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Abstract

In this paper, I propose a general pricing framework that allows the risk−neutral dynamics
of loss given default (LQ) and default probabilities (λQ) to be separately and sequentially
discovered. The key is to exploit the differentials in LQ exhibited by different securities on
the same underlying firm. By using equity and option data, I show that one can efficiently
extract pure measures of λQ that are not contaminated by recovery information. Equipped
with this knowledge of pure default dynamics, prices of any defaultable security on the same
firm with non-zero recovery can be inverted to compute the associated LQ corresponding to
that particular security. Using data on credit default swap premiums, I show that, cross-
sectionally, λQ and LQ are positively correlated. In particular, this positive correlation is
strongly driven by firms’ characteristics, including leverage, volatility, profitability and q-
ratio. For example, 1% increase in leverage leads to .14% increase in λQ and .60% increase
in LQ. These findings raise serious doubts about the current practice, by both researchers
and practitioners, of setting LQ to a constant across firms.



1 Introduction

Central to pricing corporate liabilities are the two main components of default risk: the risk
neutral probability of default (λQ) and the risk neutral expected loss given default (LQ).1

While a great number of studies have focused on modeling default probabilities2, research
on loss given default3 has received far less attention. This uneven treatment is, in part, due
to the difficulty in simultaneously disentangling LQ and λQ from market data. For example,
Pan and Singleton (2006) show that, while possible in principle, separation of LQ and λQ

using information from (only) linear securities such as bonds or credit default swap (CDS)
contracts may prove difficult in practice.4 In order to learn about λQ, it is often necessary
to invoke an assumption on the part of the loss rate LQ (and vice versa). Until recently,
the standard treatment, by both academics and practitioners, has been to set LQ at some
constant.

In this paper, I propose a pricing framework that allows the risk-neutral dynamics of
LQ and λQ to be separately and sequentially recovered. This framework is built from the
insights offered by Madan and Unal (1998), Duffie and Singleton (1999) and Das and Sun-
daram (2003) that separate identification of LQ and λQ can be achieved from prices of
multiple securities with different payout structures but subject to the same default arrival
risk.5 Specifically, given that equity prices and especially call option prices fall close to zero
in the event of default, equity and option markets contain “pure” information about λQ, with
minimal inferences from recovery information. Subjecting this λQ to prices of more senior
securities of the same underlying firm with non-zero recovery, an estimate of LQ correspond-
ing to these securities can be recovered. An obvious class of defaultable security applicable
in this analysis is corporate bonds. Another more recent contract particularly suitable to
this analysis is the credit default swap (CDS) contract – essentially an insurance contract
against default by a firm on its bonds. With the tremendous growth in CDS markets6, CDS

1LQ is related to the risk neutral expected recovery given default RQ by the simple equation: LQ = 1−RQ.
2Pioneered by Altman (1968) and Merton (1974), default risk models include Black and Cox (1976),

Geske (1977), Vasicek (1984), Litterman and Iben (1991), Kim, Ramaswamy, and Sundaresan (1993), Hull
and White (1995), Longstaff and Schwartz (1995), Jarrow and Turnbull (1995), Jarrow, Lando, and Turnbull
(1997), Madan and Unal (1998), Lando (1998), Duffie and Singleton (1999) among many others.

3Altman and Kishore (1996) and Acharya, Bharath, and Srinivasan (2004), for example, provide analysis
on actual recoveries of defaulted securities. Das (2005) provides a survey of the literature on recovery risk.

4It should be noted that Pan and Singleton (2006), in pricing CDS contracts, adopt the recovery of
face value assumption which, therefore, permits separate identification of LQ and λQ. Under an alternative
recovery assumption – the recovery of market value –, Duffie and Singleton (1999) show that it is impossible
to separate LQ and λQ unless nonlinear securities such as bonds with embedded optionality or options on
bonds are available.

5While Das and Sundaram (2003) and Duffie and Singleton (1999) only present examples illustrating how
LQ and λQ can be identified, Madan and Unal (1998) carry out an empirical investigation of LQ and λQ

using debts of different seniorities.
6According to statistics provided by The International Swaps and Derivatives Association, available from

www.isda.org, the notional amount of credit default swaps grew by 52% in the first six months of 2006 to
$26 trillion. The annual growth rate is 109% from $12.4 trillion at mid-year 2005. The growth rates are,
respectively, 123% and 128% in 2003 and 2004.
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contracts present a promising channel to study default and recovery dynamics and will be
employed in this paper.

On the other hand, prior studies such as Madan and Unal (1998), Unal, Madan, and
Guntay (2001) and Bakshi, Madan, and Zhang (2006) typically use multiple debt securities
in achieving identification of λQ and LQ. For instance, Madan and Unal (1998) combine
prices of two securities with different LQ’s in a way that cancels out the λQ component from
these prices. Coupled with an assumed structure of how the two LQ’s relate, the authors
are able to arrive at an estimate of LQ for each of these securities. These LQ’s are in turn
combined with the two securities prices to form an estimate of λQ. Bakshi, Madan, and
Zhang (2006) adopt a specific parametric debt model in a reduced form setting in which
the recovery rate is a function of the default arrival rate which in turn depends only on
the short rate. After estimating the relevant parameters by matching model-implied and
market prices of debts with varying maturities, the authors are able to arrive at estimates
of default probabilities and recovery rates. The common key to identification of λQ and LQ

in these studies is to exploit the cross-sectional variations in prices of bonds issued by the
same underlying firm7.

Compared to the prior literature, the most innovative feature of the current approach
lies in its usage of equity data and call option data in arriving at clean measures of λQ.
Equity prices, corresponding to the last claimant of the firm’s assets, should be at least as
informative about the default dynamics as debt prices. The most direct evidence of this
is the popularity of Merton-type models (adopted by Moody’s KMV and JPMorgan’s E2C
model and many academic papers such as Huang and Huang (2003)) which typically translate
variations in stock prices into variations in default probabilities. In addition, option data have
also been shown to contain information relevant to the creditworthiness of the underlying
firms. For example, Cremers, Driessen, Maenhout, and Weinbaum (2004) show that option
implied volatilities are able to explain very well the cross-sectional variations of the credit
default swap (CDS) premiums. Moreover, equity prices and particularly call option prices are
typically LQ-insensitive, thereby naturally presenting a clean channel to study the dynamics
of λQ with minimal inference from LQ-information.

Why should equity prices and call option prices be LQ-insensitive? In other words, why
should equity prices and call option prices are minimally affected by recovery information?
For equity holders, zero-recovery is dependent on adherence to strict priority rules. To this
extent, some evidence provided by Bharath (2006) suggests that during the period from
1998 to 2003, the extent of absolute priority violation is minimal. Using a comprehensive
database on corporate bankruptcies, the author shows that, in more than 80 percent of the
cases, shareholders lose the full value of their investments; in most of the remaining cases,
shareholders can only claim less than 1 percent of the asset value of the firms8. This evidence
suggests that not only are strict priority rules being complied with but also firms tend to

7This is understandable since pure time series variation is only informative about physical quantities
whereas the variables of interest λQ and LQ are risk-neutral by nature.

8This has not taken into account the effect of distress or liquidity costs due to various consequences of
defaults, one of which is equity being de-listed from main trading venues.
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default well inside the insolvency region.9 As for call options, since there is essentially no
default risk on the part of the option writer10, the only default risk relevant to call option
holders comes from the underlying firm. Consequently, call option prices do not depend on
recovery information directly. Rather, the only channel through which recovery information
can affect call option prices is the implied distribution of stock price as the firm approaches
financial distress. To this extent, even if equity experiences non-zero recovery, equity recovery
information only affects the lower tail of the distribution of stock price and thus would not
be material for call option prices for a wide range of strike prices.

Having a pure measure of λQ is convenient, since it can be applied to any security with
non-zero recovery to back out the corresponding LQ. For instance, whereas Madan and
Unal (1998) require the existence of two debt securities with different seniorities, with clean
measures of λQ implied from equity and option data, recovery information of each of these
debt securities can be implied independently and even for firms who issue only one class of
debt. Likewise, Bakshi, Madan, and Zhang (2006) require sufficiently large cross-section of
bonds11 in their estimation. With a clean measure of λQ, such a requirement is no longer
necessary.

The current approach also offers a certain degree of modeling richness absent from the
prior studies in allowing for both: diffusion type of defaults – a typical feature of structural
models of default – and jump-to-defaults – typical of reduced-form models. On the other
hand, Madan and Unal (1998), Unal, Madan, and Guntay (2001) and Bakshi, Madan, and
Zhang (2006) all set up their model in a reduce-form framework. Specifically, within the
current framework, firms can jump to default with an intensity dependent on the level of
stock price and/or the level of short rate. In addition, even when the jump intensity is
set to zero, firms can still “diffuse” to default since the equity follows a stochastic process
that allows absorption at zero. While the “diffusion” channel of default resembles that of
Merton-type models, the current approach does not require specification of a default trigger
boundary for firms’ asset value since it works directly with equity. Although this procedure
may omit some information content from the balance sheet, it can as well help avoid any
possible bias from using accounting data12.

