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Abstract

We consider a single-period assortment planning and inventory management problem for a
retailer, using a locational choice model to represent consumer demand. We first determine
the optimal variety, product location, and inventory decisions under static substitution, and
show that the optimal assortment consists of products equally spaced out such that there is no
substitution among them regardless of the distribution of consumer preferences. The optimal
solution can be such that some customers prefer not to buy any product in the assortment, and
such that the most popular product is not offered.

We then obtain bounds on profit when customers dynamically substitute, using the static
substitution for the lower bound, and a retailer-controlled substitution for the upper bound.
We thus define two heuristics to solve the problem under dynamic substitution, and numerically
evaluate their performance. This analysis shows the value of modeling dynamic substitution and
identifies conditions in which the static substitution solution serves as a good approximation.
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1 Introduction

The multinomial logit (MNL) model has been commonly used by researchers in recent years to

represent consumer choice behavior for planning assortments in a product category. Thus, our

understanding of the tradeoffs involved in assortment decisions is largely based on this model. In

contrast, Lancaster (1966, 1975), extending the work of Hotelling (1929), proposed a locational

model of consumer choice behavior. In this model, products are perceived as bundles of attributes,

and each product is defined by its location in an attribute space. Individual preferences are defined

by associating a point in the attribute space with each consumer. Thus, preferences are defined on

attributes rather than on the products themselves as in the MNL model. Each consumer chooses

the product that is located closest to him in the attribute space and substitutes to other products

in increasing order of their distances from him.

In this paper we study the optimal product assortment and inventory decisions of a retailer under

a locational choice model, and contrast the operational insights thus obtained with those available

from previous research using mainly the MNL model. The decisions include the number of products

to offer, their locations in the attribute space and their inventory levels. These decisions encompass

both product selection and product design. Thus, the decision-maker can be a manufacturer, or a

retailer choosing from a potentially infinite set of available products. We take the perspective of a

retailer throughout this paper. For simplicity, we consider a single-period problem of maximization

of expected profit.

Lancaster developed his model for deterministic demand and uniform density of consumers

in the attribute space. We use a generalized locational choice model with stochastic demand and

nonuniform distribution of consumers in the attribute space. Like Lancaster, we consider horizontal

product differentiation, i.e., prices and quality levels are equal across all products in the category.

This assumption fits several product categories, such as yogurt with different amounts of fat-content,

shirts of different colors, etc.

Our paper exploits many key differences between the locational choice model and the MNL

model. First, substitution between products in our model is localized to products with specifica-

tions that are close to each other on the attribute space1 so that a retailer can control the rates of
1We further note that, due to localized substitution, our model does not impose the assumption of independence

from irrelevant alternatives or IIA, which is often presented as the main drawback of the MNL model; see Anderson

et al. (1992: p.23).
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substitution between products by suitably selecting their locations to be far apart or close to each

other. In contrast, substitution in the MNL model can always happen between any two products.

Second, the locational model enables us to independently specify the degree of heterogeneity of

the consumer population and the degree of substitutability between products. A heterogeneous

population is spread out on the entire attribute space, whereas a homogeneous population is con-

centrated in a small subset of the attribute space. Likewise, the degree of substitutability of a

product category can be measured by the maximum distance between the most preferred good of

a customer and a product that gives him positive utility. Thus, the locational model provides us

more parameters to control than the MNL model in understanding assortment decisions. We show

that these differences have significant implications on the optimal assortment.

We consider both static and dynamic substitution. Under static substitution, a consumer

chooses a first choice product (if any) by looking at the assortment but without observing inventory

levels, and does not make a second choice if the first choice is unavailable. We obtain the optimal

assortment under static substitution and analyze its properties. Under dynamic substitution, the

consumer observes inventory levels when he arrives in the store and then chooses a product (if any)

among the available ones. We derive lower and upper bounds on the optimal expected profit under

dynamic substitution and propose two heuristics based on these bounds. In a numerical study

using 3150 problem instances over a range of parameter values, we find that the average optimality

gaps of the heuristics are 1.44% and 1.24%. The optimality gap of each heuristic decreases as

mean demand increases, as consumer preferences become more homogeneous, as the profit margin

increases, and as the degree of substitutability of products increases.

Our paper yields the following main insights.

• Under static substitution, products in the optimal assortment are spaced out such that there

is no substitution between them regardless of the volume of demand or the distribution of

customer preferences on the attribute space.

• The retailer provides higher variety under dynamic substitution than under static substitu-

tion, and locates products closer to each other on the attribute space so that consumers can

derive positive utility from more than one product and the retailer is able to benefit from

substitution. The number of products that give positive utility to a consumer varies with the

location of that consumer on the attribute space, being generally higher in regions of greater

consumer density. These differences between the static and dynamic substitution models are
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significant because they show that the dynamic substitution model better fits real life obser-

vations. No comparable insights into the dynamic substitution problem are available under

the MNL model.

• The optimal assortment need not include the most popular product, i.e., the product that

would yield the highest expected demand if it were the only product carried in the assortment.

This result occurs when stocking the most popular product creates a fragmentation of demand

such that the economies of scale enjoyed by the most popular product are insufficient to

overcome the diseconomies of scale suffered by the remaining products in the assortment. This

property contrasts with results obtained with the MNL model by van Ryzin and Mahajan

(1999).

• Dynamic substitution has the greatest impact on the profits of the retailer for low demand

items with high customer heterogeneity and high degree of substitutability. Conversely, the

static substitution solution serves as a good approximation for the dynamic substitution

problem when consumers are more homogeneous in preferences, or when they are willing to

substitute in a narrow region around their most preferred goods, or when the coefficient of

variation of demand is low.

• The retailer may choose not to cover the entire market, i.e., leave some segments of the

attribute space uncovered by any product. While an analogous result was obtained under

the MNL model as well (van Ryzin and Mahajan 1999), we find that this result in our model

is driven by fixed costs associated with including a product in the assortment. Thus, in our

model, it is optimal to cover the entire market when fixed costs are zero.

The rest of this paper is organized as follows: §2 reviews the relevant literature; §3 presents our

model; §4 and §5 analyze the model under static substition and dynamic substitution, respectively;

finally, §6 concludes with a discussion of the weaknesses of our model and directions for future

research. All proofs are provided in the Appendix unless otherwise stated.

2 Literature Review

Research on assortment planning and inventory management has advanced rapidly in the recent

years, particularly on modeling substitution between products using individual-level consumer
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choice theory from the marketing literature. We first summarize the literature on assortment

planning and inventory management under the MNL model (McFadden 1974, Guadagni and Little

1983) and its generalizations. We then relate our paper to the existing research based on locational

choice models (Hotelling 1929, Lancaster 1966).

van Ryzin and Mahajan (1999) were the first to study assortment planning and inventory

decisions under the MNL model for the case of static substitution with exogenous prices. They

determine many properties of the optimal solution, the main being that the optimal assortment

consists of the most popular products from the finite set of potential products to offer. Aydin and

Ryan (2000) apply the MNL model to study the joint assortment planning and pricing problem

under static substitution. They find that the optimal solution is such that all products have

equal margins (i.e., the difference between price and cost). Cachon et al. (2005) generalize the

consumer choice process to incorporate search costs. They show that ignoring consumer search in

demand estimation can result in an assortment with less variety and significantly lower expected

profits compared to the optimal solution. They further show that search costs can induce a retailer

to carry an unprofitable product in its assortment to reduce consumer search. Chong, Ho and

Tang (2001) consider brand-level assortment decisions using a nested MNL model including brand-

width measures associated with each brand in a product category. They use a local improvement

heuristic based on pairwise interchanges of product variants to modify the assortment and achieve

a substantial increase in profit. Rajaram (2001) applies an assortment planning model to a catalog

retailer to determine optimal inventory levels under static substitution.

The assortment planning and inventory management problem under dynamic substitution is far

more complex than that under static substitution. Smith and Agrawal (2000) consider this problem

using a general customer demand model described by first choice probabilities and a substitution

matrix. They present a solution approach by showing that static substitution yields bounds on the

demand for each product under dynamic substitution. Mahajan and van Ryzin (2001) consider this

problem for a choice model requiring only a preference relation defined over all possible products and

satisfying the axioms of completeness, reflexivity and transitivity (see Anderson et al. 1992:p.17).

They develop a sample path gradient algorithm to determine the optimal assortment and inventory

levels in order to maximize expected profits. Kok and Fisher (2004) consider this problem in the

context of a supermarket chain. They show how to estimate assortment based substitution in an

MNL model by leveraging data from stores with varying assortments. They present an algorithm
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to solve the assortment planning and inventory problem with one-level stock-out based substitution

in the presence of shelf-space constraints.

While the above papers deal with designing algorithms for assortment planning, relatively little

is known about the impact of dynamic substitution on the optimal solution. In this context,

Rajaram and Tang (2001) consider the problem of determining optimal inventory levels under

dynamic substitution for a fixed assortment of substitutable products. They show that increase in

degree of substitution significantly increases expected profits, and thus designing products to be

substitutable has a large impact on profitability.

In contrast to the above literature, we use a locational model of consumer choice to determine

demand. In the seminal work on such models, Hotelling (1929) studied competition on price and

location between two firms in a linear city. Lancaster (1966, 1975) translated the locational model

to the context of product differentiation and studied optimal variety from a welfare perspective.

Lancaster (1979) analyzes different market structures under this model, such as monopolistic com-

petition and multi-product monopoly. For a monopoly, Lancaster shows that the firm covers the

entire market and offers products spaced equally from each other under the assumptions of deter-

ministic demand with uniform customer preferences and economies of scale in the cost function of

each product.

de Groote (1994) and Alptekinoglu (2004) integrate product differentiation and inventory costs

in the context of locational choice models with deterministic demand and uniform customer prefer-

ences. de Groote considers a monopoly firm and analyzes the coordination between the marketing

decision of product line breadth and the operations decision of production flexibility. Similar to

Lancaster, de Groote shows that the firm chooses an optimal number of products such that the

market is covered and product locations are equal spaced. Further, optimal variety increases with

demand, length of the market and unit travel costs, and decreases with changeover costs and in-

ventory holding costs. Alptekinoglu analyzes competitive positioning and pricing for two firms, one

offering infinite variety through mass customization and the other offering a finite set of different

products. He shows the counterintuitive result that the mass producer needs to reduce variety to

soften price competition with the mass customizer firm.

