can appear as parts

of events specifying beginnings and ends of activities. In these cases, atomic

activities are aIso replaced by the corresponding temporal predicates.

ACM Transactions on Information Systems, Vol. 13, No 3, July 1995

296 . Alexander Tuzhilin

As a result of this change, the then-do, then-dent-do, and then-cancel

clauses are replaced by the then clause. Furthermore, the while, before,

and after clauses are integrated into the if clause so that while, before, and

after become corresponding temporal operators (since they refer now only to

temporal predicates). Therefore, the Templar clauses are reduced now to if,

then, and when clauses. Furthermore, these clauses contain only temporal

predicates and events specifying when temporal predicates change over time.

Such a system was studied by Tuzhilin [1991], where its semantics was

defined in terms of the temporal recognize-act cycle.

However unlike the system described by Tuzhilin [1991], we consider two

different types of the not operator in this article: regular not and not-prec.

The semantics of not is that a predicate and its negation cannot contradict at

the same moment of time (if they do, then the specification is invalid). The

semantics of not-prec is that if p and not-prec p are true at the same time

then not-prec p has precedence over p, and therefore p is canceled. This

semantics is motivated by the fact that not-prec is obtained by converting

activities in the then-cancel clause of Templar into temporal predicates

preceded by the not-prec operator. Since cancellation assumes that activities

in progress are terminated, so for the same reason we assume that negation

has precedence for the corresponding predicates.

This completes the description of the Templar semantics. In the next

section we describe two case studies that show how Templar can be used in

real-world applications.

5. CASE STUDIES

To demonstrate suitability of Templar for the specification of real-world

problems, we have undertaken two case studies. The first case describes the

data transfer component of the TCP communication protocol [Stallings et al.

1988] that is responsible for sending pieces of data (segments) between

sending and receiving nodes. The main body of the data transfer component

of the protocol deals with ensuring that segments are delivered error free, in

sequence, and with no loss and duplication. This component has a rich

temporal semantics since messages are sent and received between communi-

cation nodes over periods of time; timers are set on and oP, nodes wait for

messages; and so on.

Since one of the objectives of this case study was to demonstrate user-frien-

dliness of Templar, we took the English description of the TCP protocol, as
described by Stallings et al., and went through it paragraph-by-paragraph

creating Templar rules out of the English text. The Templar specification of

the data transfer component of the TC!P protocol consists of 11 rules, 5

activities, 5 predicates, 4 decisions, and 3 external events. Because of the

space limitation, we cannot present this case study in the article, and the

interested reader is referred to Tuzhilin [1993]. Our experience was quite

positive: most of the Templar rules followed fairly closely the corresponding

English sentences. For example, the English statement “if the receiving node

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995,

Templar: AKnowledge-Based Language . 297

receives a duplicate segment before the connection is closed, it must acknowl-

edge the duplicate” can be stated in Templar as

when end.send(segment, TCP_sender,TCP_ receiver)

before connection _closed(TCP_sender, TCP_receiver)

if duplicate(segment, TCP_receiver)

then-do send _acknowledgment(seg ment,TCP _ receiver, TCP_sender)

where send (segment, TCP_sender,TCP _ receiver) is the activity of sending a

segment from a sending to a receiving TCP node; send_ acknowledgment is

the activity of acknowledging of the receipt of the segment; duplicate(seg-
ment,TCP _ receiver) is a predicate specifying that segment is a duplicate for

TCP _ receiver; and connection _closed is an external event indicating that

the connection between TCP_sender and TCP _ receiver is closed.

The second case describes a portion of the Intelligent Adversary (IA)

system developed by a company specializing in military simulations. The IA

system simulates behavior of adversary pilots in combat situations so that

the US Navy pilots can be trained for air battles using a computerized

training system (this pilot training system can be thought of as a very

sophisticated version of a flight simulator video game, where the IA subsys-

tem simulates the behavior of the “bad guys”). The IA system is implemented

in 0PS5, and it took two man-years to develop it.

