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Abstract. We consider semiparametric estimation of the long-memory parameter of a stationary
process in the presence of an additive nonparametric mean function. We use a semiparametric Whittle-
type estimator, applied to the tapered, di�erenced series. Since the mean function is not necessarily a
polynomial of �nite order, no amount of di�erencing will completely remove the mean. We establish
a central limit theorem for the estimator of the memory parameter, assuming that a slowly increasing
number of low frequencies are trimmed from the estimator's objective function. We �nd in simulations
that tapering and trimming are essential for the good performance of the estimator in practice.
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1 Introduction

The semiparametric estimation of long memory for weakly stationary univariate series has been exten-
sively studied. See, for example, Robinson (1994, 1995a,b), Hurvich, Deo and Brodsky (1998), Moulines
and Soulier (1999). Generalizations to the case where additive polynomial trends may be present were
considered by Velasco (1999a,b), Hurvich and Chen (2000), Hurvich, Moulines and Soulier (2002). All
four of these papers employ tapering schemes, and the latter two employ di�erencing prior to tapering.

The idea of di�erencing to detrend the data followed by tapering to handle diÆculties induced by
possible non-invertibility was suggested by Hart (1989), in a nonparametric context. In the presence
of polynomial trends, adequate di�erencing will completely annihilate the trends, but if the trend is an
arbitrary smooth function, di�erencing serves as only an approximate detrending device. The focus of
Hart (1989) was on estimation of the autocovariances of the noise process (stochastic component), which
was assumed to have short memory, in the presence of a smooth additive nonparametric signal (trend).
Here, we will explore the use of di�erencing and tapering for estimation of the memory parameter of a
long-memory noise process in the presence of a smooth additive nonparametric signal.

There is an existing literature on long memory in the presence of non-polynomial trends. K�unsch
(1986) discussed the diÆculty of distinguishing certain monotonic trends from long memory. Hall and Hart
(1990), Cs�orgo and Mielnikzuk (1995a,b) and Deo (1997) discussed the properties of kernel estimators of
of the mean function in the presence of a long-memory noise. Robinson (1997) discussed this same topic,
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and also provided a method for estimating the memory parameter in the presence of a nonparametric
signal. Our focus here is only on estimation of the memory parameter of the noise, not on estimation
of the signal. Nevertheless, though we do not pursue it here, our estimator of the memory parameter of
the noise, which does not require any preliminary estimator of the signal, might be useful for estimating
standard errors for the signal, or in constructing optimal estimators of the signal.

Robinson (1997) showed that the memory parameter of the noise may be estimated consistently from
the raw data, even in the presence of an unknown nonparametric signal. However, he only established that
the estimator of the memory parameter is log1=2(n){consistent, and furthermore required conditions on
the bandwidth that become extremely stringent as the short-memory case is approached. Our procedure,
which applies the Gaussian semiparametric estimator (see Robinson 1995b) to the tapered, di�erenced
data, yields n2=5�Æ{consistency and asymptotic normality for any suÆciently small positive value of Æ,
assuming that the process is stationary with a spectral pole at zero frequency.

Section 2 presents the main theoretical results on consistency and asymptotic normality of the esti-
mator. It is assumed in these theorems that an increasing number of low frequencies is trimmed from
the objective function of the estimator. Stronger tapers lead to a decrease in the amount of trimming
required. Simulation results, presented in Section 3, indicate that tapering and trimming are essential
for the good performance of the estimator in practice. Furthermore, a �nite-sample correction to the
asymptotic variance agrees well with the variances of the estimators as found in our simulations. The
remaining sections present the theory needed to establish the main theorems. The central limit theorem
presented in Section 4 is notably general in terms of the taper allowed, and the weights used in a linear
combination of the tapered periodogram of a Martingale di�erence sequence.

2 Assumptions and main results

We consider the following model:

Xt = r(t=n) + �t ; t = 0; : : : n (2.1)

where r is a suÆciently smooth function and � is a linear process with long range dependence. Denote

Yt = Xt �Xt�1 ; �r(t=n) = r(t=n)� r((t� 1)=n); and �t = �t � �t�1:

This yields
Yt = �r(t=n) + �t ; t = 1; : : : ; n:

We assume that the process � is linear with respect to a zero mean unit variance white noise Z = (Zt)t2Z:

�t =
X
j2Z

ajZt�j ;
X
j2Z

a2j <1: (2.2)

We further assume that the spectral density of �, denoted by f , can be expressed as

f(x) = jxj�2d0f�(x) (2.3)

where d0 is referred to as the memory parameter of the di�erenced series and f
�(x) satis�es some smooth-

ness condition in the neighborhood of zero frequency (see the assumptions in the statement of Theorem
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1). It will be assumed in the sequel that the original series is stationary with long-memory: thus,
d0 2 I � (�1;�1=2).

Let h be a complex-valued function de�ned on [0; 1]. For any positive integer n, de�ne Hn =Pn
t=1 jh(t=n)j2. The tapered Discrete Fourier Transform (DFT) and the tapered periodogram ordinates

of a process � are de�ned as:

d�;k =
1p

2�Hn

nX
t=1

h(t=n)�te
ixkt and I�;k = jd�;kj2; (2.4)

where xk := 2�k=n (k = 1; : : : ; [(n� 1)=2]) are the Fourier frequencies.

The following assumptions on the mean function r and on the taper h will be used. Throughout the
paper, p is a �xed integer, p � 1.

(A1) r is a p+1 times continuously di�erentiable function on [0; 1].

(A2) h(x) =
Pv

u=0 bue
2i�xu for a non negative integer v � p and real coeÆcients bu, 0 � u � v such that

vX
u=0

buu
k = 0; for k = 0; : : : ; p� 1.

A function h that satis�es (A2) has the following important properties.
(i) There exists a constant C such that for all x 2 [��; �],�����

nX
t=1

h(t=n)eitx

����� � C
n

(1 + njxj)p+1 : (2.5)

(ii) h has at least p� 1 vanishing derivatives at 0 and 1:

h(j)(0) = h(j)(1) = 0; j = 0; : : : ; p� 1: (2.6)

An example of a function h that satis�es (A2) is h(x) = (1� e2i�x)p. This yields the family of tapers
introduced by Hurvich and Chen (2000). For this taper, which has v = p, (2.6) clearly holds and (2.5)
was proved by Hurvich and Chen (2000). (2.5) is proved under (A2) in Lemma A.1. Chen (2001) has
constructed certain tapers that satisfy (A2). These new tapers may have improved eÆciency properties
compared to the Hurvich-Chen tapers.

The following bound for the tapered DFT of the di�erenced mean function d�r;k is crucial for the
derivation of the properties of our estimator. It should be noted that the Lemma does not require the
speci�c form for the taper as given in assumption (A2).

Lemma 2.1. Assume (A1) and let h be a complex-valued p times continuously di�erentiable function
that satis�es (2.6). Then, there exists a constant C such that, for 1 � k � n=2,

jd�r;kj � C(k�pn�1=2 + n�3=2): (2.7)
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Proof. By a Taylor expansion, and since
Pn

t=1 jh(t=n)j � H
1=2
n n1=2, we have,�����d�r;k � n�1(2�Hn)

�1=2
nX
t=1

h(t=n)r0(t=n) exp(ixkt)

����� � Ckr00k1n�3=2

Under assumption (A1), hr0 is continuously di�erentiable. Hence its Fourier series, de�ned as cj :=R 1
0 h(s)r

0(s)e2i�js ds, is absolutely summable and h(s)r0(s) =
P
j2Zcje

�2i�js. Moreover, by assumption,

the derivatives up to the order p � 1 of hr0 vanish at 0 and 1. This implies that
P
j2Zj

2pjcj j2 < 1.
Hence, we have

n�1
nX
t=1

h(t=n)r0(t=n) exp(2i�kt=n) =
X
j2Z

cjn
�1

nX
t=1

exp(2i�(k � j)t=n) =
X
�2Z

ck+�n:

By applying H�older's inequality and noting that k � n=2, we bound this last series:

X
�2Z

jck+�nj �
(X
�2Z

(k + �n)2pjck+�nj2
)1=2(X

�2Z

(k + �n)�2p

)1=2

� Ck�p;

for some constant C depending only on h, r0 and their derivatives up to the order p.