Ansari et al. (1994, 1998) study positioning and pricing of products for one-product firms

competing at the marketplace. They use two and three-dimensional generalizations of Hotelling’s

model with non-uniform consumer preferences modeled by uni-modal, bi-modal and generalized

5



beta distributions, and show that the equilibrium product positions can be asymmetric. They

too assume deterministic demand, and focus on the demand perspective rather than inventory

management or dynamic substitution.

Chen et al. (1998) study optimal product positioning and pricing, extending Lancaster’s model

to incorporate varying prices and quality levels in the attribute space, as well as varying reservation

prices of customers. They show that the optimal solution for this model under stochastic demand

and static substitution can be constructed using dynamic programming by utilizing a ‘cross-point

property’ to determine the demands for individual products. The cross-point property differs from

the property of equally spaced product locations in that the cross-points may not be equally spaced.

Our paper contributes to the research literature in several ways. It generalizes locational choice

models by considering stochastic demand, nonuniform consumer preferences, and inventory costs.

It shows that the property of equally spaced product locations is obtained under this generalization

when substitution is static but not when substitution is dynamic. It reports many new structural

properties of the optimal assortment that contrast with those obtained using the MNL model in

previous research. For further research on empirical and analytical models on consumer choice, we

refer the reader to Anderson et al. (1992), Ho and Tang (1998) and Lancaster (1990).

3 Model Formulation

We consider a retailer serving a market with heterogeneous consumers over a single time period.

The retailer seeks to determine the optimal number of products to stock in a given product category,

their design characteristics and inventory levels in order to maximize expected profit. The products

in the category are horizontally differentiated, i.e., they differ by characteristics that do not affect

quality or price, for example, shirts of different colors or yogurt with different amounts of fat-

content. Since products have homogeneous quality, we assume that they are sold at identical

exogenous prices and have identical costs. Let r be the revenue per unit, c the procurement cost

per unit, and K the fixed cost associated with ordering and stocking a product. Excess demand at

the end of the period is lost and excess inventory is salvaged at value v per unit. We assume that

r > c > v. Demand is generated by an individual-level locational consumer choice model based

on Hotelling (1929) and Lancaster (1966, 1975, 1979) as described below. The limitations of the

choice model are discussed in §6.
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Locational Demand Model

The following terminology and assumptions are identical to those of Lancaster (1966, 1975, 1979).

Products are perceived as bundles of characteristics and individual preferences are defined on these

characteristics rather than on the products themselves. We assume that each characteristic, or

attribute, is quantifiable. We define the preference spectrum or the attribute space to be the space

of all possible combinations of levels of attributes, where each point corresponds to a potential

product location in the category. The preference spectrum is denoted as L, and is considered to be

the real line, i.e., one attribute is sufficient to discriminate between the products.

Let the assortment carried by the retailer be represented by a vector of product specifications

b = (b1, ..., bn) where n ≡ length(b) is the number of products in the assortment, and bj ∈ L

denotes the location of product j on the preference spectrum. We assume that every product

specification desired by the retailer is offered by the manufacturer. We say that b is a valid vector

of product specifications if

bj > bj−1 for j = 2, ..., n.

Since we seek to optimize the assortment with respect to n and b, we define Bn as the set of valid

vectors b of size n. Also let B =
⋃∞

n=1 Bn.

Each consumer is characterized by the specification of his most preferred good in the preference

spectrum, defined as the good that represents the optimal transfer of characteristics to him. A

consumer i with most preferred good xi ∈ L associates a utility Uij with a product j in the

assortment as given by:

Uij = Z − r − g(|xi − bj |).

Here, Z is a positive constant representing the surplus associated with the product category, r

denotes the price of the product, and g : R+ → R+ is a strictly increasing function representing

the disutility associated with the distance between the consumer’s most preferred good and the

product’s specification. Without loss of generality, we assume that the utility of not buying anything

in the store is equal to zero for every consumer, i.e., Ui0 = 0. The consumer selects the product

that maximizes his utility, provided that it is nonnegative, otherwise he does not make a choice.

We define the coverage distance of any product with specification b as the maximum distance

between the product’s specification and the most preferred good of a consumer for whom this

product gives a nonnegative utility. The coverage distance is identical for all products and denoted
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as L. We have

L = max
i
{|xi − b| : Z − r − g(|xi − b|) ≥ 0} (1)

Thus, we define the coverage interval of product j as the interval [bj − L, bj + L]. This interval

contains the most preferred goods of all customers who obtain a nonnegative utility from product

j.

Product j is said to be the first choice of a given consumer if it gives a nonnegative utility to

that consumer and its distance from the most preferred good of that consumer is the minimum

among all products in the assortment. Thus, the first choice interval of product j in assortment

b is defined as the subinterval of L that contains the most preferred goods of all consumers who

choose product j as a first choice. The first choice interval is denoted as [b−j , b+
j ], and is given by

b−j = max
{

bj − L,
bj+bj−1

2

}
,

b+
j = min

{
bj + L,

bj+bj+1

2

} (2)

for j = 1, . . . , n and with the convention that b0 = −∞ and bn+1 = +∞. Further, let lj = b+
j − b−j

denote the length of the first choice interval of product j.

We note that while there can be overlap between the coverage intervals of products, there is no

overlap between the first choice intervals. We also note that L measures the degree of substitutability

of the product category for any given assortment. A small value of L implies that consumers are

willing to substitute in only a small region around their most preferred goods, while a large value of

L implies that consumers are more tolerant of differences between products and their most preferred

goods.

Additional Assumptions

We make the following additional assumptions to extend Lancaster’s model to stochastic demand

and random distribution of consumers on the preference spectrum. We assume that the specifica-

tions of the most preferred goods of all consumers are independent and identically distributed with

continuous probability distribution F and density function f on the finite support [0, 1] ⊂ L. The

first choice probability of product j, denoted pj , is defined as:

pj =
∫ b+j

b−j

f(x)dx = F (b+
j )− F (b−j ). (3)

Let p denote the vector of first choice probabilities. We refer to [0, 1] as the market and
∑n

j=1 pj

as the market coverage of the retailer.
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We assume that f is either the uniform density function or unimodal. f is said to be unimodal

if the mode x∗ ≡ arg max{f(x) : x ∈ [0, 1]} exists and is unique, and f(x) is non-decreasing for

all x < x∗ and non-increasing otherwise. This assumption enables us to obtain insights into the

effect of heterogeneity of consumer preferences on the structure of the optimal solution. It is also

practically useful since it fits the demand distributions for many product categories.

If f is unimodal, this implies that there exists a unique most popular product on the spectrum,

and the more distant a product is from the most popular product, the less popular it is. We define

the most popular product as the product with specification x such that F (x + L) − F (x − L) is

maximized. This corresponds to the product with that would have the highest expected demand if

it was the only product carried in the assortment. Note that the specification of the most popular

product may not be equal to x∗.

Finally we assume that customers arrive to the store over a finite period of time according to a

Poisson process with rate λ. Let N denote the total number of customers visiting the retailer, and

Nj denote the number of customers who choose product j as their first choice. N is Poisson with

rate λ and Nj is Poisson with rate λpj .

4 Static Substitution

Under static substitution, customers do not substitute if the store has run out of inventory of their

first choice product by the time of their arrival. Therefore, the demand for product j, denoted

Dj , is simply the number of customers that pick product j as their first choice, that is Nj , and is

independent of inventory levels.

The retailer’s decision problem is to determine the number of products in the assortment, n,

the vector of product specifications, b, and the vector of order quantities, q = (q1, ..., qn), in order

to maximize the total expected profit. Let πs(pj , qj) denote the profit under static substitution for

product j. The expected profit under static substitution for product j is written as:

Eπs(pj , qj) = rE [min{qj , Dj(pj)}]− cqj + vE[qj −Dj(pj)]+, (4)

and the total expected profit is given by

EΠs(b,q) =
n∑

j=1

Eπs(pj(b), qj)− nK.

Given b, this problem is separable into n subproblems, one for each product. Let Eπs(pj) =
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maxqj Eπs(pj , qj) denote the expected profit for product j as a function of pj when qj is chosen

optimally. Let EΠs(b) =
∑

j Eπs(pj) be the corresponding total expected profit.

In this section we use the Normal approximation for the Poisson distribution to represent the

demand for each product, i.e., we assume that the demand for product j is normally distributed

with mean λpj and standard deviation
√

λpj . The advantage of the normal distribution is that it

gives a closed form expression for Eπs(pj) (see Porteus (2002: p.13) or Zipkin (2000: p.216)):

Eπs(pj) = (r − c)pjλ− (r − v)
√

pjλφ(z) (5)

where z = Φ−1 (θ) is the service level, θ = r−c
r−v is the critical fractile, and φ(·) and Φ(·), respec-

tively, denote the density function and the cumulative distribution function of the standard normal

distribution.

Any product j is profitable if its first choice probability is such that Eπs(pj) > K. Let

p = max {p : Eπs(p) ≤ K} . (6)

The value of p gives the minimum first choice probability at which a product is profitable. It is

to be noted that under the normal approximation, Eπs(p) is negative for p close to zero. Thus, p

is strictly positive under this approximation even if K = 0. Also let p denote the maximum first

choice probability for any product. We have

p = max
x∈[0,1]

{F (x + L)− F (x− L)} . (7)

We assume that p ≥ p. Otherwise, the problem has a trivial solution wherein it is optimal not to

stock any item.

The following lemma is useful in the sequel.

Lemma 1. Eπs(p) is a convex increasing function of p for all p ≥ p.

Proof. Omitted.