In this case study, we implemented in Templar a module of the IA system

that selects an appropriate radar mode and then designates the target. The

specification is based on extensive discussions with the IA Project Leader

who acquired the knowledge of the system as a result of many hours of

discussions with the US Navy pilots regarding their air combat tactics. The

specification of the module contains 27 Templar rules, 13 activities, 21

predicates, and 5 external events.

6. VALIDATING TEMPLAR SPECIFICATIONS

As Figure 1 indicates, analysis and validation are crucial to the development

of correct requirements specifications. As part of the development process, the

systems analyst (SA) converts informal natural language specifications pro-

vided by the end-user during the interviewing process into formal Templar

specifications, validates them using validation tools, and then shows inconsis-

tencies and omissions in the specifications to the end-user so that the

end-user can correct them.

Templar specifications can have two types of mistakes. The first type of

mistake is made by the end-user. For example, the end-user might say that if

activity A finishes, then start activity B; but he or she might forget to tell

what happens when activity B finishes. The second type of mistake is made

by the SA, e.g., forgetting to declare predicates, or accidentally switching

arguments in predicates or activities. For example, in one rule, the SA can

say send (paper, chairperson, reviewer) and in another send (chairperson, re-
viewer, paper). In this article, we will study only the mistakes made by the

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995.

298 . Alexander Tuzhilin

end-user because one of the major objectives in writing Templar specifica-

tions is to elicit knowledge from the end-user and validate it (as shown in

Figure 1).

Among the mistakes the end-user can make, the most important are

inconsistencies (contradictions) and incompleteness of specifications since

they make specifications invalid. Contradictions in specifications seldomly

arise because the end-user makes wrong statements (it is assumed that the

end-user has a considerable experience and knows the application well). For

example, in the IA project, the navy pilots practically never made statements

that were plain wrong (personal communication, D. Bodoff, Dec. 1992). Most

of the contradictions happen because the end-user fails to provide additional

specification details, and this leads to inconsistencies. For example, by far the

most common mistake the US Navy pilots made describing their combat

activities occurred when they made statements of the form “if A then B,” “if C

then D,” such that B and D could contradict each other; in this case, the pilots

failed to specify what happened when A and C! occurred simultaneously

which lead to a contradiction. This kind of inconsistency occurred because the

specification was incomplete. For this reason, we concentrate on the issue of

incompleteness of specifications in this section.

According to Dubois et al. [1991] and Myer [1985], a specification is

incomplete if it omits relevant facts about the real-world system. Since only

the user knows what facts are relevant and what are irrelevant, it is

impossible for the system developer to determine formally if a Templar (or

any other) specification captures all the relevant facts the user has in mind.

Therefore, Templar specifications (or any other specifications) cannot be

formally proven to be complete in general.

However, in certain cases, it maybe possible to determine if a specification

is incomplete by detecting certain types of omissions made by the user. In

this section, we describe some types of omissions and present methods for

their detection. These omissions can be divided into the following three

categories.
The first category consists of certain omissions. For example, the end-user

can say that if activity A finishes, then start activity B but does not mention

activity B anywhere else in the rules. This means that we do not know what

happens when activity B finishes, and that the end-user certainly omitted

this fact. In this case, the validation system must state such an omission to

the end-user in no uncertain terms.

The second category consists of most-likely omissions. For example, a

specification can have a rule if A then-do B saying that activity B is

triggered by condition A. Although it is quite possible to have a situation like

this, we can expect that activities are most likely triggered by beginnings and

endings of other activities. Therefore, it is likely that the user omitted

something in this rule (e.g., when clause), and the validation system should

issue a warning message to the user.

The third category consists of hard-to-tell type of omissions. For example, if

a rule triggers an activity, and no other rule says what happens while the

activity lasts, then there is some chance that the end-user made an omission.

