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Abstract. We propose a new complex-valued taper and derive the properties of a
tapered Gaussian semiparametric estimator of the long-memory parameter d 2
(ÿ0:5, 1:5). The estimator and its accompanying theory can be applied to generalized
unit root testing. In the proposed method, the data are differenced once before the taper
is applied. This guarantees that the tapered estimator is invariant with respect to
deterministic linear trends in the original series. Any detrimental leakage effects due to
the potential noninvertibility of the differenced series are strongly mitigated by the
taper. The proposed estimator is shown to be more ef®cient than existing invariant
tapered estimators. Invariance to kth order polynomial trends can be attained by
differencing the data k times and then applying a stronger taper, which is given by the
kth power of the proposed taper. We show that this new family of tapers enjoys strong
ef®ciency gains over comparable existing tapers. Analysis of both simulated and actual
data highlights potential advantages of the tapered estimator of d compared with the
nontapered estimator.

Keywords. Periodogram; Gaussian semiparametric estimation; unit roots.

1. INTRODUCTION

Most theoretical results for long-memory time series assume that the memory
parameter d lies in the interval (ÿ0:5, 0:5), so that the series is stationary and
invertible. In applications, however, the estimated value of d based on the
original data may exceed 0.5, indicating nonstationarity. Furthermore the
potential presence of linear trend, excluded in much of the existing theory,
could severely bias estimates of d. We will suppose that the observed series was
generated by a process with d 2 (ÿ0:5, 1:5), and may have an additive
deterministic linear trend. This seems suf®cient for many applications in areas
such as ®nance, econometrics, hydrology, climatology, and network ¯ow
analysis.

Differencing is a very widely used technique for detrending and inducing
stationarity. The ordinary ®rst difference will convert the memory parameter to
d� � d ÿ 1, and will completely remove a linear trend, without forcing the
analyst to estimate the trend. Overdifferencing is a term to describe the
situation where the differences are noninvertible, i.e. d� < ÿ0:5, but the
differences are nevertheless used for modeling and parameter estimation.
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Overdifferencing may arise as an unintended consequence of differencing, and
causes many problems in parameter estimation. See Davis and Dunsmuir (1996)
for theory on estimation of noninvertible MA(1) models, i.e. overdifferenced
white noise. See Hurvich and Ray (1995) for a discussion of periodogram bias
induced by the overdifferencing of long-memory time series.

Tapering (see, for example, Tukey, 1967) is a technique for reducing
periodogram bias due to strong peaks and troughs in the spectral density. A
taper is a nonrandom weight sequence with certain desired properties that is
multiplied with the time series data prior to Fourier transformation or
parameter estimation. It was suggested by Hurvich and Ray (1995) that the
use of a taper can alleviate the detrimental effects of overdifferencing, most
importantly the bias in estimates of d� based on the periodogram of the
differenced data. Deo and Hurvich (1998) showed that tapering can also be
helpful for estimating the mean of a potentially overdifferenced long-memory
time series, i.e. the linear trend in the original series. Assuming no
deterministic trends and working with the original series, Velasco (1999a,
1999b) established asymptotic normality of the nontapered semiparametric
estimators of d described in Robinson (1995a, 1995b) in the nonstationary case
d 2 [0:5, 0:75), and explained why the theory breaks down when d exceeds
0.75. This serves to motivate the use of tapered estimators.

The discussion above indicates that the routine use of differencing followed
by tapering may be helpful in many situations. The main dif®culty with this
strategy is that tapering may strongly in¯ate the variance of estimates of d�
and other parameters of the series. Velasco (1999a, 1999b) has obtained general
consistency and asymptotic normality results for periodogram and log-
periodogram semiparametric estimates of d, based on either levels or
differences, with d in a potentially much wider range than considered here,
and in the potential presence of additive polynomial trends of arbitrary degree.
This can be achieved by using a class of tapers due to Kolmogorov (see
Zhurbenko, 1979). Unfortunately, the ef®ciency loss incurred from using these
tapers may be quite substantial. Even in the best case, the asymptotic variance
of a Gaussian semiparametric estimator (GSE; Robinson, 1995b) with
Kolmogorov tapering is 2:1=4m, compared with 1=4m without tapering, where
m is the number of periodogram ordinates used. This occurs for the
Kolmogorov taper of order 2, which produces estimators that are invariant in
the presence of linear trends in the levels.

In this paper we will introduce a new taper that can be safely used on
differenced data having a constant mean and memory parameter d� 2
(ÿ1:5, 0:5). We will establish that the corresponding Gaussian semiparametric
estimator of d� based on the tapered differences is consistent and asympto-
tically normal, with an asymptotic variance of 1:5=4m. This represents a
substantial ef®ciency gain compared with tapered GSE estimators with the
Kolmogorov and cosine tapers used in Velasco (1999a, 1999b). It also
represents a small ef®ciency gain compared with the nontapered log-period-
ogram estimator proposed by Geweke and Porter-Hudak (1983) and justi®ed
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theoretically for a trend-free Gaussian series with d 2 (ÿ0:5, 0:5) by Robinson
(1995a) and Hurvich et al. (1998).

The estimators of d developed here and in Velasco (1999a, 1999b) provide
freedom from the necessity of having prior knowledge on the stationarity
(d , 0:5) or nonstationarity (d > 0:5) of the nontrending component of the
original series, and on the presence or absence of linear trend in the ori-
ginal series. There are several potential applications for such a consistent
and asymptotically normal estimator of d. One is for the construction of
asymptotically ef®cient estimators and asymptotically valid con®dence intervals
for linear trend, as discussed by Deo and Hurvich (1998). Another application is
for a nonparametric mean function with additive long-memory errors having
d 2 [0, 1:5). Here, d� may be estimated from the tapered differences, and the
estimate may then be used to set con®dence intervals for the true regression
function. The application we will consider in this paper is generalized unit root
testing for economic time series. A suf®ciently narrow con®dence interval for d
could be very helpful in this context. For example, a con®dence interval of
(0:2, 0:3) indicates that the series has long memory (d . 0) and is stationary
(d , 0:5), while a con®dence interval of (0:6, 0:7) indicates that the series is
nonstationary (d . 0:5), but that the degree of nonstationarity is weaker than that
of a random walk (d , 1), and an interval of (0:9, 1:1) indicates nonstationarity
but does not rule out the possibility that d � 1. For more discussion of the use of
estimates of d in the context of unit root testing, see Cheung (1993), Cheung
and Lai (1993), Hassler (1993), Delgado and Robinson (1994), Hassler and
Wolters (1995), Baillie et al. (1996) and Crato and de Lima (1997).

Throughout the paper, we suppose that we observe data x0, . . ., xn from a
process having memory parameter d 2 (ÿ0:5, 1:5). Equivalently, the differences
y1, . . ., yn are generated from a weakly stationary process fytg � fxt ÿ xtÿ1g
with memory parameter d� � d ÿ 1 2 (ÿ1:5, 0:5) and spectral density f (ë) �
ëÿ2d� as ë! 0�. The mean of yt is a constant, ì, which need not equal zero,
so that fxtg has a linear trend with slope ì

2. THE FOURIER TRANSFORM AND THE COSINE BELL TAPER

The discrete Fourier transform (DFT) of the data fytgn
t�1 is given by

w j � w(ë j) � 1

(2ðn)1=2

Xn

t�1

yt exp(ië j t) j � 1, . . ., ~n

where ~n � [(nÿ 1)=2] and ë j � 2ð j=n is the jth Fourier frequency. Note that if
fytgn

t�1 were replaced by fyt � Cgn
t�1 for any constant C, the DFT values w j

would be unchanged, since
Pn

t�1 exp(ië j t) � 0. Thus, the w j values are free of
any dependence on the mean ì. This property, which we will refer to as shift-
invariance, is shared by the periodogram I j � jw jj2, for j � 1, . . ., ~n, and by any
estimator obtained as a function of these periodogram values. Since ì has no
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effect on d�, shift-invariance is a desirable attribute of estimators of d�. It is
also desirable that shift-invariance be attained without the need to directly
estimate ì, as is the case for the w j, in view of the potentially slow convergence
rates of estimators of ì (see Samarov and Taqqu, 1988; Cheung and Diebold,
1994; Deo and Hurvich, 1998).