The local Whittle contrast is de�ned as

Wm(C; d) =

mX
k=`

�
log(Cx�2dk ) + C�1x2dk IY;k

	
(2.8)

where m < n=2 is a bandwidth parameter and ` < m is a lower trimming number. Concentrating C out
of Wm yields the pro�le likelihood:

Ĵ`;m(d) = log

 
1

m� `+ 1

mX
k=`

k2dIY;k

!
� 2d
`;m (2.9)

where 
`;m = 1
m�`+1

Pm
k=` log(k). We de�ne the local Whittle (or Gaussian semiparametric in the

terminology of Robinson 1995b) estimate of d0 as:

d̂n = arg min
d2(�1;�1=2)

Ĵ`;m(d):

We now introduce some additional assumptions.

(A3) (Zl) is a fourth-order homoscedastic martingale di�erence sequence i.e. almost surely,

E[ZkjFk�1] = 0; E [Z2
k jFk�1] = 1 and E [Z4

k jFk�1] = �4;

where Fk = �(Zl; l � k).

(A4) a(x) :=
P
j2Zaje

ijx can be expressed as a(x) = x�d0a�(x) (x > 0) where d0 2 (�1;�1=2) and a�
is twice continuously di�erentiable in a neighbourhood of zero and absolutely integrable on [��; �].
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Theorem 1. Assume that (A1), (A2), (A3) and (A4) hold. If ` and m are non increasing sequences
of integers such that

m=n+ n=m`1+2p = O(n��); (2.10)

for some � > 0, then d̂n � d0 = OP (n
�) for some � > 0.

Remark 1. A suitable choice of the sequences ` and m is ` = [nÆ=2p] and m = [n1�Æ] for some arbitrarily
small Æ > 0.

Proof. De�ne

J`;m(d) = log

 
1

m� `+ 1

mX
k=`

k2d�2d0

!
� 2(d� d0)
`;m;

En(d) =

0
@ mX
j=`

j2d�2d0

1
A
�1

mX
k=`

k2d�2d0
�
x2d0k f�(0)�1IY;k � 1

�
:

With these notations, we obtain

Ĵ`;m(d) = log(1 +En(d)) + J`;m(d) + log(f�(0))� 2d0 log(2�=n)� 2d0
`;m: (2.11)

The strict concavity of the function log implies that J`;m is minimized by d0. Moreover, there exists a
constant C0 > 0 such that for all d 2 (�1;�1=2) and all m � 1:

J`;m(d)� J`;m(d0) � C0(d� d0)
2: (2.12)

By Proposition 1 in section 6, we know that there exists an � > 0 such that

sup
d2(�1;�1=2)

jEn(d)j = OP (n
��):

This implies that
sup

d2(�1;�1=2)
j log(1 +En(d))j = OP (n

��): (2.13)

For any positive real A and positive integer n, de�ne DA;n = fd 2 (�1;�1=2); n�=2jd � d0j > Ag.
Applying (2.12), (2.11), and the fact that d̂n minimizes Ĵ`;m, we obtain:

P(d̂n 2 DA;n)) = P(n�(d̂n � d0)
2 � A2) � P(J`;m(d̂n)� J`;m(d0) � C0A

2n��)

= P(Ĵ`;m(d̂n)� Ĵ`;m(d0) + log(1 +En(d0))� log(1 +En(d̂n)) � C0A
2n��)

� P(2 supd2(�1;�1=2) j log(1 +En(d))j � C0A
2n��):

We conclude by applying (2.13) which implies that limA!1 supn!1 P(d̂n 2 DA;n) = 0, which exactly

means that d̂n � d0 = OP (n
��=2).

Theorem 2. Assume (A1)-(A4). Let ` and m be non decreasing sequences of integers such that (2.10)
holds and

lim
n!1

�
n log(m)=(m1=2`1+2p) +m5=n4

�
= 0 (2.14)

Then m1=2(d̂n�d0) converges weakly to the Gaussian distribution with zero mean and variance Tv=4 with

Tv =

Pv
z=�v(

Pv�jzj
u=0 bubu+jzj)

2

(
Pv
u=0 b

2
u)

2 :
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Remark 2. A suitable choice of the sequences ` and m is ` = [n
3

5(1+2p)
+ Æ

4p ] and m = [n4=5�Æ ] for some
arbitrarily small Æ 2 (0; 4=5). Hence the number of trimmed lower frequencies is not too high.

Remark 3. In the case of the Hurvich-Chen taper of order p, v = p and Tp = (4p)!(p!)4=f4(2p)!4g.

Proof. Since d̂n is consistent, for large enough n, it satis�es

0 =
@Ĵ`;m(d̂n)

@d
=

2
Pm
k=` k

2d̂n log(k)IY;kPm
k=` k

2d̂nIY;k
� 2
`;m:

This implies, by a Taylor expansion

0 =

mX
k=`

k2d̂n(log(k)� 
`;m)IY;k

=
mX
k=`

k2d0(log(k)� 
`;m)IY;k + 2(d̂n � d0)
mX
k=`

k2
~dn log(k)(log(k)� 
`;m)IY;k;

where ~dn lies between d̂n and d0. De�ne �k = log(k)� 
`;m, s
2
m =

Pm
k=` �

2
k and

Tm = s�2m

mX
k=`

k2
~dn�2d0 log(k)�k

IY;k

x�2d0k f�(0)
:

With these notations, we obtain

sm(d̂n � d0) = �1

2
T�1m s�1m

mX
k=`

�k
IY;k

x�2d0k f�(0)
:

We will prove that Tm converges in probability to 1 (Proposition 2). Hence the asymptotic distribution

of sm(d̂n � d0) is the same as that of Un := � 1
2s
�1
m

Pm
k=` �k

IY;k

x
�2d0
k

f�(0)
. Write now Un = Vn +Rn, with

Vn = �1

2
s�1m

mX
k=`

�k2�IZ;k and Rn = �1

2
s�1m

mX
k=`

�k

(
IY;k

x�2d0k f�(0)
� 2�IZ;k

)
:

Theorem 3 applied with �n;k = �k=sm implies that Vn converges weakly to N (0; Tv) and Proposition 3
implies Rn converges in probability to 0.

3 Simulations

We investigated the properties of the estimator d̂n based on �rst-di�erences of fXtg, where fXtg is
generated by model (2.1). We took the noise process f�tg to be a Gaussian ARFIMA(1; d0 + 1; 0)
process with memory parameter d0 + 1 = 0:4, and AR(1) parameter (lag-one autocorrelation of short
memory component) equal to 0:2. We considered two values of the mean function: r(x) = 10x4 and
r(x) � 0. The bandwidth for the estimators was m = n0:7. We applied p'th order Hurvich-Chen tapers
h(x) = (1� ei2�x)p with p = 0; 1; 2 to the �rst-di�erences, which have a memory parameter of d0 = �0:6.
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Since the di�erences are non-invertible, the standard theory of Robinson (1995b) for the non-tapered case
(p = 0) does not apply, but we present this non-tapered case for the sake of comparison. We considered
three sample sizes, n = 100; 1000; 5000. For each of these sample sizes, and each choice of p and the mean
function r, we simulated two hundred realizations of the process, using the method of Davies and Harte
(1987).

For computation of d̂n, we used a slightly modi�ed version the pro�le likelihood (2.9):

Ĵ�`;m(d) = log

 
1

m� `+ 1

mX
k=`

(k + p=2)2dIY;k

!
� 2d

m� `+ 1

mX
k=`

log(k + p=2):

We use k + p=2 here in place of k in (2.9) because it is advisable to consider IY;k as an estimator of
f(2�(k + p=2)=n) rather than as an estimator of f(2�k=n). More discussion on this slight frequency
shifting due to the taper is given in Hurvich and Chen (2000) and Hurvich, Moulines and Soulier (2002).

The pro�le likelihood Ĵ�`;m was minimized for d on a grid of mesh size 0:01, in the range [�1:49; 0:49].
This range is wider than allowed by our theoretical results.

The degree of trimming was set according to the value of p. For p = 0, no trimming was used (` = 1).
For p = 1, we used ` = n0:25. For p = 2 we used ` = n0:15. The values of ` used for p = 1 and p = 2
satisfy the condition given in Remark 2.

