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Abstract

Large amounts of (often valuable) information are stored in web-accessible text databases. “Meta-
searchers” provide unified interfaces to query multiple such databases at once. For efficiency, metasearch-
ers rely on succinct statistical summaries of the database contents to select the best databases for each
query. So far, database selection research has largely assumed that databases are static, so the associated
statistical summaries do not need to change over time. However, databases are rarely static and the sta-
tistical summaries that describe their contents need to be updated periodically to reflect content changes.
In this article, we first report the results of a study showing how the content summaries of 152 real web
databases evolved over a period of 52 weeks. Then, we show how to use “survival analysis” techniques
in general, and Cox’s proportional hazards regression in particular, to model database changes over time
and predict when we should update each content summary. Finally, we exploit our change model to
devise update schedules that keep the summaries up to date by contacting databases only when needed,
and then we evaluate the quality of our schedules experimentally over real web databases.

1 Introduction

A substantial amount of textual information on the web is stored in databases. While some databases are
“crawlable” a significant fraction is not indexed by search engines. One way to provide one-stop access to
the information in text databases (crawlable or not) is through metasearchers, which can be used to query
multiple databases simultaneously. The database selection step of the metasearching process, in which the
best databases to search for a given query are identified, is critical for efficiency, since a metasearcher typically
provides access to a large number of databases. The state-of-the-art database selection algorithms rely on
aggregate statistics that characterize the database contents. These statistics, which are known as content
summaries [GGMT99] (or, alternatively, as resource descriptions [Cal00]), usually include the frequency of
the words that appear in a database, plus perhaps other simple statistics such as the number of documents
in the database. How to update these summaries, which provide sufficient information to decide which
databases are the most promising for evaluating a given query, is the focus of this article.

So far, database selection research has largely assumed that databases are static. However, real-life
databases are not always static and, accordingly, the statistical summaries that describe their contents need
to be updated periodically to reflect database content changes. Defining schedules for updating the database
content summaries is a challenging task, because the rate of change of the database contents might vary
drastically from database to database. Furthermore, finding appropriate such schedules is important to keep
content summaries up to date without overloading databases unnecessarily to regenerate summaries that are
already (at least close to) up to date.

In this article, we start by presenting an extensive study on how the content of 152 real web databases
evolved over a period of 52 weeks. Given that small changes in the databases might not necessarily be
reflected in the (relatively coarse) content summaries, we examined how these summaries change over time.
Specifically, we analyzed the evolution of “complete” content summaries, which can be derived when we have
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full access to the database contents (e.g., via “crawlers” [Cha02]), as well as the evolution of “approximate”
content summaries, which are used when database access is limited (e.g., as is the case for “hidden web”
databases [Ber01]). Our study shows that summaries indeed change and that old summaries eventually
become obsolete, which then calls for a content summary update strategy.

In our approach for modeling content changes, we resort to the field of statistics named “survival analysis.”
Using the Cox proportional hazards regression model [Cox72], we show that database characteristics can be
used to predict the pattern of change of the summaries. We then exploit our change models to develop
summary update strategies that work well even under a resource-constrained environment. Our strategies
attempt to contact the databases only when needed, thus minimizing the communication with the databases.
Our experimental evaluation, over 152 real web databases, shows the merits of our update strategies. Our
experiments include a comparison with a technique from the literature developed for a different but related
problem, namely how to decide when to recrawl (and update a search engine index of) crawlable web sites.
We also develop and evaluate a machine learning approach for updating content summaries. Overall, our
experiments show that our survival analysis approach significantly outperforms all the alternatives that we
considered.

In brief, the contributions of this article are as follows:

• In Section 3, we report the results of our extensive experimental study on how the content summaries
of 152 real web databases evolved over a period of 52 weeks.

• In Section 4, we use survival analysis techniques to discover database properties that help predict the
rate of change of database content summaries. Our analysis examines the evolution of both complete
and approximate content summaries. We show how to devise a change model and schedule content
summary updates accordingly. The resulting update strategies attempt to contact the databases only
when strictly needed, thus avoiding wasting resources unnecessarily.

• In Section 5, we outline alternative approaches for updating content summaries. In particular, we
use machine learning and cast the update problem as a binary classification task, with classification
features suitably derived from the databases by leveraging the survival analysis framework.

• In Section 6, we present an extensive experimental evaluation, which compares the proposed survival
analysis approach with the Section 5 alternatives, which include our highly-optimized machine learning
technique. The experimental results establish the superiority of our survival analysis approach.

Finally, Section 7 discusses related work, while Section 8 provides further discussion and concludes the article.

2 Background on Content Summary Construction

This section introduces the notation and necessary background for this article. We first define the notion
of a content summary for a text database and briefly summarize how database selection algorithms exploit
these summaries. Then, we review how to approximate database content summaries via querying.

Definition 2.1 The content summary C(D) of a database D consists of:

• The actual number of documents in D, |D|, and

• For each word w, the number of D documents f(w, D) that include w.

For efficiency, a metasearcher should evaluate a query only on a relatively small number of databases that
are relevant to the query. The database selection component of a metasearcher typically makes the selection
decisions using the information in the content summaries, as the following example illustrates:

Example 2.2 Consider the query [cassini saturn] and two databases D1 and D2. Based on the content
summaries of these databases (Table 1), a database selection algorithm may infer that D2 is a promising
database for the query, since each query word appears in many D2 documents. In contrast, D1 will probably
be deemed not as relevant, since it contains only up to a handful of documents with each query word.
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D1, with |D1|=51,500
w f(w, D1)
algorithm 7,210
cassini 5
saturn 2

D2, with |D2|=5,730
w f(w, D2)
algorithm 2
cassini 3,260
saturn 3,730

Table 1: A fragment of the content summaries of two databases.

Database selection algorithms work best when the content summaries are accurate and up to date.
The most desirable scenario is when each database either (1) is crawlable, so that we can (periodically)
download its contents and generate content summaries, or (2) exports these content summaries directly
and reliably (e.g., using a protocol such as STARTS [GCGMP97]). Unfortunately, the so-called hidden-web
databases [GIS03], which abound on the web, are not crawlable and only provide access to their documents
via querying; furthermore, no protocol is widely adopted for web-accessible databases to export metadata
about their contents. Hence, it is generally not possible to extract the complete content summary of a
hidden-web database.

To characterize the contents of a hidden-web database, an interesting observation is that we can easily
extract document samples from the database via querying. In turn, we can approximate the content summary
of the database using the documents in a sample. In this article, we use the “hat” notation to refer to an
approximate, sample-based content summary:

Definition 2.3 An approximate, sample-based content summary Ĉ(D) of a database D consists of:

• An estimate ˆ|D| of the number of documents in D, and

• For each word w, an estimate f̂(w, D) of f(w, D).

The Ĉ(D) estimates are computed from a sample of the documents in D.

In this article, we study two state-of-the-art strategies for constructing approximate, sample-based content
summaries:

• Query-Based Sampling (QBS), as presented in [CC01]: QBS starts by choosing words randomly from a
dictionary and uses them to query a given database until at least one document is retrieved. Then, QBS
continues to query the database using words that are randomly chosen from the retrieved documents.
Each query retrieves up to k previously unseen documents (we set k = 4 in our implementation
following the suggestions in [CC01], who experimented with other values of k as well). Sampling
stops after retrieving sufficiently many documents (we stop after retrieving 300 documents, again
following [CC01]). In our experiments, sampling also stops when 500 consecutive queries retrieve no
new documents. (Getting no new results for 500 random queries is a signal that QBS might have
retrieved the majority of the documents in the database.)

• Focused Probing (FPS), as presented in [IG02]: Instead of sending (pseudo-) randomly picked words
as queries, FPS derives queries from a classifier learned over a topic hierarchy. Thus, queries are
associated with specific topics. For example, a query [breast cancer] is associated with the category
“Health.” We retrieve the top-k previously unseen documents for each query (we set k = 4 in our
implementation, following the suggestions in [IG02]) and, at the same time, keep track of the number
of matches generated by each query. When the queries related to a category (e.g., “Health”) generate
a large number of matches, probing continues for its subcategories (e.g., “Diseases” and “Fitness”).
The output of the algorithm is both an approximate content summary and the classification of the
database in a hierarchical classification scheme. In our experiments, the queries are derived from an
SVM classifier following the techniques described in [GIS03], over the 72-node hierarchy also used
in [IG02, GIS03].

In addition to the QBS and FPS approximate content summaries, we also study the evolution of the
complete database content summaries (Definition 2.1), to which we will refer as complete (CMPL). To derive
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Domain com edu gov misc org

% 47.3% 13.1% 17.1% 6.8% 15.7%

Table 2: Domain distribution in our data set.

the complete content summary of a database, we retrieve all the documents from the database and compute
the document frequency of each word. This technique requires that each database either allows direct access
to its documents or supports the functionality of a protocol such as STARTS [GCGMP97].

Next, we present the results of our study, which examined how CMPL, QBS, and FPS content summaries
of 152 text databases changed over a period of 52 weeks.

3 Studying Content Changes of Real Text Databases

One of the goals of this article is to study how text database changes are reflected over time in the database
content summaries. First, we discuss our data set in detail (Section 3.1). Then, we report our study of the
effect of database changes on the content summaries (Section 3.2). The conclusions of this study will be
critical for Section 4, when we discuss how to model content summary change patterns.