In other words, the retailer can benefit from economies of scale in each product because her

expected profit increases more than proportionately with mean demand. We note that if demand

is represented by a Poisson distribution then the resulting expression for Eπs(p) is not convex in p

since the inventory levels are drawn from a discrete set. Thus, the normal approximation is useful

because it convexifies the expected profit function. Further, we evaluate expected profit in our
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numerical analysis using both the Poisson distribution and the normal approximation and find the

normal approximation to be quite accurate.2

The optimization problem under static substitution is thus formulated as follows:

Ps : max
b∈B

n=length(b)≥0

EΠs(b) =
n∑

j=1

[
(r − c)pjλ− (r − v)

√
pjλφ(z)

]
− nK

s.t.


pj = F (b+

j )− F (b−j ) j = 1, . . . , n

b−j = max
{

bj − L,
bj+bj−1

2

}
j = 1, . . . , n

b+
j = min

{
bj + L,

bj+bj+1

2

}
j = 1, . . . , n

4.1 Structure of the optimal policy

Problem Ps is difficult to solve since the objective function as well as the first constraint are non-

linear. If we attempt to maximize the objective function with respect to p and then compute the

corresponding value of b, then the objective function becomes separable across products, but the

vector p need not correspond to any feasible value of b. On the other hand, if we optimize directly

with respect to b, then the expected profit is not separable into the sum of the expected profit

functions for each product as a function of their specification. Instead, changing the specification,

bj , for any one product j affects not only pj , but possibly also pj−1 and pj+1.

We simplify problem Ps by establishing a set of properties that the optimal assortment(s) should

satisfy. Thus, we are able to reduce the problem into the maximization of expected profit with

respect to one variable over a bounded region.

Let

α = min
{
x ∈ L : F (x + L)− F (x− L) ≥ p

}
,

β = max
{
x ∈ L : F (x + L)− F (x− L) ≥ p

}
.

(8)

When F (·) is uniform or unimodal, [α, β] defines the line segment where it is profitable to locate a

product. It follows that the interval [max(0, α− L),min(1, β + L)] gives the part of the preference

spectrum containing the most preferred goods of all customers that can be served profitably. We

call this interval as the profitable region. Note that it is possible to have α < 0 or β > 1, i.e., there

can be products that are outside the [0, 1] finite support of the preference spectrum in the retailer’s

profitable region.

We find that the optimal solution satisfies the following properties.
2The results of §4 hold not only for normal distribution but also for any other distribution of demand such that

Eπs(p) is a convex increasing function of p. We use the normal distribution for numerical analysis.
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Proposition 1. If b is an optimal solution to Ps, then

(i) bj ∈ [α, β] for j = 1, . . . , n.

(ii) b+
j = b−j+1 for j = 1, . . . , n− 1.

(iii) If x∗ is uniquely defined, then b−1 ≤ x∗ ≤ b+
n .

(iv) b1 < α + 2L and bn > β − 2L.

(v) b+
j − b−j = 2L for j = 1, . . . , n.

Property (i) follows directly from the definitions of α and β. Property (ii) states that the first

choice intervals of all the products must be adjacent so that the portion of the preference spectrum

that is served by the retailer constitutes a compact interval. By property (iii), this interval must

contain the mode of the distribution if F is unimodal. By property (iv), the first product should be

distant from α by strictly less than 2L, since otherwise the expected profit of the assortment is less

than or equal to that of a similar assortment that contains one additional product placed at b1−2L.

Similarly, the last product should be distant from β by strictly less than 2L. Finally, property (v)

states that products should have first choice intervals of length equal to 2L. Thus, products are

spaced exactly by 2L, their coverage intervals do not overlap, and each customer receives positive

utility from at most one product.

Property (v) is the surprising result of Proposition 1 because it shows that the lengths of the

first choice intervals of products are independent of the distribution of consumer preferences on the

preference spectrum. The property of equally spaced product specifications has been obtained pre-

viously by Lancaster (1979) and de Groote (1994) for deterministic demand with uniform customer

preferences. Proposition 1 shows that this property extends to the case when demand is random,

customer preferences have a non-uniform density and prices are exogenous.

Using Proposition 1, with a slight abuse of notation, we define the interval containing b1 as

[α, min(α + 2L, β)). Now, if we fix b1 in this interval, Proposition 1 determines the values of

b2, . . . , bn as functions of b1: bj = b1 + 2L(j − 1) for j = 2, . . . , n. Further, the optimal number of

products in the assortment, n, is given by the following corollary.

Corollary 1. Given b1, the optimal number of products in the assortment is n(b1) =
⌊

β−b1
2L

⌋
+ 1.

Further, when b1 is chosen optimally, the optimal number of products takes one of two values,⌊
β−α
2L

⌋
or

⌊
β−α
2L

⌋
+1.
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Proof. Omitted.

Thus, we have reduced Ps into a maximization problem Ps
l in one variable, b1, over a bounded

region:

Ps
l : max

b1∈[α,min(α+2L,β))
EΠs(b) =

n(b1)∑
j=1

[
(r − c)pjλ− (r − v)

√
pjλφ(z)

]
− nK

s.t.



pj = F (b+
j )− F (b−j ) for j = 1, . . . , n(b1)

b−j = b1 − L + 2L(j − 1) for j = 1, . . . , n(b1)

b+
j = b1 − L + 2Lj for j = 1, . . . , n(b1)

n(b1) =
⌊

β−b1
2L

⌋
+ 1

The optimal solution to Ps can now be obtained by solving Ps
l numerically by doing a line search

in the range [α, min(α+2L, β)). This range is subdivided into two subintervals
[
α, α + h

(
β−α
2L

)
2L

]
and

[
h

(
β−α
2L

)
2L, β

]
where h(·) denotes the fractional part of any real number, the difference being

that the number of products induced by b1 in the first interval is one more than in the second

interval. We note that the objective function of Ps
l may admit more than one local maximum over

each subinterval. Figure 1 illustrates this with an example. Thus, even though the assortment

problem has been considerably simplified, we require a line search in both subintervals to obtain

the optimal solution. In the special case when the distribution of preferences is symmetric around

0.5, it is sufficient to search for the maximum in one-half of each of the two subintervals.

When preferences are distributed according to a uniform distribution on [0, 1], then it can

further be shown that b1 = L is optimal. The optimal values of n and b2, . . . , bn are then obtained

from Proposition 1 and Corollary 1.

4.2 Numerical examples

We identify the tradeoffs incorporated in the optimal assortment using a numerical example. The

distribution of consumer preferences is represented by a Beta distribution with parameters γ1 and

γ2 on [0, 1].3 We let γ1 = γ2 = γ so that the distribution is symmetric around its mode 0.5.

The values of γ measure the degree of heterogeneity of the consumer population.4 The larger
3The density function for a Beta distribution with parameters γ1 and γ2 is 1

B(γ1,γ2)
xγ1−1(1 − x)γ2−1 where

B(γ1, γ2) =
∫ 1

0
xγ1−1(1− x)γ2−1dx.

4More generally, the variance of the Beta distribution, γ1γ2
(γ1+γ2)2(γ1+γ2+1)

, can be used to measure the degree of

heterogeneity of the consumer population. When γ1 = γ2, this formula reduces to 1
4(2γ+1)

. Therefore, for symmetric

Beta distributions, we use γ to measure the degree of heterogeneity of the consumer population. All our results also
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b = (0.4, 0.6) b = (0.3, 0.5, 0.7)

γ = 5 p = (0.401, 0.401) p = (0.247, 0.467, 0.247)

(EΠj) = (89.64, 89.64) (EΠj) = (53.38, 105.22, 53.38)

Total expected profit = 139.28 Total expected profit = 151.98

γ = 10 p = (0.467, 0.467) p = (0.1845, 0.6278, 0.1845)

(EΠj) = (105.35, 105.35) (EΠj) = (38.90, 143.62, 38.90)

Total expected profit = 170.71 Total expected profit = 161.42

Table 1: Results for Example 1, Case 3

the value of γ, the more concentrated the distribution of consumer preferences is around 0.5, and

thus, the more homogeneous the consumer population is. We use different values of K, L and γ to

illustrate the tradeoffs represented in the optimal assortment. Recall that L measures the degree

of substitutability of the product category.

Example 1. Suppose λ = 50, r = 10, c = 5 and v = 3.

Case 1: Let K = 50, L = 0.1 and γ = 2. We find that the minimum profitable first choice

probability p is 0.23 which gives α = 0.27 and β = 0.73. Thus, the profitable region, given by

[max(0, α − L),min(1, β + L)], is equal to [0.17, 0.83] and corresponds to 84.6% of the market.

The optimal assortment consists of two products with specifications b = (0.4, 0.6), first choice

probabilities p = (0.284, 0.284), and market coverage 56.8%. The maximum expected profit is

24.07.

Case 2: Let K = 0, L = 0.2 and γ = 2. The profitable region is [0, 1] and optimal assortments are

(0.21, 0.61, 1.01) and by symmetry its mirror image (−0.01, 0.39, 0.79) for a total market coverage

of 99.98%.

Case 3: Let K = 20 and L = 0.1. Consider the solutions for γ = 5 and γ = 10 as shown in Table

1. The optimal assortment is b = (0.3, 0.5, 0.7) for γ = 5, and b = (0.4, 0.6) for γ = 10. The table

compares the expected profits from these assortments under both values of γ.

All cases illustrate property (v) in Proposition 1, i.e., the products offered in the optimal

assortment are separated by 2L regardless of the scale of demand or the distribution of consumers

on the preference spectrum. It does not happen that the retailer provides more variety in parts

of the spectrum with higher density of consumers than the other parts. The 2L separation also

apply to the case when γ1 6= γ2.

14



implies that the coverage intervals of products do not overlap. It follows that consumers get a

positive utility from at most one product in the assortment.

Case 1 further illustrates that even though the distribution of preferences has finite support, it

may not be profitable to satisfy all customers; the profitable region covers only 84.6% of the market

in Case 1. This result in our model comes strictly from positive fixed costs. When fixed costs

are zero, it is possible to capture the entire market by stocking a finite number of products whose

demands are independent of one another. In general, the size of the profitable region [max(0, α −

L),min(1, β + L)] is a decreasing function of K and γ, and an increasing function of L and λ.

The optimal assortment in Case 1 covers only 56.8% of the market, indicating that the retailer

chooses not to satisfy all the profitable customers in the market. This outcome is due to the tradeoff

of market coverage with fixed costs and economies of scale in the demand for each product offered.