ACM Transactions on Information Systems,Vol. 13, No. 3, July 1995,

Templar: AKnowledge-Based Language . 299

However, if a validation system starts issuing a warning message in each

such case, then the user will receive too many false warning messages

because in many cases nothing should happen while an activity lasts. In case

of such an omission, no warning messages should be issued by the validation

system; instead, the SA should consider such an omission as a methodologi-

cal guideline. This means that the SA has to keep such type of omission in

mind and use his or her own judgment when to ask the end-user questions

during the interviewing process if the SA suspects such type of an omission.

All three types of omissions can be either temporal or nontemporal. For

example, a temporal omission occurs if the end-user does not specify what

happens while an activity lasts. Since Templar deals mostly with specifica-

tions of systems evolving in time, we will concentrate on temporal omissions

in this section.

We compiled a list of temporal omissions as a result of interviewing the

Project Leader of the Intelligent Adversary project that was described in

Section 5. As part of developing the Intelligent Adversary system, he con-

ducted extensive interviews of U.S. Navy pilots in order to understand their

patterns of behavior and reactions in combat situations. As a result of

discussions with the Project Leader, we compiled the list of important omis-

sions that these pilots make typically in their attempts to describe their

behavior. As it follows from the description of these omissions, they are

typical for a wide range of systems with a rich temporal component and not

limited just to this specific system. We describe each type of temporal

omission now.

Contradictions in Rules. The user can say “if A then B“ and “if C then D.”

If B and D contradict each other then it should be specified what happens

when A and C! occur simultaneously. This was, by far, the most common type

of omission in pilot descriptions (personal communication, D. Bodoff, Dec.

1992). It comes in two “flavors’’—temporal and nontemporal. We consider the

more general type of a temporal omission and treat the nontemporal type as a

special case of the temporal omission.

To detect the temporal omission of this type, we proceed as follows. First,

we map Templar specifications into the intermediate representation as de-

scribed in Section 4.2. For each Templar rule, keep track of all the intermedi-

ate subrules into which the Templar rule is decomposed as a result of this

mapping. The intermediate rules produced in Section 4.2 have the structure

BODY - HEAD, where HEAD is a conjunction of temporal literals (a tempo-

ral literal is a predicate preceded optionally by negation and by one of the

unary future temporal operators (such as “sometimes-in-the-future,” etc.). To

detect whether or not two Templar rules have a conflict, consider pairs of the

intermediate rules obtained from these Templar rules during the conversion

process. Then check if there is a pair of intermediate rules, such that one has

predicate Q in its head and another predicate 1 Q in its head. After that, we
have to check whether or not the bodies of the rules can conflict. The checking

procedure for this type of conflict is described by Tuzhilin [1991]. If any of the

intermediate rules can conflict this means that the corresponding Templar

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995.

300 . Alexander Tuzhilin

rules can also conflict. In this case, the system issues a warning message to

the user specifying that the corresponding Templar rules can conflict.

Interaction between a Rule and Activities It Fires. If a rule initiates some

actions or makes some temporal predicates true, and these actions or predi-

cates do not invalidate preconditions of the rule, then it is not clear if the rule

has to be fired again while these activities last or predicates hold. In

particular, the user may say “when A then-do B,” and it may turn out that

“when A while B“ can be true. If this is the case, then ask the user if he or

she really wants the rule to be fired again. For example, consider one of

Templar rules describing pilot combat activities: “when an enemy fires a

missile at a plane then-do beam that plane,” where beam is a pilot jargon

meaning that the plane has to be turned away so that it disappears from the

enemy’s radar screen in order to evade the missile (and keep doing so for, say,

10 seconds). However, it is not clear what happens when the enemy fires the

second missile while the plane is beaming, i.e., it is not clear what to do when

the condition “when an enemy fires a missile at a plane while the plane is

beaming” holds. The most disastrous solution is to fire the rule the second

time (and probably get hit by the first missile). However, it is also not clear if

the rule should not be fired at all. The most appropriate solution in this

situation is to detect this type of temporal omission and ask the pilot what to

do (and maybe replace this rule with some other rule(s)). This was another

very common type of temporal omission that pilots made (personal communi-

cation, D. Bodoff, Dec. 1992).