3.1 Data for our Study

Our study and experiments involved 152 searchable databases, whose contents were downloaded weekly from
October 2002 through October 2003. These databases have previously been used in a study of the evolution
of web pages [NCO04].

The databases in our study were —roughly— the five top-ranked web sites in a subset of the topical
categories of the Google Directory, using the same topical categories as in [GIS03]. Google Directory, in
turn, reuses the hierarchical classification of web sites from the Open Directory Project. (Please refer
to [NCO04] for more details on the rationale behind the choice of these web sites.) From these web sites,
we picked only those sites that provided a search interface over their contents, which are needed to generate
sample-based content summaries. Also, since we wanted to study content changes, we only selected databases
with crawlable content, so that every week we can retrieve the full database contents using a crawler. A
complete list of the sites included in our experiments is available at http://webarchive.cs.ucla.edu/. Table 2
shows the breakdown of web sites in the set by high-level DNS domain, where the misc category represents
a variety of relatively small domains (e.g., mil, uk, dk, and jp). Similarly, Table 3 shows the breakdown of
web sites by topical category, as assigned by the Google Directory. In this case, the misc category represents
various small topical categories (e.g., world, shopping, and games).

We downloaded the contents of the 152 web sites every week for a period of one year. For each web site,
we started our crawl from the root web page and continued to download pages —in breadth-first order—
until either we exhausted all pages within the site or we downloaded 200,000 pages from the site.1 By
following all the links recursively starting from the root page of each site we believe that we captured a
relatively complete version of the contents of each site.2 Each weekly snapshot consisted of three to five
million pages, or around 65 GB before compression, for a total over one year of almost 3.3 TB of history
data. We treated each web site as a database, and created —each week— the complete content summary
C(D) of each database D by downloading and processing all of its documents. This data allowed us to study
how the complete content summaries of the databases evolved over time. In addition, we also studied the
evolution over time of an approximate content summary Ĉ(D) of each database D, computed weekly3 using
either QBS or FPS. To reduce the effect of sampling randomness of QBS in our experiments, we create five
QBS content summaries of each database each week, in turn derived from five document samples, and report
the various metrics in our study as averages over these five summaries.

1Only four web sites were affected by this efficiency-motivated page-download limitation: hti.umich.edu, eonline.com,
pbs.org, and intelihealth.com.

2We are not aware of any sites in our data set containing pages that are not reachable from the root page of the site.
3To compute the approximate content summaries, we indexed and queried the data using ht://Dig (http://www.htdig.org/),

an off-the-shelf indexing package.
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Category % Category %

computers 22.5% reference 7.3%
science 17.2% sports 5.3%
health 9.9% news 4.0%
arts 8.6% business 4.0%

regional 7.9% recreation 2.0%
society 7.3% misc 4.0%

Table 3: Category distribution in our data set.

3.2 Measuring Content Summary Change

We now turn to measuring how the database content summaries —both the complete and approximate
versions— evolve over time. For this, we resort to a number of metrics of content summary similarity and
quality from the literature. We discuss these metrics and the results for the 152 web databases next.

For our discussion, we refer to the “current” and complete content summary of a database D as C(D),
while O(D, t) is the complete summary of D as of t weeks into the past. The O(D, t) summary can be
considered as an (old) approximation of the (current) C(D) summary, simulating the realistic scenario where
we extract a summary for a database D and keep it unchanged for t weeks. In the following definitions,
Wo is the set of words that appear in O(D, t), while Wc is the set of words that appear in C(D). Values
fo(w, D) and fc(w,D) denote the document frequency of word w in O(D, t) and C(D), respectively.

3.2.1 Recall

An important property of the content summary of a database is its coverage of the current database vo-
cabulary. An up-to-date and complete content summary always has perfect recall, but an old summary
might not, since it might not include, for example, words that appear only in new database documents. The
unweighted recall (ur) of O(D, t) with respect to C(D) is the fraction of words in the current summary that
are also present in the old summary: ur = |Wo∩Wc|

|Wc| . This metric gives equal weight to all words and takes
values from 0 to 1, with a value of 1 meaning that the old content summary contains all the words that
appear in the current content summary, and a value of 0 denoting no overlap between the summaries. An
alternative recall metric, which gives higher weight to more frequent terms, is the weighted recall (wr) of
O(D, t) with respect to C(D): wr =

∑
w∈Wo∩Wc

fc(w,D)∑
w∈Wc

fc(w,D) . We will use analogous definitions of unweighted and

weighted recall for a sample-based content summary Ô(D, t) of database D obtained t weeks into the past
with respect to the current content summary C(D) for the same database.

The CMPL lines in Figures 1(a) and 1(b) show the weighted and unweighted recall, respectively, for
complete t-week-old summaries with respect to the “current” summary, as a function of t and averaged over
every possible choice of “current” summary. Predictably, both the weighted and unweighted recall values
decrease as t increases. For example, on average, 1-week-old summaries have unweighted recall of 91%,
while older, 25-week-old summaries have unweighted recall of about 80%. The weighted recall figures are
higher, as expected, but still significantly less than 1: this indicates that the newly introduced words have
low frequencies, but constitute a substantial fraction of the database vocabulary as well.

The QBS and FPS lines in Figure 1 show the corresponding results for QBS and FPS content summaries.
As expected, the values for all the approximate, sample-based summaries are substantially smaller than those
for the complete summaries. Also, the recall values of the sample-based summaries do not change much over
time, because the sample-based summaries are only marginally complete to start with and do not suffer
a significant drop in recall over time. This shows that the inherent incompleteness of the sample-based
summaries “prevails” over the incompleteness introduced by time.

Another interesting observation is that recall figures initially decrease (slightly) for approximately 20
weeks, then remain stable, and then, surprisingly, increase, so that a 50-week old content summary has
higher recall than a 20-week old one, for example. This unexpected result is due to an interesting periodicity:
some events (e.g., “Christmas,” “Halloween”) appear at the same time every year, allowing summaries that
are close to being one year old to have higher recall than their younger counterparts. This effect is only
visible in the sample-based summaries, which cover only a small fraction of the database vocabulary, and is
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Figure 1: The weighted and unweighted recall of content summary O(D, t) (CMPL), and of the approximate
content summaries Ô(D, t) (QBS and FPS ), with respect to the “current” content summary C(D), as a
function of time t and averaged over each database D in the data set.

not observed in the complete summaries, mainly because they are larger and are not substantially affected
by a relatively small number of words.

3.2.2 Precision

Another important property of the content summary of a database is the precision of the summary vocabu-
lary. Up-to-date content summaries contain only words that appear in the database, while older summaries
might include obsolete words that appeared only in deleted documents. The unweighted precision (up) of
O(D, t) with respect to C(D) is the fraction of words in the old content summary that still appear in the
current summary C(D): up = |Wo∩Wc|

|Wo| . This metric, like unweighted recall, gives equal weight to all words
and takes values from 0 to 1, with a value of 1 meaning that the old content summary only contains words
that are still in the current content summary, and a value of 0 denoting no overlap between the summaries.
The alternative precision metric, which —just as in the weighted recall metric— gives higher weight to more
frequent terms, is the weighted precision (wp) of O(D, t) with respect to C(D): wp =

∑
w∈Wo∩Wc

fo(w,D)∑
w∈Wo

fo(w,D) . We

use analogous definitions of unweighted and weighted precision for a sample-based content summary Ô(D, t)
of a database D with respect to the correct content summary C(D).

The CMPL lines in Figures 2(a) and 2(b) show the weighted and unweighted precision, respectively, for
complete t-week-old summaries with respect to the “current” summary, as a function of t and averaged over
every possible choice of “current” summary. Predictably, both the weighted and unweighted precision values
decrease as t increases. For example, on average, a 48-week-old summary has unweighted precision of 70%,
showing that 30% of the words in the old content summary do not appear in the database anymore.

The QBS and FPS lines in Figure 2 show the corresponding results for QBS and FPS content summaries.
As expected, precision decreases over time, and decreases much faster than recall. For example, almost 20%
of the words in a 15-week-old QBS content summary are absent from the database. The periodicity that
appeared in the recall figures is not visible for the precision results: the sample-based content summaries
contain many more “obsolete” words that do not appear in the database anymore, so a small number of
words that appear periodically cannot improve the results.

3.2.3 Kullback-Leibler Divergence

Precision and recall measure the accuracy and completeness of the content summaries, based only on the
presence of words in the summaries. However, these metrics do not capture the accuracy of the frequency
of each word as reported in the content summary. For this, the Kullback-Leibler divergence [Jel99] of
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Figure 2: The weighted and unweighted precision of content summary O(D, t) (CMPL), and of the approx-
imate content summaries Ô(D, t) (QBS and FPS ), with respect to the “current” content summary C(D),
as a function of time t and averaged over each database D in the data set.