If the retailer were to add a new product to increase market coverage while respecting the spacing

of product specifications by 2L, the retailer would have to change the locations of existing products

(in order that all product specifications are in the range [α, β]). This would result in a different

allocation of demand that would potentially reduce economies of scale. This effect, along with the

increase in fixed cost would then cause a drop in expected profit.

The size distribution of clothing in apparel stores illustrates the above results in Case 1. Many

retailers do not stock clothing articles in very large or very small sizes because there is not enough

demand in a fringe size to justify the fixed cost of offering that size. Thus, the preferences of

customers at the two extremes of the size distribution may not be covered by a retailer. We note

that the MNL model also yields the result that the optimal assortment does not cover the entire

market (van Ryzin and Mahajan 1999). However, the MNL model uses a different substitution

structure, and this result in the MNL model comes from economies of scale regardless of fixed

costs because adding a product always decreases the demand for each preexisting product in the

assortment.

Case 2 shows that when K = 0 the optimal market coverage is virtually 100%.5 It also illustrates

the fact that even though the Beta distribution is symmetric around 0.5, the optimal assortment

is not necessarily symmetric around 0.5. The symmetric assortment of three products is given by

[0.1, 0.5, 0.9], and yields lower expected profit than the optimal assortment [0.21, 0.61, 1.01]. The

intuition for this result is as follows. The symmetric assortment has a higher fraction of demand
5The reason why the market coverage is not exactly equal to 100% is that the Normal approximation of demand

forces p > 0 when K = 0. However, p is very close to zero so that α ≈ −L and β ≈ 1 + L.
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served by the second and third products, but a lower fraction of demand served by the first product.

Thus, the higher economies of scale for the second and third products in the symmetric assortment

are more than offset by the diseconomies of scale for the first product, so that the optimal assortment

is not symmetric around 0.5. The optimality of an asymmetric assortment also implies it is not

possible to simplify the optimization problem by restricting the set of possible product locations

to a (discrete) subset of [0, 1]. Finally, the optimal assortment in Case 2 contains a product that

is located outside the interval [0, 1]. This is so because locating the product in the interval [0, 1]

would reduce the demand for its neighboring product, thus imposing a higher inventory cost on the

retailer.

Case 3 shows that it can be optimal not to stock the most popular product possible, i.e., the

product with specification bj such that F (bj + L) − F (bj − L) is maximized. This product has

specification b = 0.5 in this example. We find that for γ = 5, the assortment [0.4, 0.6] is optimal,

while for γ = 10, the assortment [0.3, 0.5, 0.7] is optimal. Stocking the most popular product is not

optimal for γ = 5 because it fragments the demand for the remaining products in the assortment

in such a way that the economies of scale enjoyed by the most popular product are insufficient to

overcome the diseconomies of scale suffered by the remaining products.6 This finding is consistent

with the decision of some food retailers to stock flavors of ice cream containing vanilla (such as

vanilla chocolate chips, vanilla with cookies or cherry vanilla) but not to stock the plain vanilla

flavor, which is often the most popular. Another example is that of blueberry muffins. Retailers

sometimes choose not to stock this most popular flavor or to carry less inventory of this flavor

because its absence might result in a more profitable split of demand among other types of muffins.

Under the MNL model, the most popular product is always included in the optimal assortment.

We note that some of the above insights change when we consider dynamic substitution. In

particular, it may be optimal to allow overlap between products by spacing them by less than 2L. It

may also be optimal to provide different levels of variety in different parts of the market depending

on the distribution of customers. Further, the products in the optimal assortment will always be

located on the interval [0, 1]. We discuss these results in §5.
6As suggested by a referee, stocking the most popular product is optimal in our model if preferences are mono-

tonically increasing or decreasing over [0,1]. The most popular product is located at b = L for decreasing preferences

and at b = 1− L for increasing preferences.
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5 Dynamic Substitution

Under dynamic substitution, a customer chooses the product that gives him the highest positive

utility among those that are available in stock at the time when he visits the store. If all available

products give him a negative utility, then he leaves the store empty-handed. It follows that the

customer may not be able to buy his first choice product, i.e., the product in the original assortment

that is the closest to his most preferred good. Instead, all products located within a distance L of

the customer’s most preferred good are possible purchases.

Under dynamic substitution, the total demand for any product j from customers who by first

choice or substitution want to buy product j cannot be expressed analytically. The demand function

depends on the stocking quantities of all products as well as the sequence of arrivals of customers and

requires some accounting assumptions (for example, whether or not to double-count a substitution

purchase as a demand for the first choice and the final choice). To circumvent this problem, we

define Sj as a random variable denoting the sales of product j. Thus, the expected profit under

dynamic substitution for a given assortment b and inventory vector q can be written as:

Pd : max
b∈B
q≥0

n=length(b)≥0

EΠd(b,q) =
n∑

j=1

rE[Sj(b,q)]− cqj + vE[qj − Sj(b,q)]− nK

=
n∑

j=1

(r − v)E[Sj(b,q)] + (c− v)qj − nK.

The value of E[Sj(b,q)] also cannot be written in closed form and is difficult to estimate since

it requires simulating various possible sequences of customer arrivals. However, we define a lower

bound and an upper bound on E[Sj(b,q)] for given q and b. Since EΠd(b,q) is an increasing

function of total expected sales,
∑S

j=1 E[Sj(q,b)], we thus obtain bounds on EΠd(b,q). These

bounds are presented in §5.1 and §5.2. In §5.3, we compare the bounds, use them to obtain two

heuristics for solving Pd, and conduct numerical analysis to derive insights into the structure of the

optimal solution.

5.1 Lower bound on profit

Let ω denote a sample path of customer arrivals, that is, a realization of the sequence X(ω) =

{x1, ..., xN} where xi is the most preferred good of the ith arriving consumer and N is the total

number of customers visiting the store during the period. Also let Nj be the number of customers

whose first choice is product j.
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To construct a lower bound, we restrict the consumers to purchase only their first choice prod-

ucts, if available. This yields the static substitution problem of §4. Note that if customers are not

permitted to substitute in the event of a stockout of their first choice product, it will result in fewer

sales, more inventory to salvage, and a loss of r − v on each unsold unit. Therefore, we obtain a

lower bound on the sales as well as the profit under dynamic substitution for all values of b and q

and for every sample path of customer arrivals.

Proposition 2. Πs(b,q, ω) ≤ Πd(b,q, ω) for all ω,b,q where

Πs(b,q, ω) =
n∑

j=1

{
r min{qj , Nj} − cqj + v[qj −Nj ]+ − nK

}
5.2 Upper bound on profit

Consider the relaxation of the dynamic substitution problem wherein the retailer first observes

the locations of the most preferred goods of all arriving customers X(ω) = {x1, ..., xN}, and then

allocates inventory to all customers in order to maximize profit. Thus, the retailer may assign to a

customer a product that is not his first choice but gives him positive utility. This relaxed problem

gives an upper bound on Πd(b,q, ω). Let Pu denote the relaxed problem, and Πu(b,q, ω) denote

the profit under the relaxed problem given b,q and sequence X of customer arrivals.

Problem Pu merits comparison with demand substitution models studied previously in the

literature. Lippman and McCardle (1997), Netessine and Rudi (2003), and Bassok, Anupindi and

Akella (1999) consider models wherein the retailer observes the entire demand before allocating any

inventory. Therefore the customers do not directly choose a product. Rather, they are assigned a

product either according to exogenous rules or by a decision of the retailer. Agrawal et al. (2002)

use similar assumptions to analyze dynamic pricing of capacity. The paper of Bassok, Anupindi and

Akella is closely related to our paper since they consider a setting where the allocation of inventory

is mediated by the retailer. While they consider a downward substitution rule, we consider a

neighborhood substitution rule implied by the locational model of consumer choice. Further, in our

model, the choice of b enables the retailer to control the rate of substitution. For these reasons, we

call problem Pu as the retailer-controlled substitution model. In contrast to the above-referenced

papers, Smith and Agrawal (2000), Mahajan and van Ryzin (2001) and Kok and Fisher (2004)

consider dynamic substitution where the incidence of substitution depends on the sample path of

customer arrivals.
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We first show how to obtain the optimal allocation of inventory to the customers who visit the

store for a given sample path ω and given vectors b and q. For this, we partition customers based

on the number and indices of products that give them a positive utility. We say that a customer

is of type (l, i) if there are l products located within distance L of his most preferred good and i is

the product with the lowest index among these. Thus, l measures the customer’s level of flexibility

with l = 1 denoting the inflexible customers and l = n denoting the perfectly flexible customers. A

customer of type (l, i) can only be served using inventory of products i, i + 1, ..., i + l − 1.

Let η(l,i) denote the number of customers of type (l, i) in a given sequence X and let xj,(l,i) be

the amount of inventory of product j allocated to customers of type (l, i). Given η,b and q, the

problem to find the optimal allocation can be formulated as

Πu(b,q, ω) = max r

n∑
j=1

n∑
l=1

n−l+1∑
i=1

xj,(l,i) − c

n∑
j=1

qj + v

n∑
j=1

[
qj −

n∑
l=1

n−l+1∑
i=1

xj,(l,i)

]
− nK (9)

such that

n∑
j=1

xj,(l,i) ≤ η(l,i) for l = 1, . . . , n; i = 1, . . . , n− l + 1 (10)

n∑
l=1

n−l+1∑
i=1

xj,(l,i) ≤ qj for j = 1, . . . , n (11)

xj,(l,i) ≥ 0 for j = 1, . . . , n; l = 1, . . . , n; i = 1, . . . , n− l + 1 (12)

xj,(l,i) = 0 forj < i or j > i + l − 1. (13)

Here, the objective function is equivalent to maximizing the sum of allocations∑n
j=1

∑n
l=1

∑n−l+1
i=1 xj,(l,i). Therefore, this problem is equivalent to a restricted transportation

problem. We find that the problem admits a greedy optimal solution as proved by the following

lemma.