9However, it should be noted that the literature on corporate bankruptcies (e.g. Gilson, John, and
Lang (1991), Frank and Torous (1989)) has shown that absolute priority is often violated, with shareholders
gaining some fraction of the defaulted firms’ values. To this extent, any degree of violation of absolute
priority can, in principal, be accommodated within the current framework. To the extent that absolute
priority is assumed to be observed, empirical results of this paper should be interpreted in the context of
this assumption. Depending on the magnitude, the consequence of ignoring absolute priority violation is an
underestimation of default probabilities.

10As the issuer of all options, the Options Clearing Corporation (OCC) essentially takes the opposite side
of every option traded. The OCC substantially reduces the credit risk aspect of trading securities options
as the OCC requires that every buyer and every seller have a clearing member and that both sides of the
transaction are matched. It also has the authority to make margin calls on firms during the trading day. In
addition, the OCC has a AAA credit rating from Standard & Poor’s Corporation.

11For this reason, they cannot carry out their analysis with monthly data since the available monthly
cross-section is not sufficiently large.

12Merton-type models usually use book values of short-term debt plus one half of book values of long-term
debt as default trigger point, although no formal theoretical or empirical justification exists. Other default
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The current approach also departs from the the current literature to the extent that it
allows for general specifications of the dynamics of LQ. In choosing a fixed LQ, researchers
tend to use historical averages of actual losses reported in prior studies13; it is not uncom-
mon to see a fixed loss rate of 50 percent14. However, at least two issues arise when using
historical values. First, they are ex post in nature and do not reflect newly available infor-
mation as it arrives in the markets. Second, historical averages of losses given default relate
to the objective probability measure. Therefore, by equating LP = LQ in pricing, one effec-
tively assumes that investors place no premium on recovery risk. This assumption is rather
unrealistic given the pronounced findings by Altman, Brady, Resti, and Sironi (2005) that
actual recoveries show significant cross-sectional variations. In particular, Altman, Brady,
Resti, and Sironi (2005) find physical probabilities of default λP are negatively related to
the physical recovery rates RP at the aggregate level.

Though Altman, Brady, Resti, and Sironi (2005)’s findings strongly suggest that it is not
correct to set LP = LQ in pricing, their findings do not suggest that the current practice of
setting LQ to a constant is incorrect. In fact, if we can define a measure of recovery risk
premium π, linking LP and LQ in a simple way: π = LP − LQ, it is possible that the risk-
neutral loss given default LQ can still be a constant while all the variations of the physical
loss given default LP are attributable to changes in recovery risk-premiums π. Likewise, it
is also possible that the physical relationship between LP and RP is entirely attributable
to the interactions between default risk-premiums and recovery risk premiums although no
similar relationship between their risk-neutral counter-parts, LQ and RQ, exists. In short,
the dynamics under the risk-neutral measures and the physical measures could be so different
that knowledge about LP and λP does not allow us to make meaningful inferences about LQ

and λQ.
In this regard, the LQ measures implied by the current approach display strong cross-

sectional variations. In particular, I find evidence that LQ and λQ are positively related.
This result is consistent with findings by Das and Hanouna (2006) who compute LQ and
λQ using a different method which pre-specifies the relation between LQ and λQ. Further
investigations reveal that the correlation between these two variables is strongly influenced
by firms’ characteristics, including leverage, volatility, profitability and q-ratios. The effect
of leverage on LQ and λQ is, for example, both statistically and economically significant.
Holding other characteristics of the firms constant, 1% increase in a firm’s leverage, measured
by debt divided by total book value of asset, leads to .14% increase in λQ and .60% increase
in LQ. Given the wide variations in leverage in the cross-section of firms, these findings raise
serious doubts about the current practice, by both researchers and practitioners, of setting
LQ to a constant.

However, the cross-sectional averages of LQ seem to be stable over the sample period from

threshold exists as well. For example, book value of total liabilities is used in Eom, Helwege, and Huang
(2004).

13For example, Altman and Kishore (1996) or Acharya, Bharath, and Srinivasan (2004).
14For example, Carr and Wu (2005) and JP Morgan’s E2C model employ an expected loss rate of 50%.

Huang and Huang (2003) use an expected loss rate of 51.31% across all ratings. Conversations with CDS
traders indicate that they adopt a flat rate of 60% for senior unsecured bonds across all ratings.
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2002 to 2005. The stability of LQt over the sample period, in the context of the improving
credit environment observed between 2002 and 200515, is consistent with a decreasing overall
recovery risk premium16.

The literature on estimating recoveries is growing17. Studies using debt data to infer
recovery information include Madan and Unal (1998), Frye (2000), Unal, Madan, and Guntay
(2001) and Bakshi, Madan, and Zhang (2006). Jarrow (2001) proposes a framework for
simultaneously estimating recovery rates and default probabilities by modeling the dividend
and the bubble component in equity prices. Guo, Jarrow, and Zeng (2005) model recovery
rates in a reduced form setting. The current paper adds to this literature by setting up a
general framework that allows recovery information to be extracted from derivative prices.
Apart from the flexibility in modeling recovery dynamics as discussed above, this paper
also combines the flavors of both the structural and the reduced-form approach to modeling
default risk. Within the current framework, a firm can either jump or diffuse to default.
Since pure diffusion models are typically unable to explain short-term credit dynamics (see,
for example, Zhou (2001)), allowing for the possibility of jump-to-defaults seems important.

The proposed framework is similar in spirit to Das and Sundaram (2006)’s work in which
pricing is performed on a lattice space of equity prices and short-rates in the presence of
defaults. Das and Sundaram (2003) also suggest that recovery information can be implied
by combining equity and option data but they do not implement their model. Das and
Hanouna (2006) also use CDS data to imply recovery information by bootstrapping over
the term structure of CDS premiums using a variety of parametric relations between default
probabilities and recoveries. Finally, Pan and Singleton (2006) analyze default and recovery
information implicit from the term structure of the sovereign CDS markets. Although the
default process under the current approach is a function of observables, Pan and Singleton
(2006) model default as a completely latent process in a reduced-form setting.

This paper is organized as follows. The second section provides a description of a typical
CDS contract. Next, the general treatment on pricing derivatives in the presence of defaults,
using a lattice approach, is laid out. In this section, I will show (1) how to calibrate option
data into this framework to learn about the risk-neutral dynamics of defaults and (2) how to
combine these dynamics and data on CDS premiums to back out recovery dynamics. The
fourth section provides a description of the data. Employing a specialized version of the
framework in which analytical pricing is feasible, the subsequent two sections report findings
on the implied dynamics of default probabilities and losses given default respectively. The
last section concludes.

15In 2002, the US saw the worst corporate credit conditions in a decade with a record default rate of 16.4%
with $109.8 billion in defaults during the year and a very large number of downgrades. High yield default
rates in 2003, 2004 and 2005 are 5.0%, 1.5% and 3.1% respectively. The notional amounts in defaults are
also substantially lower.

16Because, the difference between LPt and LQ indicates the magnitude of recovery risk premium.
17For a recent survey of the literature, see Das (2005).
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2 A typical CDS contract

A CDS contract is analogous to an insurance contract18 that provides protection against
credit losses associated with a default on pre-specified referenced securities. The purchaser of
a CDS contract effectively exchanges the credit risk of the issuer of the referenced securities
for the credit risk of the seller of the CDS contract – who is typically a highly-rated financial
intermediary19. The purchaser agrees to pay to the seller a periodic fee until the maturity
date of the contract or until a default event, as defined in the credit confirmation, has
occurred. In return, the seller is bound to pay the credit purchaser a pre-specified market-
based amount or a pre-fixed fraction of the value of the referenced security contingent upon
the occurrence of a credit default. Typically, the amount payable by the seller is the difference
between the actual market value of the defaulted security and the referenced security’s initial
principal.

The International Swaps and Derivatives Association provides a master credit confirma-
tion that is commonly used in most CDS contracts. According to this master agreement,
a credit default is defined to include a wide range of events, from bankruptcy, obligation
acceleration, missed interest or principal payments, repudiation of payments to distressed
exchanges or restructuring of securities. Although most other credit events can be easily
agreed upon by parties to a CDS contract, one exception is the restructuring criterion
which typically involves renegotiation between the issuer and the majority of the holders of
the referenced securities in a way that worsens the financial position of the securities hold-
ers20. Due to this potential confusion, some market participants21 have decided to trade CDS
contracts without any restructuring clause at all. One additional complication inherent with
restructuring is the cheapest-to-deliver option, in which the protection buyer has the option
to deliver the securities with the lowest value, typically bonds with longer maturities. To
this extent, the master agreement allows for a “Modified Restructuring” type that specifies
a maturity limitation of deliverable obligations to 30 months after the scheduled termination
date. Introduced in May 2001, “Modified Restructuring” has been widely adopted by North
American markets, and is the choice in more than 95 percent of single-name CDS contracts
in Fitch Rating’s Valuspread database22.