Figure 1 gives boxplots for the values of d̂n. The �rst and second panels correspond to the mean
functions r(x) = 10x4 and r(x) � 0, respectively. Tables 1 and 2 give the bias, m1=2� Bias, and variance

for d̂n, for the cases of the quartic mean function and the constant mean function, respectively.

For the quartic mean function, the failure to use a taper (p = 0) leads to substantially biased esti-
mators, while the bias is considerably reduced by using the �rst-order taper (p = 1) and is somewhat
further reduced by using the second-order taper (p = 2). The reduced bias for p = 2 compared to p = 1
is consistent with Lemma 2.1. The bias in the non-tapered case is so strong that m1=2� Bias remains
nearly constant with n, whereas it decreases with n in the cases p = 1 and p = 2. For the case of the
constant mean function, the bias in all of the estimators is attributable to the short-memory component
of the process, and m1=2� Bias decreases with n for all values of p.

We next consider the variance of the estimators. For comparison, Table 3 presents some theoretical
variances, for the same values of n and m used in the simulations. In Table 3, the asymptotic variance,
based on Theorem 2, is �p=(4m), where �p = (4p)!(p!)4((2p)!)�4, and the �nite-sample corrected variance
is given by

�p
4
Pm
k=`[log(k + p=2)� (m� `+ 1)�1

Pm
j=` log(j + p=2)]2

:

The corrected expression, which is asymptotically equivalent to the asymptotic expression, is justi�ed
heuristically in Hurvich and Chen (2000).

For p = 0, the variances of d̂n obtained in the simulations (Tables 1 and 2) di�er quite substantially for
the two di�erent mean functions, and almost none of the simulation variances agree well with either of the
theoretical variance expressions from Table 3. Perhaps these diÆculties are due to the non-invertibility
of the di�erenced noise (d0 < �0:5), combined with the failure to use a taper. There is no contradiction
with Theorem 2, since the theorem assumes that p � 1. For p = 1 and p = 2, the simulation variances
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agree well with the corresponding �nite-sample corrected variances, but di�er substantially from the
asymptotic variances. It should also be noted that the in
ation in the observed and corrected asymptotic
variance for p = 2 compared to the case p = 1 is minimal, and in some cases nonexistent, since fewer
frequencies are trimmed for p = 2 than for p = 1.

The above results show that if no tapering or trimming is used, the estimator is severely biased,
whereas if both tapering and trimming are used, the bias is substantially reduced. Further simulations,
not shown here, indicate that while tapering alone reduces bias, if the true value of d0 is small then
trimming is required in addition to tapering in order to yield a nearly unbiased estimator. Thus, in
general, it seems that both tapering and trimming are essential, both in theory and in practice. The
practical justi�cation for trimming may be based on examination of log-log periodogram plots (not shown
here), indicating that the behavior of IY;k for very small values of k is substantially a�ected by the presence
of a nonzero signal, as suggested by Lemma 2.1.

The reader may still ask whether it might be possible to avoid this trimming in the theory for the
estimator. The question seems relevant since we are not aware of any other situation where the Gaussian
semiparametric estimator requires trimming. Furthermore, for stationary Gaussian processes (which
therefore have a constant mean function) it is known that if the log-periodogram regression (GPH)
estimator of Geweke and Porter-Hudak (1983) is used, then no trimming is required in order to achievep
m-consistency and asymptotic normality of the estimator (see Hurvich, Deo and Brodsky 1998), even

though trimming was used in the earlier paper of Robinson (1995a) on this estimator. Finally, even a
small amount of trimming can noticeably in
ate the variability of the estimator in �nite samples. We
believe that unfortunately, the answer to the question, for the Gaussian semiparametric estimator used in
the presence of a nonparametric additive mean function, is no: If trimming is not used, then for certain
mean functions the Gaussian semiparametric estimator will be inconsistent for d0. An interesting open
question is whether the GPH estimator would also require trimming in order to ensure consistency. We
hope to explore this in future work.

4 A central limit theorem for general linear combinations of

tapered periodogram ordinates of a martingale di�erence se-

quence

Theorem 3. Assume (A3). Let (�n;k)1�k�K(n) be a triangular array of real numbers such that

KX
k=1

�n;k = 0; (4.1)

KX
k=1

�2n;k = 1; (4.2)

lim
n!1

 
j�n;K j+

K�1X
k=1

j�n;k+1 � �n;kj
!2

log(n) = 0: (4.3)

Let v be a non negative integer and b0; : : : ; bv be real numbers. De�ne hn;t =
Pv

u=0 bue
itxu , and JZ;k =�

n
Pv
u=0 b

2
u

��1 ��Pn
t=1 hn;tZte

itxk
��2. Then

PK
k=1 �n;k (JZ;k � 1) converges to the Gaussian distribution
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with zero mean and variance Tv =
�Pv

u=0 b
2
u

��1Pv
z=�v(

Pv�jzj
u=0 bubu+jzj)

2.

Proof. Write �rst

KX
k=1

�n;k
�
JZn;k � 1

�
=

PK
k=1 �n;k
nBv

nX
t=1

jhn;tj2(Z2
t � 1) +

nX
t=2

t�1X
s=1

ct;sZsZt; (4.4)

where ct;s :=
2

nBv

PK
k=1 �n;k<

�
hn;t�hn;se

i(t�s)xk
�
. Under assumption (4.1), the �rst term on the rhs of

(4.4) vanishes. By the Martingale central limit theorem, cf. for instance Hall and Heyde (1980) or
Dacunha-Castelle and Du
o (1991), the last term in (4.4) is asymptotically N (0; Tv) if we prove that:

nX
t=1

 
t�1X
s=1

ct;sZs

!2

P�! Tv; (4.5)

nX
t=1

E

2
4 t�1X

s=1

ct;sZs

!4
3
5! 0: (4.6)

We start by proving (4.5). Write
Pn
t=2

�Pt�1
s=1 Zsct;s

�2
=: An +Bn + 2Cn, with

An :=

nX
t=2

t�1X
s=1

c2t;s; Bn :=

nX
t=2

t�1X
s=1

(Z2
s � 1)c2t;s; Cn :=

nX
t=2

X
1�r<s<t

ct;rct;sZrZs:

We will prove in Lemma B.1 below that limn!1 An = Tv and that max1�s�n
Pn
t=1 c

2
t;s = O(n�1).

Consider now Bn. Assumption (A3) implies that E [Z
2
t �1] = 0 and E [(Z2

s �1)(Z2
t �1)] = Æs;t. Hence

Bn has zero mean and variance

E(B2
n ) =

n�1X
s=1

X
s<t;u�n

c2t;sc
2
u;s � An max

1�s�n

nX
t=1

c2t;s = O(n�1):

To bound the last term Cn, note �rst that assumption (A3) implies that if s < t and u < v, then

E [ZsZtZuZv] = 0 if s 6= u or t 6= v. De�ne �n =
�
j�n;K j+

PK�1
k=1 j�n;k+1 � �n;kj

�
. Applying the

Cauchy-Schwarz inequality, (B.2) and (B.3), we obtain:

E [C2
n ] =

X
1�r<s<n

0
@ X
s<t�n

ct;rct;s

1
A

2

�
X

1�r<s<n

X
s<t�n

c2t;r
X
s<t�n

c2t;s

� Cn�1�2n
X

1�r<s<n

X
s<t�n

(t� r)�2 � C�2n log(n) = o(1);

under assumption (4.3). We now prove (4.6). Under (A3), by applying Rosenthal's inequality for
martingales, and Lemma B.1, we obtain:

nX
t=1

E

2
4 t�1X

s=1

ct;sZs

!4
3
5 � C

nX
t=1

t�1X
s=1

c4t;s + C

nX
t=1

 
t�1X
s=1

c2t;s

!2

= O(n�1):
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5 Bounds for the Bartlett Approximation

The primary goal of this section is to establish Corollary 1 stated at the end of the section. Corollary
1 gives a so-called Bartlett approximation, whereby the periodogram of a tapered series, normalized by
a proxy for the spectral density, is approximated by the periodogram of the noise appearing in a linear

representation of the series. Corollary 1 is needed for proving that Rn
P�! 0 in Theorem 2. To establish

Corollary 1, we �rst give, in Lemma 5.1, general conditions guaranteeing the L1 convergence to zero of a
weighted sum of the di�erence between the periodogram of a tapered series, normalized by an arbitrary
sequence, and the periodogram of the driving noise. The conditions for Lemma 5.1 are \unprimitive":
they bear on some integrals involving the DFT of the taper, the transfer function and a normalising
factor. The reason we use these assumptions is to separate the purely analytical properties of the DFT
of the taper (which yield bounds for these integrals) and the probabilistic properties of the tapered DFT
and periodogram ordinates.