A widely used taper is the cosine bell (Tukey, 1967), given by

ht,CB � 0:5 1ÿ cos
2ð(t ÿ 1=2)

n

� �� �
t � 1, . . ., n: (1)

The tapered DFT and periodogram are de®ned by

w j,CB � 1

(2ð
P

h2
t,CB)1=2

Xn

t�1

ht,CB yt exp(ië j t)

and I j,CB � jw j,CBj2. It can be shown that
P

h2
t,CB � 3n=8 and (see Bloom®eld,

1976, pp. 80±84) that

w j,CB � (8=3)1=2fÿ0:25w jÿ1 exp(ið=n)� 0:5w j ÿ 0:25w j�1 exp(ÿið=n)g
j � 2, . . ., ~n: (2)

Since w j,CB is a linear combination of the ordinary DFT values fw jg at nonzero
Fourier frequencies, it follows that the w j,CB are shift-invariant. A compromise
between not tapering at all and the cosine bell is achieved by the split cosine bell
taper (see Tukey, 1967; Bloom®eld, 1976; Deo and Hurvich, 1998). Unfort-
unately, the resulting tapered Fourier transform is not shift-invariant, and
therefore the split cosine bell is not suitable for use in estimating d�.

3. A NEW TAPER

Analogously to Equation (1), we de®ne a new taper by

ht � 0:5 1ÿ exp
i2ð(t ÿ 1=2)

n

� �� �
t � 1, . . ., n (3)

so that
Pjhtj2 � n=2. De®ne the tapered Fourier transform by

wT
j �

1

(2ð
Pjhuj2)1=2

Xn

t�1

ht yt exp(ië j t): (4)

The primary motivation for the De®nition (3) of the new taper is provided by the
relationship between the tapered and nontapered Fourier transforms, in analogy
to Equation (2) for the cosine bell:

wT
j �
p

2f0:5w j ÿ 0:5w j�1 exp(ÿið=n)g j � 1, . . ., ~nÿ 1: (5)

Note that only the two DFT ordinates w j and w j�1 need be used to compute
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the tapered DFT wT
j. Equation (5) suggests that the tapered periodogram

IT
j � jwT

j j2 may be viewed as an estimator of f ~j � f (ë~j), where ~j � j� 1=2
and ë~j � 2ð~j=n. Equation (4) expresses wT

j as a Fourier transform of a tapered
data set, but the taper fhtg de®ned in Equation (3) has the unusual property that
it is complex valued. This is something of a hindrance in both theoretical and
practical considerations. However, complex fhtg are an inevitable consequence
of our primary goal (Equation (5)) that wT

j be a linear combination of two
neighbouring DFT values, a choice that guarantees shift-invariance and improves
ef®ciency relative to existing shift-invariant tapers. It is easily shown that
jhtj � (ht,CB)1=2 � sinfð(t ÿ 1=2)=ng, and hence for large n the slope of the jhtj
curve approaches �1 at the time end-points t � 1 and t � n.

4. THE TAPERED GAUSSIAN SEMIPARAMETRIC ESTIMATOR OF d�0

The Gaussian semiparametric estimator (GSE) was originally proposed by
Kunsch (1987) for estimating the memory parameter d0 2 (ÿ0:5, 0:5) of the
untapered levels fxtg, assuming no linear trend (ì � 0). The GSE is implicitly
de®ned, so the subscript in d0 is needed to distinguish the true value from the
variable d used in the objective function. Robinson (1995b) showed that the
estimator, d̂GSE, is consistent and asymptotically normal, with asymptotic
variance 1=4m. In the potential presence of polynomial trends and with d0 not
necessarily con®ned to (ÿ0:5, 0:5), Velasco (1999b) established consistency and
asymptotic normality of a broad class of tapered GSE estimators in which the
raw periodogram of fxtg is replaced by a tapered periodogram. However,
Velasco (1999b) did not explicitly consider the noninvertible case, and in order
to achieve invariance to polynomial trends of order pÿ 1 using the Kolmogorov
tapers of order p > 2, he needed to omit all Fourier frequencies that are not a
multiple of ë p from the estimator. The asymptotic variance of the estimator
exceeds p=4m, a strong in¯ation from the nontapered case. If the cosine bell
taper is used and ì � 0, then all Fourier frequencies may be used, but the
asymptotic variance, at 35=18m, is still much larger than in the nontapered case.

We will study the properties of a tapered GSE estimator of d�0 2 (ÿ1:5, 0:5)
based on the differences fytg, allowing for nonzero ì, using the new taper of
Section 3. Unfortunately, this taper does not ®t into the class considered by
Velasco (1999b), since it is complex valued. The estimator is the minimizer of

Q(G, d�) � 1

m

Xm

j�1

log g(ë~j)�
IT

j

g(ë~j)

( )

where g(ë) � Gjëjÿ2d� . The objective function Q is to be minimized with
respect to G 2 (0, 1) and d� 2 È � [Ä1, Ä2], where ÿ1:5 ,Ä1 ,Ä2 , 0:5.
Equivalently, concentrating out the parameter G, the estimator is d̂�GSET �
arg mind�2È R(d�), where
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R(d�) � log Ĝ(d�)ÿ 2d� 1

m

Xm

j�1

log ë~j Ĝ(d�) � 1

m

Xm

j�1

ë2d�
~j IT

j :

5. THEORETICAL RESULTS

To derive the properties of d̂�GSET, we follow the path set out in Robinson
(1995b) and Velasco (1999b), hereafter denoted by Rob and Vel, respectively.
The results of Vel cannot be applied directly because our taper is complex
valued, and because Vel did not give properties of tapered GSE estimators in the
noninvertible case. We assume throughout that yt ÿ ì �P1j�0á9jå tÿ j where få tg
is a martingale difference sequence with unit variance. De®ne

wT
å j �

1

(2ð
Pjhuj2)1=2

Xn

t�1

htå t exp(ië j t)

and let IT
å j � jwT

å jj2. The moving-average transfer function is denoted by á(ë),
with á j � á(ë j)

P1
L�0á9L exp(iLë j). The spectral density of fytg is f (ë) �

já(ë)j2=2ð. For consistency and asymptotic normality of d̂�GSET, we require
Assumptions A1±A4 and A19±A49 respectively, as given below. Except for A1,
A19 and A2, these assumptions are identical to those originally given and
described in Rob.

A1. f (ë) � G0ëÿ2d�0 f1� Eâëâ � o(ëâ)g as ë! 0�, for some â 2 (1, 2],
G0 . 0, Eâ ,1 and d�0 2 [Ä1, Ä2].

A2. In a neighborhood (0, ä) of the origin, á(ë) is differentiable and
@á(ë)=@ë � O(já(ë)j=ë) as ë! 0�.

A3.
P1

j�0á92
j ,1, E(å tjFtÿ1) � 0, E(å2

t jFtÿ1) � 1 almost surely (a.s.),
t � 0, �1, . . ., in which Ft is the ó-®eld of events generated by ås, s < t,
and there exists a random variable å such that E(å2) ,1 and, for all ç. 0 and
some K . 0, P(jå tj. ç) < KP(jåj. ç).

A4. As n!1, 1=m� m=n! 0.

A19. Assumption A1 holds.

A29. Assumption A2 holds.

A39. Assumption A3 holds and also E(å3
t jFtÿ1) � ì3 a.s., E(å4

t ) � ì4,
t � 0, �1, . . ., for ®nite constants ì3 and ì4.

A49. As n!1, 1=m� m1�2â(log m)2=n2â ! 0.
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Our A1 is equivalent to Assumption 2 discussed in Velasco (1999a, pp. 328±9),
and is stronger than A1 in Rob, which does not explicitly include the parameter â.
Furthermore, we assume in A1 and A19 that â 2 (1, 2], whereas A19 of Rob
assumes only that â 2 (0, 2]. Our A2 is the same as A29 of Rob, and implies that

d

dë
log f (ë) � O(ëÿ1)

as ë! 0�. The more restrictive assumptions made here, also used by Velasco
(1999a, 1999b), allow for improved bounds on moments of tapered DFTs (see
Lemma 4), and thereby greatly simplify part of the proof of asymptotic
normality of d̂�GSET. Our assumptions are satis®ed by the ARFIMA processes,
which have â � 2.