When a default event occurs, typically two settlement choices are available: (1) a physical

18A CDS contract has also been described as similar to a standby letter of credit
19Counter-party risk – the risk that the seller of a CDS contract also defaults in the event of a default

by the issuer of the referenced security – is often assumed negligible. Though it may vary from seller to
seller, buyers of CDS contracts can require the sellers to deposit an agreed amount into an escrow account.
This amount can be used to make settlements, if needed, in the case the seller himself defaults within the
maturity of the CDS contract.

20Xerox’s June 2002 refinancing, for example, was not intended to fall within the “Restructuring” defi-
nition, yet a number of dealers have mistakenly taken the position as constituting a Restructuring Credit
Event.

21JPMorgan is one example.
22Due to differences in regulation, the European markets adopt a different type of restructuring: “Modified-

Modified Restructuring” that allows the maturity of of the restructured bond or loan to go up to 60 months
after the restructuring date.
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settlement, in which the buyer delivers the physical security while the seller pays the buyer
the face value of the referenced security; and (2) a cash settlement, in which the seller simply
settles the difference between the market value of the defaulted security and its face value.
Physical settlement seems to be a prevalent choice even though the purchaser of a CDS
contract is not required to hold the physical security when entering into the contract23.

Finally, more than 95 percent of the CDS contracts in Fitch Rating’s Valuspread database
refer to senior unsecured obligations by the underlying issuers. Thus, recovery information
implicit in these contracts corresponds to firms’ senior unsecured bonds. This feature of the
CDS market thereby facilitates meaningful comparison of recovery rates across firms since
seniority and security levels of the underlying obligations are almost always held constant.

3 A general derivative pricing model in the presence

of defaults

Before going into details, to facilitate intuition let’s consider a simple one-period trinomial
setting, as illustrated in Figure 1, where time unit is normalized to one year. The stock price
is currently S0. Next period, it can either go up to Su

1 , down to Sd
1 or jump to a default-value

of 0. Assume further that we know Su
1 and Sd

1 but not the probabilities pu and pd. At the
same time, a call option on the same stock with one period to maturity and strike price X is
selling for c0. If the risk-free interest rate is constant at r, discounting the expected payoffs
under the pricing measure must give the prices of both the derivative and the underlying:

e−r(pucu
1 + pdcd

1) = c0 (1)

e−r(puSu
1 + pdSd

1) = S0 (2)

From these equations we can solve for probabilities pu and pd that are consistent with both
prices. These probabilities are risk-neutral and can be used to price any derivative contract
conditioning on the underlying stock. A CDS contract that pays $1 to buyers in exchange
for a physical delivery of the firm’s bond with normalized face value of $1 contingent on the
firm’s default will be worth e−r(1 − pu − pd)LQ. LQ is the fractional loss in face value of
the bond and represents the net payment from the seller to the buyer of the CDS contract
when a credit event is triggered. If the CDS contract is trading at a premium of, say, ϕ
basis points then, under this setting, it implies a risk neutral loss given default rate of:

LQ =
erϕ/10000

1− pu − pd
(3)

Interestingly and perhaps not surprisingly, the same intuition carries into a more general
setting. Generally, if the evolution of equity prices can be described in a lattice framework,

23This could create a situation similar to that of Delphi’s default where the notional amount underlying the
Delphi-CDS contract in circulation is significantly more than the outstanding face value of the underlying
bonds.
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Figure 1 Trinomial Example

option prices or any derivative prices with zero recovery and similar terminal conditions can
be overlaid to that framework to recover unknown parameters of the equity process. These
parameters are risk-neutral in nature and consistent with both sets of equity prices and
option (or derivative) prices. Once the parameters are estimated, the default dynamics of
the underlying equity is fully known. In pricing other derivative contracts whose expected
recovery conditional on default is non-zero, the only unknown is the recovery information
itself. Thus, given a set of prices of these contracts, it should be possible to learn about the
recovery information pertaining to these contracts.

In what follows, I will describe the basic elements of the pricing framework using continuous-
time notation for ease of presentation. Next, I will illustrate how the framework can be
discretized into a lattice and how pricing of options and CDS contracts can be performed
along this lattice.

3.1 The building blocks

The three building blocks of this pricing framework are: (1) a stochastic process governing
the dynamics of the spot rates; (2) a stochastic process governing the evolution of equity
price; (3) a hazard function governing equity’s propensity to jump to default per unit of time
– all under the risk-neutral measure Q. Default occurs when equity prices jump or diffuse
to zero. Borrowing continuous-time notation, these three building blocks can be represented
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as follows:

Short rate dynamics: drt = µr(rt)dt + σr(rt)dBQr
t

Equity dynamics: dSt

St
= (rt + h(rt, St))dt + σS(St)dBQs

t − (dNQ
t − h(rt, St)dt)

Hazard function: h(rt, St)

where s and r superscripts refer, respectively, to the equity and the short rate. dBQs and
dBQr are independent standard Brownian innovations24. dNQ

t is a Poisson counting process
with intensity h(rt, St). NQ

t only counts until 1 at which point the firm jumps to default and
its equity price collapses to zero. Since prior to default, NQ

t = 0, I can write the pre-default
equity process as follows:

dSt

St

= (rt + h(rt, St))dt + σS(St)dBQs
t (4)

I assume that St and rt are the only two state variables in this environment although the
functional forms of their conditional moments and the dependence of the hazard function on
these two variables can be general, subject to no-arbitrage conditions and some technicalities
to ensure feasibility in building a recombining lattice.

The short rate rt can, for example, take on the Vasicek (1977) or Cox, Ingersoll, and
Ross (1985) (CIR)’s specifications in which both the conditional drifts and the conditional
variances of the short rate are linear functions of the short rate itself. rt can also take the
three-halves formulation developed by Ahn and Gao (1999) who specify the drift and the
volatility terms to be nonlinear in rt. Though it is possible to represent a multi-factor short-
rate process in a lattice, to keep the lattice practically feasible, I will restrict rt to the case
of a single-factor process. For illustrative purposes, it is instructive to adopt a particular
specification for the short rate rt. Therefore, in the next subsection I will assume rt to follow
a standard CIR process:

drt = κQ(θQ − rt)dt + σ
√

rtdBQr
t (5)

As for the equity process, the conditional volatility term can be general. Common choices
include setting σS(St) to a constant or setting σS(St) to a negative power of stock price:
σ(St) = σS−β

t where β is a non-negative constant, typically less than 1. Whereas the
former choice is consistent with a log-normal diffusion, the latter corresponds to the Constant
Elasticity of Variance (CEV ) specification. If St follows a log-normal process, equity prices
can only jump to default through the Poisson dynamics. The CEV specification however
allows the stock price to hit zero through both channels: the diffusion and the Poisson forces.
In addition, as long as β > 0, the CEV setup also accounts for the leverage effect – a well
known empirical observation that as equity prices decrease, leverage of the underlying firm
is higher, which in turn makes the stock riskier and hence more volatile.

Alternatively, σS(St) can take the following form: σ(1 + DS−1
t ) where σ and D are

positive constants. This specification of σS(St) can be seen as a weighted average between

24The assumption of zero conditional correlation between dBQr
t and dBQs

t is just for the ease of exposition
and can be easily relaxed – detailed treatment is provided in Acharya and Carpenter (2002)
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the two polar cases of the CEV specifications when β = 0 and β = 1. Intuitively, this choice
of σS(St) relates to a simple structural setting in which the firm’s asset value Vt follows a
Geometric Brownian Motion with a constant volatility σ while the firm’s market debt value
is constant at D and serves as the default threshold for the firm’s asset. In this setting, equity
value is simply the difference between asset value and market value of debt St = Vt − D.
Since the diffusion part of dVt

Vt
is σdBt, it follows that the diffusion part of dSt

St
must be

σ Vt

St
dBt = σ(1 + DS−1

t )dBt. This choice of modeling equity is referred to as the Translated
Geometric Brownian motion and is considered in Das and Sundaram (2003) and underlies
the industry E2C’s model used by JPMorgan. In any event, when building the lattice in the
next subsection, I will adopt the CEV specification for illustrative purposes.