O(D, t) with respect to C(D) (KL for short) calculates the “similarity” of the word frequencies in the old
content summary O(D, t) against the “current” word frequencies in C(D): KL =

∑
w∈Wo∩Wc

pc(w|D) ·
log pc(w|D)

po(w|D) , where pc(w|D) = fc(w,D)∑
w′∈Wo∩Wc

fc(w′,D) is the probability of observing w in C(D), and po(w|D) =
fo(w,D)∑

w′∈Wo∩Wc
fo(w′,D) is the probability of observing w in O(D, t). The KL divergence metric takes values from

0 to infinity, with 0 indicating that the two content summaries being compared are equal.
The CMPL line in Figure 3 shows that the KL divergence of old content summaries increases as t

increases. This confirms the previously observed results and shows that the word frequency distribution
changes substantially over time. Furthermore, the KL divergence of the old approximate summaries (lines
QBS and FPS ) also increases with time, indicating that approximate content summaries become obsolete
just as their complete counterparts do.

3.2.4 Conclusion

We studied how content summaries of text databases evolve over time. We observed that the quality
of content summaries (both complete and sample-based) deteriorates as they become increasingly older.
Therefore, it is imperative to have a policy for periodically updating the summaries to reflect the current
contents of the databases. We now turn to this important issue and show how we can use “survival analysis”
for this purpose.

4 Predicting Content Summary Change Frequency

In the previous section, we established the need for updating database content summaries as the underlying
text databases change. Unfortunately, updating a content summary involves a non-trivial overhead: as
discussed, the content summaries of hidden-web text databases are constructed by querying the databases,
while the summaries of crawlable databases are constructed by downloading and processing all the database
documents. Therefore, in order to avoid overloading the databases unnecessarily, it is important to schedule
updates carefully. In this section, we present our “survival analysis” modeling approach for deciding when to
update content summaries. First, Sections 4.1 and 4.2 review the necessary background on survival analysis
and the Cox regression model from the literature [Cox72]. Then, Section 4.3 shows how we can use this
material for our own scenario, to model content summary changes, and Section 4.4 shows how to use the
modeling results for scheduling content summary updates.
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Figure 3: The KL divergence of the content summary O(D, t) (CMPL), and of the approximate content
summaries Ô(D, t) (QBS and FPS ), with respect to the “current” content summary C(D), as a function of
time t and averaged over each database D in the data set.
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4.1 Survival Analysis

Survival analysis is a collection of statistical techniques that help predict the time until an event oc-
curs [Mar03]. These methods were initially used to predict the time of survival for patients under different
treatments, hence the name “survival analysis.” For the same reason, the “time until an event occurs” is
also called survival time. For our purposes, the survival time of a database D is the minimum number of
weeks t such that O(D, t) becomes “sufficiently different” from the current content summary C(D) for the
database. (We formally define the survival time of a database in Section 4.3.)

Survival times can be modeled through a survival function S(t) that captures the probability that the
survival time of an object is greater than or equal to t. In the survival analysis literature, the distribution of
S(t) is also described in terms of a hazard function h(t), which is the “rate of failure” at time t, conditional on

survival until time t: h(t) = −
dS(t)

dt

S(t) and, equivalently, S(t) = exp
(
− ∫ t

0
h(z)dz

)
. A common modeling choice

for S(t) is the exponential distribution, where S(t) = e−λt, and so the hazard function is constant over time
(h(t) = λ). A generalization of the exponential distribution is the Weibull distribution, where S(t) = e−λtγ

,
and so the hazard function varies over time (h(t) = λγtγ−1). (The exponential distribution corresponds to
the case where γ = 1.) Recent findings indicate that the exponential function is a good model to describe
changes in web documents [BC00b, CGM03]. While these findings suggest using the exponential distribution
to model the survival time of a database, we will see in Section 4.3 that the exponential distribution does not
accurately describe changes for summaries of web databases. So, instead, we will use the Weibull distribution.

As described so far, the survival function S(t) and the hazard function h(t) are used to describe a single
database, and are not “instantiated” since we do not know the values of the configuring parameters. Of
course, it is important to estimate the parameters of the survival function S(t) for each database, to have a
concrete, database-specific change model. Even more imperative is to discover predictor variables that can
influence the survival times. For example, when analyzing the survival times of patients with heart disease,
the weight of a patient is a predictor variable and can influence the survival time of the patient. Analogously,
we want to predict survival times individually for each database, according to its characteristics. Next, we
describe the Cox proportional hazards regression model that we use for this purpose.

4.2 Cox Proportional Hazards Regression Model

The Cox proportional hazards regression model [Cox72] is widely used in statistics for discovering important
variables that influence survival times. This model is non-parametric, because it makes no assumptions about
the nature or shape of the hazard function. The only assumption is that the logarithm of the underlying
hazard rate is a linear4 function of the predictor variables.

Let x be a predictor variable, and xa and xb be the values of that variable for two databases Da and Db,
respectively. Under the Cox model, the hazard functions ha(t) and hb(t) can be expressed for databases Da

and Db as:
ha(t) = eβxah0(t) ⇒ ln ha(t) = ln h0(t) + βxa (1a)

hb(t) = eβxbh0(t) ⇒ ln hb(t) = ln h0(t) + βxb (1b)

where h0(t) is a baseline hazard function, common for all the members of the population, and β is the model
coefficient. We can generalize the Cox model for n predictor variables: in this case ln h(t) = ln h0(t) +∑n

i=1 βixi, where the xi’s are the predictor variables, and the βi’s are the model coefficients. Then, the
survival function for a database has the form:

S(t) = exp

(
− exp

(
n∑

i=1

βixi

)∫ t

0

h0(z)dz

)
⇒

ln S(t) = exp

(
n∑

i=1

βixi

)
ln S0(t)

(2)

4The “linearity” or “proportionality” requirement is essentially a “monotonicity” requirement (e.g., the higher the weight
of a patient, the higher the risk of heart attack). If a variable monotonically affects the hazard rate, then an appropriate
transformation (e.g., log(·)) can make its effect linear.
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where S0(t) = exp
(
− ∫ t

0
h0(z)dz

)
is the baseline survival function, common for all the members of the

population. The algorithm presented by Cox [Cox72] shows how to compute the βi values.
The Cox model, as presented so far, seems to solve the same problem addressed by multiple regression.

However, the dependent variable (survival time) in our case is not normally distributed, but usually follows
the exponential or the Weibull distribution —a serious violation for ordinary multiple regression. Another
important distinction is the fact that the Cox model effectively exploits incomplete or “censored” survival
times, from cases that “survived” the whole study period. Excluding these cases from a study would introduce
a strong bias in the resulting model. Those observations are called censored observations and contain only
partial information, indicating that there was no failure during the time of observation. The Cox model
effectively uses the information provided from censored cases. (For more information, see [Cox72].)

The Cox proportional hazards model is one of the most general models for working with survival times,
since it does not assume any specific baseline hazard function. This model allows the extraction of a
“normalized” hazard function h0(t) that is not influenced by predictor variables. This allows for easier
generalization of the results, since h0(t) is not dependent on the distribution of the predictor variables in the
data set used to extract h0(t). The only requirement for the applicability of Cox’s model is that the predictor
variables follow the “proportional hazard” assumption, which means that, for two individual databases Da

and Db, the hazard ratio ha(t)
hb(t)

is constant over time.
An interesting variation of the Cox model that overcomes the proportional hazard assumption is the

stratified Cox model [SCN81], which is used to account for variables that do not satisfy the proportionality
assumption. In this case, the variables that do not satisfy this assumption are used to split the data set into
different “strata.” The βi Cox coefficients remain the same across the different strata, but each stratum now
has a different baseline function h0(t).

Next, we describe how we use the Cox regression model to represent changes in text database content
summaries.

4.3 Using Cox Regression to Model Content Summary Changes

Before using any survival analysis technique for our problem, we need to define “change.” A straightforward
definition is that two content summaries C(D) and O(D, t) are “different” when they are not identical.
However, even a small change in a single document in a database will probably result in a change in the
content summary of the database, but such change is unlikely to be of importance for database selection.
Therefore, we relax this definition and say that two content summaries are different when KL > τ (see
Section 3.2 for the definition of KL divergence), where τ is a “change sensitivity” threshold.5 Higher values
of τ result in longer survival times and the exact value of τ should be selected based on the characteristics
of the database selection algorithm of choice. We will see how we can effectively use the Cox model to
incorporate τ in our change model. Later, in Section 4.4, we show that we can define update schedules that
adapt to the chosen value of τ .

Definition 4.1 Given a value of the change sensitivity threshold τ > 0, the survival time of a database D
at a point in time —with associated “current” content summary C(D)— is the smallest time t for which the
KL divergence of O(D, t) with respect to C(D) is greater than τ .

Note that we define the survival time of a database with respect to its complete content summary. An
alternative that we do not explore in this article is to define survival time over approximate content summaries
whenever we use QBS and FPS to construct the summaries; note, however, that this alternate definition
would be problematic for QBS, where randomization can cause successively computed (approximate) content
summaries to differ even if the underlying database has remained unchanged.

Now that we have a definition of the survival time for a content summary, we describe our survival
analysis approach in detail. Our approach consists of the following steps:

1. Compute the survival times for all the databases and all points in time in our data set (Section 4.3.1).

5We use KL divergence for our change definition (as opposed to precision or recall) because KL depends on the similarity
of word-frequency distributions. As our later experiments show, an update policy derived from the KL-based change definition
improves not only the KL divergence but also precision and recall.
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2. Select the useful database features (across a variety of candidate features) for predicting the survival
time of the database content summaries (Section 4.3.2).