Our ®rst theorem establishes the consistency of d̂�GSET. Lemmas referred to in
the proofs of the theorems are stated and proved in the Appendix.

Theorem 1. Under Assumptions A1±A4, d̂�GSET!
p

d�0 as n!1.

Proof. We follow the arguments and notation of the proof in Rob for the
nontapered case. De®ne È1 � fd�: Ä < d� < Ä2g, where Ä � Ä1 when
d�0 , 1=2� Ä1 and d�0 > Ä. d�0 ÿ 1=2 otherwise. Note that d� ÿ d�0 .ÿ1=2
for all d� 2 È1. When d�0 > 1=2� Ä1, de®ne È2 � fd�: Ä1 < d�,Äg, and
otherwise take È2 to be empty. Let S(d�) � R(d�)ÿ R(d�0 ). Then we can
write S(d�) � U (d�)ÿ T (d�), where

T (d�) � log
Ĝ(d�0 )

G0

( )
ÿ log

Ĝ(d�)
G(d�)

( )

ÿ log mÿ1f2(d� ÿ d�0 )� 1g
Xm

j�1

~j

m

� �2(d�ÿd�0 )
24 35

� 2(d� ÿ d�0 ) mÿ1
Xm

j�1

log ~jÿ (log mÿ 1)

( )
(6)

U (d�) � 2(d� ÿ d�0 )ÿ logf2(d� ÿ d�0 )� 1g

G(d�) � G0 mÿ1
Xm

j�1

ë
2(d�ÿd�0 )

~j
:

Combining Equations (3.2) and (3.3) of Rob, we have for 1=4 .ä. 0 that

P(jd̂�GSET ÿ d�0 j > ä) < P sup
È1

jT (d�)j > inf
Nä\È1

U (d�)
� �

� P inf
È2

S(d�) < 0
n o

(7)
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where Nä � fd�: jd� ÿ d�0 j,äg and Nä � (ÿ1, 1)ÿ Nä. As in (3.4) of Rob,
we have inf Nä\È1

U (d�) . ä2=2. Thus, Lemma 1 implies that the ®rst term on
the right-hand side of Equation (7) tends to zero. The second term also tends to
zero by Lemma 2, so the theorem is proved.

Our next theorem establishes the asymptotic distribution of d̂�GSET.

Theorem 2. Under Assumptions A19±A49, m1=2(d̂�GSET ÿ d�0 )!d N(0, Ö=4),
where Ö � 1:5.

Proof. By Theorem 1, with probability approaching 1 as n!1, d̂�GSET

satis®es

0 � R9(d̂�GSET) � R9(d�0 )� R 0(~d�)(d̂�GSET ÿ d�0 )

where j~d� ÿ d�0 j < jd̂�GSET ÿ d�0 j. Using Lemmas 6 and 7 we can construct
arguments along the lines given in Rob, pp. 1641±1644. In view of (4.6) and
(4.7) of Rob, we need to verify that, for 0 ,ä, 1=4,

6
Xm

r�1

~r

m

� �1ÿ2ä
1

~r2

����Xr

j�1

IT
j

g~j

ÿ 1

 !����� 3

m

����Xm

j�1

IT
j

g~j

ÿ 1

 !���� � opf(log m)ÿ6g (8)

where g~j � G0ë
ÿ2d�0
~j

and ~r � r � 1=2. Using Lemmas 6 and 7, we obtainPr
j�1(IT

j =g~j ÿ 1) � OP(r1=2 � râ�1=nâ), so that the left-hand side of (8) is
Opfmÿ1=2 � (m=n)âg � Op(mÿ1=2) by A49, and (8) is established. Following the
lines of the proof in Rob, we conclude that

R0(~d�)!p 4 (9)

and that

m1=2 R9(d�0 ) � 2mÿ1=2
Xm

j�1

v j

IT
j

g~j

ÿ 1

 !
f1� op(1)g (10)

where v j � log ~jÿ mÿ1
Pm

j�1 log ~j. Using summation by parts, Lemmas 6 and 7,
and Condition A49, (10) is

2mÿ1=2
Xm

j�1

v j(2ðIT
å j ÿ 1)

(

� Op m1=2ÿâ=2 log m� mâ�1=2

nâ
log m� mÿ1=2 log2 m

� �)
f1� op(1)g

� 2mÿ1=2
Xm

j�1

v j(2ðIT
å j ÿ 1)� op(1)

( )
f1� op(1)g:

The theorem now follows from Lemma 8 and Equation (9).
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6. SIMULATION RESULTS

Using the method of Davies and Harte (1987), we generated 500 realizations of a
variety of zero-mean stationary and nonstationary ARFIMA(1, d, 0) models,
with n � 500. The models are expressed as (1ÿ rB)(1ÿ B)d xt � å t, where the
å t are independent standard normal and B is the backshift operator. We
considered all combinations of d � 0, 0.2, 0.4, 0.6, 0.8, 1, 1.2 and r � 0, 0.5,
0.8.

For each realization of each process, we computed the nontapered and
tapered Gaussian semiparametric estimators d̂�GSE and d̂�GSET of d� � d ÿ 1
from the differences fytg500

t�1. For the empirical studies of this and the next
section, we will use slightly different de®nitions of the estimators than given in
Section 4, replacing g(ë) by g(ë) � Gj1ÿ exp(ÿië)jÿ2d� � Gf2 sin(ë=2)gÿ2d�.
This modi®cation is done for the sake of compatibility with ARFIMA models,
and does not alter the asymptotic properties stated in Section 5. Thus, the
estimators d̂�GSE and d̂�GSET used here are the minimizers of, respectively,

Q1(G, d�) � 1

m

Xm

j�1

log g(ë j)� I j

g(ë j)

� �

Q2(G, d�) � 1

m

Xm

j�1

log g(ë~j)�
IT

j

g(ë~j)

( )

where the objective functions Q1 and Q2 are to be minimized with respect to
G 2 (0, 1) and d� 2 È � [ÿ1:49, 0:49]. The value of m used in the
simulations was m � [0:25n4=5], so that m � 36 for n � 500. The choice
m � constant 3 n4=5 violates Condition A49, but the choice may be optimal in
terms of mean squared error, in view of the results of Henry and Robinson
(1996). Nevertheless, to the best of our knowledge, no asymptotic theory has yet
been derived for d̂�GSE in the case d� < ÿ0:5.

Before presenting the simulation results, we provide approximations for
var(d̂�GSET) and var(d̂�GSE), which are more accurate than, but converge to, the
asymptotic values. De®ne

~v j � log 2 sin
ë~j

2

� �
ÿ mÿ1

Xm

j�1

log 2 sin
ë~j

2

� �
:

From the ®rst equation in the proof of Theorem 2, we havep
m(d̂�GSET ÿ d�0 ) � ÿpmR9(d�0 )=R 0(~d�). From an analog to (4.10) of Rob,

we have R 0(~d�) � 4mÿ1
Pm

j�1
~v2

j . From Equation (10) and the surrounding
discussion, we have

p
mR9(d�0 ) � 2p

m

Xm

j�1

~v j(2ðIT
å j ÿ 1)
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the variance of which, from the proof of Lemma 8, may be approximated by
4(1:5)mÿ1

P
~v2

j . This leads to the approximation

var(d̂�GSET) � 1:5

�
4
Xm

j�1

~v2
j

 !
: (11)

The analog to Equation (11) for the nontapered estimator is
var(d̂�GSE) � 1=f4Pm

j�1(X j ÿ X )2g, where X j � logf2 sin(ë j=2)g and X �
mÿ1

Pm
j�1 logf2 sin(ë j=2)g.

Table I presents the mean and variance of d̂GSE � d̂�GSE � 1 and d̂GSET

� d̂�GSET � 1, based on the 500 realizations of the ARFIMA processes. The
empirical variances in the table may be compared with the following theoretical
values. For var(d̂GSE), we have 1=4m � 0:00694, and the variance approxima-
tion given above is 0.00959. For var(d̂GSET), we have 1:5=4m � 0.01042, and
the variance approximation from Equation (11) is 0.01685. It should be noted
that the ratio of the variance approximations for d̂GSET and d̂GSE is 1.757,
which markedly exceeds the asymptotic value of 1.5.