Lemma 5.1 as stated here can be used in deriving the properties of a tapered Gaussian semiparametric
estimator in the absence of a signal, and without trimming, since Lemma 5.1 does not require that ` tends
to 1. Furthermore, Lemma 5.1 allows for a general choice of the coeÆcients ~ak. For proving our main
results, we use ~ak = x�d0k a�(0). However, other choices may be used depending on the problem at hand.
See, for instance, Hurvich, Moulines and Soulier (2002), Andrews and Sun (2001). An alternative choice
for the present context could be ~ak = (1 � e�ixk)�2da�(0). In order for the conditions of the lemma to
apply, the coeÆcients ~ak should approximate the behavior of the underlying transfer function a(x) in a
neighborhood of zero frequency.

Once Lemma 5.1 is proved, it is necessary to check that its conditions hold under the assumptions
of Theorem 2. This checking is carried out, under weaker assumptions than needed for Theorem 2, in
Lemma A.2, stated and proved in the Appendix.

Lemma 5.1. Let � be a covariance stationary process which admits a linear representation with respect
to a white noise Z which satis�es assumption (A3) and with transfer function a(x) =

P
j2Zaje

ijx. Let

(~ak)`�k�m be complex numbers. Let h be any function on [0; 1], Dn(x) = (2�Hn)
�1=2

Pn
t=1 h(t=n)e

itx

and

pk;j =

����
Z �

��

�
a(x)

~ak
� 1

�
Dn(xk � x)Dn(xj � x) dx

���� ; (5.1)

qk =

����
Z �

��

� ja(x)j2
j~akj2 � 1

�
jDn(xk � x)j2 dx

���� : (5.2)

Let m be a non decreasing sequence of integers and let (cn;k)`�k�m be a triangular array of real numbers
such that

mX
k=`

c2n;k � 1; (5.3)

lim
n!1

mX
k=`

jcn;kj(qk + 2pk;k) = 0; (5.4)

lim
n!1

X
`�k�j�m

jcn;kcn;j jpk;jpj;k = 0: (5.5)
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De�ne ~f�;k = j~akj2=(2�) and let I�;k and IZ;k be the tapered DFT of the processes � and Z with tapering
coeÆcients h(t=n), as de�ned in (2.4). Then

lim
n!1

E

"�����
mX
k=`

cn;k

 
I�;k
~f�;k

� 2�IZ;k

!�����
#
= 0: (5.6)

Proof. De�ne, uj = ~a�1j
p
2�d�;j and vj =

p
2�dZ;j . Using these notations, we obtain the following

decomposition:
~f�1�;kI�;k � 2�IZ;k = juk � vkj2 + 2Re(�vk(uk � vk)):

By straightforward algebra, we obtain:

E [juj � vj j2] =
Z �

��

� ja(x)j2
j~aj j2 � 1

�
jDn(x� xj)j2dx

� 2Re

�Z �

��

�
a(x)

~aj
� 1

�
jDn(x� xj)j2 dx

�
� qj + 2pj;j : (5.7)

Applying assumption (5.4), we obtain

E

"
mX
k=`

jcn;kjjuk � vk j2
#
�

mX
k=`

jcn;kj(qk + 2pk;k) = o(1): (5.8)

De�ne Wn :=
Pm
k=` cn;kvk(�uk � �vk). By some well known formula, we have E [W 2

n ] = S1;n + S2;n + S3;n,
with

S1;n =
mX
k=`

c2n;kE [juk � vkj2];

S2;n =
X

`�k�j�m

cn;kcn;j

n
E [�vk (uk � vk)] E [�vj (uj � vj)] + E [vk (�uk � �vk)] E [�vj (uj � vj)] +

E [�vk (uj � vj)] E [�vj (uk � vk)] + E [vk (�uj � �vj)] E [�vj (uk � vk)]
o
;

S3;n = 2
X

`�k�j�m

cn;kcn;jcum(vk ; �uk � �vk; �vj ; uj � vj):

Applying (5.14), we obtain:

S1;n �
mX
k=`

c2n;k(qk + 2pk;k) �
mX
k=`

jcn;kj(qk + 2pk;k) = o(1)

by assumption (5.4). To bound S2;n, note that

jE [�vj (uk � vk)]j =
����
Z �

��

�
a(x)

~ak
� 1

�
Dn(xk � x)Dn(xj � x) dx

���� = pk;j :

Hence, by assumptions (5.4) and (5.5), we obtain, for some numerical constant c:

jS2;nj � c
X

`�k�j�m

jcn;kcn;j j(pk;kpj;j + pk;jpj;k) = o(1):

11



In order to compute and bound the cumulants that appear in the term S3;n, we need to introduce the
following kernel:

~Dp;n(x) =

Z �

��

Dp;n(z)Dp;n(x� z) dz = H�1
n

nX
t=1

h(t=n)2eitx: (5.9)

It is easily seen that ~Dp;n satis�es Z �

��

j ~Dp;n(x)j2dx = O(n�1); (5.10)

Some more algebra and (5.9) yields:

cum(�vk ; uk � vk; �vj ; uj � vj) =
�4
2�

Z �

��

Z �

��

Z �

��

�
a(x)

~ak
� 1

��
a(y)

~aj
� 1

�

� Dn(xk � x) Dn(xj � y)Dn(xk � x� y + z) Dn(xj � z) dx dy dz

=
�4
2�

Z �

��

Z �

��

�
a(x)

~ak
� 1

��
a(y)

~aj
� 1

�

� Dn(xk � x) Dn(xj � y) ~Dn(xk + xj � x� y) dx dy:

Applying the Cauchy-Schwarz inequality, (5.10), and (5.7), we obtain

jcum(�vk ; uk � vk ; �vj ; uj � vj)j � cn�1=2

 Z �

��

����a(x)~ak
� 1

����
2

jDn(xk � x)j2dx
!1=2

�
 Z �

��

����a(x)~aj
� 1

����
2

jDn(xj � x)j2dx
!1=2

� c�4n
�1=2

q
(qk + 2pk;k)(qj + 2pj;j):

Hence, applying the Cauchy-Schwarz inequality, we obtain:

jSn;3j � cn�1=2
X

`�k�j�m

jcn;kcn;j j
q
(qk + 2pk;k)(qj + 2pj;j) � cn�1=2

 
mX
k=`

jcn;kj
q
(qk + 2pk;k)

!2

� c�n�1=2
mX
k=`

jcn;kj
mX
k=`

jcn;kj(qk + 2pk;k):

Assumption (5.3) implies that n�1=2
Pm
k=` jckj �

p
m=n � 1, hence, by assumption (5.4), we obtain:

jSn;3j � c(m=n)1=2
mX
k=`

jcn;kj(qk + 2pk;k) = o(1):

Assumptions (A2), (A3), (A4), Lemma A.1 and Lemma A.2 applied with q = p imply that if we
choose

~ak = x�d0k a�(0) (5.11)
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then the coeÆcients de�ned in (5.1) and (5.2) satisfy

qk + 2pk;k � C(k�1 + (k=n)2) and pk;jpj;k � C(k�1j�1 + ((k _ j)=n)4): (5.12)

Hence (5.4) and (5.5) hold for any sequence of weights (cn;k)`�k�m such that (5.3) holds and

lim
n!1

max
`�k�m

jcn;kj = 0; (5.13)

which is the so-called Lindeberg condition, and for any sequence m such that limn!1(m5=n4) = 0. No
restriction is imposed on `.

If in (5.12) the terms (k=n)2 and (k _ j)=n)4 are replaced by (k=n)� and (k _ j)=n)2� , respectively,
then (5.4) and (5.5) hold for any sequence of weights (cn;k)`�k�m such that (5.3), (5.13) hold and any
sequence m such that limn!1(m2�+1=n2�) = 0.