Lemma 2. An optimal allocation policy can be obtained using the following algorithm:

Algorithm

For (j = 1 : n; l = 1 : (n− j + 1); k = 0 : (j − 1)) do

xj,(l+k,j−k) = min
{
η(l+k,j−k), qj

}
;

η(l+k,j−k) = η(l+k,j−k) − xj,(l+k,j−k);

qj = qj − xj,(l+k,j−k);

Endfor.
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Here, j indexes products and l and k correspond to levels of customer flexibility. The intuition

is that products should be allocated to customers in increasing order of index j and for a given

value of j, in increasing levels of remaining flexibility. We define remaining flexibility as the number

of products not yet allocated that can satisfy the customers. For example, customers of type (3, 1)

have a remaining flexibility of 2 after product 1 has been allocated, then of 1 after product 2 has

also been allocated. Thus, customers of type (3, 1) will be served from the inventory of product 3

before customers of type (2, 3) even though the latter are more flexible a priori. This is because

after allocating products 1 and 2, customers of type (3, 1) can be served only by product 3, while

customers of type (2, 3) can be served from the inventory of product 4 as well. In the algorithm, l

indexes remaining flexibility for a given j, and k indexes all customer types with a given amount

of remaining flexibility.

Lemma 2 enables us to obtain the following upper bound on the dynamic substitution problem.

Proposition 3. Πu(b,q, ω) ≥ Πd(b,q, ω) for all b,q, ω where

Πu(b,q, ω) = r

n∑
l=1

n−l+1∑
i=1

n∑
j=1

x∗j,(l,i) − c

n∑
j=1

qj + v

n∑
j=1

[
qj −

n∑
l=1

n−l+1∑
i=1

x∗j,(l,i)

]
− nK,

and x∗j,(l,i) are the optimal allocations given by Lemma 2.

Proof. Omitted.

Taking the expectation of Πu(b,q, ω), the optimization problem Pu is formulated as:

Pu : max {EΠu(b,q) : b ∈ B,q ≥ 0, n = length(b) ≥ 0} .

For a given assortment b, the maximization of EΠu(b,q, ω) with respect to q can now be rep-

resented by a two-stage stochastic linear program where the choice of the inventory vector is the

first stage and the allocation of inventory to customers is the second stage. The variables η(l,i) are

stochastic with probability distributions determined by b. We have the following theorem.

Theorem 1. EΠu(b,q) is concave in q.

Thus, the first order conditions with respect to q are both necessary and sufficient to obtain

the optimal inventory levels q∗. Since the first order conditions involve convolutions of probability

distributions, Proposition 4 below facilitates the computation of the optimal solution by obtaining

bounds on the optimal values of qj .
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Proposition 4. Let θ = r−c
r−v be the critical fractile. Then,

q∗j ≥ min
{
qj : P [η(1,j) ≤ qj ] ≥ θ

}
j = 1, . . . , n,

q∗j ≤ min

qj : P

η(1,j) +
n∑

l=2

j∑
i=(j−l+1)∧1

η(l,i) ≤ qj

 ≥ θ

 j = 1, . . . , n.

Proof. Omitted.

We now turn to the problem of finding the optimal value of b. We find that this value satisfies

the following properties, to be compared with Proposition 1 in the case of static substitution.

Proposition 5. If b is an optimal solution to Pu, then

(i) bj ∈ [α, β] for j = 1, . . . , n.

(ii) b+
j = b−j+1 for j = 1, . . . , n− 1.

(iii) If x∗ is uniquely defined, then b−1 ≤ x∗ ≤ b+
n .

(iv) b1 < α + 2L and bn > β − 2L.

(v) b1 ≥ L and bn ≤ 1− L.

Properties (i)-(iv) also hold under static substitution (see Proposition 1), while (v) may not.

Property (v) states that the specification as well as the entire coverage interval of each product

should be included within the [0, 1] interval. Note that this result differs from that obtained for

static substitution. Further, note that we do not have an equivalent of Proposition 1(v) for Pu,

i.e., the coverage intervals of products at the optimal solution need not be of length 2L. Properties

(i)-(v) enable us to restrict the set of possible values of b to be considered for finding the optimal

assortment. Thus, the optimal assortment can be obtained by numerical optimization.

5.3 Comparison of the bounds and insights

Let (b∗s,q∗s) denote the optimal solution to Ps, (b∗d,q∗d) denote the optimal solution to Pd,

and (b∗u,q∗u) denote the optimal solution to Pu. The following proposition gives bounds on the

expected profit that a retailer can achieve under dynamic substitution.

Proposition 6. (i) EΠs(b,q) ≤ EΠd(b,q) ≤ EΠu(b,q) for all b,q.

(ii) EΠs(b∗s,q∗s) ≤ EΠd(b∗d,q∗d) ≤ EΠu(b∗u,q∗u).
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Proof. Omitted.

Thus, our analysis yields two heuristics for solving Pd. The first heuristic, denoted H1, consists

in offering the optimal solution for static substitution, (b∗s,q∗s), to customers who substitute

dynamically. The associated expected profit, EΠd(b∗s,q∗s), is identical to EΠs(b∗s,q∗s) because

the optimal assortment under static substitution provides no overlap between the coverage intervals

of products. The optimality gap of this heuristic can be estimated by comparing EΠs(b∗s,q∗s) with

the upper bound EΠu(b∗u,q∗u).

The second heuristic, denoted H2, consists in offering the optimal solution for the retailer-

controlled substitution, (b∗u,q∗u), to customers who substitute dynamically. The expected profit

given by this heuristic is EΠd(b∗u,q∗u), which can again be compared with the upper bound

EΠu(b∗u,q∗u).

We conducted a numerical study to benchmark the performances of the heuristics using 3150

problem instances. In each case, we set r = 10 and v = 3, and use a Beta distribution symmetric

around 0.5 (with parameter γ) to represent the probability distribution of consumers’ most preferred

goods on the attribute space. The remaining parameters are varied as follows:

λ : {20, 50, 100},

γ : {1, . . . , 10},

L : {0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45},

K : {0.1, 1, 5, 10, 20}

c : {4, 5, 6}

To obtain the solutions in each problem instance, we first solve Ps and Pu as described in §4.2

and §5.2, respectively. Since EΠd(b∗u,q∗u) cannot be computed analytically, we then estimated

all three expected profit values, EΠs(b∗s,q∗s), EΠd(b∗u,q∗u) and EΠu(b∗u,q∗u), by simulation

using identical random number streams to facilitate comparison between the expected profits. The

optimality gaps of the two heuristics are computed as

UB −H1
UB

=
EΠu(b∗u,q∗u)− EΠs(b∗s,q∗s)

EΠu(b∗u,q∗u)
,

UB −H2
UB

=
EΠu(b∗u,q∗u)− EΠd(b∗u,q∗u)

EΠu(b∗u,q∗u)
.

Note that the solutions given by H2 allow for dynamic substitution while those from H1 do not

because there is no overlap between the coverage regions of products in H1. Thus, a comparison of

22



these solutions shows the benefit from incorporating dynamic substitution in assortment planning.

We find that the average optimality gaps of the two heuristics are 1.44% and 1.24% across

all problem instances, respectively for H1 and H2. The two heuristics give identical solutions

in 1330 (42.2%) instances, showing that static substitution yields the optimal solution in these

instances. H2 performs better than H1 in 1227 (39.0%) instances, and H1 performs better than

H2 in the remaining 593 (18.8%) instances; these differences are statistically significant at p=0.05.

The instances where H1 performs better than H2 occur when L is small. It is possible that the

solution from H2 in these instances could be improved by reducing the search interval used in

numerical optimization. H2 performs progressively better than H1 as λ and γ decrease or as L

increases. This shows that the impact of dynamic substitution on the profits of the retailer is the

highest for low demand items (λ) with greater customer heterogeneity (γ) and with greater degree

of substitutability (L).

Figures 2 and 3 show the optimality gaps for H1 and H2, respectively, as a function of γ, λ and

L when K is fixed at 0.1 and c at 5. We observe that the optimality gaps of both heuristics decrease

as γ increases, i.e., as the customer population becomes more homogeneous and concentrated in

a smaller region of the preference spectrum. This is so because the need for variety decreases as

the population becomes more homogeneous. In the extreme case, if all consumers had identical

preferences, then a single product would be sufficient to maximize expected profit. The optimality

gaps also decrease as L increases, i.e., as products become more substitutable. The explanation for

this result is similar to that for γ since an increase in L also decreases the need for variety. Also the

optimality gaps decrease as the mean demand λ increases. This is so because the incremental profit

obtained under retailer-controlled substitution or dynamic substitution becomes a progressively

smaller fraction of total sales as λ increases and the coefficient of variation of demand decreases.

Table 2 compares the assortments, inventory levels and expected profits given by H1 and H2

for a few representative problem instances. The columns in the table correspond to different values

of γ and K for three pairs of values of L and λ, namely (0.25, 20), (0.25, 50) and (0.15, 50). The

value of c is fixed at 5.

We observe that the amount of variety offered in H2 is always greater than or equal to the

amount of variety offered in H1. Correspondingly, in H2, products are often located at distances

smaller than 2L. This is so because, by allowing overlap between the coverage intervals of products,

the retailer can allocate to customers a product that is not their first choice product, resulting in
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more sales. This benefit increases with the degree of overlap so that the optimal assortment may be

such that a customer can get positive utility from several products (in Table 2, up to 7 products).

Further, the number of products whose coverage regions overlap varies along the attribute space,

being generally higher in regions of higher customer density. Thus, consumers located in regions of

higher density generally have a greater variety of products to choose from than consumers located

in regions of lower density. This is a significant difference between the solutions obtained from H1

and H2, since it shows that the solution obtained from H2 fits real life observations better than

that obtained from H1. Note that the benefit from overlap comes at the expense of an increase in

fixed cost and possibly a decrease in total market coverage.

Table 2 also shows how the amount of variety changes with the parameters of the problem

instances. We observe that the amount of variety offered by the retailer under both H1 and H2

increases as λ increases, and as K, L or γ decrease. Further, the difference in variety between

dynamic and static substitution increases as λ and L increase or as K and γ decrease. The

difference in expected profit behaves the same way as the difference in variety.