To detect this type of omission in the rule presented above, it should be

tested whether or not the precondition “ when A while B“ of the Templar rule

is satisfiable. Satisflability problem for the general case of an arbitrary

predicate temporal logic formula is undecidable [Harel 1985]. Even in the
“best-case” scenario, the satisfiability problem is NP-complete and thus

intractable.

This means that we have to use heuristics to detect sufficient conditions for

the unsatisfiability of the precondition of a Templar rule. One such heuristics

can work as follows. We can convert the part of precondition (containing only

IF, WHILE, BEFORE, and AFTER clauses) to the temporal formula as is

done in Section 4.2. The resulting expression is an IF clause with some

temporal logic formula in it. Then convert this formula further to the conjunc-

tive normal form, and test if any of the conjuncts is tautologically false.

Clearly, this is a sufficient (but not necessary) test for unsatisfiability. If it
turns out that none of the sufficient tests for unsatisfiability is passed, then

the end-user must be warned about a potential problem by the system. The

system should issue a warning message, and the end-user should be asked

what happens in case “when A while B“ is true.

Unspecified Terminations of Activities. If there is a statement “when A

then-do B,” and no rule says what to do when B is finished, then this means

that the specification is incomplete, and the “omission” message should be

issued.

ACM Transactions on Information Systems, Vol 13, No 3, July 1995

Templar: AKnowledge-Based Language . 301

However, there is a caveat to this problem. For example, consider a rule

“when A then-do B“ and assume that activity B consists of subactivities C 1

followed by C2. Also, assume that the specification has the rule” when end.C!2

then-do D“ but does not contain any references to B among the preconditions

of any rule. In this case the end of activity B is recognized implicitly by the

end of its last subactivity C2. This example motivates the following strategy.

For each activity A appearing in the then-do part of a rule, consider its

last subactivity in the specification of this activity (or consider the set of last

subactivities if some of the subactivities occur in parallel). Starting with this

subactivity, build the set of activities recursively by considering last subactiv-

ities in the activities added to this set. Then issue the “omission” message if

none of the activities in this set appears in any of the preconditions of any of

the rules. For example, if neither B nor C2 appears in the precondition of any

of the rules of the specification in the previous example, then issue the

“omission” message.

Failure to Specify What Happens While an Activity Lasts. One of the

common types of temporal omissions comes from the failure to ask what

happens while an activity lasts. For instance, in the “beaming” example the

SA can ask the pilot what happens while the beam operation is performed.

It may turn out that nothing significant happens while an activity lasts.

For this reason we feel that this condition should not be checked by the

system. However, the SA should keep this condition in mind during the

interviewing process as a methodological guideline.3

Dual Temporal Operators. If a rule contains a before clause, and there is

no rule with the same preconditions but with an after instead of the before

clause, then the check for this omission might be in order. For example, the

user may say” when A before B then-do C“ but does not specify what happens

in case “when A after B.” However, automation of this type of a check may

produce many false alarms, and we believe that it is better to provide this

check as a methodological guideline for the SA.

Only IF-Clause in Precondition. If a rule has only the IF clause as its

precondition, and the postcondition triggers some activity or activities, then it
is quite possible that the user failed to specify some events or activities in the

precondition. The reason for this is that in many applications new activities

start when old activities finish or when external events occur. Both of these

situations require events or activities in preconditions and, therefore, other

types of clauses. However, this is not a certain type of omission because the

SA could use predicates for the encoding purposes (following the 0PS5 style

of programming and thus convoluting the logic of a specification in many

cases). Nevertheless, a warning message should be issued to the SA. In case

the SA uses OPS5 “mentality” in writing Templar specifications, the purpose

of the warning message is to reprimand him or her for that.