When d is small, d̂GSET is often substantially less biased than d̂GSE. The
most extreme example of this occurs when d � 0 and r � 0, so that fytg is a

TABLE I

Properties of Nontapered and Tapered Gaussian Semiparametric Estimators of d for
ARFIMA (1, d, 0) Models, n � 500

d r mean(d̂GSE) var(d̂GSE) Mean(d̂GSET) var(d̂GSET)

0 0 0.2742 0.0403 ÿ0.0013 0.0186
0 0.5 0.2116 0.0255 0.0574 0.0188
0 0.8 0.3534 0.0154 0.3116 0.0198
0.2 0 0.3192 0.0215 0.1994 0.0173
0.2 0.5 0.3098 0.0133 0.2580 0.0175
0.2 0.8 0.5008 0.0108 0.5112 0.0190
0.4 0 0.4389 0.0130 0.3964 0.0174
0.4 0.5 0.4665 0.0107 0.4551 0.0176
0.4 0.8 0.6878 0.0106 0.7091 0.0190
0.6 0 0.6048 0.0114 0.5949 0.0173
0.6 0.5 0.6548 0.0111 0.6533 0.0176
0.6 0.8 0.8833 0.0113 0.9079 0.0191
0.8 0 0.7929 0.0107 0.7945 0.0173
0.8 0.5 0.8453 0.0106 0.8535 0.0174
0.8 0.8 1.0758 0.0110 1.1079 0.0190
1 0 0.9942 0.0101 0.9895 0.0187
1 0.5 1.0459 0.0104 1.0488 0.0187
1 0.8 1.2764 0.0113 1.2999 0.0171
1.2 0 1.1923 0.0101 1.1981 0.0169
1.2 0.5 1.2444 0.0102 1.2553 0.0164
1.2 0.8 1.4414 0.0048 1.4453 0.0056

Based on 500 realizations of the ARFIMA model, AR(1) parameter � r. Nontapered and tapered
estimators d̂GSE and d̂GSET. Estimators are constructed from differenced data, with m � 36.
Approximate and asymptotic variances for d̂GSE: 0.00959 and 0.00694. Approximate and
asymptotic variances for d̂GSET: 0.01685 and 0.01042.
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noninvertible MA(1) process. For a given value of r, the bias of d̂GSE decreases
as d increases, while the bias of d̂GSET remains nearly constant. The relatively
poor bias properties of d̂GSE may be attributed to leakage suffered by the
nontapered periodogram. For a given value of d, the bias of both estimators
typically increases as r increases, due to contamination of the periodogram
from the short-memory component of the spectral density.

The variance of d̂GSE is typically substantially less than that of d̂GSET, as
would be expected from asymptotic theory, and from the variance approxima-
tions. Surprisingly, however, var(d̂GSET) , var(d̂GSE) for (d, r) � (0, 0), (0, 0.5)
and (0.2, 0). In the most extreme case where d � 0, r � 0, the ratio is
var(d̂GSE)=var(d̂GSET) � 2:17. The variance in¯ation in d̂GSE here may be at-
tributed to correlation in the nontapered periodogram induced by leakage. Except
for the cases described above as well as (d, r) � (1:2, 0:8), var(d̂GSE) remains
reasonably constant as d and r are changed. Meanwhile, var(d̂GSET) remains
reasonably constant for all cases except (d, r) � (1:2, 0:8), where the variance of
both estimators is inexplicably small.

Next, we discuss the quality of the theoretical variance expressions, ignoring
the unusual cases described above. The asymptotic variances 1=4m and 1:5=4m,
for var(d̂GSE) and var(d̂GSET) respectively, both strongly understate the actual
observed variances, while the variance approximations (Equation (11) and the
formula following it) are reasonably accurate. For example, when d � 1 and
r � 0, so that fytg is white noise, the ratio of the observed to asymptotic
variances is 1.46 for d̂GSE and 1.79 for d̂GSET, while the ratio of the observed
to approximate variances is 1.05 and 1.11 for the two estimators, respectively.

Next, we consider several one-tailed hypothesis tests regarding d that may be
useful, particularly in an econometric context. The tests, together with their null
hypotheses H0 and alternative hypotheses H1, are as follows.

TLM, H0: d � 0, H1: d . 0.

TDS, H0: d , 0:5, H1: d > 0:5.

TTS, H0: d > 0:5, H1: d , 0:5.

TMR, H0: d > 1, H1: d , 1.

The subscripts used in the names of the tests describe the alternative hypothesis.
Thus TLM is a test for long memory (d . 0) with a null hypothesis of short
memory, TDS is a test for difference stationarity with a null hypothesis of trend
stationarity, TTS is a test for trend stationarity with a null hypothesis of
difference stationarity, and TMR is a test for mean reversion with a null
hypothesis of no mean reversion. For an explanation as to why a series with
d , 1 is referred to as mean-reverting, see, for example, Cheung and Lai (1993).

We performed the hypothesis tests described above based on d̂GSET, assumed
to be normally distributed with a mean of d and a variance given by Equation
(11). All of the tests are one-tailed, at a nominal signi®cance level of 0.05. The
results on test performance given here cannot be directly compared with those
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of Hassler (1993) and Crato and de Lima (1997), due to the variation in
choices on differencing, tapering, type of estimator, and number of frequencies
used.

Table II gives, for each test and model, the proportion of rejections of the
null hypothesis out of the 500 replications. For r � 0 and r � 0:5, all tests are
reasonably powerful and hold their sizes reasonably well, although the power is
unsurprisingly low when d is near to its value under the null hypothesis. In all
cases, the power increases monotonically as d moves away from its null value.
When r � 0:8, the substantial bias in d̂GSET induced by the autoregressive
parameters causes size and power distortions.

For testing a null hypothesis of d � 1, a score test based on ®rst differences
as described in Lobato and Robinson (1998) should be equivalent to the version
of our (Wald) test based on d̂GSE. Although the score test could be carried out
without the computational expense of directly estimating d, the score test
procedure does not yield con®dence intervals for d.

TABLE II

Proportion of Rejections of Null Hypotheses in Tests for d in 500
Replications of ARFIMA (1, d, 0) Series, n � 500

d r Long memory
Difference
stationarity

Trend
stationarity Mean reversion

0 0 0.044 0.000 0.982 1.000
0.2 0 0.468 0.000 0.736 1.000
0.4 0 0.916 0.004 0.192 1.000
0.6 0 0.998 0.186 0.016 0.928
0.8 0 1.000 0.734 0.000 0.470
1 0 1.000 0.968 0.000 0.064
1.2 0 1.000 1.000 0.000 0.002
0 0.5 0.130 0.000 0.964 1.000
0.2 0.5 0.640 0.000 0.578 1.000
0.4 0.5 0.956 0.022 0.090 0.996
0.6 0.5 0.998 0.334 0.002 0.842
0.8 0.5 1.000 0.858 0.000 0.288
1 0.5 1.000 0.986 0.000 0.040
1.2 0.5 1.000 1.000 0.000 0.000
0 0.8 0.746 0.000 0.412 1.000
0.2 0.8 0.976 0.058 0.054 0.982
0.4 0.8 1.000 0.478 0.002 0.698
0.6 0.8 1.000 0.920 0.000 0.174
0.8 0.8 1.000 0.998 0.000 0.014
1 0.8 1.000 1.000 0.000 0.000
1.2 0.8 1.000 1.000 0.000 0.000

AR(1) parameter � r. Tests are one-tailed, at level of signi®cance 0.05. Tests based on
tapered estimators d̂GSET with m � 36, and variance approximation of Equation (11).
Alternative hypotheses are long memory (d . 0), difference stationarity (d > 0:5), trend
stationarity (d , 0:5) and mean reversion (d , 1).
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7. APPLICATIONS

Here, we report results on d̂GSE and d̂GSET for several scienti®c and economic
data sets. Two of the data sets were previously analyzed in Deo and Hurvich
(1998): seasonally adjusted monthly temperatures (in degrees Celsius) for the
northern hemisphere for the years 1854±1989 as given by Beran (1994, pp.
257±61), and the natural logarithms of the daily levels of the S&P 500
composite stock index from 2 July 1962 to 29 December 1995, not adjusted for
dividends, taken from the Center for Research in Security Prices Database. The
remaining data sets are monthly economic series from January 1957 to
December 1997, taken from the International Monetary Fund's International
Financial Statistics CD-ROM. These series are the consumer price index (CPI)-
based in¯ation rates for the USA, the UK and France, as well as the US log real
wages (manufacturing) and log industrial production. All of these series are
seasonally adjusted. The CPI-based in¯ation rate is de®ned as the ®rst difference
of the log of the CPI. Real wages are de®ned as the ratio of hourly earnings to
CPI. Time series plots of the data (not shown here) indicated that the global
temperatures, S&P 500 and industrial production series had roughly linear
trends.