Finally, Table 3 presents a few problem instances illustrating the effect of c on the optimality

gaps of both heuristics and the size of the optimal assortment. We find that the optimality gaps

decline as c decreases, however, the size of the optimal assortment is not monotonic in c for both H1

and H2. First, a decrease in c expands the profitable region, [α, β]. Second, a decrease in c increases

the expected profit of the more popular products proportionately more than other products. Third,

a decrease in c increases the service levels of products, and thus, decreases the expected gain from

substitution between products. While the first effect is a drive towards more variety, the other two

lead to less variety. As a result, we find that the size of the optimal assortment can increase or

decrease in c. The salvage value, v, has the same effect as c.

In §4.2, we contrasted the outcomes under MNL and locational choice models for static sub-

stitution. Under retailer-controlled substitution, the same insights continue to hold. In particular,

the most popular product need not be included in the optimal assortment. Further, the partial

market coverage is driven by fixed costs rather than by the substitution structure as in the MNL

model. In addition, Mahajan and van Ryzin (2001) present a numerical example for the MNL

model showing that the optimal assortment under dynamic substitution is larger than that under

static substitution. This result is consistent with our results for the locational choice model. Un-

fortunately, there are no known results on the effects of mean demand or substitution structure on
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the optimal assortment for the MNL model under dynamic substitution. There is need for future

research on this topic.

6 Conclusions

We have analyzed the optimal assortment planning and inventory decisions for a retailer when its

demand is represented by a locational model of consumer choice. By comparing our results with

those under the MNL model, we have obtained insights into the effects of substitution structure,

degree of heterogeneity of consumers, degree of substitutability of products, and fixed costs on the

optimal solution. When consumers substitute dynamically, our heuristic can be used effectively to

solve the assortment planning and inventory problem. The heuristic is particularly useful when

mean demand is large, and algorithms based on the enumeration of sample paths become more

complex.

The locational choice model is useful to analyze markets when customer preferences are het-

erogeneous or consumers substitute locally. However, this model has some important limitations.

First, the model considers only continuous-valued attributes. The qualitative insights obtained

by us apply more generally to the case when attributes are discrete-valued or where the set of

available products is finite. However, it would be computationally more intensive to obtain the

optimal assortment in this case. Another limitation of the locational choice model is with respect

to the nature of randomness in customer choice. In this model, given the most preferred good of a

consumer, the sequence of product selections that the consumer makes is known precisely. It would

be natural to generalize the model to allow randomness both in the locations of most preferred

goods of consumers and in customers’ sequence of product selections. A third limitation of this

model is that the total demand for an assortment that covers the entire attribute space is the same

regardless of the number of products in the assortment. In contrast, demand always increases with

variety in the MNL model.

Our paper yields some key managerial insights that may apply more generally in spite of the

limitations of the locational choice model. We find that under static substitution, products in the

optimal assortment are equally spaced out at intervals such that there is no substitution between

them regardless of the distribution of customer preferences. In contrast, under dynamic substi-

tution, products are located closer to each other resulting in more variety especially in regions of

higher consumer density, thus allowing the retailer to benefit from substitution. We also find that
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the optimal assortment may not include the most popular product because stocking this product

may fragment the demand for remaining products such that they suffer diseconomies of scale. Even

though in practice, other considerations such as competition and the impact on store loyalty may

force the retailer to stock the most popular product, she may want to offer a relatively low inven-

tory of that product in order to take advantage of substitution. Finally, we find that the static

substitution solution serves as a good approximation for the dynamic substitution problem when

consumers are more homogeneous in preferences, or when they are willing to substitute in a narrow

region around their most preferred goods, or when the coefficient of variation of demand is low. In

other cases, dynamic substitution can have a large impact on profits.

Our paper points to some important directions for future research. First, the locational choice

model may be generalized to incorporate changes in price and quality levels along the attribute

space. Price impacts our model in two ways: it affects the sales revenue, and it affects the coverage

distance L of each product. If prices are allowed to vary across products, then it is possible that

products located in different parts of the market are offered at differing prices even when they are

only horizontally differentiated. Second, while the locational choice model yields results that differ

from the MNL model, it has some similarities with the nested MNL model. Both models imply

a localized substitution structure and do not impose the assumption of independence of irrelevant

alternatives. To our knowledge, the structure of the optimal assortment under the nested MNL

model has not been studied so far. It is possible that its results may be similar to those from the

locational choice model, however, this is a subject for future research.
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Appendix: Proofs

The following definition and lemma are useful for the proof of Proposition 1:

Definition 1. (Marshall and Olkin 1979) A vector x̄ = (x1, ..., xn) is said to majorize the vector

ȳ = (y1, ..., yn), denoted x̄ � ȳ, if

k∑
j=1

x[j] ≥
k∑

j=1

y[j], for k = 1, ..., n− 1, and
n∑

j=1

xj =
n∑

j=1

yj

where x[j] denotes the jth greatest element of vector x.

Lemma 3. (Marshall and Olkin 1979) If f : R → R is a convex function and x̄ � ȳ then∑n
i=1 f(xi) ≥

∑n
i=1 f(yi).

Proof of Proposition 1. In the following proof, b̃ and b̂ denote modifications of the vector

b, p̃ and p̂, respectively denote the corresponding first choice probability vectors, and l̃ and l̂,

respectively denote the corresponding vectors for lengths of coverage intervals.

(i) Follows directly from the definitions of α and β.

(ii) Suppose to the contrary that the optimal value of b is such that b+
j < b−j+1 for some

j. Suppose that the distribution of preferences is unimodal. The proof in the case of uniform

distribution is simpler and, thus, omitted. There are three cases depending on the location of the

mode x∗. In each case, create a new solution b̃ as follows:

• If x∗ ≥ b−j+1, then set b̃i = bi + (b−j+1 − b+
j ) for all i ≤ j, and b̃i = bi for all i ≥ j + 1.

• If x∗ ≤ b+
j , then set b̃i = bi for all i ≤ j, and b̃i = bi − (b−j+1 − b+

j ) for all i ≥ j + 1.

• If b+
j < x∗ < b−j+1, then set b̃i = bi + (x∗ − b+

j ) for all i ≤ j, and b̃i = bi − (b−j+1 − x∗) for all

i ≥ j + 1.

b̃ satisfies the equation b̃+
j = b̃−j+1. Further, the first choice probabilities, p̃, corresponding to b̃

are at least as large as the first choice probabilities, p, corresponding to b because b̃ is obtained
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by shifting the products towards the mode of the distribution. The result follows by contradiction

since, by Lemma 1, expected profit is increasing in pj for all j.

(iii) This proof is similar to that for (ii). If x∗ < b−1 , then setting b̃1 = x∗ + L and b̃j =

bj − (b−1 − x∗) for j = 2, . . . , n increases the first choice probability of each product and, therefore,

by Lemma 1, increases expected profit. Likewise, if x∗ > b+
n .

(iv) If b is such that b1 ≥ α+2L, then add a product with specification b1−2L to the assortment.

From the definition of α, this product yields positive expected profit. Further, it does not affect

the first choice probability of any other product. Thus, total expected profit increases. Likewise, if

bn ≤ β − 2L.

(v) We show the proof for the case of a unimodal distribution. The proof for a uniform distri-

bution is simpler and therefore omitted. Let b− = (b−1 , ..., b−n ) and b+ = (b+
1 , ..., b+

n ) and consider

the following relaxation of problem Ps:

Ps
r : max

(b−,b+)∈B±
EΠs(b−,b+) =

n∑
j=1

[
(r − c)pjλ− (r − v)

√
pjλφ(z)

]
−Kn

s.t.


pj = F (b+

j )− F (b−j ) for j = 1, . . . , n

b+
j ≤ b−j + 2L for j = 1, . . . , n

b−j ≤ b+
j for j = 1, . . . , n.

Here, B± is defined using Proposition 1(ii) and (iii) as

B± ≡
{

(b−,b+) ∈ L × L : b+
j = b−j+1 for j = 1, . . . , n− 1 and b−1 ≤ x∗ ≤ b+

n

}
.

Note that a solution to Ps
r may not be feasible for Ps because there may not exist a vector b

corresponding to (b−,b+) which satisfies the requirements:

b−j = max
{

bj − L,
bj + bj−1

2

}
and b+

j = min
{

bj + L,
bj + bj+1

2

}
for j = 1, . . . , n.

We show that the optimal solution for Ps
r satisfies b+

j − b−j = 2L for j = 1, . . . , n. Then, a

feasible vector b is obtained by letting bj = b−j + L = b+
j − L for j = 1, . . . , n. This shows that the

optimal solution for Ps
r is feasible for Ps, and thus, optimal for Ps. This proves property (v) for Ps.

To prove (v) for Ps
r, we show that the first choice probability vector corresponding to any initial

solution is majorized by the first choice probability vector associated with a solution that satisfies

property (v). The proof is by construction, that is, we give a sequence of modifications to the

vector (b−,b+) such that at each step we obtain a first choice probability vector that majorizes
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all the previous ones. By Lemma 1 and Lemma 3, p̃ � p implies
∑S

j=1 EΠs
j(p̃j) ≥

∑n
j=1 EΠs

j(pj),

and therefore, the expected profit increases at each step.

Consider an initial feasible solution (b−,b+) for Ps
r, and let lj = b+

j − b−j . Also let j∗ be the

product such that b−j∗ < x∗ < b+
j∗ . If x∗ = b+

j = b−j+1 for some j, then no such j∗ exists and the

proof is slightly simplified. We ignore this case.

Step 1. Consider the following swaps of first choice intervals to create new solutions (b̃−, b̃+)

and (b̂−, b̂+) with first choice probabilities p̃ and p̂:

(i) If ∃ j < j∗ such that lj−1 > lj , then b̃+
j−1 = b̃−j := b−j−1 + lj .

(ii) If ∃ j > j∗ such that lj+1 > lj , then b̃+
j = b̃−j+1 := b−j + lj+1.

(iii) If lj∗ < min{lj∗−1, lj∗+1}, then b̃+
j∗−1 = b̃−j∗ := b−j∗−1 + lj∗ and b̂+

j∗ = b̂−j∗+1 := b−j∗ + lj∗+1.