Many specifications have been proposed in modeling the hazard function. For instance,
Samuelson (1972) and Hull, Nelken, and White (2004) assume the default intensity h(., .) to
be a constant while letting stock prices follow a log-normal diffusion. Campi, Polbennikov,
and Sbuelz (2005) also assume a constant hazard rate but allow equity prices to follow a CEV
process. Linetsky (2006) models h(.) as a negative power of the stock price h(St) = αS−γ

t

with a constant variance rate for equity returns. Carr and Linetsky (2006) modifies this
specification by having a CEV -type diffusion for equity prices and a hazard function which
takes a linear transformation of the instantaneous variance h(St) = λ + αS−2β

t , where β is
the CEV coefficient. Das and Sundaram (2006) consider many other specifications including
cases in which h(.) can take time and interest rate as inputs. Among these choices, Carr and
Linetsky (2006)’s model nests many other specifications and yet still allows for analytical
pricing. Thus, in the empirical implementation of this paper, this specification of the hazard
function will be employed. However, for the sake of building the lattice, I will leave the
hazard function in its general form.

3.2 The lattice

I employ the diffusion approximation technique developed by Nelson and Ramaswamy (1990)
to discretize rt and St. The basic insight from Nelson and Ramaswamy (1990) is that: if
the Q-conditional volatilities of rt and St take the normal or log-normal forms, binomial
approximation with recombining nodes is straightforward. Therefore if there exist transform
functions f r(.) and fS(.) such that after transformation, the transformed variables become
normal or lognormal, one can build a lattice of the transformed processes (f r(rt) and fS(St))
and then invert the transformed variables back to their original bases. The important feature
of Nelson and Ramaswamy (1990)’s technique is the lattice’s recombining property, which
keeps computation to polynomial complexity25. At the same time, this technique ensures
that the first two conditional moments of equity returns are recovered in the continuous-time
limit. Due to Ito’s lemma, if the diffusion term of drt is σr(rt)dBQr

t then f(rt)’s diffusion
term will be: f ′(rt)σ

r(rt)dBQr
t . Therefore, if there exists a function f(.) such that f ′(rt)σ

r(rt)
becomes a constant and the inversion function f−1(.) is well-defined, such a function can be
used in the transformation step. In general, such a function can be found by solving the

25i.e. there are N+1 final nodes for an N-step tree
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indefinite integral
∫

1
σr(r)

dr.
For illustrative purposes, the short rate has been assumed to follow a CIR process and the

equity process has the CEV form in its diffusion. Therefore, the continuous-time processes
of the two state variables, rt and St, are:

drt = κQ(θQ − rt)dt + σr√rtdBQr
t (6)

dSt

St

= (rt + h(rt, St))dt + σSS−β
t dBQs

t (7)

As can be easily checked, the transform functions for rt and St, respectively, are f r(rt) =√
rt and fS(St) = Sβ

t . Letting the discrete time interval be ∆t, the discretization process,
starting from a node characterized by a short rate rt and a stock price St, can proceed as
follows:

rt+∆t =

{
(
√

rt + 1
2
σr
√

∆t)2 with probability pr = eµr∆t−e−σr√∆t

eσr
√

∆t−e−σr
√

∆t

(
√

rt − 1
2
σr
√

∆t)2 with probability 1− pr
(8)

where µr =

(
κQθQ − 1

4
(σr)2

)
1√
rt

− κQ
√

rt +
1

2
(σr)2 (9)

and

St+∆t =

{
(Sβ

t + σSβ
√

∆t)
1
β with probability pS = eµS∆t−e−σS√∆t

eσS
√

∆t−e−σS
√

∆t

(Sβ
t − σSβ

√
∆t)

1
β with probability 1− pS

(10)

where µS = Sβ
t (rt + h(rt, St)) +

1

2
(β − 1)(σS)2S−β

t +
1

2
(σS)2 (11)

Note that rt must be positive and St must be non-negative. Therefore, the lower branches
of the tree will be truncated at zero. To compensate for the bias caused by this truncation,
Nelson and Ramaswamy (1990) suggest that lower nodes of the tree should take multiple
steps upwards. Details of this process are covered in Nelson and Ramaswamy (1990) or
the appendix of Acharya and Carpenter (2002). Since the trees are recombining, starting
from S0 and r0, after N steps there will be N + 1 different values for St+(N+1)∆t, and N + 1
different values for rt+(N+1)∆t. Combining the two trees results in (N + 1)2 different pairs
of {S, r}. The probabilities of these pairs can be computed iteratively at each step. The
details of this computation is provided in Appendix A. Finally, the independence assumption
between equity returns innovations and short rate innovations have made construction of the
lattice straightforward. However, it is possible to model instantaneous correlations of the
two innovations by first linearly rotating the pairs (rt, St) until they become orthogonal26.

26For details, readers are referred to Acharya and Carpenter (2002).
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3.3 Valuation of call options

With the two-dimensional binomial tree constructed above, from a node {St, rt} at time t,
there will generally be 5 branches extending out to time t + ∆t, one of which corresponds to
the jump-to-default state. The other four branches correspond to 4 different combinations
of {St+∆t, rt+∆t} as specified in equations (8) and (10). Equations (8) and (10) also provide
the probabilities of each of these branches occurring. For a general equity process, such
as the CEV specification, stock price can be absorbed at zero simply due to the diffusion
forces. The default probabilities at the lowest branch of the tree (where the next downward
movement triggers default) therefore include both the sudden types of defaults and the
diffusion types of defaults. Upper in the tree, default mechanism can only be caused by the
Poisson dynamics. If any of these four branches corresponds to an equity price of zero, it
effectively coincides with a default state. As such, starting from a node {St, rt} at time t,
the number of non-default states M at time t+∆t may be less than 4. Let {S1, r1}, {S2, r2}
... and {SM , rM} denote the M non-default pairs of {S, r} at time t + ∆t and p1, p2, ...pM

denote their corresponding probabilities. The total probability of default, which include both
default types, is: pd = 1−∑M

1 pi. Let’s c(S, r, T ) denote the value of a call option with an
underlying price of S, a short-rate r and a maturity T at some exercise price K. c(S, r, T )
can be computed along the lattice in the standard way:

c(S, r, 0) = max(S −K, 0) (12)

c(St, rt, j∆t) = e−rt∆t

[
M∑
1

pic(Si, ri, (j − 1)∆t)

]
if St > 0 (13)

c(St, rt, j∆t) = 0 if St = 0 (14)

where implicit in the last two equations is the assumption of zero recovery for call options.
Since call options are not protected against default, even if equity is still traded after a
default event, its defaulted value may render most call options (except for those with very
low strike prices) far out of the money and valueless.

3.4 Computing CDS spreads

As described in section 2, credit default swap contracts are insurance contracts on bonds’
defaults. The insurance buyer keeps paying a premium c0 until the contract expires or until
the bond issuer defaults on bond payments in which case the insurance seller gives the buyer
the par value of the bond in exchange for the defaulted bond. At the start of the contract,
c0 is determined by equating the prices of the cash flows coming from the two parties.

Using continuous-time notation, the present value of the stream of premium payments
for a CDS contract with maturity T is:

Premium = c0E
Q

[∫ T

0

e−
∫ t
0 rsdsQ(τ > t)dt

]
(15)
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where τ defines the time of default and Q denotes probability measure under the pricing
measure. Along the lattice, the above integration can be discretized as follows:

pre(S, r, 0) = 0 (16)

pre(St, rt, j∆t) = c0∆t + e−rt∆t

[
M∑
1

pipre(Si, ri, (j − 1)∆t)

]
if St > 0 (17)

pre(St, rt, j∆t) = 0 if St = 0 (18)

where pre(S, r, T ) denotes the risk neutral expected present value of the series of premium
payments27 with a horizon T, starting from a node in the tree where equity and short rate
are {S, r}.

Regarding the protection payment, the present value of the payment from the insurance
provider is:

Protection = −EQs
0

[∫ T

0

LQt e−
∫ t
0 rsdsdQ(τ > t)

]
(19)

Computation of the right-hand side of equation (19) depends on the recovery assumption of
LQ. The simplest case is where LQ corresponds to the Recovery of Face Value assumption.
Though it is possible and quite straightforward to allow for the Recovery of Market Value or
the Recovery of Treasury assumption in this setting, the Recovery of Face Value assumption
seems to relate most closely to how a CDS contract works. Therefore, I will only consider
pricing of a CDS contract under the Recovery of Face Value assumption here. In this case,
if pro(S, r, T ) defines the risk neutral expected present value of protection payment within
a horizon T, starting from a node {S, r}, it can be computed iteratively along the lattice as
follows:

pro(S, r, 0) = 0 (20)

pro(St, rt, j∆t) = e−rt∆t

[
M∑
1

pipro(Si, ri, (j − 1)∆t) + pDLQt

]
if St > 0 (21)

pro(St, rt, j∆t) = LQt if St = 0 (22)

As can be seen, the dynamics of LQ can be quite flexible. For instance, if a researcher
would like to directly model the relationship between LQ and the jump-to-default rates, one
possibility is to set LQt = a0 + a1 × h(rt, St). In this simple formulation, coefficient a1 will
govern the correlation between the loss rate and the default arrival intensity. In addition,
LQ can also contain exogenous noise – information that is specific to loss rates only. One
way to model these noises is to write LQ as a product of two independent terms: wtg(S, r)

27Note that premiums on single-name CDS contracts are typically paid every quarter. It is assumed that
the premium is paid continuously here for ease of presentation. However, the actual frequency of premium
payments can be easily accommodated in the current lattice.
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where the function g(S, r) captures the part that LQ is related to the equity price and the
short rate. This way, the integration of wt can be done separately as follows:

Protection = −EQ
0 [wt]E

Q
0

[∫ T

0

g(S, r)e−
∫ t
0 rsdsdQ(τ > t)

]
(23)

Depending on the assumption of how wt evolves28, EQ
0 [wt] can be computed as a function of

w0.