We give a brief proof of this. Since we make no assumption on `, we assume without loss of generality
that ` = 1. Let m0 be a sequence of integers such that 1 � m0 � m and limn!1m0 = +1. De�ne
c�n = max1�k�m jcn;kj. If (5.13) holds, m0 can be chosen such that limn!1 c�n log(m) = 0. Then, splitting
the sum at m0 and applying the Cauchy Schwarz inequality to the sum above m0 and (5.3), we have:

mX
k=1

jcn;kjk�1 � c�n

m0X
k=1

k�1 +

( X
k=m0+1

k�2

)1=2

� c�n log(m
0) +m0�1;

mX
k=1

jcn;kj(k=n)� � m�+1=2n�� ;

X
1�k�j�m

jcn;kjjcn;j j(j=n)2� � m2�+1n�2�:

For further reference, we gather these remarks in a corollary.

Corollary 1. Assume (A2), (A3) (A4). Let m be a non decreasing sequence of integers such that
limn!1(m5=n4) = 0, let ~f�;k = j~akj2=(2�) where ~ak is given by (5.11), and let (cn;k)`�k�m be a triangular
array of real numbers such that (5.3) and (5.13) hold. Then

lim
n!1

E

"�����
mX
k=`

cn;k

 
I�;k
~f�;k

� 2�IZ;k

!�����
#
= 0: (5.14)

6 Propositions

Proposition 1. Assume (A1)- (A4). Let ` and m be non decreasing sequences such that

lim
n!1

�
m=n+ n=(`1+2pm)

�
= 0:

Then supd2(�1;�1=2) jEn(d)j = oP (1). If moreover m and ` are such that

m=n+ n=(`1+2pm) � n�� ;

for some � > 0, then there exists a real � > 0 such that

E [supd2(�1;�1=2) jEn(d)j] = O(n��):
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Proof. Denote, for k = `; : : : ;m,


k(d) =
k2(d�d0)Pm
j=` j

2(d�d0)
; wk = f�(0)�1=2xd0k d�;k �

p
2�dZ;k ; �k =

I�;k

x�2d0k f�(0)
� 2�IZ;k :

Then,

IY;k

x�2d0k f�(0)
� 1 =

I�r;k

x�2d0k f�(0)
+ 2Re

 
d�r;kd�;k

x�2d0k f�(0)

!
+ �k + 2�IZ;k � 1;

En(d) =

mX
k=`


k(d)�k +

mX
k=`


k(d)(2�IZ;k � 1)

+

mX
k=`


k(d)

 
I�r;k

x�2d0k f�(0)
+ 2Re

 
d�r;kd�;k

x�2d0k f�(0)

!!
=: R1(d) +R2(d) +R3(d):

The terms R1 and R2 can be dealt with by using the techniques introduced by Robinson (1995b) in the
non tapered case and used by Hurvich and Chen (2000) in the case of the Hurvich and Chen taper. We
nevertheless give a streamlined proof since our assumptions are slightly di�erent. The main tools are
summation by parts, Corollary 1 and the following bounds: for all d 2 (�1;�1=2),

0 � 
k(d) � Ck�1
�
k

m

��2d0�1
and j
k(d)� 
k+1(d)j � Ck�2

�
k

m

��2d0�1
: (6.1)

By summation by parts, we obtain:

R1(d) =

m�1X
k=`

(
k(d) � 
k+1(d))

kX
j=1

�j + 
m(d)

m�1X
j=1

�j :

By Corollary 1, we obtain the bound E

h���Pk
j=1 �j

���i = O(k1=2). This and (6.1) yield:

E

"
sup

d2(�1;�1=2)

jR1(d)j
#
� C

mX
k=`

k1=2k�2
�
k

m

��2d0�1
+ Cm�1=2

� Cm2d0+1
mX
k=`

k�5=2�2d0 + Cm�1=2 � C(m2d0+1 +m�1=2):

To deal with the term R2, we gather here some useful facts on the tapered DFT and periodogram
ordinates of a white noise satisfying assumption (A3). The main e�ect of the data taper is that even
though Z is a zero mean unit variance white noise, its DFT ordinates are not uncorrelated. Nevertheless,
by assumption (A2), they satisfy E [dZ;k �dZ;k+s] = 0 if s > v and jE [dZ;k �dZ;k+s]j � 1 if s � v. Hence for
any sequence of complex numbers (aj)`�j�m, we have the bound:

E

2
64
������
mX
j=`

ajdZ;j

������
2
3
75 � mX

j=`

vX
s=0

jajaj+sj � v

mX
j=`

jaj j2: (6.2)

If 0 � j � v, cov(IZ;k ; IZ;k+j) is uniformly bounded with respect to n; k and j by some constant which
depends only on v and the distribution of Z. If j > v, then cov(IZ;k ; IZ;k+j ) = c(v; Z)n�1, for some
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constant c(v; Z) which depends only on v and the distribution of Z. For instance, for v = 0, it is well
known that cov(IZ;k ; IZ;k+j) = �4n

�1, where �4 := E [Z4
0 ] � 3 is the fourth cumulant of Z0 (cf. for

instance Fay and Soulier (2001)). Hence we obtain, for some constant C which depends only on v and
the distribution of Z:

E

2
4 mX

k=`

ck(2�IZ;k � 1)

!2
3
5 � C

mX
k=`

c2k + Cn�1

 
mX
k=`

ck

!2

� C(v; Z)
mX
k=`

c2k: (6.3)

We now obtain a uniform bound for R2, applying summation by parts, (6.1) and (6.3).

R2(d) =

m�1X
k=`

(
k(d) � 
k+1(d))

kX
j=1

(2�IZ;j � 1) + 
m(d)

m�1X
j=1

(2�IZ;j � 1);

E

"
sup

d2(�1;�1=2)

jR2(d)j
#
� C

mX
k=`

k1=2k�2
�
k

m

��2d0�1
+ Cm�1=2 � C(m2d0+1 +m�1=2):

We now bound E [supd2(�1;�1=2) jR3(d)j]. Write R3(d) = R4(d) +R5(d) +R6(d) with

R4(d) =

mX
k=`


k(d)
I�r;k

x�2d0k f�(0)
;

R5(d) = 2
mX
k=`


k(d)Re

 
d�r;k

x�d0k

p
f�(0)

wk

!
;

R6(d) = 2

mX
k=`


k(d)Re

 p
2�d�r;kdZ;k

x�d0k

p
f�(0)

!
:

By applying the �rst bound in (6.1) and Lemma 2.1, we obtain, for all d; d0 2 (�1;�1=2),

jR4(d)j � C

mX
k=`

k�1(k=m)�2d0�1(k=n)2d0n�1(k�2p + n�2) = C(m=n)2d0+1
mX
k=`

(k�2�2p + k�2n�2)

� Cnm�1(`�1�2p + `�1n�2) � C(`�1�2pm�1n+ n�1): (6.4)

Equations (5.7) and (5.12) imply that

E [jwk j2] � C(k�1 + (k=n)2): (6.5)

By Lemma 2.1, (6.5) and the Cauchy-Schwarz inequality, we obtain

E [jd�r;kwkj] � Cn�1=2(k�p + n�1)(k�1=2 + kn�1) � Cn�1=2(k�p�1=2 + n�1):

Applying this bound, equation (6.1) and summation by parts, we obtain:

E

"
sup

d2(�1;�1=2)
jR5(d)j

#
� C

mX
k=`

k�2(k=m)�2d0�1
kX
j=`

(j=n)d0n�1=2(j�p�1=2 + n�1) (6.6)

+ Cm�1
mX
k=`

(k=n)d0n�1=2(k�p�1=2 + n�1): (6.7)

15



We �rst obtain the following bound:

kX
j=`

(j=n)d0n�1=2(j�p�1=2 + n�1) � C(n�d0�1=2`d0�p+1=2 + n�d0�3=2kd0+1): (6.8)

Thus the right hand side of (6.6) is bounded by a constant times

m2d0+1
�
`�d0�p�3=2n�d0�1=2 + `�1�d0n�d0�3=2

�
� `�1�pm�1=2n1=2 + n�1=2: (6.9)