In each case, the remaining values in (b̃−, b̃+) and (b̂−, b̂+) are kept unchanged. Each swap satisfies

all the constraints of problem Ps
r and preserves the definition of j∗. It is straightforward to show

in cases (i) and (ii) that p̃ � p.

Case (iii) is somewhat tricky. We show that either p̃ � p or p̂ � p (or both). First note that

p̃k = pk for k 6= j∗ − 1, j∗ and p̂k = pk for k 6= j∗, j∗ + 1. We have,

p̃j∗ = pj∗ +
[
F (b+

j∗−1)− F (̃b+
j∗−1)

]
≥ pj∗ ,

p̂j∗ = pj∗ +
[
F (̂b+

j∗)− F (b+
j∗)

]
≥ pj∗ .

We show that it cannot be true that p̃j∗ < pj∗−1 as well as p̂j∗ < pj∗+1. This is because the

first one implies f(b+
j∗) < f(b−j∗) and the second one implies f(b+

j∗) > f(b−j∗). Therefore, either

p̃j∗ > max{pj∗ , pj∗−1} or p̂j∗ > max{pj∗ , pj∗+1}, implying that either p̃ � p or p̂ � p. In either

case, Step 1 improves the solution.

We apply Step 1 repeatedly until none of the three conditions is satisfied. In each iteration, we

obtain a new first choice probability vector that majorizes all the previous ones. Thus, the final

vector (b−,b+) satisfies one of the following chains of inequalities:

l1 ≤ l2 ≤ . . . ≤ lj∗−1 ≤ lj∗ ≥ lj∗+1 ≥ . . . ≥ ln−1 ≥ ln (14)

l1 ≤ l2 ≤ . . . ≤ lj∗−1 ≥ lj∗ ≥ lj∗+1 ≥ . . . ≥ ln−1 ≥ ln (15)

l1 ≤ l2 ≤ . . . ≤ lj∗−1 ≤ lj∗ ≤ lj∗+1 ≥ . . . ≥ ln−1 ≥ ln. (16)

Step 2. Suppose that vector (b−,b+) satisfies inequalities (14). Consider the following sets of

modifications to create a new solution (b̂−, b̂+):
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(i) Let ja = max{k ≤ j∗ : lk < 2L}, jb = min{k : lk ≥ 0} and δ = min {2L− lja , ljb
}. Set

b̂−j = b̂+
j−1 = b−j − δ for j = jb + 1, . . . , ja, and b̂−j = b−j , b̂+

j = b+
j for all remaining values.

(ii) Let ja = min{k > j∗ : lk < 2L}, jb = max{k : lk ≥ 0} and δ = min {2L− lja , ljb
}. Set

b̂+
j = b̂−j+1 = b+

j + δ for j = ja, ..., jb − 1, and b̂−j = b−j , b̂+
j = b+

j for all remaining values.

In each case, (b̂−, b̂+) satisfies the constraints of Ps
r and preserves inequalities (14). Further, we

show that p̂ � p. We prove the result for case (i); case (ii) is similar. Also, the proofs for the

remaining inequalities obtained after Step 1, (15) and (16), are similar and are omitted.

In case (i), let xi = F (b−ja+1−i)−F (b−ja+1−i− δ) > 0 for i = 1, ..., ja− jb. Since ja ≤ j∗, we have

x1 ≥ x2 ≥ ... ≥ xja−jb
. The elements of p̂ are now given by

p̂ja = pja + x1,

p̂ja−i = pja−i − xi + xi+1 i = 1, . . . , ja − jb − 1,

p̂jb
= pjb

− xja−jb
.

From (14), we have l̂jb+1 ≤ . . . ≤ l̂ja . Thus, p̂jb+1 ≤ . . . ≤ p̂ja . Finally,

k∑
i=1

p̂ja−i+1 =
k∑

i=1

pja−i+1 + xk ≥
k∑

i=1

pja−i+1 for all k = 1, . . . , ja − jb,

and
ja−jb+1∑

i=1

p̂ja−i+1 =
ja−jb+1∑

i=1

pja−i+1.

Therefore, p̂ � p. This shows that Step 2 improves the solution.

We apply Step 2 repeatedly until none of the two conditions is satisfied. After that we renumber

the products so that only the products with b+
j > b−j are included in the assortment. The final

vector (b−,b+) is such that lj = 2L for all products with the possible exception of the two located

at the extremities of the market. In this case, we set b̃−1 = b+
1 − 2L and b̃+

n = b−n + 2L. By Lemma

1, this increases expected profit.

Proof of Proposition 2. For a given assortment b and inventory vector q, consider a sample

path, ω, of the customer arrival and choice process. Let Rs
j(i)(ω) and Rd

j (i)(ω) denote the remain-

ing inventory of product j after the arrival of customer i under static and dynamic substitution,

respectively. The reference to the sample path is hereafter omitted for convenience.

We show that if Rs
j(i) ≥ Rd

j (i) for j = 1, . . . , n, then Rs
j(i + 1) ≥ Rd

j (i + 1) for j = 1, . . . , n.

Without loss of generality, let product k be the first choice of customer i+1. There are three cases:
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(1) If Rs
k(i) ≥ Rd

k(i) > 0, then customer i + 1 gets his first choice under both static and dynamic

substitution. Thus,

Rs
k(i + 1) = Rs

k(i)− 1 ≥ Rd
k(i)− 1 = Rd

k(i + 1)

Rs
j(i + 1) = Rs

j(i) ≥ Rd
j (i) = Rd

j (i + 1), j 6= k.

(2) If Rs
k(i) > 0 and Rd

k(i) = 0, then customer i + 1 gets his first choice under static substitution

and may get an alternative choice under dynamic substitution. Thus,

Rs
k(i + 1) = Rs

k(i)− 1 ≥ Rd
k(i) = Rd

k(i + 1) = 0

Rs
j(i + 1) = Rs

j(i) ≥ Rd
j (i) ≥ Rd

j (i + 1), j 6= k.

(3) If Rs
k(i) = Rd

k(i) = 0, then customer i+1 leaves unsatisfied under static substitution but may

get an alternative choice under dynamic substitution. Thus,

Rs
k(i + 1) = Rs

k(i) = Rd
k(i) = Rd

k(i + 1) = 0

Rs
j(i + 1) = Rs

j(i) ≥ Rd
j (i) ≥ Rd

j (i + 1), j 6= k.

Let i = 0 correspond to the initial assortment in the store before the visit of the first customer.

The condition Rs
j(i) ≥ Rd

j (i) is satisfied for i = 0 for all j because Rs
j(0) = Rd

j (0) = qj for all

j. Hence, by induction, we obtain Rs
j(N) ≥ Rd

j (N) for all j = 1, . . . , n. Further, Ss
j = qj −

Rs
j ≤ qj − Rd

j = Sd
j for all j − 1, . . . , n. This completes the proof since profit is an increasing

function of sales.

Proof of Lemma 2. Problem (9) can be formulated as a restricted transportation problem in

which the source nodes are j for j = 1, ..., n with inventory qj , and the destination nodes are (l, i)

for l = 1, ...n and i = 1, ..., n− i + 1 with corresponding demand η(l,i). We add one dummy source,

indexed 0, with inventory q0 =
∑n

l=1

∑n−l+1
i=1 ηj,(l,i), and one dummy destination, indexed (0,0),

with demand η(0,0) =
∑n

j=1 qj in order to balance the flow. Let cj,(l,i) be the cost associated to

arc (j, (l, i)). Arcs to each destination (l, i) from sources i, ..., i + l − 1 have a cost of minus one.

Arcs (0, (l, i)) from the dummy source to all destinations, and arcs (j, (0, 0)) from all sources to the

dummy destination have zero costs. All other arcs, i.e., those corresponding to constraint (13), are

forbidden and have infinite cost. Thus, the objective function of (9) is equivalent to:

min
n∑

j=1

n∑
l=1

n−l+1∑
i=1

cj,(l,i)xj,(l,i).
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The algorithm in Lemma 2 rank-orders the non-dummy arcs connecting inventory and demand

in a specific way. Now add the dummy arcs at the end of that sequence (in any order). It can be

verified that the sequence thus obtained satisfies the following property: whenever (j, (l, i)) precedes

(j, (l′, i′)) and (j′, (l, i)) then:

c(j,(l,i)) + c(j′,(l′,i′)) ≤ c(j,(l′,i′)) + c(j′,(l,i))

where c(j,(l,i)) is the cost associated with arc (j, (l, i)). Such a sequence is called a Monge sequence.

Shamir and Dietrich (1990) establish that a greedy solution to a transportation problem is optimal

if and only if it rank-orders the arcs in a Monge sequence.

Proof of Theorem 1. We write the maximization of EΠu(b,q) with respect to q as a two-stage

stochastic linear program with fixed recourse:

EΠu(b) = max
q≥0

EΠu(b,q)

= max
q≥0

{Eη [Πu(b,q, ω)]} .

Here, Πu(b,q, ω) is as defined in problem (9)-(13), and η denotes the vector of stochastic variables

η(l,i) for l = 1, ..., n and i = 1, ..., n− l + 1. The first stage decision variable is q = (q1, ..., qn), and

the second stage decisions variables are xj,(l,i) for l = 1, ..., n, i = 1, ..., n−l+1 and j = i, ..., i+l−1.

For each realization of η(l,i) there exists a solution xj,(l,i) given by Lemma 2. Therefore,

EΠu(b,q) is defined for every value of η(l,i). Since the variables η(l,i) have finite second moments,

we use Theorem 6(a) of Birge and Louveaux (1997: p.89) applied to a maximization problem to

conclude that EΠu(b,q) is concave in q.

Proof of Proposition 5. (i) Suppose that we have an assortment, b, with b1 < α. Decompose

this assortment into two parts, b1 = (b1), consisting of a single product located at b1, and b1 =

(b2, . . . , bn) consisting of the remaining n− 1 products in b.