3.5 A special case with closed-form solutions

To facilitate fast computation in cross-sectional analysis, in the remaining part of the paper
I will specialize to a specific setup of the above framework where analytical option prices
and CDS premiums are feasible by applying results from Carr and Linetsky (2006). In
particular, the interest rate will be assumed to be a constant while the pre-default equity
process and the hazard function will take the following form:

h(St) = b + cσ2S−2β
t (24)

dSt

St

= (r + h(St)) dt + σS−βdBQs
t (25)

where b, c, β are non-negative constants, σ is positive and β is less than or equal to 1. In this
setup, if c is strictly positive then the hazard function is effectively a linear transformation
of the conditional variance of equity returns.

3.6 Option pricing

With this setup, Carr and Linetsky (2006) show that American call option on non-dividend
paying stocks with maturity T and exercise price K can be priced as follows:

C(S, T, K) = SΦ

(
0,

k2

τ
; δ+,

x2

τ

)
−K

(
x2

τ

) 1
2β

Φ

(
− 1

2β
,
k2

τ
, δ+,

x2

τ

)
(26)

where

x =
1

β
Sβ (27)

τ =
σ2

2β(r + b)

(
1− e−2β(r+b)T

)
(28)

k =
1

β
Kβe−β(r+b)T (29)

δ+ =
2c + 1

β
+ 2 (30)

28For example, one can write wt = e−xt where xt follows a CIR process. In this case, E0[wt] can be
computed analytically.
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and

Φ(p, k; δ, α) = 2p

∞∑
n=0

e−
α
2

(α

2

)n Γ( δ
2

+ p + n, k
2
)

n!Γ( δ
2

+ n)
(31)

where Γ(.) is the standard Gamma function and Γ(., .) is the complementary incomplete
Gamma function.

The above formula involves summing up an infinite series. Theoretically, this series is
convergent. In fact, if the value of x2

τ
is small, the sum converges relatively fast. However,

convergence is very slow for large values of x2

τ
, which correspond to cases where the maturity

T is short; the CEV coefficient β is close to 0; or the volatility parameter σ is small. These
are cases in which the equity process approaches the log-normal diffusion. To overcome this
issue, I adopt the following scheme:

• If x2

τ
< 1000, equation (26) will be employed. The infinite series in equation (31) will

be approximated by the first 1000 terms. Adding more than 1000 terms are unlikely
to change option prices over a large range of parameters.

• if x2

τ
≥ 1000, the equity process will be approximated as a log-normal process where

the conditional volatility is set at σS−β
0 and β is set at zero.

To ensure that this computational scheme is reliable, I compare prices computed ac-
cording to this scheme and prices computed from one million simulations using the same
parameters. The results are reported in Table 1. Prices are computed for options on stock
trading at $10, with exercise prices $8, $10, $12 and risk-free interest rate of 2% and with
varying values for other parameters. As can be seen, pricing errors are very small, often less
than 1 cent regardless of parameters values.

3.7 Risk-neutral survival probability

Given the above set-up, Carr and Linetsky (2006) show that risk-neutral survival probability
Q(S, T ) within time T for an equity process starting at S can be computed by the following
formula:

Q(S, T ) = e−bT

(
x2

τ

) 1
2β

M

(
− 1

2β
; δ+,

x2

τ

)
(32)

where the M(.,.,.) function is defined as follows:

M(p; δ, α) = 2pe−
α
2
Γ(p + δ

2
)

Γ( δ
2
)

1F1(p +
δ

2
,
δ

2
,
α

2
) (33)

where 1F1 denotes the Kummer confluent hypergeometric function:

1F1(a, b, x) =
∞∑

n=0

(a)n

(b)n

xn

n!
(34)
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Table 1
Option Pricing Performance

Call option prices and risk-neutral default probabilities are computed, under various parameter assump-
tions, using (1) one million simulations; and (2) the analytical pricing scheme whose full details are described
in section 3.6 and section 3.7 of the paper. Equity prices follow:

dSt

St
= (r + b + cσ2S−2β

t )dt + σS−βdBQs
t

where b, c are non-negative; σ is positive and β is within the unit interval. The underlying stock price at
time 0 is $10. Risk-free interest rate is constant at 2%. σ0, computed as σS−β

0 , is the conditional volatility of
equity returns at time 0. QD denotes the risk-neutral probability of default. T, X denote, respectively, the
maturity and the strike price of an option. Lines starting with QD contain default probabilities for a given
set of parameters. Lines starting with exercise prices (X=8, X=10, X=12) contain option prices. Simulated
prices and probabilities are reported in columns with heading “Sim.”. Model prices and probabilities are
reported in columns with heading “Mod.”.

β = 0.1 β = 0.8
T= 2 months T=9 months T=2 months T=9 months
Sim. Mod. Sim. Mod. Sim. Mod. Sim. Mod.

b = 0, c = 0 σ0 = 0.3 QD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
X=8 2.042 2.040 2.350 2.343 2.049 2.049 2.401 2.401
X=10 0.506 0.504 1.105 1.102 0.506 0.504 1.107 1.104
X=12 0.041 0.043 0.433 0.441 0.031 0.031 0.379 0.379

σ0 = 0.8 QD 0.000 0.000 0.000 0.000 0.000 0.000 0.090 0.096
X=8 2.457 2.455 3.651 3.642 2.534 2.533 3.859 3.851
X=10 1.316 1.312 2.772 2.765 1.319 1.315 2.804 2.796
X=12 0.640 0.639 2.106 2.103 0.569 0.568 1.966 1.960

b = 0, c = 0.5 σ0 = 0.3 QD 0.007 0.007 0.032 0.033 0.008 0.008 0.037 0.034
X=8 2.099 2.098 2.560 2.553 2.104 2.105 2.585 2.591
X=10 0.542 0.541 1.266 1.265 0.539 0.539 1.242 1.243
X=12 0.047 0.049 0.524 0.535 0.035 0.035 0.447 0.448

σ0 = 0.8 QD 0.052 0.052 0.218 0.214 0.054 0.056 0.259 0.263
X=8 2.756 2.751 4.524 4.548 2.805 2.798 4.547 4.521
X=10 1.557 1.549 3.615 3.635 1.524 1.518 3.444 3.424
X=12 0.801 0.797 2.884 2.899 0.689 0.687 2.515 2.500

b = 0.05, c = 0 σ0 = 0.3 QD 0.008 0.008 0.037 0.037 0.009 0.008 0.037 0.037
X=8 2.107 2.104 2.581 2.576 2.111 2.112 2.630 2.626
X=10 0.547 0.546 1.285 1.283 0.547 0.546 1.292 1.285
X=12 0.048 0.050 0.537 0.546 0.037 0.036 0.483 0.480

σ0 = 0.8 QD 0.008 0.008 0.036 0.037 0.009 0.008 0.119 0.124
X=8 2.504 2.501 3.788 3.789 2.581 2.578 3.990 3.989
X=10 1.354 1.349 2.903 2.904 1.357 1.352 2.936 2.934
X=12 0.665 0.663 2.224 2.229 0.593 0.591 2.088 2.087

b = 0.05, c = 0.5 σ0 = 0.3 QD 0.017 0.016 0.068 0.069 0.015 0.016 0.068 0.069
X=8 2.162 2.162 2.789 2.788 2.168 2.168 2.816 2.815
X=10 0.586 0.584 1.457 1.458 0.583 0.582 1.437 1.433
X=12 0.054 0.056 0.644 0.654 0.041 0.041 0.562 0.560

σ0 = 0.8 QD 0.059 0.060 0.246 0.242 0.063 0.063 0.288 0.284
X=8 2.807 2.799 4.631 4.693 2.839 2.843 4.641 4.652
X=10 1.598 1.589 3.733 3.781 1.556 1.557 3.554 3.563
X=12 0.829 0.824 3.001 3.040 0.713 0.713 2.630 2.637
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and (a)0 = 0, (a)n = a(a + 1)...(a + n− 1), n > 0.
As with option pricing, the risk-neutral survival probability formula in equation (32) also

has difficulties converging for large values of x2

τ
. To this extent, I will adopt a similar scheme

in computing Q(S, T ):

• If x2

τ
< 1000, equation (32) will be used;

• if x2

τ
≥ 1000, the hazard rate will be assumed constant at b + cσ2S−2β

0 and β will be
set to zero, after which equation (32) will be applied.