3. Use the survival times from Step 1 and the useful features from Step 2 to run a Cox regression analysis,
with the survival times as dependent variables and the useful database features as independent variables
(Section 4.3.3).

We now describe each of these steps in detail, and finally discuss our modeling conclusions (Section 4.3.4).

4.3.1 Computing Survival Times

Using the study of Section 3 as well as Definition 4.1, we computed the survival time of each content summary
for different values of the change sensitivity threshold τ . For some databases, we did not detect a change
within the period of the study. As explained in Section 4.2, these “censored” cases are still useful since
they provide evidence that the content summary of a database with the given characteristics did not change
within the allotted time period and for the change sensitivity threshold τ of choice. The result of our study
is a set of survival times, some marked as censored, that we use as input to the Cox regression model.

4.3.2 Feature Selection

After extracting the survival times, we select the database features that we pass as parameters to the Cox
model. We use two sets of features: a set of “current” features and a set of “evolution” features. The current
features are characteristics of the database at a given point in time. For example, the topic of the database
(e.g., “health”) and its DNS domain (e.g., “.gov”) are current features of a database. On the other hand,
we extract the evolution features by observing how the database changes over a (training) time period.

In our study, the initial set of current features that we used was:

• The change sensitivity threshold τ .

• The topic of each database, defined as the top level category under which the database is classified in
the Open Directory. This is a categorical variable with 16 distinct values (e.g., “Arts,” “Sports,” and
so on). We encoded this variable as a set of 16 dummy binary variables: each variable has the value 1
if the database is classified under the corresponding category, and 0 otherwise.

• The domain of the database, which is a categorical variable with five distinct values (com, org, edu,
gov, misc). We encoded this variable as a set of 5 binary variables.

• The logarithm of the size of the database. For hidden-web databases that offer only query-based
access to their contents, we estimate the size of the database using the “sample-resample” method
from [SC03].

• The number of words in C(D), for crawlable databases, or in Ĉ(D), for hidden-web databases, com-
puted over the “current” document sample.

To extract the set of evolution features, we retrieved content summaries from each database every week
over a period of 10 weeks. Then, for each database we compared every pair of summaries that were extracted
exactly k weeks apart (i.e., on weeks t and t + k) using the precision, recall, and KL divergence metrics.
Specifically, the features that we computed were:

• The average KL divergence κ1, . . . , κ9 between summaries extracted with time difference of 1, . . . , 9
weeks.

• The average weighted and unweighted precision of summaries extracted with time difference of 1, . . . , 9
weeks.

• The average weighted and unweighted recall of summaries extracted with time difference of 1, . . . , 9
weeks.
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Method Features βs βκ βτ

κ1, size, τ 0.094 6.762 -1.305
QBS size, τ 0.179 - -1.313

κ1, τ - 8.3 -1.308
κ1, size, τ 0.135 10.143 -1.329

FPS size, τ 0.179 - -1.313
κ1, τ - 14.765 -1.24

κ1, size, τ 0.155 2.849 -1.3712
CMPL size, τ 0.178 - -1.302

κ1, τ - 3.198 -1.225

Table 4: The coefficients of the Cox model, when trained for various sets of features and for different content
summary construction methods.

After selecting the initial set of features, we trained the Cox model using the variables indicated above.
We validated the results using leave-one-out cross validation.6 The results of the initial run indicated that,
from the current features, the number of words and the topic of a database are not good predictor variables.
From the evolution features, the KL features are uniformly good predictors and are strongly and positively
correlated with each other. The predictive value of precision and recall depends on the summary construction
technique: precision and recall are not good predictor variables for QBS but they are for FPS and CMPL.
This result is not surprising: FPS usually7 issues the same queries each time that it samples a particular
database. If the database has not changed, then the returned documents are the same and precision and
recall are high. If the database has changed, then the returned set of documents is different, resulting in
low precision and recall. Similarly, CMPL is sensitive to any changes in the underlying database. This
property does not hold for QBS : QBS issues a potentially different set of queries each time that it samples a
particular database, so the documents in a newly extracted sample may be completely different from those in
earlier samples, even if the database has not changed. Therefore, precision and recall are not good predictor
variables under QBS.

Given these results, we decided to drop the number of words and the topic variables from the current set,
keeping only the change sensitivity threshold τ , the database size, and the domain. From the evolution set,
we dropped recall and precision. Despite the fact that recall and precision are good predictor variables for
FPS and CMPL, their importance in the presence of the KL features is negligible. From the KL features,
we kept only κ1: given its presence, features κ2 through κ9 were largely redundant. Since we only needed
the κ1 feature, we reduced the training time from 10 to two weeks. To examine whether any of the selected
features —other than threshold τ , which we always keep, and domain, which we treat differently, as explained
below— is redundant, we trained Cox using (a) size and τ ; (b) κ1 and τ ; and (c) κ1, size, and τ . We describe
our findings next.

4.3.3 Training the Cox Model

After the initial feature selection, we trained the Cox model again. The results confirmed that all the features
that we had selected are good predictor variables8 and strongly influence the survival time of the extracted
summaries. However, the domain variable did not satisfy the proportionality assumption, which is required
by the Cox model (see Section 4.2): the hazard ratio between two domains was not constant over time.
Hence, we resorted to the stratified Cox model, stratifying on domain.9

The result of the training was a set of coefficients βs, βκ, and βτ for features size, κ1, and τ , respectively.
We show the Cox coefficients that we obtained in Table 4. Note that the FPS and QBS results for features
size and τ are equivalent, as both estimate the database size using the sample-resample method [SC03]. In
contrast, CMPL knows the actual database size. The results for FPS and QBS are slightly different from
those for CMPL in this case, but the difference is not statistically significant. Overall, the positive values of

6Since each database generates multiple survival times, we leave out one database at a time for the cross-validation.
7The queries for a database remain the same if the database classification does not change.
8For all models, the statistical significance is at the 0.001% level according to the Wald statistic [Mar03].
9This meant that we had to compute a separate baseline hazard function for each domain.
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βs and βκ indicate that larger databases are more likely to change than smaller ones and that databases that
changed during training are more likely to change in the future than those that did not change. In contrast,
the negative value for βτ shows that —not surprisingly— higher values of τ result in longer survival times
for content summaries.

Given the results of the analysis, for two databases Da and Db from the same domain, from Equation 2
we have:

ln Sa(t) = exp(βs ln(|Da|) + βκκ1a + βτ τa) · ln S0(t)
ln Sb(t) = exp(βs ln(|Db|) + βκκ1b + βτ τb) · ln S0(t)

where S0(t) is the baseline survival function for the respective domain. The baseline survival function, by
definition, corresponds to a “baseline” database D with size |D| = 1 (i.e., ln(|D|) = 0), κ1 = 0, and τ = 0.

Under the Cox model, the returned baseline survival functions are defined only by a set of values
S0(1), . . . , S0(n), which correspond to the probability of survival of the baseline database for the weeks
1, . . . , n. In our experiments, we had five baseline survival functions, one for each domain (i.e., com, edu,
org, gov, misc). To fit the baseline survival functions, we assumed10 that they follow the Weibull distribution
(see Section 4.1), which has the general form S(t) = e−λtγ

. We applied curve fitting using a least-squares
method, namely the Levenberg-Marquardt method [Mor77], to estimate the parameters of the Weibull dis-
tribution for each domain. For all estimates, the statistical significance was at the 0.001% level. Table 5
summarizes the results.

An interesting conclusion is that the survival functions do not follow the exponential distribution (γ = 1).
Previous studies [CGM03] indicated that individual web documents have lifetimes that follow the exponential
distribution. Our results, though, indicate that content summaries, with aggregate statistics about sets of
documents, change more slowly. Another interesting result is that the λdom values are significantly lower
for FPS than for QBS and CMPL. This result is due to the significantly higher weight assigned to the κ1

feature when FPS is used. As discussed above, FPS retrieves the same documents each time it samples a
database, as long as the database does not change. Hence, any changes in the retrieved documents are a
strong signal that the database has changed, while this is not the case for QBS. Furthermore, a change of
a single document in the FPS sample typically signals that many other documents in the database have
changed as well. This is in contrast to CMPL, in which a change in a single document does not imply other
changes in the database. For this reason, κ1 has a higher weight for FPS, resulting in baseline functions
with significantly lower λdom values than their QBS and CMPL counterparts.

4.3.4 Modeling Conclusions

We have presented a statistical analysis of the survival times of database content summaries. We used
Cox regression analysis to examine the effect of different variables in the survival time of database content
summaries and showed that the survival times of content summaries follow the Weibull distribution, in most
cases with γ < 1 (i.e., summaries tend to remain unchanged for longer time periods as their age increases).
We summarize our results in the following definition:

Definition 4.2 The function Si(t) that gives the survival function for a database Di is:

Si(t) = exp (−λit
γdom) , with (3a)

λi = λdom

(|Di|βs · exp (βκκ1i) · exp (βτ τi)
)

(3b)

where |Di| is the size of the database; κ1i is the KL divergence of the content summaries obtained for Di

during the training period; τi is the value of the change sensitivity threshold for Di (Definition 4.1); βs, βκ,
and βτ are the Cox coefficients from Table 4; and λdom and γdom are the domain-specific constants from
Table 5.