The estimates were calculated as described in Section 6. For each data set,
the value of m was selected based on an examination of a log±log plot of the
tapered periodogram of the differences. Frequencies corresponding to periods of
1 year or less were avoided when this seemed to be warranted, i.e. for the
global temperatures and real wages. For the S&P 500 data, m was taken to be
n4=5, and no discernible seasonal peaks were found in the periodogram. Table
III presents the values of n, m, the estimates of d, and approximate standard
errors from Equation (11) and the formula that follows it.

It is seen from Table III that all series studied exhibited statistically
signi®cant long-memory effects. For the in¯ation series, there were substantial
differences between the nontapered and tapered estimates. For the S&P 500
index, the estimated value of d did not differ signi®cantly from unity,

TABLE III

Nontapered and Tapered Gaussian Semiparametric Estimates of d for Several Data
Sets

Data description n m d̂GSE d̂GSET

Global temperatures 1631 130 0.54 (0.047) 0.45 (0.060)
S&P 500 Stock Index 8431 1383 0.99 (0.014) 0.99 (0.018)
In¯ation, USA 490 40 0.70 (0.093) 0.57 (0.123)
In¯ation, UK 490 40 0.44 (0.093) 0.33 (0.123)
In¯ation, France 490 40 0.43 (0.093) 0.67 (0.123)
Real wages, USA 491 35 1.30 (0.092) 1.43 (0.121)
Industrial production, USA 491 100 1.27 (0.058) 1.34 (0.075)

d̂GSE and d̂GSET are the nontapered and tapered estimates, respectively. Approximate standard errors
are given in parentheses.
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indicating long-term market ef®ciency. The in¯ation series and the global
temperature series had estimated values of d that were signi®cantly greater than
zero and less than one, indicating mean-reverting long memory, but the values
were typically not signi®cantly different from 0.5, so that de®nitive conclusions
on the stationarity of these series cannot be made. Industrial production and
real wages both had estimated values of d that were signi®cantly greater than
unity, indicating a fractional unit root.

8. INVARIANCE TO POLYNOMIAL TRENDS

There are situations where it is desirable that an estimator of d be invariant to
quadratic or higher-order polynomial trends in the levels fxtg. For example,
Velasco (1999a) found evidence of a quadratic trend in logs of nominal US
production worker wages in manufacturing. For each positive integer p, there is
a Kolmogorov taper which is of order p in the sense de®ned in Velasco (1999a,
p. 339). Any taper of order p, if applied to fxtg, will yield a tapered
periodogram that is invariant to polynominal trends of order pÿ 1, provided that
the tapered periodogram is evaluated on the grid ë p, ë2 p, . . .. Thus, for nominal
wages, Velasco (1999a) found it appropriate to use a Kolmogorov taper of order
3 or higher. As a price paid for protection against higher-order trends using
Kolmogorov tapers of order p, the corresponding tapered GSE estimator has an
asymptotic variance that increases with p and exceeds p=4m.

Here, we propose to use the taper fh
pÿ1
t g, i.e. the ( pÿ 1)th power of fhtg

given by Equation (3), to attain invariance to polynominal trends of order
pÿ 1, and compare these tapers with the corresponding Kolmogorov tapers.
Generalizing the case p � 2 considered previously, we apply the taper fh

pÿ1
t g

to the ( pÿ 1)th difference fytgn
t�1 of the original series fxtg. This differencing

will remove any ( pÿ 1)th-order polynominal trends in fxtg, but the resulting
fytg may be strongly noninvertible, a problem that is remedied by tapering. We
will assume throughout this section that fytg is weakly stationary with mean ì
and spectral density f (ë) � G0ëÿ2d�0 as ë! 0�, where d�0 2 (ÿp� 1=2, 1=2).

We note that fh
pÿ1
t g with p � 1 corresponds to no tapering, and that the

modulus of fh
pÿ1
t g with p � 3 yields the cosine bell taper. This helps to

clarify the role of the coef®cients 0.25, 0.5 and 0.25 in Equation (2) for the
cosine bell: they are proportional to the binomial coef®cients

2

0

� �
,

2

1

� �
and

2

2

� �
:

Although fh
pÿ1
t g is not of order p as de®ned in Velasco (1999a), it does

have a Fourier transform that decays rapidly. Speci®cally, de®ne DT
p(ë) �Pn

t�1 h
pÿ1
t exp(iët). It follows from Equation (3), the binomial theorem, and

some elementary calculations that
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DT
p(ë) � 1

2

� � pÿ1

exp
i(n� 1)ë

2

� �Xpÿ1

k�0

pÿ 1

k

� �
(ÿ1)k sin në=2

sin(ë� ëk)=2
: (12)

It follows that DT
p(ë j) � 0 for j � 1, . . ., nÿ p, so that the tapered Fourier

transform of fytg is invariant to shifts in fytg, and therefore to ( pÿ 1)th-order
polynomial trends in fxtg. This invariance is achieved without the need to
restrict attention to a coarse grid of Fourier frequencies, as is necessary for the
Kolmogorov tapers applied to fxtg. To describe the decay properties of DT

p(ë),
we have the following lemma.

Lemma 0. There exists a ®nite constant K depending on p but not on n such
that

jDT
p(ë)j < K min(n, n1ÿpjëjÿp) ë 2 [ÿð, ð]:

Let d̂�GSET, p denote the tapered GSE estimator of d�0 based on fytg as
de®ned in Section 4, but using the taper fh

pÿ1
t g and replacing ë~j by 2ð~j p=n,

where ~j p � j� ( pÿ 1)=2. Using Lemma 0 together with ideas from the proofs
of Theorems 1 and 2, it can be shown that d̂�GSET, p is asymptotically normal
with mean d�0 and variance Öp=4m, where

Öp � lim
n!1

n
Pjh pÿ1

t j4
(
Pjh pÿ1

t j2)2
� ðÃ2(2 pÿ 1)Ã2f(4 pÿ 3)=2g

Ã4f(2 pÿ 1)=2gÃ(4 pÿ 3)
: (13)

For example, we have Ö1 � 1, Ö2 � 3=2, Ö3 � 35=18, Ö4 � 2:31. The ®rst
expression in (13) for Öp is a generalization for complex-valued tapers of the
expression given on p. 101 of Velasco (1999b). We can use the right-hand
expression in (13) together with Stirling's formula to show that, as p!1,
Öp � ( pð=2)1=2. Thus, the asymptotic ef®ciency of d̂�GSET, p relative to the
corresponding tapered GSE estimator based on the Kolmogorov taper of order p,
which exceeds p=Öp, can be made arbitrarily large by taking p suf®ciently
large.

The proof of Lemma 0 (given in the Appendix) reveals a curious duality in
the roles played by differencing for the taper fh

pÿ1
t g. From Equation (12), it is

seen that, apart from a multiplicative factor of modulus bounded by unity,
DT

p(ë) is the ( pÿ 1)th difference of the function 1=sin(ë=2) for ë at a spacing
of one Fourier frequency. The fact that a ( pÿ 1)th-order difference renders
constant any ( pÿ 1)th-order polynomial and annihilates any lower-order
polynomial is a crucial element in our proof that a Taylor expansion of
Equation (12) is of order O(n1ÿpjëjÿp). Curiously, the theme of differencing in
the proof of Lemma 0 seems to mirror the context in which the taper fh

pÿ1
t g

is to be used: for the ( pÿ 1)th difference of a time series that may have
originally possessed a polynomial trend of order up to pÿ 1.
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APPENDIX

Lemmas 1±5 below require A1±A4. Lemmas 6±8 require A19±A49. Lemma 6 is similar
to Equation (A23) of Vel, p. 116, and may be compared with (4.8) of Rob. Lemma 7 is
similar to (4.9) of Rob.