Table 1 compares simulated default probabilities (using 1 million simulations for each
set of parameters) to the model’s default probabilities with the same parameters as given
above and shows that this scheme delivers quite accurate default probabilities – magnitude
of average absolute errors is less than .1%.

3.8 CDS pricing

Given this setup, for a reference entity with current equity price standing at S, a CDS
contract with quarterly29 premium payments on a bond with $1 face value and constant
fractional loss LQ on default can be priced as follows:

1

4
CDSt(M)

4M∑
j=1

e−
1
4
j×rQ(S,

1

4
j) = LQ

∫ M

0

e−rtdQ(S, t) (35)

The left-hand side represents the discounted present values of the CDS premium payments
accounting for the probability that the firm survives at the time the payments are due.
The right-hand side is the discounted expected protection payment from the CDS issuer in
default. In computing the integration on the right hand side, I will discretize the integration
into daily intervals and approximate dQ(S, t) by the difference of survival probabilities for
two consecutive days. That is,

1

4
CDSt(M)

4M∑
j=1

e−
1
4
j×rQ(S,

1

4
j) = LQ

365×M∑
i=0

e−r× i
365

(
Q(S,

i

365
)−Q(S,

i + 1

365
)

)
(36)

4 Data and summary statistics

4.1 Options data

Option end-of-day quotes and their underlying stock prices are obtained from Option Metrics,
covering a period from January 1996 to June 2005. I apply several filters to the original
data set. First, I choose only call option data on non-dividend paying stocks. This way,

29This is the standard payment frequency for CDS contracts on corporate bonds. Sovereign CDS has a
semi-annual payment frequency.
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Table 2
Summary Statistics of Option Data

Call options are obtained from Option Metrics from Jan 1996 - June 2005. The following options are
excluded: (1) options with maturities less than 30 days or more than 1 year; (2) options with zero open
interest; (3) options on stocks that pay dividends within their maturities; (4) options on stocks with prices
less than $5; (5) options too far away from the money (|ln(S/K)| > 30%) - where S and K are, respectively,
the underlying stock price and the strike price of the options. (6) options with a bid-ask spread greater than
50 percent of the option’s price. Options’ moneyness is measured as ln(S/K), expressed in percentage.

5th 95th

Mean Median Percentile Percentile

Maturity (days) 110.13 96.00 32.00 222.00
Moneyness (%) -0.05 -0.30 -24.42 24.71
Open interest 703.96 100.00 4.00 2,821.00
Observations per firm-month 108.03 85.00 6.00 288.00

analytical pricing of American call options is straightforward without the need for dividend
adjustments30. Second, I choose only options that have positive open interest as a proxy
for liquidity. Other authors such as Ofek, Richardson, and Whitelaw (2004) have used open
interest as a proxy for liquidity in the option markets.31 Third, only options with maturity
of less than one year and more than one month are included. Options with less than one
month to maturity often have little time-value and thus contain less information about the
future dynamics of the underlying firm. Options with long maturities are highly illiquid.
Fourth, options with underlying stocks quoted for less than $5, options that are too far away
from the money (|ln(S/K)| > 0.3), options that have a bid-ask spread that is greater than
50 percent of the option price (mid point) are also eliminated. These options are either
illiquid or likely to contain recording errors. Summary statistics of the final set of options
are provided in Table 2.

4.2 CDS data

CDS data are obtained from Fitch Ratings’ ValuSpread. This database provides mean
market quotes for more than 2500 reference entities that goes back to July 1999. For an
observation to be included, several requirements must be met. First, daily mean CDS pre-
mium has to be less than 5000 basis points. Firms with a CDS premium larger than 5000
basis points are often already in default or effectively out of the CDS markets. Second,
only quotes specific to senior debts (which accounts for 95 percent of the database) are in-

30There is no closed form formula for American put option even on non-dividend-paying stocks. However,
the lattice approach developed in the previous section can price American put options regardless of whether
the underlying stocks pay dividends or not. I choose the analytic formula to optimize computing time.

31This also ensures that option quotes cannot be too far away from their true values even during non-
trading days.
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cluded. Third, all contracts denominated in foreign currencies or contracts that condition on
a restructuring type other than “Modified Restructuring” are excluded. “Modified Restruc-
turing” is the standard contract type for North American reference entities32. The original
data start from 30 July 1999 but after the above initial trimming, all quotes prior to 19
September 2001 are eliminated.

Since the only identifiers in ValuSpread are company names and ValuSpread’s ticker
codes, when matching ValuSpread companies to other databases such as Option Metrics,
CRSP or COMPUSTAT, I require that company names from different sources be exactly
the same, after allowing for possible abbreviations (such as Corp. and Corporation). If a
company changes its name, documentation of this change must be found in either the Factiva
or the Hoover Online database. Finally, two companies from different databases can also be
matched if one is the main operating unit of the other33. Out of 2162 names surviving after
the initial pruning, 1377 names can be matched with CRSP permnos and COMPUSTAT
gvkeys. Non-matched observations are mostly foreign names, sovereign quotes, private firms
or whole subsidiaries of listed companies. Panel A of Table 3 provides summary statistics of
CDS data and the characteristics of their underlying firms. Panel B of Table 3 reports the
same statistics for the sample of firms whose corresponding option data can be found.

4.3 Default and ratings data

Default data are put together from four sources: Moody’s Default Risk Service, Compustat
Footnote, Altman’s bankruptcy list and data from BankruptcyData.Com. These four sources
complement and confirm each other. None of these lists is completely nested by any other.
Compustat footnotes (data items AFTNT35, AFTNT34 and AFTNT33 respectively) provide
code of deletion and the year and month of deletion. Code of deletion runs from 1 to 10 with
2 and 3 corresponding to bankruptcy under Chapter 11 and Chapter 7 respectively. However,
the deletion year and month refer to the date a stock is dropped from the COMPUSTAT
database; thus actual default date can be before or after this deletion date. Therefore, to
reliably identify the date when default occurs, if the same default can be identified from the
other 3 sources, COMPUSTAT’s deletion date will not be used. COMPUSTAT’s deletion
date will be used as a default date only when information from the other 3 sources is absent.

Moody’s Default Risk Service provides detailed issue and issuer information on ratings,
default and bankruptcies, starting from 1938 to now. In this paper, the following categories
in Moody’s Default Risk Service database are classified as defaults: Bankruptcy, Bankruptcy
Section 77, Chapter 10, Chapter 11, Prepackaged Chapter 11, distressed exchange, dividend
omission, grace-period default, indenture modified, missed interest payment, missed princi-
pal and interest payments, missed principal payment, payment moratorium, suspension of
payments. It should be noted that the above criteria of defaults match relatively well with

32Full definition details of the restructuring rules of credit protection can be found at www.isda.org
33Property trusts typically fall into this category since it is a standard practice for property trusts to set

up a main operating unit (often with a very similar name), fully responsible for day-to-day running of the
trusts. For example, Highwoods Properties is the main operating unit of Highwood Realty, therefore will be
deemed the same as Highwood Realty for database-matching purposes.

19



Table 3
Summary Statistics of CDS Data

Panel A presents summary statistics of ValuSpread’s CDS data for all firms in the sample from 2002 to
2005. CDS1, CDS3 and CDS5 are, respectively, CDS premiums, in basis points, with 1, 3 and 5 year(s)
to maturity. Market Cap is firms’ total market capitalization, in millions of dollars. Leverage is computed
as debt/(debt + market cap). BTM is the book-to-market ratio, computed as (asset-debt)/market cap.
Asset and debt (long-term debt + short-term debt) are book values and obtained, when available, from
the COMPUSTAT quarter and annual files. Price and shares outstanding data (in computing market cap)
are obtained from the CRSP file. Panel B presents the same statistics of CDS data for firms that have
options coverage during the same month. Panel C reports the distribution of ratings for samples of firms
used in Panel A and B. Ratings data are obtained from Moody’s Default Risk Service. These ratings are
estimated by Moody’s in such a way that they correspond to senior classes of debts - the same classes of
debts underlying ValuSpread’s CDS contracts used in the sample.