10Typically, the first choice for modeling survival times is the exponential distribution. If the survival times do not follow
the exponential distribution, then the Weibull distribution, itself a generalization of the exponential distribution, is the next
natural choice.
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Method Features Domain λdom γdom

com 0.0180 0.901
edu 0.0205 0.585

κ1, size, τ gov 0.0393 0.780
misc 0.0236 1.050
org 0.0274 0.724
com 0.0211 0.844
edu 0.0392 0.578

QBS size, τ gov 0.0193 0.701
misc 0.0163 1.072
org 0.0239 0.723
com 0.0320 0.886
edu 0.0774 0.576

κ1, τ gov 0.0245 0.795
misc 0.0500 1.014
org 0.0542 0.715
com 2.65 ×10−4 0.787
edu 3.40 ×10−4 0.670

κ1, size, τ gov 1.85 ×10−4 0.710
misc 1.90 ×10−4 1.020
org 3.74 ×10−4 0.764
com 0.0211 0.844
edu 0.0392 0.578

FPS size, τ gov 0.0193 0.701
misc 0.0163 1.072
org 0.0239 0.723
com 7.59 ×10−5 0.743
edu 1.20 ×10−4 0.641

κ1, τ gov 5.92 ×10−5 0.722
misc 6.69 ×10−5 0.920
org 7.46 ×10−5 0.728
com 0.0315 0.800
edu 0.0267 0.784

κ1, size, τ gov 0.0181 0.767
misc 0.00589 1.41
org 0.02587 0.811
com 0.0241 0.753
edu 0.0364 0.683

CMPL size, τ gov 0.0209 0.685
misc 0.0227 1.020
org 0.0260 0.773
com 0.1058 0.7093
edu 0.1044 0.7371

κ1, τ gov 0.0729 0.7478
misc 0.0294 1.24
org 0.0942 0.7685

Table 5: The parameters for the baseline survival functions for the five domains. The baseline survival
functions describe the survival time of a database D in each domain with size |D| = 1 (ln(|D|) = 0), with
average distance between the summaries κ1 = 0 and for change sensitivity threshold τ = 0.
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Figure 4: The survival function S(t) for different domains (|D| = 1000, τ = 0.5, κ1 = 0.1, QBS summaries).

Definition 4.2 provides a concrete change model for a database D that is specific to the database char-
acteristics and to the change sensitivity, as controlled by the threshold τ . An interesting result is that
summaries of large databases change more often than those of small databases, as indicated by the positive
value of βs, which corresponds to the database size. Figure 4 shows the shape of S(t) for different domains,
for a hypothetical database D with |D| = 1000, κ1 = 0.1 (computed using QBS ), and for τ = 0.5. This
figure shows that content summaries tend to vary substantially across domains (e.g., compare the “misc”
curve against the “gov” curve).

4.4 Deriving an Update Policy

So far, we have described how to compute the survival function S(t) for a text database. Now, we describe
how we can exploit S(t) to schedule database content summary updates and contact each database only
when necessary.

A metasearcher may provide access to hundreds or thousands of databases and operate under limited
network and computational resources. To optimize the overall quality of the content summaries, the meta-
searcher has to carefully decide when to update each of the summaries, so that they are acceptably up to
date during query processing.

To model the constraint on the workload that a metasearcher might handle, we define F as the average
number of content summary updates that the metasearcher can perform in a week. Then, under a Naive
strategy that allocates updates to databases uniformly, T = n

F represents the average number of weeks
between two updates of a database, where n is the total number of databases. For example, T = 2 weeks
means that the metasearcher can update the content summary of each database every two weeks, on average.

As we have seen in Section 4.3, the rate of change of the database contents may vary drastically from
database to database, so the Naive strategy above is bound to allocate updates to databases suboptimally.
Thus, the goal of our update scheduling is to determine the update frequency fi for each database Di

individually, in such a way that the function
∑n

i=1 Si(t) is maximized, while at the same time not exceeding
the number of updates allowed. In this case, we maximize the average probability that the content summaries
are up to date. One complication is that the survival function Si(t) changes its value over time, so different
update scheduling policies may be considered “optimal” depending on when Si(t) is measured. To address
this issue, we assume that the metasearcher wants to maximize the time-averaged value of the survival
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Di λi T = 40 T = 10
tomshardware.com 0.088 46 weeks 5 weeks
usps.com 0.023 34 weeks 12 weeks

Table 6: Optimal content-summary update frequencies for two databases.

function, given as:

S̄ = lim
t→∞

1
t

∫ t

0

n∑

i=1

Si(t)dt.

This formulation of the scheduling problem is similar to that in [CGMP00] for the problem of keeping the
index of a search engine up to date. In short, we formulate our goal as the following optimization problem.

Problem 4.3 Find the optimal update frequency fi for each database Di, i = 1, . . . , n, such that the time-
averaged survival function S̄ is maximized under the constraint

∑n
i=1 fi = n

T , where T is the average number
of weeks between two updates of a database.

Given the analytical forms of the Si(t) functions in the previous sections, we can solve this optimization
problem using the Lagrange-multiplier method (as shown, for example, in [CGMP00, OW02]). From this
analysis, we conclude that the optimal update frequencies fi’s are the solutions to the following equations:

1

γiλi

1
γi

[
Γ

(
1
γi

)
− Γ

(
1
γi

,
λi

fi
γi

)]
− 1

fi
exp

(
− λi

fi
γi

)
= µ for 1 ≤ i ≤ n (4)

where λi is the rate of change of database Di, γi = γdom of Di, Γ(x) and Γ(x, y) are the complete and the
incomplete gamma functions,11 respectively, and µ is the Lagrange multiplier decided from the constraint∑n

i=1 fi = n
T . Note that the optimal frequencies fi cannot be expressed in simple analytical form, so they

need to be computed numerically by solving Equation 4.
Cho et al. [CGMP00] investigated a special case of this optimization problem when γi = 1 (i.e., when

the rate of change is constant over time) and observed the following:

1. When λi is small relative to the resource constraint F (i.e., when the database changes infrequently
compared to our update resource constraint), the optimal revisit frequency fi becomes larger as λi

grows larger.

2. When λi is large relative to the resource constraint F , the optimal revisit frequency fi becomes smaller
as λi grows larger.

In our solution to the above generalized optimization problem, we also observed similar trends even when
γi 6= 1 (i.e., when the rate of change varies over time). As an example, in Table 6 we show the optimal
update frequencies for the content summaries of two databases, tomshardware.com and usps.com. We can
see that, when T is small and we can update summaries often (i.e., for T = 10, meaning that we update the
summaries every 10 weeks on average), we update tomshardware.com more often than usps.com, since λi is
larger for tomshardware.com. However, when T is large and we can only rarely update summaries (i.e., for
T = 40, meaning that we update the summaries every 40 weeks on average), the optimal update frequencies
are reversed. The scheduling algorithm decides that tomshardware.com changes “too frequently” and is not
beneficial to allocate more resources to try to keep it up to date. Therefore, the algorithm decides to update
the content summary from tomshardware.com less frequently, and instead focus on databases like usps.com
that can be kept up to date. This trend holds across domains and across values of γi.

11By definition, Γ(x) =
∫∞
0 tx−1 exp(−t)dt and Γ(x, y) =

∫∞
y tx−1 exp(−t)dt.
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5 Experimental Setup

We now describe the techniques that we compare for our experimental evaluation of Section 6. In Section 5.1
we describe the variations of our survival analysis approach that we used. Next, in Section 5.2, we describe a
machine learning technique for predicting when content summaries should be updated. Finally, in Section 5.3
we describe a state-of-the-art method for scheduling when to recrawl (and update a web search engine index
of) crawlable web sites; this method was originally presented by Cho and Ntoulas [CN02] and we evaluate
it as an alternative scheduling approach for updating content summaries of crawlable databases.12

5.1 Survival Analysis Techniques for Updating Content Summaries

In Section 4.3, we showed how to compute the form and parameters of the survival function Si(t), which
measures the probability that the summary of a database Di is up to date t weeks after it was computed.
Based on Cox’s model, we derived a variety of models that compute Si(t) based on three different sets of
features (see Tables 4 and 5). Now, we use these models to devise three update policies, using the approach
from Section 4.4 and the following feature sets:

• κ1, size, and τ : We use all the available features.

• size and τ : We do not use the history of the database, i.e., we ignore the evolution feature κ1 and we
use only the database size and the change sensitivity threshold τ .

• κ1 and τ : We use only the history of the database and the change sensitivity threshold τ . We consider
this policy to examine whether we can work with databases without estimating their size.13

We also consider the Naive policy, discussed above, where we uniformly update all summaries every T weeks.

5.2 Machine Learning for Predicting Content Summary Changes

So far, we described a regression-based approach for scheduling updates for content summaries. The Cox
proportional hazards regression returns (probabilistic) estimates for the lifetime of each content summary,
and then we exploit this information to schedule updates according to the available resources.