Lemma 1. supÈ1
jT (d�)j!p 0, where T (d�) is de®ned in Equation (6).

Lemma 2. PfinfÈ2
S(d�) < 0g ! 0, where S(d�) is de®ned in the proof of

Theorem 1.

Lemma 3. There exists a ®nite constant C such that, for all suf®ciently large n,
EjIT

j =g~jj < C, j � 1, . . ., m, where g~j � G0ë
ÿ2d�0
~j

.

Lemma 4. E(IT
j ÿ f ~j)= f ~j � O( jÿâ) and EfwT

j wT
å j ÿ á~j=(2ð)g=p f ~j � O( jÿâ), uni-

formly for j � 1, 2, . . ., m.

Lemma 5 Xmÿ1

r�1

~r

m

� �2(Äÿd�0 )�1
1

~r2

����Xr

j�1

(2ðIT
å j ÿ 1)

����!p 0 where ~r � r � 1=2:

Lemma 6. For 1 < r < m,
Pr

j�1(IT
j =g~j ÿ 2ðIT

å j) � Op(r1ÿâ=2 � log r � râ�1=nâ) as
n!1.

Lemma 7. For 1 < r < m,
Pr

j�1(2ðIT
å j ÿ 1) � Op(r1=2) as n!1.

Lemma 8

1p
m

Xm

j�1

v j(2ðIT
å j ÿ 1)!d N(0, Ö)

where Ö � 1:5.

Proof of Lemma 1. For any nonnegative random variable Y , if å < 1, we have

P(jlog Y j > å) < 2P(jY ÿ 1j > å=2): (A1)

Thus, supÈ1
jT (d�)j!p 0 if

sup
È1

���� Ĝ(d�)ÿ G(d�)
G(d�)

����!p 0 (A2)

sup
È1

���� 2(d� ÿ d�0 )� 1

m

Xm

j�1

~j

m

� �2(d�ÿd�0 )

ÿ1

����! 0 (A3)

and ����mÿ1
Xm

j�1

log ~jÿ (log mÿ 1)

����! 0: (A4)

Lemma 2 of Rob establishes (A4). Since d� ÿ d�0 .ÿ1=2 for all d� 2 È1, Lemma 1 of
Rob can be applied to yield (A3). Combining (3.9)±(3.13) of Rob, we ®nd that (A2) holds
provided that
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Xmÿ1

r�1

~r

m

� �2(Äÿd�0 )�1
1

~r2

����Xr

j�1

IT
j

g~j

ÿ 1

 !����!p 0 (A5)

and

1

m

����Xm

j�1

IT
j

g~j

ÿ 1

 !����!p 0: (A6)

It remains to demonstrate (A5) and (A6). We will prove (A5) since the proof of (A6) is
similar. We have

IT
j

g~j

ÿ 1 � 1ÿ g~j

f ~j

� � IT
j

g~j

� 1

f ~j

(IT
j ÿ já~jj2 IT

å j)� (2ðIT
å j ÿ 1):

Using Lemma 3, and arguing as immediately below (3.16) of Rob, we conclude that

E
Xmÿ1

r�1

~r

m

� �2(Äÿd�0 )�1
1

~r2

����Xr

j�1

1ÿ g~j

f ~j

� � IT
j

g~j

����! 0:

Lemma 4 together with the tapered analog of (3.17) of Rob yields

EjIT
j ÿ já~jj2 IT

å jj � O( jÿâ=2 f ~j):

Arguing as in Rob, p. 1637, we ®nd that

E
Xmÿ1

r�1

~r

m

� �2(Äÿd�0 )�1
1

~r2

����Xr

j�1

1

f ~j

(IT
j ÿ já~jj2 IT

å j)

����! 0:

It remains to show thatXmÿ1

r�1

~r

m

� �2(Äÿd�0 )�1
1

~r2

����Xr

j�1

(2ðIT
å j ÿ 1)

����!p 0: (A7)

The validity of (A7) is established by Lemma 5. This completes the proof of Lemma 1.

Proof of Lemma 2. Lemma 2 follows from Lemmas 3 and 4, using a proof along
the lines given in Rob, pp. 1638±40, and in the proof of Theorem 5 of Vel.

Proof of Lemma 3. Lemma 3 follows from an argument similar to that used in the
proof of Robinson (1995a), Theorem 2.

Proof of Lemma 4. The ®rst part of Lemma 4 follows from the proof of Theorem
6, part (a) of Velasco (1999a, pp. 341, 354±360). The original result was given for a
tapered Fourier transform of the levels fxtg, assumed to be invertible, using a taper of
order p > 2 as de®ned in Velasco (1999a, p. 339). Velasco's original proof goes through
with a few minor changes for the wT

j , which are based on the differences fytg, even in
the noninvertible case ÿ1:5 , d�0 < ÿ0:5. De®ne

KT(ë) � 1

2ð
Pjhuj2 jD

T(ë)j2

where DT(ë) �Pn
t�1 ht exp(iët). It follows from Lemma 0 with p � 2 that KT(ë)

< constant 3 minfn, nÿ3jëjÿ4g for ë 2 [ÿð, ð]. (An identical bound holds for the tapers
of order p � 2 considered in Velasco (1999a).) It can be shown that
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DT(ë) � 1

2
Dn(ë)ÿ 1

2
Dn(ë� ë1) exp ÿi

ë1

2

� �
where

Dn(ë) � exp i(n� 1)
ë

2

� �
sin(në=2)

sin(ë=2)

is the Dirichlet kernel. It follows after some algebraic manipulations that KT(:)
is symmetric about ë � ÿë1=2, i.e. that KT(ÿë1=2 � ë) � KT(ÿë1=2 ÿ ë). Since� ð
ÿð KT(ë) dë � 1, we have

E(IT
j ÿ f ~j) �

�ð
ÿð
f f (ë)ÿ f j�1=2gKT(ë j ÿ ë) dë:

The interval of integration [ÿð, ð] is partitioned into the subintervals [ÿð, ÿå],
[ÿå, ÿë j=2], [ÿë j=2, ë( j�1)=2], [ë( j�1)=2, ë(3 j�1)=2], [ë(3 j�1)=2, å] and [å, ð], where å is a
®xed number in (0, ð) such that f (ë) < constant 3 jëjÿ2d�0 for jëj 2 (0, å). Bounds in
these subintervals for the absolute value of the above integral can be obtained as in the
proof of Velasco (1999a), with a slight modi®cation for the subinterval [ë( j�1)=2, ë(3 j�1)=2],
which we now present. Using Assumption A1, we have�����ë(3 j�1)=2

ë( j�1)=2

f f (ë)ÿ f j�1=2gKT(ë j ÿ ë) dë

����
�
�����ë j=2

ÿë j=2

f f (ë j�1=2 � ë)ÿ f (ë j�1=2)gKT(ÿë1=2 ÿ ë) dë

����
�
�����ë j=2

ÿë j=2

fë f 9(ë j�1=2)� O(ë
ÿâÿ2d�0
j�1=2

jëjâ)gKT(ÿë1=2 ÿ ë) dë

����
< j f 9(ë~j)j

�����ë j=2

ÿë j=2

ëKT(ÿë1=2 ÿ ë) dë

����� ë
ÿâÿ2d�0
~j

O

�ë j=2

ÿë j=2

jëjâKT(ÿë1=2 ÿ ë) dë

( )
:

The ®rst term on the right is zero, since the integral is�ëj=2

0

ëfKT(ÿë1=2 ÿ ë)ÿ KT(ÿë1=2 � ë)g dë � 0:

Using the bound given earlier for KT, the second term on the right can be shown to be
O( f ~j jÿâ). Using this together with the bounds for the other subintervals, we obtain the
desired result, E(IT

j ÿ f ~j)= f ~j � O( jÿâ).
The proof of the second part of Lemma 4 is similar. First, it can be shown that

E wT
j wT

å j ÿ
á~j

2ð

� �
�
�ð
ÿð

á(ë)

2ð
ÿ á(ë~j)

2ð

� �
KT(ë j ÿ ë) dë:

The bound analogous to the one shown above can be obtained from Assumptions A1 and
A2, which imply that for ë 2 [ÿë j=2, ë j=2],

á(ë j�1=2 ÿ ë)ÿ á(ë j�1=2) � ÿëá9(ë j�1=2)� O(ë
ÿâÿd�0
j�1=2

jëjâ):

This leads to the conclusion that�����ë(3 j�1)=2

ë( j�1)=2

á(ë)

2ð
ÿ á(ë j�1=2)

2ð

� �
KT(ë j ÿ ë) dë

���� � O(
p

f ~j jÿâ):
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Bounds for the other subintervals can be obtained in a straightforward manner.