3As a personal experience, the author detected a few omissions of this type (by asking “what

happens while a certain activity lasts”) during the process of interviewing the IA Project Leader.

ACM Transactions on Information Systems, Vol. 13, No, 3, July 1995.

302 . Alexander Tuzhllm

In summary, we provided a list of temporal omissions that can happen in

writing Templar specifications and described methods to check some of them,

while listing others as methodological guidelines.

7. CONCLUSIONS

We defined the syntax and the semantics of the software specification lan-

guage Templar. The language is based on the Activity-Event-Condition-Activ-

ity (AECA) model that supports rules, temporal logic, and such modeling

primitives as events, conditions, and activities. Furthermore, Templar sup-

ports procedures, hierarchical decomposition of activities, and parallelism.

Templar satisfies the language design requirements stated in the introduc-

tion for the following reasons. First, Templar specifications are end-user- and

specifier-friendly because Templar supports a powerful set of features that

are integrated into one system. For this reason, it took only 11 rules, 5

activities, and 5 predicates to develop a sizable part of the TCP communica-

tions protocol discussed in Section 5. Furthermore, as our experience with the

case studies demonstrates, well-formulated Templar rules are naturally ex-

pressed with English sentences that are meaningful to the end-user. Because

of its end-user- and specifier-friendliness, the language facilitates closer

interaction and greater feedback between the systems analyst and the end-

user. In particular, the systems analyst can show Templar specifications to

sophisticated end-users (such as communications engineers in the TCP case)

or explain them with fewer problems to unsophisticated end-users in order to

get their feedback.

Second, Templar requirements specifications can be translated into a broad

range of design specifications for the following reason. The data model of

Templar is based on predicates, and Templar predicates can be mapped into

appropriate modeling constructs of most of the data models. Furthermore,

activities and events are also two fundamental components of any model

dealing with time and therefore should be either directly supported or easily

simulated in a design specification language that supports time. This means

that it should be easier to map Templar specifications into a broad range of

design specification languages supporting time than to map requirements

specifications written in a highly specialized language into the same range of

design specification languages. This independence from the design specifica-

tions allows the software developers to not have to be concerned about

appropriateness of different data and process modeling paradigms for an
application in the requirements specification stage. The decision which mod-

eling paradigm to choose can be postponed until the design stage and can be

based on the specifications produced in the requirements stage.

Third, Templar has a formally defined syntax and semantics. Therefore,

Templar specifications can be mapped into design specifications so that it

may even be possible to verify formally that the design specifications satisfy

the requirements specifications. Furthermore, formal semantics allows vali-

dation tools to be used in order to validate specifications written in Templar.

ACM TransactIons on Information Systems, Vol. 13, No 3, July 1995

Templar: A Knowledge-Based Language . 303

Since Templar satisfies the properties described above, and since these

properties are desirable in a software requirements specification language,

Templar will primarily be used as a requirements specification language.

However, Templar can also be used as a design specification language

because it has formal semantics and because it supports the process of

decomposition of activities into subactivities.

ACKNOWLEDGMENTS

The author wishes to thank Vasant Dhar, Matthias Jarke, Jon Turner, Bruce

Weber, P. R. Balasubramanian, and anonymous reviewers for valuable com-

ments on the earlier drafts of the article and David Bodoff for extensive

discussions of some of the issues presented in this article.

REFERENCES

ALLEN, J. F. 1984. Towards a general theory of action and time. Artif. Intell. 23, 123-154.

BORGIDA, A., GREENSPAN, S., AND MYLOPOULOS, J. 1985. Knowledge representation as the basis

for requirements specifications. IEEE Comput. 18, 4 (Apr.), 82-91.