An alternative approach for updating content summaries is to treat scheduling as a binary classification
problem. Specifically, we define a function U(Di, t1, t2) for a database Di so that U(Di, t1, t2) = 1 if the
content summary of Di extracted at time t1 should be updated at time t2, according to Definition 4.1,
and U(Di, t1, t2) = 0 otherwise. Following Section 4, we want the prediction to rely on current database
features and perhaps also on a few evolution features of the database. Similarly to our survival analysis
approach, we use leave-one-out cross-validation to train and test a “black-box” classifier that predicts the
update status for a given unlabeled vector x: the training data for a database Di consists of the vectors for
all the other databases except for Di. The classifier that we learn predicts whether we need to update the
content summary of Di.

5.2.1 Creating the Training Set

Given a database Di and a change sensitivity threshold τ , we train a classifier for U as follows. For the dura-
tion of our study, spanning 50 weeks,14 we consider each week pair 〈p, q〉 with p < q and define U(Di, p, q) = 1
if the KL-divergence between Cq(Di) and Cp(Di) is larger than τ , where Ct(Di) is the content summary of
Di at time t. The training set features are the current and evolution features that we defined in Section 4.3.2.
Figure 5 shows a few example training vectors for database Di. In this figure, the first vector corresponds to
weeks 1 and 2. For change sensitivity threshold τ = 0.5, C(Di) at week 2 is not substantially different from

12As we discuss in Section 7, a number of update scheduling policies have been developed specifically for search engines, such
as [PO05] and [WSY+02]. While these policies show further improvement compared to [CN02], they exploit specific properties
of the ranking functions used by the search engines. As a result, these optimizations are not directly applicable for our content
summary update problem.

13The size estimation method that we use [SC03] relies on the database returning the number of matches for each query. This
method becomes problematic for databases that do not report such numbers with the query results.

14We use two weeks’ worth of our 52-week data to compute the κ1 values.
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U week1 week2 age τ ln(|D|) Icom . . . κ1 . . .
0 1 2 1 0.5 12.3 1 . . . 0.23 . . .
0 1 3 2 0.5 12.3 1 . . . 0.23 . . .
1 1 4 3 0.5 12.3 1 . . . 0.23 . . .
1 1 5 4 0.5 12.3 1 . . . 0.23 . . .
...
0 5 8 3 0.8 12.3 0 . . . 0.09 . . .
...

Figure 5: Example training vectors, used to train a classifier that detects whether a database content
summary needs to be updated.

C(Di) as computed in week 1, hence U(Di, 1, 2) = 0 for this week pair. The features associated with this
database indicate that Di is a .com database, that Di contains 219,695 documents (i.e., ln(|Di|) = 12.3),
and so on. Similarly, the third vector corresponds to weeks 1 and 4. For change sensitivity threshold τ = 0.5,
C(Di) at week 4 is substantially different from C(Di) as computed in week 1, hence U(Di, 1, 4) = 1 for this
week pair.

In our study, we had 152 databases, studied over a period of 50 weeks, with 10 possible values of the change
sensitivity threshold τ . This resulted in a data set with 1,862,000 vectors. These vectors represent points
in an m-dimensional space, where m is the number of current and evolution features. A binary classifier
decides whether a vector, represented using m features (see above), belongs to the class U = 1 or not. A
binary linear classifier makes this decision by calculating, during the training phase, m weights w1, . . . , wm

and a threshold b determining a hyperplane such that every point t = 〈t1, . . . , tm〉 in the hyperplane satisfies
the equation:

m∑

i=1

wi · ti = b (5)

This hyperplane divides the m-dimensional space into two regions: the region with the vectors that belong
to the class in question, and the region with all other vectors.

5.2.2 Selecting Classifiers

Binary linear classifiers work best when the manifold that optimally separates [DHS00] the two classes is a
hyperplane. The results from Section 4.1 indicate that, in our case, the boundaries between the two classes
cannot be described by a linear equation in the original m-dimensional space. Instead, the function that
optimally separates the two classes involves products of the available features, and uses the logarithm of the
age, ln(age), of the content summary as feature. (See Appendix A for details.)

Based on this result, we initially added the ln(age) value as a separate feature and used SVMs with
polynomial kernels to solve this classification problem.15 Unfortunately, the results were not satisfactory.
The SVM classifier took more than a week to train, showing that classifiers with superlinear complexity are
not suitable for data sets of this size. (The running time remained high even after training on a small random
sample of the training set.) Furthermore, even after this long training time, the resulting classifier was a
trivial classifier that always predicted U = 1 or U = 0, depending on the class distribution in the data set.
Even after long efforts to use smaller data sets for training, the behavior of the polynomial SVMs remained
unsatisfactory and the training time remained prohibitively high. Based on these results, we abandoned the
idea of using SVMs.

The next step was to use a Naive Bayes classifier [DHS00], an extremely efficient classifier, whose
time complexity is linear in the size of the training set (i.e., a single scan over the training data suf-
fices for training the classifier). Since Naive Bayes is a linear classifier, we had to expand our train-

15SVMs with polynomial kernels implicitly expand the feature space to include extra features that correspond to the products
of the “basic” features.
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ing set manually to include the needed quadratic features, which could be easily extracted from the ex-
isting training data. Specifically, instead of the vector x = 〈x1, . . . , xm〉, we used the enhanced vector
x′ = 〈x1, . . . , xm, x2

1, . . . , x
2
m, . . . , x1x2, . . . , xm−1xm〉. As we mentioned above, we use leave-one-out cross-

validation to determine the update schedule for our content summaries.16

One important shortcoming of the classification-based approach for scheduling updates is its inability to
adapt to different levels of update resources. The only way that we can increase or decrease the required
resources is to change the change sensitivity threshold τ . This is in contrast with the survival analysis
approach, which can adapt to the available resources even without modifying the change sensitivity threshold
for the underlying databases.

5.3 Sampling-based Method for Updating Content Summaries

Cho and Ntoulas [CN02] presented an approach for defining a recrawl schedule for web sites, with the goal
of keeping a web search engine index up to date, subject to available “update resources.” Their approach
randomly samples a few pages from every web site to estimate the fraction of changed pages in each site
since the last crawl. Based on these estimates, a greedy recrawl schedule is established, as follows. First, the
site with the largest number of changed pages is crawled, followed by the second-most-changed site, and so
on, until all available update resources are exhausted. We will refer to this update policy as Sampling.

The Sampling policy has been shown to work well to maintain a centralized index of the web. Unfortu-
nately, this policy can only be applied to crawlable databases, because it assumes that we can retrieve the
same set of documents repeatedly during sampling, which cannot be guaranteed for non-crawlable databases.
In the following section, we will then use Sampling only for the complete content summary experiments,
where we assume that the databases are crawlable (see Section 2). Throughout the experiments, and based
on the analysis of [CN02], we use samples consisting of 20 documents.

6 Experimental Results

We now report the results of the experimental comparison between the variations of our survival analysis
approach against the alternative techniques. Section 6.1 describes the quality of the content summaries,
while Section 6.2 focuses on the accuracy of the update schedules generated by the different techniques.

6.1 Quality of Content Summaries

We examine each update policy by measuring the average (weighted and unweighted) precision and recall,
as well as the average KL divergence of the generated approximate summaries. For the survival analysis
approaches and for the Sampling technique, we consider different values of T , where T is the average number
of weeks between updates. The Bayes technique, as mentioned in Section 5.2, does not have a mechanism
for adapting to different resource availability scenarios and the only way to increase or decrease its resource
needs is to vary the change sensitivity threshold τ .

6.1.1 Recall

Our recall measurements indicate that the survival analysis approaches perform better than the alternatives.
Figure 6 shows the average weighted and unweighted recall of the complete content summaries obtained under
the scheduling policies that we consider. Specifically, our survival analysis techniques are always significantly
better than the Naive policy, and outperform the Sampling policy for T ≤ 30. For large values of T , we
observe that Sampling performs roughly as well as our survival analysis policies. The high performance of
Sampling for large T values is mainly due to the fact that a small number of databases are responsible for
the majority of the overall changes. By design, Sampling dedicates all of its resources to the small set of
databases that have changed most, so it is able to capture the majority of the changes coming from few
databases even when T is large. Unfortunately, as T gets smaller, Sampling fails to allocate the additional
resources efficiently to the remaining databases; even if two databases have similarly changed, Sampling still

16We also experimented with SVMs with linear kernels that operate directly on the expanded feature space. Unfortunately,
the generated classifiers were trivial, always predicting U = 1 or U = 0, depending on the class distribution in the data set.
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Figure 6: The weighted and unweighted recall of “old” complete content summaries with respect to the
“current” ones, as a function of the time T between updates and averaged over each database D in the data
set, for different scheduling policies (τ = 0.5).
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Figure 7: The weighted and unweighted recall of “old” QBS content summaries with respect to the “current”
ones, as a function of the time T between updates and averaged over each database D in the data set, for
different scheduling policies (τ = 0.5).

dedicates all remaining resources only to one of them first. Due to this inefficiency, Sampling does not show
much performance improvement as T gets smaller, until it can update all databases frequently. The Bayes
approach results in a policy that, on average, updates databases every 7 weeks (i.e., T = 7). The results
for Bayes are consistently worse than those for the survival analysis alternatives at this level of resource
constraints: the average weighted recall under Bayes is 0.902 ± 0.025 and the average unweighted recall
under Bayes is 0.83 ± 0.03. The Bayes approach only outperforms Sampling, which does not perform well
for low values of T , as discussed above.