Proof of Lemma 5. We have

2ðIT
å j ÿ 1 � 1X

jhuj2
Xn

t�1

jhtj2å2
t ÿ 1

0B@
1CA� 1X

jhuj2
XX

s6� t

hs ht expfi(sÿ t)ë jgåså t:

Thus,Xmÿ1

r�1

~r

m

� �2(Äÿd�0 )�1
1

~r2

����Xr

j�1

(2ðIT
å j ÿ 1)

���� <

���� 1X
jhuj2

Xn

t�1

jhtj2å2
t ÿ 1

����Xm

r�1

~r

m

� �2(Äÿd�0 )�1
1

~r

�
Xmÿ1

r�1

~r

m

� �2(Äÿd�0 )�1
1

~r2
X
jhuj2

����XX
s6� t

hs htåså t

Xr

j�1

expfi(sÿ t)ë jg
����: (A8)

By Theorem 2.23, p. 44, of Hall and Heyde (1980),

1X
jhuj2

Xn

t�1

jhtj2å2
t ÿ 1!p 0

so the ®rst term on the right of (A8) is op(1). Now,

E

����XX
s 6� t

hs htåså t

Xr

j�1

expfi(sÿ t)ë jg
����2

< 2
XX

s 6� t

jhsj2jhtj2
����Xr

j�1

expfi(sÿ t)ë jg
����2

< 2
Xn

s�1

Xn

t�1

����Xr

j�1

expfi(sÿ t)ë jg
����2

� 2
Xr

j�1

Xr

k�1

Xn

s�1

Xn

t�1

expfi(sÿ t)ë jg expfÿi(sÿ t)ëkg

� 2
Xr

j�1

Xr

k�1

Xn

s�1

exp(isë jÿk)
Xn

t�1

exp(ÿitë jÿk) � 2rn2

so the expectation of the second term on the right of (A8) is

O
Xm

r�1

r

m

� �2(Äÿd�0 )�1 1

r2 n

p
(rn2)

( )
� Ofm2(d�0ÿÄ)ÿ1 � (log m)mÿ1=2g � o(1):

Proof of Lemma 6. We have

E

����Xr

j�1

IT
j

g~j

ÿ 2ðIT
å j

 !���� <
Xr

j�1

E

���� IT
j

f ~j

ÿ 2ðIT
å j

�����Xr

j�1

E

���� IT
j

g~j

ÿ IT
j

f ~j

����:
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Furthermore,

E

���� IT
j

f ~j

ÿ 2ðIT
å j

���� � 1

f ~j

EjIT
j ÿ 2ð f ~j I

T
å jj �

1

f ~j

EjIT
j ÿ já~jj2 IT

å jj � O( jÿâ=2)

by the tapered analog to (3.17) of Rob, and Lemma 4. Thus,Xr

j�1

EjIT
j = f ~j ÿ 2ðIT

å jj � O(r1ÿâ=2 � log r)

where the log r term appears if â � 2. Using Lemma 3, we obtain

E
Xr

j�1

���� IT
j

g~j

ÿ IT
j

f ~j

���� � E
Xr

j�1

IT
j

f ~j

���� f ~j

g~j

ÿ 1

����
� O

Xr

j�1

���� f ~j

g~j

ÿ 1

����
 !

� O
Xr

j�1

ëâ~j

 !
� O(nÿâ râ�1)

since, by Assumption A19, f ~j=g~j ÿ 1 � O(ëâ~j ).

Proof of Lemma 7. De®ne ds � (
Pjhuj2)ÿ1

Pr
j�1 exp(isë j). Then

Xr

j�1

(2ðIT
å j ÿ 1) �

Xr

j�1

X
jhuj2

 !ÿ1Xn

t�1

htå t exp(ië j t)
Xn

s�1

hsås exp(ÿië j s)ÿ 1

8<:
9=;

� r
X
jhuj2

 !ÿ1Xn

t�1

jhtj2(å2
t ÿ 1)�

Xn

t�2

Xtÿ1

s�1

å tås2 Re(ht hsd tÿs): (A9)

Clearly, jdsj < r=
Pjhuj2. Furthermore, jdsj � jd nÿsj for all s, and for 1 < s < n=2 we

have

jdsj � 2

n

����Xr

j�0

exp(i jës)ÿ 1

���� <
2

n
(jsin(ës=2)jÿ1 � 1) <

3

s
:

The ®rst term on the right-hand side of (A9) has mean zero and a variance of or-
der O(r2=n), since

Pjhuj2 � O(n) and jhtj < 1. Note that jRe(ht hsd tÿs)j <
jht hsd tÿsj < jd tÿsj. The second term on the right-hand side of (A9) has mean zero and
a variance of order

O
Xn

t�2

Xtÿ1

s�1

jd tÿsj2
 !

� O n
Xn

s�1

jdsj2
 !

� O n
n

r

r

n

� �2

�n
X1
[n=r]

sÿ2

8<:
9=; � O(r):

Proof of Lemma 8. De®ne

cr � 2X
jhuj2

1p
m

Xm

j�1

v j exp(ië j r):

Since
Pm

j�1v j � 0, we have c0 � 0, and
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2p
m

Xm

j�1

v j(2ðIT
å j ÿ 1) � 2p

m
2ð
Xm

j�1

v j I
T
å j

� 1X
jhuj2

2p
m

Xm

j�1

v j

Xn

t�1

htå t exp(ië j t)
Xn

s�1

hsås exp(ÿië j s)

�
Xn

t�1

Xn

s�1

htå t hsåsctÿs

� c0

Xn

t�1

jhtj2å2
t �
Xn

t�1

X
s , t

å tås2 Re(ht hsctÿs) � 2
Xn

t�1

zt

where zt � å t

P
s , tåsC(s, t) with z1 � 0, and

C(s, t) � Re(ht hsctÿs) � 1

2
(ht hsctÿs � ht hsctÿs):

Since få tg is a martingale difference sequence, so is fztg. We need to show thatPn
t�1zt!d N(0, Ö). This will follow from bothXn

t�1

E(z2
t jFtÿ1)ÿÖ!p 0 (A10)

Xn

t�1

Efz2
t÷(jztj. ä)g ! 0 for all ä. 0 (A11)

where ÷(:) denotes an indicator function (cf. (4.12) and (4.13) of Rob). First we prove
(A10). We have

Xn

t�1

E(z2
t jFtÿ1)ÿÖ �

Xn

t�1

Xtÿ1

s�1

C2(s, t)ÿÖ
( )

�
Xn

t�1

Xtÿ1

s�1

(å2
s ÿ 1)C2(s, t)

�
Xn

t�1

Xtÿ1

s�1

Xtÿ1

r 6�s

åsårC(s, t)C(r, t):

Denote the terms on the right-hand side of the equation above by T1, T2 and T3,
respectively. At the end of this proof, we will show that T1 ! 0. As for T2, we have
E(T2) � 0, and we can write

T2 �
Xnÿ1

s�1

(å2
s ÿ 1)

Xn

t�s�1

C2(s, t) �
Xnÿ1

t�1

(å2
t ÿ 1)

Xn

s� t�1

C2(t, s) �
Xnÿ1

t�1

(å2
t ÿ 1)

Xnÿ t

u�1

C2(t, u� t):

Since, for v , t, E(å2
t ÿ 1)(å2

v ÿ 1) � 0, we conclude that

var(T2) � O
Xnÿ1

t�1

Xnÿ t

s�1

C2(t, s� t)

( )2
24 35:

Since C(t, s� t) � Re(hs� t htcs) and since jhtj < 1 for all t, we have
jC2(t, s� t)j < jcsj2. Thus,
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var(T2) � O
Xnÿ1

t�1

Xnÿ t

s�1

jcsj2
 !2

8<:
9=;:

As in (4.20) of Rob, jcsj � O(m1=2 log m nÿ1), so the argument on p. 1646 of Rob with
jcsj in place of the cs of Rob implies that var(T2)! 0, so T2 � op(1).