BORGIDA, A., MYLOPOULOS, J., AND SCHMIDT, J. W. 1993. The TaxisDL software description

language. In Database Application Engineering with DAIDA. Springer-Verlag, Berlin.

CASANOVA, M. A. AND FURTADO, A. L. 1984. On the description of database transition con-

straints using temporal languages. In Aduarzces in Database Theory. Vol. 2. Plenum Press,

New York, 211-236.

COSTA, M. C., CUNNINGHAM, R. J., AND BOOTH, J. 1990. Logical animation. In Proceedings of

the 12th Znternationcd Conference on Soflware Engineering (Nice, France). IEEE Computer

Society Press, Los Alamitos, Calif., 144-149.

DAVIS, A. M. 1990. Software Requirements: Analysis and Specification. Prentice-Hall, Engle-

wood Cliffs, N.J.

DE MAINDREWLLE, C. AND SIMON, E. 1988. Modelling non deterministic queries and updates in

deductive databases. In Proceedings of the International Conference on Very Large Databases.

VLDB Endowment, 395-406.

DUBOIS, E., HAGELSTEIN, J., AND RXFAUT, A. 1991. A formal language for the requirements

engineering of computer systems. In From Natural Language Processing to Logic for Expert

Systems, A. Thayse, Ed. John Wiley and Sons, New York.

FLADEIRO, J. AND SERNADAS, A. 1986. The INFOLOG linear tense propositional logic of events

and transactions. Inf. Syst. 11, 61–85.

GARBAY, D., HODKINSON, I., AND HUNTER, A. 1991. Using the temporal logic RDL for design

specifications. In Concurrency: Theory, Language, and Architecture. Lecture Notes in Com-

puter Science, vol. 491. Springer-Verlag, New York, 64-78.

GEORGEFF, M. P. AND LANSKY, A. L. 1986. Procedural knowledge. Proc. IEEE 74, 10,

1383-1398.

GHEZZI, C., MANDRIOLI, D., AND MORZENTI, A. 1990. TRIO: A logic language for executable

specifications of real-time systems. J. Syst. Softw. 12, 107–123.

GOLDSACK, S. J. AND FINKELSTEIN, A. C. W. 1991. Requirements engineering for real-time

systems. IEE Softw. Eng. J. 6, 3.

GREENSPAN, S. J. 1984. Requirements modeling A knowledge representation approach to

software requirements definition. Ph.D. thesis, Dept. of Computer Science, Univ. of Toronto,

Toronto, Ontario.

HAREL, D. 1985. Recurring dominoes: Making the highly undecidable highly understandable.

Ann. Discr. Math. 24, 51-71.

HAREL, D. 1988. On visual formalism Corrmum. ACM 31, 5, 514–530.

HAREL, D. 1992. Biting the silver bullet: Toward a brighter future for system development.

IEEE Comput. 25, 1, 8-20.

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995.

304 . Alexander Tuzhilin

HULSMANN, K. AND SAAKE, G. 1991. Theoretical foundations ofhandling large substitution sets

intemporal integrity monitonng. Acta ZnformatLca 28, 4.

JEREMAES, P., KHosLA, S., AND MAIBAUM, T. S.E. 1986. Amodal(action) logic for requirements

specifications. In Software Engineering ’86, P. J. Brown and D. J. Barnes, Eds. Peter Peregri-

nus, 278–294.

KOYMANS, R. 1990. Specifying real-time properties with metric temporal logic. J. Real-Time

Syst. 2.

KROGER, F. 1987. Temporal Logic of Programs. EATCS Monographs on Theoretical Computer

Science, vol. 8. Springer-Verlag, New York.

LIPECK, U. W. AND SAAKE, G. 1987. Monitoring dynamic integrity constraints based on tempo-

ral logic. Znf. Syst. 12, 3, 255–269.