Figure 7 shows the average weighted and unweighted recall of the approximate QBS summaries17 for the
survival analysis policies, Naive, and Bayes. (As discussed above, we do not include results for Sampling,
since Sampling requires the ability to retrieve the same set of documents at each sampling instance, which
cannot be guaranteed for non-crawlable databases.) The results indicate that, by using any of our survival
analysis policies, we can keep the recall metrics almost stable, independently of the resource constraints. We
also observe that the alternative approaches, namely Naive and Bayes, perform consistently worse than our
survival analysis techniques.

17Figure 15 in Appendix B contains the respective results for FPS content summaries.
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Figure 8: The weighted and unweighted precision of “old” complete content summaries with respect to the
“current” ones, as a function of the time T between updates and averaged over each database D in the data
set, for different scheduling policies (τ = 0.5).
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Figure 9: The weighted and unweighted precision of “old” QBS content summaries with respect to the
“current” ones, as a function of the time T between updates and averaged over each database D in the data
set, for different scheduling policies (τ = 0.5).

6.1.2 Precision

Our precision measurements for complete content summaries (Figure 8) indicate that our survival analysis
approach works significantly better than the Bayes alternative. Our survival analysis techniques are also
significantly better than Naive for all values of T > 15. Sampling has lower precision than the survival
analysis approach for small values of T , while the Sampling precision is higher when T > 30. In all cases,
though, the differences between Sampling and our survival analysis techniques are not statistically significant,
showing that the techniques are equivalent in terms of precision. However, as shown above, Sampling
performs worse than survival analysis under the recall and KL metrics.

Figure 9 shows the average weighted and unweighted precision of the approximate QBS summaries.18

Again, our three survival analysis scheduling policies demonstrate similar19 performance, and they are all
18Figure 16 in Appendix B contains the respective results for FPS content summaries.
19 The performance is statistically equivalent for the schedules based on “size and τ” and “κ1 and τ” even at the individual

database level, according to the Wilcoxon signed rank test [Mar03] (p < 0.0001). The performance of these two scheduling
policies is not statistically equivalent with “κ1, size, and τ” scheduling at the individual database level, but it is when we look
at the average performance.
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Figure 10: The KL divergence of “old” complete and QBS content summaries with respect to the “current”
ones, as a function of the time T between updates and averaged over each database D in the data set, for
different scheduling policies (τ = 0.5).

significantly better than Naive and Bayes. The difference between the survival analysis policies and Naive
is statistically significant, even when the summaries are updated relatively frequently (i.e., even for small
values of T ).

6.1.3 KL-Divergence

The measurements of KL-divergence for different scheduling policies reveal, again, that our survival analysis
techniques can keep the average KL divergence of the approximate summaries almost constant even for a
large number of weeks T between updates. Figure 10(a) shows that, for small values of T , Sampling is worse
than our survival analysis techniques and is almost statistically equivalent to Naive. For larger values of
T , the performance of Sampling improves; for T > 35, Sampling behaves similarly to the survival analysis
techniques. However, our analysis shows that Sampling never outperforms our survival analysis techniques,
which can also handle non-crawlable databases and work better for small values of T as well. The Bayes
approach performs well for this metric, achieving performance similar to our policies. Nevertheless, Bayes
lacks the ability to adjust automatically to environments with constraint resources. The only way to change
the performance requirements of Bayes is to change the value of the change sensitivity threshold τ (for
details, see below). Finally, Figure 10(b) shows the results for approximate QBS content summaries.20

The results are consistent with the behavior that we observed for complete content summaries. The only
difference is the increased variance for the Bayes method, which indicates that our survival analysis policies
are preferable, since they offer the same average performance but with a higher level of consistency across
databases.

6.2 Precision of Update Operations

A scheduled update for a content summary might be unnecessary if the underlying database has not changed
“sufficiently” since the time the summary was derived. Unnecessary content summary updates are of course
undesirable, since they needlessly overload the databases. We now discuss how to characterize our update
schedules in terms of whether their updates are necessary or not.

Consider a database D whose content summary was computed t weeks into the past. An update to this
content summary is precise if the survival time of D is smaller than t, using Definition 4.1. In other words,
we say that an update for D is precise if database D (and, correspondingly, its complete content summary;
see Definition 4.1) has changed sufficiently in the t weeks since its content summary was last computed.

20Figure 17 in Appendix B contains the respective results for FPS approximate content summaries.
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We measured the precision of the update operations as the ratio of the precise updates over the total
number of updates performed. Figures 11, 12 and 13 show the precision results as a function of T and for
τ = 0.5, where the κ1 feature is computed using CMPL, QBS, and FPS summaries, respectively. For this
value of τ and for the databases in our data set, low values of T (i.e., T < 10) are unnecessary, since then
the databases are contacted too often and before they have changed sufficiently. A decrease in the value of τ
causes the curves to “move” towards the left: the summaries change more frequently and then the updates
become more precise. For example, for τ = 0.25 and T = 10, precision is approximately 40%, while for
T = 25, it is approximately 80%.

Interestingly, the update precision can be predicted analytically, using the target function S̄ described
in Section 4.4. The average probability of survival (our target function) corresponds in principle to the
percentage of non-precise updates. This result is intuitive, since our target function essentially encodes the
probability that the summary of a database has changed. Therefore, during scheduling, it is possible to
select a value of T that achieves (approximately) the desired update precision.

The results in Figures 11, 12 and 13 indicate that the Naive policy —as expected— has worse update
precision than the other policies. Also, Figure 13 shows that the policy that uses FPS to compute κ1 and does
not use the size feature has significantly higher precision than the other techniques: the κ1 feature computed
using FPS is then a better predictor than the other variables, verifying the results of Cox regression, which
returned a high weight for βκ for the given policy (see Table 4).

As we mentioned in Section 5.2, the Bayes policy cannot adapt to the level of available resources. The
classifier predictions depend only on the age of the summaries and hence the used resources vary from week
to week. Figure 14 shows the number of updates performed by the Bayes policy when the κ1 feature is
computed using CMPL summaries, for different values of the change sensitivity threshold τ . (Figures 18
and 19, in Appendix B, show the respective results when the κ1 feature is computed using QBS and FPS
summaries, respectively.) The results show that the number of updates can vary greatly from week to week.
Hence, to accommodate the resource requirements of Bayes, we either need to allocate the maximum required
resources or we should adopt a queuing policy, to delay updates for weeks in which the resource requirements
are reduced. If we adopt a queuing policy, the summaries will be updated slightly later than expected. This
will result in a slight deterioration of the content summary quality, which is already significantly lower than
the quality of the summaries under the policies that use our survival analysis modeling.

6.3 Conclusion

As a general conclusion, we have observed that the three scheduling policies that are based on survival
analysis allow for good quality of the extracted content summaries, even under strict constraints on the al-
lowable update frequency. Our techniques work for both hidden-web and crawlable databases. For crawlable
databases, our techniques outperform Sampling, an existing state-of-the-art update technique for a different
task. Additionally, all techniques for both hidden-web and crawlable databases are significantly better than
the other two alternatives that we studied, namely Bayes and Naive.

An interesting observation is that our three survival analysis policies demonstrate minimal differences
in performance, and these differences are not statistically significant. This indicates that it is possible to
work with a smaller set of features, without decreasing performance. For example, we may ignore the
evolution feature κ1 and avoid computing the history of a database, which involves frequent sampling of the
database for a (small) period of time. We should also note that our survival analysis approach helps predict
the precision of the update operations, in turn allowing the metasearcher to tune the update frequency to
efficiently keep the content summaries up to date.

7 Related Work

This article builds on our earlier paper [INCG05] on modeling content summary changes. In [INCG05],
we focused only on hidden-web databases. In this article, we significantly expand the scope of our study
to include the important family of crawlable web sites as well. Our Cox-regression approach for crawlable
websites significantly outperforms an existing state-of-the-art technique for scheduling updates of web search
engine indexes [CN02]. Furthermore, in our previous study [INCG05], we considered only the evolution
of summaries extracted through a randomized query-based sampling (QBS ) algorithm [CC01]. One key
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Figure 11: The precision of the updates performed by the different scheduling algorithms, as a function of the
average time between updates T and τ = 0.5, where the κ1 feature is computed using complete summaries.
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Figure 12: The precision of the updates performed by the different scheduling algorithms, as a function of the
average time between updates T and for τ = 0.5, where the κ1 feature is computed using QBS summaries.