The term (6.7) is bounded by a constant times

`d0�p+1=2m�1n�d0�1=2 +md0+1n�d0�3=2 � `�p�1=2m�1n1=2 + n�1=2 (6.10)

Applying (6.2) and Lemma 2.1, we obtain:

E

2
64
������
kX
j=`

xd0k d�r;kdZ;j

������
2
3
75 � v

kX
j=`

x2d0k I�r;k � C(`2d0�2p+1n�2d0�1 + n�2d0�3k2d0+1): (6.11)

Applying (6.1), (6.11), the Cauchy-Schwarz inequality and summation by parts, we obtain:

E

"
sup

d2(�1;�1=2)

jR6(d)j
#
� Cm2d0+1

mX
k=`

k�2d0�3E1=2

2
64
������
kX
j=`

xd0k d�r;kdZ;j

������
2
3
75

+ Cm�1
E
1=2

2
64
������
mX
j=`

xd0k d�r;kdZ;j

������
2
3
75

� Cm2d0+1(`�d0�p�3=2n�d0�1=2 + `�d0�3=2n�d0�1=2)

+ Cm�1(`d0�p+1=2n�d0�1=2 + n�d0�3=2md0+1=2)

� C(`�p�1m�1=2n1=2 + n�1=2): (6.12)

Gathering (6.4), (6.9), (6.10) and (6.12) yields:

E

"
sup

d2(�1;�1=2)
jR3(d)j

#
� C

�
`�2p�1m�1n+ n�1

�1=2
;

which concludes the proof of Proposition 1.

Proposition 2. Assume (A1)-(A4). Let ` and m be non decreasing sequences of integers such that
(2.10) and (2.14) hold for some � > 0. Then Tm converges in probability to 1.

Proof. De�ne �k = f�(0)�1x2d0k IY;k � 1. Then Tm can then be expressed as

Tm = 1 + s�2m

mX
k=`

log(k)�k�k + s�2m

mX
k=`

(k2(
~dn�d0) � 1) log(k)�k

IY;k

x�2d0k f�(0)
=: 1 + T1;m + T2;m:
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We will prove that T1;m = oP (1) and T2;m1fjd̂n�d0j�n��g = oP (1). This is suÆcient to prove Proposition

2 since it follows from Proposition 1 that d̂n is n��-consistent for some � > 0.

For brevity, denote Vk = f�(0)�1=2xd0k d�r;k. Using the notations of Proposition 1, we then obtain:

�k = 2�IZ;k � 1 + �k + jVkj2 + 2Re (Vkwk) + 2
p
2�Re (VkdZ;k) :

Denote ck = s�2m log(k)�k. Then
Pm

k=` ck = 1 and jckj = O(log2(m)m�1). Applying Lemma 2.1, we
obtain:

mX
k=`

jckj I�r;k

x�2d0k f�(0)
� C

log2(m)

m

mX
k=`

n�1(k�2p + n�2)(k=n)2d0

� C log2(m)(`1�2p+2d0 + `1+2d0n�2)m�1n�1�2d0 � C(log2(m)`�1�2pm�1n+ n�1): (6.13)

Applying Lemma 2.1, (6.5) and the bound (6.8) with k = m we obtain:

E

"�����
mX
k=`

ck
d�r;k

x�d0k

p
f�(0)

wk

�����
#
� C log2(m)m�1(n�d0 ld0�p+1=2 + n�d0�3=2md0+1)

� C log2(m)(l�p�1=2m�1n1=2 + n�1=2): (6.14)

Applying (6.2) and (6.11), we now obtain:

E

2
4
�����
mX
k=`

ckVkdZ;k

�����
2
3
5 � p

mX
k=`

c2kjVk j2 � C log4(m)m�2(`2d0�2p+1n�2d0�1 + n�2d0�3m2d0+1)

� C log4(m)(l�1�2pm�2n+m�1n�1): (6.15)

Since the coeÆcients ck satisfy the conditions of Corollary 1, we obtain that limn!1 E [jPm
k=` ck�kj] = 0.

To bound the last remaining term in the decomposition of T1;m, we use (6.3):

E

2
4
 

mX
k=`

ck(2�IZ;k � 1)

!2
3
5 � C

mX
k=`

c2k = O(log2(m)m�1):

We have proved that T1;m = oP (1).

We now consider T2;m. Denote bk = ck(k
2 ~dn�2d0 � 1)1fjd̂n�d0j�n��g. Then jbkj � log3(m)m�1n��

and

T2;m =

mX
k=`

bk
I�;k

x�2d0k f�(0)
+

mX
k=`

bkjVkj2 + 2Re

 
mX
k=`

bk
d�;k

x�d0k

p
f�(0)

Vk

!
:

By Lemmas 5.1 and A.2, E [x2d0k I�;k ] is uniformly bounded. Hence

E

"�����
mX
k=`

bk
I�;k

x�2d0k f�(0)

�����
#
� C log3(m)n�� :

17



By Lemma 2.1 and (6.11), we obtain:

E

"
mX
k=`

jbkjV 2
k

#
� C log3(m)m�1n�1��

mX
k=`

(k=n)2d0(k�2p + k2n�2) � log3(m)n��(`�1�2pm�1n+ n�1��):

The last term is dealt with by applying the Cauchy-Schwarz inequality.

Proposition 3. Assume (A1)-(A4). Let ` and m be non decreasing sequences of integers such that
(2.14) holds. Then Rn converges in probability to 0.

Proof. Write Rn =
P4
i=1R1;n, with

R1;n = s�1m

mX
k=`

�k
I�r;k

x�2d0k f�(0)
; R2;n = s�1m

mX
k=`

�k
Re( �d�r;kwk)

x�d0k

p
2�a�(0)

;

R3;n = s�1m

mX
k=`

�k
Re( �d�r;kdZ;k)

x�d0k a�(0)
; R4;n = s�1m

mX
k=`

�k�k;

where �k = x2d0k f�(0)�1I�;k � 2�IZ;k .

By the same computations as in (6.13), (6.14) and (6.15) with s�1m �k instead of ck, we obtain:

Rn;1 � C log(m)(`�1�2pm�1=2n+m1=2n�1);

E [jRn;2 j] � C log(m)(`�p�1=2m�1=2n1=2 +m1=2n�1=2);

� C log2(m)(`�1�2pm�1n+ n�1):

Finally, Corollary 1 implies that E [jR4;n j] = o(1).

A Appendix

Lemma A.1. Let h be a taper satisfying assumption (A2). Then the corresponding kernel Dn(x) =
(2�Hn)

�1=2
Pn
t=1 h(t=n)e

itx satis�es

jDn(x)j � C
n1=2

(1 + njxj)p+1 :

Proof. The proof is exactly the same as in Hurvich and Chen (2000). First, we note that as Hn = n
P
b2u,

jDn(x)j � Cn1=2. We prove now that, for x 6= 0, jDn(x)j � Cn�p�1=2jxj�p�1. We have

Dn(x) = (2�Hn)
�1=2

nX
t=1

vX
u=0

bue
i(x+xu) = (2�Hn)

�1=2
vX

u=0

bue
i(n+1)x=2 sin(nx=2)

sin((x + xu)=2)
:

We bound the upper sine and the exponential by 1. De�ning g(x) = 1= sin(x), we get

jDn(x)j � (2�Hn)
�1=2

�����
vX

u=0

bug((x+ xu)=2)

����� :

18



Now we use a Taylor expansion for g((x+ xu)=2):

g((x+ xu)=2) =

p�1X
k=0

(xu=2)
k g

(k)(x=2)

k!
+ (xu=2)

p g
(p)(�u)

p!
;

where x=2 � �u � (x + xu)=2. Summing over u, all the terms vanish except the order p term. Now (see
Hurvich and Chen 2000) jg(p)(�u)j < jCp= sinp+1(x=2)j < Cp2

pjxj�p�1 so that�����
vX
u=0

bug((x+ xu)=2)

����� � Cp�
pvp+1

p!
jxj�p�1n�p

Lemma A.2. Let q 2 N
� and let � 2 (�1; 2q + 1). Let � and  be integrable functions on [��; �], such

that �(�x) = �(x),  is a symmetric real function, di�erentiable on [�#; #]nf0g and for some � 2 (0; 2],
K > 0 and all x 2 (0; #] n f0g,

jx 0(x)j � Kj (x)j; (A.1)

K1jxj� � j (x)j � K2jxj� ; (A.2)

j�(x) �  (x)j � K (x)x� : (A.3)

Let Dn be such that for x 2 [��; �],

jDn(x)j � C
n1=2

(1 + njxj)q+1 : (A.4)

Then, there exists a constant C such that, for all n � 1 and all k such that 0 < xk � #=2,

����
Z �

��

�
�(x)

 (xk)
� 1

�
jDn(xk � x)j2 dx

���� � C

 
k�1 + Æ(�;  )

�
k

n

��!
; (A.5)

with Æ(�;  ) = 1 if � 6=  and 0 otherwise.