LOUCOPOULOS, P., MCBRIEN, P., PERSSON, U., SCHUMACHER, F., AND VASEY, P. 1990. TEMPORA

—Integrating database technology, rule based systems and temporal reasoning for effective

software. In Esprit ’90 Conference Proceedings. Kluwer Academic, Dordrecht, Holland.

MANNA, Z. AND PNUELI, A. 1992. The Temporal Logic of Reactive and Concurrent Systems.

Springer-Verlag, New York.

MCBRIEN, P., NIEZETTE, M., PANTAZIS, D., SELTVEIT, A. H., SUNDIN, U., THEODOULIDM, B.,

TZIALLAS, G., AND WOHED, R. 1991. A rule language to capture and model business policy

specifications. In Proceedings of the 3rd Conference on Advanced Information Systems Engi-

neering (Trondheim, Norway, May).

MCCARTHY, D. AND DAYAL, U. 1989. The architecture of an active, object-oriented database

system. In Proceedings of the ACM SIGMOD International Conference on Management of

Data. ACM, New York.
MEYER,B. 1985. On formalism in specification. IEEE Softw. (Jan.), 6-26.

MYLOPOULOS, J., BORGIDA, A., JARKE, M., AND KOUBARMUS, M. 1990. Telos: Representing

knowledge about information systems. ACM Trans. Inf. Syst. 8, 4, 325-362.

NICOLAS, J.-M. 1982. Logic for improving integrity checking in relational data bases. Acts

Informatica 18, 227-253.

OLLE, T. W. 1982. Comparative review of information systems design methodologies, Stage 1:

Taking stock. In Information Systems Design Methodologies: A Comparative Review, T. W.

One, H. G. Sol, and A. A. Verrijn-Stuart, Eds. North-Holland, Amsterdam, 1–14.

PRIOR, A. 1967. Past, Present, and Future. Clarendon Press, Oxford.

SMITH, D. R., KOTIK, G. B., AND WESTFOLD, S. J. 1985. Research on knowledge-based software

environments at Kestrel institute. IEEE Trans. Softw. Eng. SE-11, 11.

SPIVEY, J. M. 1988. Understanding Z. Cambridge Tracts in Theoretical Computer Science, vol.

3. Cambridge University Press, Cambridge, U.K.

STALLINGS, W., MOCHAPETRIS, P., MCLEOD, S., AND MICHEL, T. 1988. Handbook of Computer-

Communzcatzons Standards. Vol. 3. Macmillan, New York.

STONEBRAKER, M., JHINGRAN. A., GOH, J., AND POTAMMNOS, S. 1990. On rules, procedures,

cashing and views in database systems. In Proceedings of the ACM SIGMOD International

Conference on Management of Data (Atlantic City, N.J., May). ACM, New York, 281-290.

TSICHRITZIS, D, C. AND LOCHOVSKY, F. H. 1982. Data Models. Prentice-Hall, Englewood Cliffs,

N.J.

TUZHILIN, A. 1991. Temporally active databases .= Active databases + Time. Working Paper

1S-91-43, Stern School of Business, New York, Univ., New York.

TUZHILIN, A. 1992. SimTL: A simulation language based on temporal logic. Trans. Sot. Com-

put. Simul. 9, 2, 87–100.

TUZHILIN, A. 1993. Templar: A knowledge-based language for software specifications using

temporal logic. Working Paper IS-93-33, Stern School of Business, New York Univ., New York.

ULLW, J. 1988. Principles of Database and Knowledge-Base Systems. Vol. 1. Computer

Science Press, Rockville, Md.

WIDOM, J. AND FINKELSTEIN, S. J. 1990. Set-oriented production rules in relational database

systems. In Proceedings of the ACM SIGMOD International Conference on Management of

Data (Atlantic City, N.J., May). ACM, New York, 259–270.

Received October 1991; revised August 1993; accepted June 1994

ACM Transactions on Information Systems, Vol. 13, No. 3, July 1995