0 5 10 15 20 25 30 35 40 45 50

T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Up
da

te
 P

re
cis

ion

 K, tau
 Size, tau
 K, size, tau
 Naive

Figure 13: The precision of the updates performed by the different scheduling algorithms, as a function of
the average time between updates T and τ = 0.5, where the κ1 feature is computed using FPS summaries.
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characteristic of the QBS algorithm derives from its randomized nature: each execution of QBS results
in a different summary, even if the underlying database is static. In this article, we now also study the
evolution of summaries extracted through a state-of-the-art deterministic sampling algorithm, namely the
focused probing algorithm from [IG02], FPS. The FPS algorithm repeatedly derives the same summary
of a database if the database remains unchanged. Although we observe that the FPS samples are more
stable than their QBS counterparts, we show that the quality of the FPS summaries still deteriorates over
time and that our scheduling approach can improve the quality of FPS summaries as well. Finally, in this
article we develop and evaluate a machine learning approach for updating content summaries. Since Cox-
regression exploits only a specific kind of training, an open research question stemming from our previous
work was whether alternative machine learning approaches could better exploit the available training data
and outperform our survival analysis approach. In a thorough experimental comparison in Section 6, we
show that classification-based approaches for scheduling updates do not work well and we provide substantial
evidence for the shortcomings of such approaches in terms of both efficiency and effectiveness.

Beyond [INCG05], we are not aware of other prior work that studied the evolution of text database content
summaries over time or how to schedule updates to the content summaries to maintain their freshness.
However, several previous efforts have focused on various aspects of the evolution of the web and of the
related problem of web crawling. Ntoulas et al. [NCO04] studied the changes of individual web pages, using
the same data set as we did in this paper. Ntoulas et al. concluded that 5% of new content (measured in
“shingles”) is introduced in an average week in all pages as a whole. Additionally, Ntoulas et al. observed a
strong correlation between the past and future rates of change of a web page and showed that this correlation
might be used to predict future changes of a page. In this article, we investigated this high-level idea formally
through survival analysis and modeled the change behavior of web databases using the Cox proportional
hazard model. We then used this model for designing the optimal scheduling algorithm for summary updates.
Lim et al. [LWP+01] and Fetterly et al. [FMNW03] presented pioneer measurements of the degree of change
of web pages over time, where change was measured using the edit distance [LWP+01] or the number of
changed “shingles” [FMNW03] over successive versions of the web pages. Other studies of web evolution
include [BC00b, CGM00, WM99, DFKM97, BC00a], and focus on issues that are largely orthogonal to our
work, such as page modification rates and times, estimation of the change frequencies for the web pages, and
so on.

Web crawling has attracted a substantial amount of work over the last few years. In particular, refer-
ences [CGMP00, CLW98, EMT01, CN02] study how a crawler should download pages to maintain its local
copy of the web up to date. Assuming that the crawler knows the exact change frequency of the pages, Cho
et al. [CGMP00] and Coffman, Jr. et al. [CLW98] present optimal page downloading algorithms, while Ed-
wards et al. [EMT01] propose an algorithm based on linear programming. Cho and Ntoulas [CN02] propose
the Sampling technique (see Section 5.3) for scheduling updates of web search engine indexes. Improved
update policies for search engines include [PO05] and [WSY+02]. The improvement that these policies ex-
hibit over [CN02] is mainly due to optimizations that exploit particular properties of search-engine ranking
functions. Since these optimizations are not directly applicable for content-summary updates, we compare
our survival analysis techniques against [CN02], which assumes a more generic change metric. Our results in
Section 6 show that our survival analysis policies outperform the Sampling approach for scheduling content
summary updates for crawlable web sites.

Olston and Widom [OW02] proposed a new algorithm for cache synchronization in which data sources
notify caches of important changes. The definition of “divergence” or “change” in [OW02] is quite general
and can be applied to our context. However, the proposed push model is not applicable when data sources
are “uncooperative” and do not inform others of their changes, as is often the case on the web.

8 Conclusions

In this article, we presented a study —over 152 real web databases— of the effect of time on the database
content summaries on which metasearchers rely to select appropriate databases where to evaluate keyword
queries. We examined the evolution of both complete and approximate content summaries. We showed
that the quality of the content summaries deteriorates over time as the underlying databases change, which
highlights the importance of update strategies for refreshing the content summaries. We described how to
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use survival analysis techniques, in particular how to exploit the Cox proportional hazards regression model,
for this update problem. We showed that a short change history of a database can be used to predict the rate
of change of its content summary in the future, and that summaries of larger databases tend to change faster
than summaries of smaller databases. Based on the results of our analysis, we suggested update strategies
that work well in a resource-constrained environment. Our techniques adapt to the change sensitivity desired
for each database, and contact databases selectively —as needed— to keep the summaries up to date while
not exceeding the resource constraints. Finally, our comparative evaluation shows that our survival analysis
techniques significantly outperform an optimized machine learning approach and the current state-of-the-art
technique for scheduling updates of web search engine indexes.
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A Appendix: Deriving Features for Classification-based Update
Scheduling

The survival function Si(t) is the probability that the content summary of database Di has not changed at
time t. As we discussed in Section 4.3, Si(t) is computed as:

Si(t) = exp (−λit
γdom) , with (6a)

λi = λdom

(|Di|βs · exp (βκκ1i) · exp (βτ τi)
)

(6b)

We saw in Section 5 how to cast the core of our content summary update problem as a binary classification
task. In this formulation, our goal is to predict when U(Di, t1, t2) = 1 for a database Di, meaning that at
time t2 the content summary of database Di extracted at time t1 should be updated.

When the cost of false positives (wrongly predicting U = 1 when in reality U = 0) is equal to the cost of
false negatives (wrongly predicting U = 0 when in reality U = 1), then an optimal classifier predicts U = 1
when Si(t) < 0.5 and U = 0 when Si(t) ≥ 0.5. Therefore, the optimal manifold for separating the two classes
is given by the equation:

Si(t) = 0.5 ⇒
exp (−λit

γdom) = 0.5 ⇒
λit

γdom = ln 2 ⇒
ln(λi) + γdom ln(t) = ln(ln 2)

From Equation 3b, λi = λdom

(|Di|βs · exp (βκκ1i) · exp (βτ τi)
)

and:

ln(λdom

(|Di|βs · exp (βκκ1i) · exp (βτ τi)
)
) + γdom ln(t) = ln(ln 2) ⇒

ln(λdom) + βs ln(|Di|) + βκκ1i + βτ τi + γdom ln(t) = ln(ln 2)

Since the values of λdom and γdom depend on the value of the domain feature, which we express as a set of
dummy binary variables for training the classifier, we set:

λdom = Icomλcom + Ieduλedu + Igovλgov + Iorgλorg + Imscλmsc

γdom = Icomγcom + Ieduγedu + Igovγgov + Iorgγorg + Imscγmsc

Since only one of the binary variables can be equal to 1 for a database, we have:

ln(λdom) = Icom ln(λcom) + Iedu ln(λedu) + Igov ln(λgov) + Iorg ln(λorg) + Imsc ln(λmsc)

Now we have:

Icom ln(λcom) + Iedu ln(λedu) + Igov ln(λgov) + Iorg ln(λorg) + Imsc ln(λmsc)

+Icomγcomln(t) + Ieduγeduln(t) + Igovγgovln(t) + Iorgγorgln(t) + Imscγmscln(t)

+βsln(|Di|) + βκκ1i + βτ τi + ln(1/ ln 2) = 0

(7)

The underlined terms are (functions of) features in the training vectors. A machine learning algorithm
that computes the separating manifold should estimate the values of all the non-underlined terms, which
correspond to the weights that a machine learning algorithm assigns to these features.

From Equation 7, we can see that a linear classifier does not suffice for separating the two classes
optimally. First of all, features ln(|Di|) and ln(t) do not appear in the original set of features. We can bypass
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this problem by adding these values as additional features in the training set. However, the terms I·γ·ln(t)
involve a product of features, making the manifold a non-linear surface, which is impossible to estimate with
a linear classifier. An SVM classifier with polynomial kernel can properly estimate the parameters of such
a manifold. Alternatively, we can add these features manually in the training set and create an augmented
feature space. In this augmented feature space, the separating manifold is a hyperplane and a linear classifier
can separate the two classes.

B Appendix: Additional Experimental Results

In this section, we examine the effect of the different update policies on the quality of the approximate
FPS content summaries. We measure the average (weighted and unweighted) recall (Figure 15), the average
(weighted and unweighted) precision (Figure 16), as well as the average KL divergence (Figure 17) of the
generated summaries. Furthermore, we present the number of updates performed by the Bayes policy when
the κ1 feature is computed using QBS and FPS summaries (Figures 18 and 19, respectively) for different
values of the change sensitivity threshold τ .
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Figure 15: The weighted and unweighted recall of “old” FPS content summaries with respect to the “current”
ones, as a function of the time T between updates and averaged over each database D in the data set, for
different scheduling policies (τ = 0.5).
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Figure 16: The weighted and unweighted precision of “old” FPS content summaries with respect to the
“current” ones, as a function of the time T between updates and averaged over each database D in the data
set, for different scheduling policies (τ = 0.5).
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Figure 17: The KL divergence of “old” FPS content summaries with respect to the “current” ones, as a
function of the time T between updates and averaged over each database D in the data set, for different
scheduling policies (τ = 0.5).
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Figure 18: The number of updates performed by the Bayes policy in different weeks, for different values of
the change sensitivity threshold τ and for QBS summaries.
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Figure 19: The number of updates performed by the Bayes policy in different weeks, for different values of
the change sensitivity threshold τ and for FPS summaries.
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