For a given vector q and sample path ω, let q1 = (q1) and q1 = (q2, . . . , qn). We have:

Πu(b,q, ω) ≤ Πu(b1,q1, ω) + Πu(b1,q1, ω).

since the profit values on the RHS double-count the
∑n

k=2 η(k,1) customers who get a positive utility

from consuming product 1 as well as some other product in b.
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Taking expectations we get:

EΠu(b,q) ≤ EΠu(b1,q1) + EΠu(b1,q1)

< EΠu(b1,q1).

Here the last inequality follows because EΠu(b1,q1) = EΠs(b1,q1) < 0 from Proposition 1(i) since

b1 < α. Thus, b cannot be an optimal solution.

(ii) & (iii) Let p(l,i) be the probability that a customer vising the store is of type (l, i). The

number of such customers, η(l,i), is Poisson with rate λp(l,j). Note that η(l,i) is stochastically

increasing in p(l,i) for l = 1, ..., n and i = 1, ..., n − l + 1 because a Poisson random variable is

stochastically increasing in its mean. Also η(l,i) are the RHS of the first set of constraints in (9).

Suppose we have two assortments b̃ and b such that η̃(l,i) ≥s.t. η(l,i) for l = 1, . . . , n and

i = 1, . . . , n− l + 1 where ≥s.t. denotes larger under first order stochastic dominance. By theorem

Theorem 1.A.1. of Shaked and Shanthikumar (1994), there exist random variables η̃′(l,i) and η′(l,i)

such that η̃′(l,i)
D= η̃(l,i), η′(l,i)

D= η(l,i) and η̃′(l,i) ≥ η′(l,i) with probability one for l = 1, ..., n and

i = 1, ..., n− l + 1. This along with the fact that the value of the objective function is increasing in

the RHS of the constraints, gives

Πu(b̃,q) ≥s.t. Πu(b,q) ∀ q.

This implies that EΠu(b,q) is increasing in p(l,i) for l = 1, ..., n and i = 1, ..., n − l + 1. The

rest of the proof is similar to Proposition 1 (ii) or (iii).

(iv) Proof is identical to that of Proposition 1 (iv).

(v) We show the proof for the case n = 2 but the reasoning holds for any value of n. Suppose

that we have an optimal assortment b with b1 < L.

Now consider the alternative assortment b̃ such that b̃1 = L and b̃2 = b2.

We have p̃(l,i) = p(l,i), for (l, i) = (1, 1), (1, 2) and p̃(2,1) > p(2,1). Since EΠu(b,q) is increasing

in p(l,i) for all fixed q, we get a contradiction to the fact that b is optimal.
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Table 2: Effects of λ, γ, K and L on optimal assortments, inventory levels, and expected profits under heuristics H1 and H2 
 

 
Notes : The table shows the locations (b) and inventory levels (q) of all items, and total expected profit (denoted EΠ) for each set of parameter values under both heuristics. The cost parameters 
are as shown in §5.3. 

γ 1 3 5 
K 20 10 5 1 0.1 20 10 5 1 0.1 20 10 5 1 0.1 

L=0.25, λ=20 
Retailer-controlled substitution 

items b q b q b q b q b q b q b q b q b q b q b q b q b q b q b q 
1 0.25 12 0.25 12 0.25 12 0.25 9 0.25 8 0.5 18 0.31 11 0.31 11 0.26 6 0.26 6 0.5 20 0.5 20 0.34 11 0.34 11 0.34 11 
2 0.75 12 0.75 12 0.75 12 0.5 6 0.41 4   0.69 11 0.69 11 0.5 10 0.5 10     0.66 11 0.66 11 0.66 11 
3       0.75 8 0.59 4       0.74 6 0.74 6           
4         0.75 7                     
EΠ 44.86 64.86 74.86 85.74 88.74 48.99 67.04 77.04 85.15 87.85 59.75 69.75 78.83 86.83 88.63 

Static substitution 
items b q b q b q b q b q b q b q b q b q b  b q b q b q b q b q 
1 0.25 12 0.25 12 0.25 12 0.25 12 0.25 12 0.5 18 0.26 12 0.26 12 0.26 12 0.26 12 0.5 20 0.5 20 0.41 19 0.41 19 0.41 19 
2 0.75 12 0.75 12 0.75 12 0.75 12 0.75 12   0.76 11 0.76 11 0.76 11 0.76 11     0.91 4 0.91 4 0.91 4 
EΠ 44.86 64.86 74.86 82.86 84.66 48.99 63.63 73.63 81.63 83.43 59.75 69.75 74.81 82.81 84.61 

L=0.25, λ=50 
Retailer-controlled substitution 

items b q b q b q b q b q b q b q b q b q b q b q b q b q b q b q 
1 0.25 28 0.25 28 0.25 20 0.25 20 0.25 18 0.3 27 0.3 27 0.3 27 0.25 15 0.25 15 0.31 27 0.31 27 0.31 27 0.31 27 0.31 27 
2 0.75 28 0.75 28 0.5 14 0.5 14 0.41 9 0.7 27 0.7 27 0.7 27 0.5 24 0.5 24 0.69 27 0.69 27 0.69 27 0.69 27 0.69 27 
3     0.75 20 0.75 20 0.59 9       0.75 15 0.75 15           
4         0.75 18                     
EΠ 186.25 206.25 217.70 229.70 232.54 190.37 210.37 220.37 228.40 231.10 191.87 221.87 221.87 229.87 231.67 

Static substitution 
items b q b q b q b q b q b q b q b q b q b q b q b q b q b q b q 
1 0.25 28 0.25 28 0.25 28 0.25 28 0.25 28 0.21 24 0.21 24 0.21 24 0.21 24 0.21 24 0.5 49 0.13 13 0.13 13 0.13 13 0.13 13 
2 0.75 28 0.75 28 0.75 28 0.75 28 0.75 28 0.71 31 0.71 31 0.71 31 0.71 31 0.71 31   0.63 42 0.63 42 0.63 42 0.63 42 
EΠ 186.25 206.25 216.25 224.25 226.05 184.86 204.86 214.86 222.86 224.66 188.75 205.57 215.57 223.57 225.37 

L=0.15, λ=50 
Retailer-controlled substitution 

items b q b q b q b q b q b q b q b q b q b q b q b q b q b q b q 
1 0.15 15 0.15 15 0.15 15 0.15 12 0.15 12 0.25 14 0.25 14 0.2 9 0.17 6 0.17 5 0.36 26 0.28 13 0.28 13 0.23 7 0.22 5 
2 0.38 13 0.38 13 0.38 13 0.30 8 0.28 6 0.5 24 0.5 24 0.4 18 0.34 13 0.30 9 0.64 26 0.5 27 0.5 27 0.41 20 0.36 13 
3 0.62 13 0.62 13 0.62 13 0.44 7 0.39 6 0.75 15 0.75 15 0.6 18 0.5 16 0.43 13   0.72 13 0.72 13 0.59 20 0.5 18 
4 0.85 15 0.85 15 0.85 15 0.56 7 0.5 6     0.8 9 0.66 13 0.57 13       0.77 7 0.64 13 
5       0.7 8 0.61 6       0.83 6 0.7 9         0.78 5 
6       0.85 12 0.72 6         0.83 5           
7         0.85 12                     
EΠ 146.63 186.63 206.63 224.97 230.77 163.09 193.09 229.66 225.98 230.65 191.87 221.87 221.87 229.87 231.67 

Static substitution 
items b q b q b q b q b q b q b q b q b q b q b q b q b q b q b q 
1 -.04 28 -.04 7 -.04 7 -.04 7 -.04 7 0.21 14 0.21 14 0.21 14 0.21 14 0.21 14 0.34 26 0.34 26 0.12 4 0.12 4 0.12 4 
2 0.26  0.26 17 0.26 17 0.26 17 0.26 17 0.51 29 0.51 29 0.51 29 0.51 29 0.51 29 0.64 28 0.64 28 0.42 33 0.42 33 0.42 33 
3 0.56  0.56 17 0.56 17 0.56 17 0.56 17 0.81 13 0.81 13 0.81 13 0.81 13 0.81 13     0.72 18 0.72 18 0.72 18 
4 0.86 28 0.86 17 0.86 17 0.86 17 0.86 17                     
EΠ 137.41 176.81 196.81 212.81 216.41 158.93 188.93 203.93 215.93 218.63 175.76 195.76 206.21 218.21 220.91 
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Table 3: Effect of c on optimal assortments, inventory levels, and expected profits under 
heuristics H1 and H2 

 
 c=4 c=5 c=6 
 Retailer-controlled substitution 

Items b q b q b q 
1 0.25 6 0.2 3 0.25 6 
2 0.4 22 0.35 13 0.4 20 
3 0.6 22 0.5 21 0.6 20 
4 0.75 7 0.65 13 0.75 5 
5   0.8 3   

EΠ 287.67 232.59 180.47 
Optimality gap 2.26% 3.00% 4.62% 

 Static substitution 
Items b q b q b q 

1 0.15 6 0.05 1 0.1 2 
2 0.45 40 0.35 27 0.4 31 
3 0.75 16 0.65 27 0.7 19 
4   0.95 1   

EΠ 280.74 222.36 168.92 
Optimality gap 2.41% 4.45% 6.40% 

 
Note : Parameters other than c are set at λ=50, γ=6, L=0.15, K=0.1, p=10, v=3. 
 

 
 
 

Figure 1: Expected profit under static substitution as a function of b1 in [α,α+2L] 
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Notes: The parameter values are: p=10, c=5, s=3, K=650, λ=1000, γ=2, L=0.34. The value of α 
computed using these values is –0.11. 
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Figure 2: Optimality gap for heuristic H1 for the dynamic substitution problem 
 as a function of L, γ and λ 

 
 

Notes: The y-axis shows the optimality gap defined as [UB – H1]/UB in percentages. The parameters 
are set as K=0.1, c=5, and the remaining as specified in §5.3. 

 
 

Figure 3: Optimality gap for heuristic H2 for the dynamic substitution problem 
 as a function of L, γ and λ 

 
Notes: The y-axis shows the optimality gap defined as [UB – H2]/UB in percentages. The parameters 
are set as K=0.1, c=5, and the remaining as specified in §5.3. 
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