Panel A: All firms
5th 95th

Mean Median Percentile Percentile

CDS1 131.46 36.74 7.80 543.38
CDS3 137.38 46.47 12.28 537.07
CDS5 141.78 56.72 17.09 518.50
Leverage 0.47 0.42 0.12 0.98
Market Cap 15,387.95 5,249.85 204.69 62,998.75
BTM 21.10 0.86 0.21 42.16

Panel B: Firms with options coverage
5th 95th

Mean Median Percentile Percentile

CDS1 132.13 42.00 8.05 514.89
CDS3 137.98 51.77 12.17 510.25
CDS5 143.38 61.50 16.63 500.00
Leverage 0.41 0.36 0.10 0.91
Market Cap 20,663.05 7,866.84 967.48 79,699.57
BTM 5.25 0.73 0.18 11.95

Panel C: Ratings Distributions
All Firms with

firms options data

Number of firms with A rating 1,790 841
Number of firms with B rating 5,893 2883
Number of firms with C rating 290 88
Number of firms with no rating 12,466 5203
Total number of observations 20,439 9015
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Table 4
Number of defaults per year

Defaults are identified each year from four sources (Moody’s Default Risk Service, COMPUSTAT foot-
notes, Altman’s bankruptcy list, BankruptcyData.com) in such a way that matches the default criteria
specified in CDS contracts’ ISDA Master Agreement. Defaults in Moody’s Default Risk Service database
are included for the following categories: Bankruptcy, Bankruptcy Section 77, Chapter 10, Chapter 11,
Prepackaged Chapter 11, distressed exchange, dividend omission, grace-period default, indenture modi-
fied, missed interest payment, missed principal and interest payments, missed principal payment, payment
moratorium, suspension of payments. In COMPUSTAT database, defaults are included when footnote
AFTNT35 is 2 (bankruptcy under Chapter 11) or 3 (bankruptcy under Chapter 7). Every default in
Altman’s bankruptcy list and BankruptcyData.com is included if it can be matched with a firm in the
COMPUSTAT database. Matching is based on company names and other details provided and is con-
firmed by other sources, including Hoover and Factiva. For year 2005, the data cover up to the end of
June.

Defaults by Defaults by firms Number of
Year all firms with option data optionable stocks

1996 33 4 1,571
1997 48 5 1,960
1998 109 6 2,173
1999 149 16 2,239
2000 190 18 2,258
2001 232 45 1,957
2002 190 36 1,681
2003 127 11 1,552
2004 69 6 1,834
2005 53 9 1,781

those in a standard CDS contract. For example, the distressed exchange or indenture mod-
ified categories correspond to the restructuring clause in a CDS contract. The remaining
categories of defaults in Moody’s database typically correspond to the old bankruptcy codes.

Break-downs of defaults into each year are provided in Table 4. The third column of the
table shows the number of defaults by firms with options coverage within the last 12 months
prior to the default dates. The last column shows the total number of optionable stocks.
As expected, optionable stocks only cover a fraction of the total number of bankruptcies.
However, the number of defaults with option coverage displays a similar time-series pattern
to the number of defaults identified from the total universe of stocks.

Moody’s Default Risk Service provides ratings history of debt issues maintained in their
database. Ratings for debts with different seniorities are not directly comparable. For this
reason, Moody’s also provides ratings estimates for senior rated classes of debts. If a firm has
a senior rated debt, the estimate will be the same as the actual rating. Otherwise, a rating
is estimated using a notching system. Moody’s gives detailed explanations of this process
on their website. I use these estimated ratings in this study to ensure they are comparable
across firms. The distribution of ratings across firms in the sample is reported in Panel C of
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Table 3.

5 Estimated risk-neutral default probabilities

Taking the CDS premiums as efficient market prices, to have good estimates of risk-neutral
loss rates, we need reliable estimates of risk neutral default probabilities. With this in mind,
my objective in this section is to examine alternative specifications of the equity process and
evaluate their ability to produce risk-neutral probabilities that fit the best with the data.
The most general equity dynamics under examination is:

dSt

St

= (r + h(St))dt + σS−β
t dBQs

t (37)

where h(ST ) = b + cσ2S−2β. I will examine four variants of this setup. In all of these four
setups, β and σ will always be estimated. In addition,

• Model I: both b and c are estimated

• Model II: b is set to 0 and c is estimated

• Model III: c is set to 0 and b is estimated

• Model IV: both b and c are set to 0.

After initial data trimming, there are in total 4816 different secids over the 10-year period.
For each firm, each month, if the number of option observations is more than 30, a set of
parameters will be estimated from the data, by minimizing the sum of squared pricing errors
between market option prices and the model’s prices. In order to ensure the reliability of
estimates, numerical optimization routines are run repeatedly (maximum 20 runs) until there
can be no further reduction in the sum of squared pricing errors. At a first glance, models
II, III and IV are more restrictive than model I. Therefore, model I is guaranteed to yield
the lowest pricing errors on all occasions. However, there is a chance of over-fitting with a
more general setup, in which case estimation of redundant parameters only adds noise.

In addition, there has been so far no study systematically assessing the fitness of different
hazard specifications. Model I is developed by Carr and Linetsky (2006) whereas model III is
derived by Campi, Polbennikov, and Sbuelz (2005) and model IV corresponds to the simple
CEV process. Therefore, it is interesting to see which of these different models can provide
the best fit to the data.

I will assess these four models using a variety of tests. But first of all, Table 5 presents
summary statistics of the implied parameters of the four setups. It is interesting to see
that the distribution of estimated β and σ look nearly identical for the first 3 models. For
model IV however, estimated β’s seem to be uniformly higher. This is understandable since
under the first three setups, default can occur through 2 channels: (1) the “surprise” element
which is controlled by b and c; and (2) the “diffusive” element which is controlled by β and
σ. Because the first channel is completely shut down for setup IV, the burden of fitting the
default probabilities falls entirely on the “diffusive” channel.

22



Table 5
Summary Statistics of Estimated Parameters

Option data are obtained from Option Metrics from Jan 1996 - June 2005. The following options are
excluded: (1) options with maturities less than 30 days or more than 1 year; (2) options with zero open
interest; (3) options on stocks that pay dividends within their maturities; (4) options on stocks with prices
less than $5; (5) options too far away from the money (|ln(S/K)| > 30%) - where S and K are, respectively,
the underlying stock price and the strike price of the options. (6) options with a bid-ask spread greater
than 50 percent of the option’s price. Equity prices are assumed to follow the process:

dSt

St
= (r + b + cσ2S−2β

t )dt + σS−βdBQs
t

The parameters of the equity process, b, c, σ and β, are estimated by minimizing the differences between
the model-implied option prices and market prices, using the least square criterion on a monthly basis. b,
c, σ are constrained to be non-negative. β is constrained between the unit interval. In minimizing the least
square differences, numerical optimizations are run repeatedly (at most 20 runs) until no further improve-
ment in the least square difference can be achieved. The following are eliminated: (1) optimizations with
less than 30 option prices per month; (2) optimizations which require more than 20 runs; (3) optimizations
that result in corner solutions. Four models are estimated. In model I, all four parameters are estimated.
In model II, the constant coefficient of the jump intensity, b, is set to zero. In model III, c is set to zero.
In this model, jump intensity is a constant. In model IV, only σ and β are estimated. This model only
allows default to happen through the diffusive forces due to the CEV structure.

5th 95th

mean median percentile percentile

Model I
b 0.008 0.000 0.000 0.049
c 0.097 0.000 0.000 0.459
σ 1.614 0.916 0.330 5.000
β 0.273 0.175 0.000 0.806
number of estimates 150329

Model II
c 0.142 0.033 0.000 0.573
σ 1.599 0.914 0.330 5.000
β 0.270 0.172 0.000 0.800
number of estimates 150276

Model III
b 0.021 0.006 0.000 0.084
σ 1.637 0.921 0.329 5.000
β 0.275 0.175 0.000 0.807
number of estimates 150400

Model IV
σ 1.937 1.139 0.336 5.000
β 0.314 0.223 0.000 0.843
number of estimates 149338
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5.1 Estimated parameters for firms leading up to defaults

As a first test to see whether the estimated models indeed contain credit information about
the underlying firms, I examine the pattern of average risk-neutral default probabilities
for a sample of firms that eventually end up in default. As firms get closer to default, it is
reasonable to expect the probabilities of default by these firms to show an increasing pattern.
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Figure 2 Risk Neutral Default Probabilities of Firms Leading up to Default
This figure plots average risk-neutral default probabilities (within five years) for a sample of firms that
eventually default in the sample period from 1996 to 2005. Default probabilities are computed assuming
equity prices follow:

dSt

St
= (r + b + cσ2S−2β

t )dt + σS−βdBQs
t

The parameters of the equity process, b, c, σ and β, are estimated by matching model-implied to actual
option prices using the least square criterion. Four variants of the models are estimated. Model I: full
estimation. Model II sets b = 0. Model III sets c = 0. Model IV sets both b and c to zero.