If � 2 (�1=2; q + 1=2), then for all k; j such that 0 < xk 6= xj � #=2,����
Z �

��

�
�(x)

 (xk)
� 1

�
Dn(xk � x)Dn(xj � x) dx

���� � C�(k; j) + Æ(�;  )�(k; j)(k=n)� ; (A.6)

with

�(k; j) = k�qj�q(j ^ k)�1 + (1 + (j=k)�)(j ^ k)�1jj � kj�q;
�(k; j) = (j ^ k)�2q�1 + (1 + (j=k)�)jj � kj�q :

Proof. De�ne  n;k(x) :=
�
 (xk)

�1�(x) � 1
� jDn(xk � x)j2. Then, if jxj 2 [#; �] , jx � xkj � #=2 and

applying (A.4), jDn(xk � x)j2 � Cn�2q�1. We obtain:

Z
#�jxj��

 n;k(x) dx � C

n2q+1

 
1 +

R �
��
j�(x)j dx
j (xk)j

!
� Ck�2q�1:
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because (A.2) implies that j (xk)j � Cx2q+1k .

Consider now the integral over [�#; #]. Write  n;k(x) =  
(1)
n;k(x) +  

(2)
n;k(x) with

 
(1)
n;k(x) :=

 (x) �  (xk)

 (xk)
jDn(xk � x)j2;

 
(2)
n;k(x) :=

�(x) �  (x)

 (xk)
jDn(xk � x)j2:

If x 2 [2xk; #], (A.1) and (A.2) imply

j (x)�  (xk)j � C(x��1 + x��1k )jx � xkj:
Since x � 2xk implies that x� xk � x=2, we obtain:Z #

2xk

j (1)n;k(x)j dx �
Z #

2xk

C(x��1 + x��1k )njx� xkj dx
j (xk)j(1 + njx� xkj)2q+2

� Cx��k n�2q�1
Z #

2xk

(x��1 + x��1k )x�2q�1 dx � Ck�2q�1:

If x 2 [�#;�xk=2], then jx� xk j � jxj. HenceZ �xk=2

�#

j (1)n;k(x)j dx �
Z �xk=2

�#

C(jxj� + jxkj�)n dx
jxkj�(1 + njx� xkj2q+2)

� Cn�2q�1jxkj��
Z �xk=2

�#

(jxj� + jxkj�)jxj�2q�2 dx � Ck�2q�1:

Applying (A.2),
R xk
�xk

j (x)j=j (xk)j dx � xk. Applying (A.4) with jx� xkj > xk=2, we obtain:Z xk=2

�xk=2

j (1)n;k(x)j dx �
C n

(1 + nxk=2)2q+2

�
xk +

Z xk

�xk

j (x)j
j (xk)j dx

�
� Ck�2q�1:

If x 2 [xk=2; 2xk], (A.1) and (A.2) imply j (x)�  (xk)j � Cjx� xkjjxk j��1. Applying the bound (A.4),
we obtain:Z 2xk

xk=2

j (1)n;k(x)j dx �
Cjxk j��1
j (xk)j

Z 2xk

xk=2

jx� xkjjDn(x� xk)j2 dx � Ck�1
Z 2�k

0

t

(1 + t)2q+2
dt � Ck�1:

We now consider  
(2)
n;k. If x � 2xk, then jx� xkj � x=2. Applying (A.3) and (A.4), we obtain:

Z #

2xk

j (2)n;k(x)j dx �
Cn�2q�1

j (xk)j
Z #

2xk

x�+��2q�2 dx � Ck�2q�1:

Similarly, if x � �xk=2, then jx� xkj � jxj=2, hence, applying (A.3) and (A.4), we also obtain:Z �xk=2

�#

j (2)n;k(x)j dx � Ck�2q�1:

Applying (A.3) and (A.4) with jx� xk j > xk=2, we obtain:Z xk=2

�xk=2

j (2)n;k(x)j dx �
C nx�k

(1 + nxk=2)2q+2

Z xk

�xk

j (x)j
j (xk)j dx � Ck�2q�1:
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Applying (A.2) for�xk=2 � x � 2xk, we get j (x)jjxj� � Cjxk j�+� and:

Z 2xk

xk=2

j (2)n;k(x)j dx � Cx�k

Z xk

�xk=2

jDn(x)j2 dx � C(k=n)� :

This concludes the proof of (A.5).

To prove (A.6), denote En;j;k(x) = Dn(x�xk)Dn(x� xj) and  n;j;k(x) = ( (xk)
�1�(x)�1)En;k;j (x).

If jxj 2 (#; �], jxk j � #=2 and jxj j � #=2, then (A.4) implies that jEn;k;j(x)j � Cn�2q�1. Hence, applying
(A.2) and (A.4), we obtain:

Z
#�jxj��

j n;k;j(x)j dx � C

n2q+1

 
1 +

R �
�� j�(x)j dx
j (xk)j

!
� Cn�q�1=2k�q�1=2 � Cj�qk�q�1:

Denote  
(1)
n;j;k(x) = ( (xk)

�1 (x) � 1)En;j;k(x),  
(2)
n;j;k(x) =  (xk)

�1f�(x) �  (x)gEn;j;k(x) and y =
min(xk ; xj) and z = max(xk ; xj).

Z #

2z

j (1)n;j;k(x)j dx �
Z #

2z

C(x��1 + x��1k )njx� xk j dx
j (xk)j(1 + njx� xkj)q+1(1 + njx� xj j)q+1

� C(n(2z � xj))
�q jxkj��

Z #

2z

(x��1 + x��1k )(nx)�q�1 dx � Cj�qk�q�1:

If x 2 [�#;�y=2], then jx� xkj � jxj, jx� xj j � jxj and jx� xj j � xj . Hence

Z �y=2

�#

j (1)n;k;j(x)j dx �
Z �y=2

�#

C(jxj� + jxkj�)n dx
jxk j�(1 + njx� xkjq+1)(1 + njx� xj jq+1)

� Cn�2q�1x�qj x��k

Z �y=2

�#

(jxj� + jxk j�)jxj�q�2 dx

� Cn�2q�1x�qj x�q�1k � Cj�qk�q�1:

If x 2 [�y=2; y=2], then jx� xkj � xk=2 and jx� xj j � xj=2. Applying (A.2) and (A.4), we obtain:

Z y=2

�y=2

j (1)n;j;k(x)j dx �
Cn
n
y +

R y
�y

j (x)j
j (xk)j

dx
o

(1 + n(xk=2))q+1(1 + n(xj=2))q+1
� Ck�qj�q�1:

If x 2 [y=2; 2z], then applying (A.1), (A.2)

Z 2z

y=2

j (1)n;j;k(x)j dx �
Z 2z

y=2

C(x��1k + x��1j )njx� xkj dx
jxk j�(1 + njx� xkj)q+1(1 + njx� xj j)q+1

� C(x��1k + x��1j )

x�k(n(z � y))q

 Z (y+z)=2

y=2

dx

(1 + njx� yj)q+1 +
Z 2z

(y+z)=2

dx

(1 + njx� zj)q+1
!

� C(1 + (j=k)�)

ny(1 + njz � yj)q =
C(1 + (j=k)�)

(j ^ k)jj � kjq :
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Consider now  
(2)
n;j;k.