As for T3, we have E(T3) � 0. Furthermore, var(T3) � o(1) by an argument that
proceeds as follows. First, an expression analogous to that below Equation (4.22) of Rob
for var(T3) is obtained, with C(:, :) replacing his cr. Next, the bound jC(t, s� t)j < jcsj
allows us to bound var(T3) using the bounds of (4.23) and the equation immediately
below of Rob (pp. 1646±47), which continue to hold when his c2

s is replaced by our
jcrj2 as can be shown using the analogs of his bounds (4.20)±(4.22).

The proof of (A11) follows the argument of Rob, p. 1647. We check the suf®cient
condition

Pn
t�1 E(z4

t )! 0. The left-hand side of this is bounded by constant
3 n(

Pn
t�1jctj2)2, by an argument similar to the one given above, combined with the

arguments of Rob, p. 1647. This expression, in turn, is Of(log m)4=ng by an analog to
(4.22) of Rob, p. 1646.

We now prove that T1 ! 0. We use ideas from the proof of Lemmas 6 and 7 of Vel
(pp. 121±126), although our argument is simpler due to the special properties of the
new taper. For arbitrary complex sequences fá tg, fâsg, fã tÿsg it can be shown thatXn

t�1

Xtÿ1

s�1

á tâsã tÿs �
Xnÿ1

t�1

â t

Xnÿ t

s�1

ás� tãs: (A12)

It can also be shown thatXnÿ1

t�1

jhtj2
Xnÿ t

s�1

jhs� tj2 cos(së j) � 1

2

����Xn

t�1

jhtj2 exp(ië j t)

����2 ÿ 1

2

Xn

t�1

jhtj4 (A13)

Re
Xnÿ1

t�1

h
2

t

Xnÿ t

s�1

h2
t�s exp(ÿië j s) � 1

2

����Xn

t�1

h
2

t exp(ië j t)

����2 ÿ 1

2

Xn

t�1

jhtj4: (A14)

Using (A12)±(A14), and noting that C2(s, t) is real, we obtain

4
Xn

t�1

Xtÿ1

s�1

C2(s, t) �
Xn

t�1

Xtÿ1

s�1

(h2
t h

2

s c2
tÿs � h

2

t h2
s c2

tÿs � 2jhtj2jhsj2jctÿsj2)

� 2 Re
Xnÿ1

t�1

h
2

t

Xnÿ t

s�1

h2
t�sc2

s � 2
Xnÿ1

t�1

jhtj2
Xnÿ t

s�1

jhs� tj2jcsj2

� 4

m(
Pjhuj2)2

Xm

j�1

Xm

k�1

v jvk

3 2 Re
Xnÿ1

t�1

h
2

t

Xnÿ t

s�1

h2
t�s exp(ÿië j�k s)� 2

Xnÿ1

t�1

jhtj2
Xnÿ t

s�1

jhs� tj2 cos(së jÿk)

( )

� 4

m(
Pjhuj2)2

Xm

j�1

Xm

k�1

v jvk

3

����Xn

t�1

h
2

t exp(ië j�k t)

����2 � ����Xn

t�1

jhtj2 exp(ië jÿk t)

����2 ÿ 2
Xn

t�1

jhtj4
( )

:
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For the new taper fhtg given by Equation (3), and for j, k in the range 1, . . ., m, it can be
shown that����Xn

t�1

h
2

t exp(ië j�k t)

����2 � ����Xn

t�1

jhtj2exp(ië jÿk t)

����2

� n2

16
÷( j� k � 2)� n2

4
÷( jÿ k � 0)� n2

16
÷(j jÿ kj � 1):

Since

Xm

j�1

Xm

k�1

v jvk �
Xm

j�1

v j

 !2

� 0

and since
Pjhuj2 � n=2, we obtain

4
Xn

t�1

Xtÿ1

s�1

C2(s, t) � 4

m(n=2)2

n2

16
v2

1 �
n2

4

Xm

j�1

v2
j �

n2

8

Xmÿ1

j�1

v jv j�1

0@ 1A
� O

log2 m

m

� �
� 4

m

Xm

j�1

v2
j(1� 0:5)� O

1

m

Xmÿ1

j�1

jv jj jv j�1 ÿ v jj
0@ 1A:

From Rob, p. 1645,

1

m

Xm

j�1

v2
j � 1� O

log2 m

m

� �
:

Furthermore,

jv j�1 ÿ v jj � jlogf(~j� 1)=~jgj � jlog(1� 1=~j)j � O(1= j):

Thus, Xn

t�1

Xtÿ1

s�1

C2(s, t) � 1:5� O
log2 m

m

� �
� Ö� o(1):

Proof of Lemma 0. We suppose p . 1, since it is well known that Lemma 0 holds
when p � 1. Since jhtj < 1, it follows that jh pÿ1

t j < 1 and hence jDT
p(ë)j < n. We now

show that jDT
p(ë)j < Kn1ÿ pjëjÿp for 1=n < jëj < ð. From Equation (12), we have

jDT
p(ë)j <

����Xpÿ1

k�0

pÿ 1

k

� �
(ÿ1)k 1

sin(ë� ëk)=2

����:
If ~g(ë) � 1=sin(ë) and ~g(L)(ë) � @ L ~g(ë)=@ëL, then by Taylor's theorem with remainder,

~g
ë� ëk

2

� �
� 1

sin(ë=2)
�
Xpÿ1

L�1

~g(L)(ë=2)

L!

ðk

n

� �L

� ~g( p)(îk)

p!

ðk

n

� � p

where ë=2 < îk < (ë� ëk)=2. It follows that
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Xpÿ1

k�0

pÿ 1

k

� �
(ÿ1)k 1

sin(ë� ëk)=2

�
Xpÿ1

L�1

~g(L)(ë=2)

L!

ð

n

� �
L Xpÿ1

k�0

pÿ 1

k

� �
(ÿ1)k k L �

Xpÿ1

k�0

pÿ 1

k

� �
(ÿ1)k ~g( p)(îk)

p!

ðk

n

� � p

:

(A15)

We will show below that

j~g(L)(ë)j < CL

sinL�1(ë)
L > 1, ë 2 (0, ð] (A16)

where CL is a constant depending on L, and thatXpÿ1

k�0

pÿ 1

k

� �
(ÿ1)k k L � 0 1 < L < pÿ 2

(ÿ1) pÿ1( pÿ 1)! L � pÿ 1:

�
(A17)

Thus, the ®rst term on the right-hand side of Equation (A15) is

~g( pÿ1)(ë=2)(ð=n) pÿ1(ÿ1) pÿ1 � Ofn1ÿp sinÿ p(ë=2)g � O(n1ÿpjëjÿp)

and the second term is

O nÿ p
Xpÿ1

k�0

j~g( p)(îk)jk p

( )
� O(nÿ pjëjÿ( p�1)) � O(n1ÿpjëjÿp)

since jëj. 1=n.
It remains to prove Equations (A16) and (A17). It can be shown by induction that

~g(L)(ë) � (ÿ1)L L! sinÿ(L�1)(ë) cosL(ë)� ~h(ë)

where ~h(ë) is a linear combination of products of the form sinÿa(ë) cosb(ë) with
0 , a < L, 0 < b < L, so Equation (A16) holds. To prove Equation (A17), for a given L,
de®ne h(x) � x L, a polynomial in the real variable x. De®ne the differencing operator Ä
by Äh(x) � h(x)ÿ h(xÿ 1). Then Äh(x) is a polynomial in x of order Lÿ 1 with leading
term Lx Lÿ1. It follows inductively that ÄL h(x) � L! and Äm h(x) � 0 if m . L. For any
integer m > 1,

Äm h(x)jx�m �
Xm

k�0

m

k

 !
(ÿ1)k h(mÿ k)

�
Xm

k�0

m

k

 !
(ÿ1)mÿk h(k)

� (ÿ1)m
Xm

k�0

m

k

 !
(ÿ1)k k L

�
0 1 < L < mÿ 1

m! L � m:

(
(A18)

Equation (A17) follows on setting m � pÿ 1 in Equation (A18).
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