Z #

2z

j (2)n;j;k(x)j dx �
Z #

2z

Cjxj�+�n dx
j (xk)j(1 + njx� xkj)q+1(1 + njx� xj j)q+1

� Cn�2q�1jxk j��
Z #

2z

(x�+� + x�+�k )x�2q�2 dx � Cn�2q�1x2q+1+�k � Ck�2q�1(k=n)�:

If x 2 [�#;�y=2], then jx� xkj � jxj, jx� xj j � jxj and jx� xj j � xj . Hence

Z �y=2

�#

j (2)n;k;j(x)j dx �
Z �y=2

�#

C(jxj�+� + jxkj�+�)n dx
jxkj�(1 + njx� xkjq+1)(1 + njx� xj jq+1)

� Cn�2q�1x��k

Z �y=2

�#

(jxj�+� + jxkj�+�)jxj�2q�2 dx � Cjj ^ kj�2q�1(k=n)�:

If x 2 [�y=2; y=2], then jx� xkj � xk=2 and jx� xj j � xj=2 Applying (A.2) and (A.4), we obtain:

Z y=2

�y=2

j (2)n;j;k(x)j dx �
Cn
nR y

�y jxj�+� jxkj�� dx
o

(1 + n(xk=2))q+1(1 + n(xj=2))q+1
� Ck�qj�q�1(k=n)� :

If 2 [y=2; 2z], then applying (A.1), (A.2)

Z 2z

y=2

j (2)n;j;k(x)j dx �
Z 2z

y=2

Cn(x�+�k + x�+�j ) dx

jxk j�(1 + njx� xk j)q+1(1 + njx� xj j)q+1

� Cn�q(x�+�k + x�+�j )

x�k jz � yjq+1
 Z (y+z)=2

y=2

dx

(1 + njx� yj)q+1 +
Z 2z

(y+z)=2

dx

(1 + jx� zj)q+1
!

� C

�
(j _ k)
n

��
1 + (j=k)�

jj � kjq :

Altogether, we obtain:Z �

��

j (1)n;j;k(x)j dx � C(j ^ k)�1 �k�qj�q + (1 + (j=k)�)jj � kj�q� ;Z �

��

j (2)n;j;k(x)j dx � C
�
(j ^ k)�2q�1 + (1 + (j=k)�)jj � kj�q� ((j _ k))=n)� :
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B Apendix

Lemma B.1. Under the assumptions and notations of Theorem 3, it holds that:

lim
n!1

nX
t=2

t�1X
s=1

c2t;s = Tv; (B.1)

jct;sj � C�njt� sj�1; (B.2)

max
1�s�n

nX
t=1

c2t;s = O(1=n): (B.3)

Proof. We will make repeated use of the following identities.

nX
t=2

t�1X
s=1

eitxue�isxv = 0 if u 6= v mod. n, (B.4)

nX
t=2

t�1X
s=1

eitxue�isxv = �n=2 if u = v 6= 0 mod. n, (B.5)

nX
t=2

t�1X
s=1

eitxue�isxv = n(n� 1)=2 if u = v = 0 mod. n. (B.6)

We start by proving (B.1). Write

An =
4

n2B2
p

X
k;l

�n;k�n;l

nX
t=1

t�1X
s=1

<
�
ht�hse

i(t�s)xk
�
<
�
ht�hse

i(t�s)xl
�
:

Recall that ht =
Pv
u=0 bue

itxu .

Thus,

4

n2B2
p

X
k;l

�n;k�n;l

nX
t=1

t�1X
s=1

<
�
ht�hse

i(t�s)xk
�
<
�
ht�hse

i(t�s)xl
�

(B.7)

=
4

n2B2
p

X
k 6=l

�n;k�n;l
X

u;w;y;z

bubwbybz

nX
t=1

t�1X
s=1

eitxk+u+l+ye�isxk+w+l+z + e�itxk+u+l+yeisxk+w+l+z (B.8)

+eitxk+u�l�ye�isxk+w�l�z + e�itxk+u�l�yeisxk+w�l�z : (B.9)

Denote �1(b) =
P
u;w;y;z;u+y=w+z bubwbybz and �2(b) =

P
u;w;y;z;u�y=w�z bubwbybz. Using (B.4) and

(B.5), we get

X
u;w;y;z

bubwbybz

nX
t=1

t�1X
s=1

eitxk+u+l+ye�isxk+w+l+z + e�itxk+u+l+yeisxk+w+l+z = �n�1(b):
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Similarly, using (B.4) (B.5) and (B.6), we get:

X
u;w;y;z

bubwbybz

nX
t=1

t�1X
s=1

eitxk+u�l�ye�isxk+w�l�z + e�itxk+u�l�yeisxk+w�l�z

= �n�2(b) + n2

 X
u

bubu+k�l

!2

:

Now, note that �1(b) and �2(b) do not depend on k; l and that the sum of the �n;k equals zero.

An =
4

B2
v

X
k;l

�n;k�n;l

 X
u

bubu+k�l

!2

By de�nition, the terms bubu+k�l vanish if jk � lj > v. Assumptions (4.2) and (4.3) implies that for

all �xed u 2 N, limn!1

PK�u
k=1 �n;k�n;k+u = 1. Hence,

lim
n!1

An =
4

(
P

u b
2
u)

2

X
1�jzj�v

 X
u

bubu+z

!2

:

We now prove (B.3). The computation is very similar, but we sum over t, not over s :

X
s<t�n

c2t;s �
X

1�t�n

c2t;s =
X
k;l

�n;k�n;l

nX
t=1

<
�
ht�hse

i(t�s)xk
�
<
�
ht�hse

i(t�s)xl
�

=
4

n2B2
p

X
k 6=l

�n;k�n;l
X

u;w;y;z

bubwbybz

nX
t=1

eitxk+u+l+ye�isxk+w+l+z + e�itxk+u+l+yeisxk+w+l+z

+ eitxk+u�l�ye�isxk+w�l�z + e�itxk+u�l�yeisxk+w�l�z

The �rst line gives no contribution. The second gives a contribution n when k + u� l� y = 0. Hence

X
s<t�n

c2t;s =
4n

n2B2
p

X
jzj<p

X
k�l=z

�n;k�n;l

 X
u

bubu+z

!2

= O(n�1):

We now prove (B.2). Denote ~ct;s =
PK

k=1 �n;ke
i(t�s)xk . Since jct;sj � Cn�1j~ct;sj, it suÆces to bound ~ct;s.

By summation by parts, we get

~ct;s =
KX
k=1

� kX
j=1

ei(t�s)xj
�
(�n;k � �n;k�1) +

KX
j=1

ei(t�s)xk :

We conclude by using the uniform bound
Pk
j=1 e

i(t�s)xj � Cnjt� sj�1.
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Table 1: Simulation Results for Quartic Mean Function, r(x) = 10x4

p = 0 p = 1 p = 2

n = 100
Bias 0.336 0.186 0.151

m1=2� Bias 1.68 0.930 0.757
Variance 0.00759 0.0571 0.0448

n = 1000
Bias 0.130 0.0221 0.0167

m1=2� Bias 1.46 0.247 0.187
Variance 0.00178 0.00599 0.00553

n = 5000
Bias 0.0773 0.0112 0.00910

m1=2� Bias 1.52 0.220 0.179
Variance 0.000629 0.00157 0.00161

Table 2: Simulation Results for Constant Mean Function, r(x) � 0

p = 0 p = 1 p = 2

n = 100
Bias 0.117 0.159 0.114

m1=2� Bias 0.585 0.795 0.573
Variance 0.0178 0.0542 0.0460

n = 1000
Bias 0.0384 0.0222 0.0169

m1=2� Bias 0.430 0.249 0.190
Variance 0.00300 0.00602 0.00551

n = 5000
Bias 0.0223 0.0112 0.00895

m1=2� Bias 0.438 0.221 0.176
Variance 0.00104 0.00157 0.00162

Table 3: Asymptotic and Finite-Sample Corrected Variance Expressions for d̂n

p = 0 p = 1 p = 2

n = 100
Asymptotic: �p=(4m) 0.0100 0.0150 0.0194

Corrected 0.0150 0.0525 0.0413

n = 1000
Asymptotic: �p=(4m) 0.00200 0.00300 0.00389

Corrected 0.00229 0.00562 0.00574

n = 5000
Asymptotic: �p=(4m) 0.000644 0.000966 0.00125

Corrected 0.000685 0.00145 0.00158
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