As can be seen from Figure 2, the increasing pattern indeed can be observed from average
probabilities generated by all four models. Starting from as low as 20% at 2 years prior to
the actual defaults, the average default probabilities increase to nearly 40% as the firms
get closer to the actual default date. It is interesting to see that the diffusive-only model
– model IV – consistently assigns higher default probabilities than its diffusive-and-jump
counterparts. In addition, models I, II and III’s estimated default probabilities so closely
resemble each other that their graphs almost become one. At least for the group of firms that
eventually default, the diffusive-only model seems capable of producing better estimates of
default probabilities. In results not reported here, I also rank default probabilities for every
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Figure 3 Estimated CEV Coefficient of Firms Leading up to Default
This figure plots average CEV estimates for a sample of firms that eventually default in the sample period
from 1996 to 2005. Equity prices follow:

dSt
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= (r + b + cσ2S−2β

t )dt + σS−βdBQs
t

The parameters of the equity process, b, c, σ and β, are estimated by matching model-implied to actual
option prices using the least square criterion. Four variants of the models are estimated. Model I: full
estimation. Model II sets b = 0. Model III sets c = 0. Model IV sets both b and c to zero.

firm, each month, on a scale of 1-100 and plot the average ranks for the same sample of
defaulted firms; a similar increasing pattern also emerges for all models.

The literature on CEV models of equity prices (e.g. Christie (1982)) has attributed
non-zero CEV coefficient β to the leverage effect. As long as the coefficient β is positive,
a leverage effect is always present within a CEV model – a reduction in stock price will
always lead to an increase in the conditional volatility of equity returns. The strength of
the leverage effect is positively related to β. When β = 0, there is no leverage effect. When
β = 1, the leverage effect is the strongest. For a sample of firms that are leading up to
bankruptcies, it is reasonable to expect that the leverage effect is stronger as firms get closer
to defaults. This suggests that there should be an increasing pattern in the average estimates
of the CEV coefficients for a sample of firms that eventually default. To examine whether
this pattern is observed in my estimates, in Figure 3, I plot the average estimates of β for
the same sample of defaulted firms for the last 8 quarters before they eventually default. A
pattern similar to the above plot of default probabilities, though to a lesser extent, can also
be observed. The trend is most pronounced for the last quarter before default. Before that,
the average estimates of β are the same as the average β taken over all firms.

25



5.2 Estimated risk-neutral default probabilities across ratings

As a second test, I plot average risk-neutral default probabilities against different categories of
credit ratings. Strictly speaking, credit ratings are not pure measures of default probabilities.
In fact, they lump together default probabilities and recovery risks.34. However, it is certainly
reasonable to expect that Aaa35 rated firms would have much lower probabilities of default
than lower-rated firms.

As can be seen from Figure 4, all four models seem to differentiate default probabilities
reasonably well across ratings. There is an obvious increasing pattern in default probabilities
across the ratings spectrum from Aaa to C. The diffusion-and-jump models, except for the
rating class Baa1 and above, exhibit sharp increasing patterns and once again lie on top of
one another. It is interesting to see that these models assign much higher default probabilities
to firms with investment grade ratings. For Aaa-rated firms, the actual default probability
within 5 years is 1 out of 1000. As implied by the jump-to-default models, under the pricing
measure, this probability is 1 out of 10. This is not surprising since under the risk-neutral
measure, the mean drift for every asset is the risk-free rate, therefore default occurs more
often under this measure.

However, marked differences exist between default probabilities implied by the diffusion-
only model and those implied by the other three models that allow for jumps. It is im-
possible to make judgment at this juncture which estimates are more reasonable by looking
at this graph alone. However, prior studies (see, for example, Zhou (2001)) suggest that
the diffusion-only model will not explain well short-term dynamics of credit risks. To this
extent, evidence presented in the following section will confirm that in terms of magnitude,
default probabilities generated by the diffusion-only model will, in most cases, significantly
underestimate CDS prices. It is not the case for the jump-and-diffusion models.

5.3 Time series of estimated risk-neutral default probabilities

Figure 5 plots the average risk-neutral probabilities of default for each year that option data
and equity data are available (from 1996 to 2005). Each year, the default probabilities are
averaged over firms with the same broad rating category: A, B or C as estimated by Moody’s.
Together with these average probabilities, the total number of defaults and the number of
defaults by firms with options coverage (during the last 12 months before default) are also
plotted. The period from 1996 to 2005 presents a credit cycle with a peak in 2002 which sees
a record number of bankruptcies. It is interesting to see that default probabilities implied
by all four models map reasonably well into this wave of bankruptcies with an apparent lag
of one year.

In addition, Figure 5 confirms that the rankings of default probabilities across ratings,
observed in the last subsection, are consistent over time. The monotonicity among default
probabilities of different rating classes is observed in every year in the sample and for all

34Fitchs’ Ratings have introduced two separate measures for under investment grade bonds only recently.
35Aaa is the highest rating category used by Moodys. The equivalent class of rating by Standard and Poor

and Fitch’s Ratings is AAA.
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Figure 4 Estimated Risk Neutral Probabilities across Credit Ratings
This figure plots average risk-neutral default probabilities (within five years) for firms with the same senior
credit ratings as estimated by Moody’s. Default probabilities are computed assuming equity prices follow:
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The parameters of the equity process, b, c, σ and β, are estimated by matching model-implied to actual
option prices, using the least square criterion. Four variants of the models are estimated. Model I: full
estimation. Model II sets b = 0. Model III sets c = 0. Model IV sets both b and c to zero.

four models. The only exception is for firms with “C” ratings during the year of 1997. This
is mainly due to the small number of C-rated firms used in computation of the averages.
Moreover, in comparison to the diffusion-only model, models with jumps consistently assign
considerably higher default probabilities for highly-rated firms. As discussed previously, this
feature is important in matching the levels of the actual CDS premiums.

From the above exercises, risk-neutral default probabilities estimated by all four models
seem reasonable. In the next section, these default probabilities will be combined with data
on CDS premiums to learn about the dynamics of LQ. As discussed in subsection 3.4, a
general structure of LQ can, in principal, be estimated. Nevertheless, to preserve simplicity,
I will assume that LQ enters into the CDS pricing formula as a constant. Consequently,
LQ can be computed as the ratio of actual CDS premiums to predicted CDS premiums,
according to equation (36). The advantage of this simple approach is three-fold. First,
having a constant LQ enables efficiency in pricing CDS contracts and implying LQ. Second,
introducing additional parameters governing the dynamics of LQ leads to a more flexible
structure but it can also bring more statistical noise to the parameter estimates. Third,
having a constant LQ does not mean that we cannot study about the dynamics of LQ. LQ
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(a) Model IV: b = 0, c = 0 (b) Model II: b = 0

(c) Model III: c = 0 (d) Model I: full estimation

Figure 5 Time Series of Estimated Risk-Neutral Default Probabilities
This figure plots the average risk-neutral probabilities of default for each year that option data and equity
data are available from 1996 to 2005. Each year, the default probabilities are averaged over firms with
the same broad rating category: A, B or C as estimated by Moody’s. These ratings correspond to the
senior classes of debts. Together with these average probabilities, the total number of defaults and the
number of defaults by firms with options coverage (during the last 12 months before default) are also
plotted. Defaults are identified each year from four sources (Moody’s Default Risk Service, COMPUSTAT
footnotes, Altman’s bankruptcy list, BankruptcyData.com) in such a way that matches the default criteria
specified in CDS contracts’ ISDA Master Agreement. Default probabilities are computed assuming equity
prices follow the process:
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The parameters of the equity process, b, c, σ and β, are estimated by matching model-implied to actual
option prices, using the least square criterion. Four variants of the models are estimated. Model I: full
estimation. Model II sets b = 0. Model III sets c = 0. Model IV sets both b and c to zero.

implied from this framework still contains information about the loss rate the same way as
Black-Scholes implied volatility is informative about the future standard deviation of equity
returns.36

36With regard to the central hypothesis of interest - the positive correlation between default probability
and loss rate, setting LQ to a constant amounts to assuming that LQ and λQ are not related. In testing
a positive relationship between LQ and λQ, this could be understood as a form of null hypothesis and any
positive correlation between LQ and λQ can be taken as evidence of deviation of the data from the null and
in support of the alternative hypothesis.
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6 Implied LQ

To reduce the effect of market noise inherent in CDS prices I compute monthly average CDS
premiums in stead of using daily data directly from ValuSpread. This averaging process also
guards against possible staleness in prices where the same quotes for a particular reference
name are mechanically provided to ValuSpread over consecutive days. In addition, it seems
prevalent in the earlier periods of the sample that quotes on different firms are collected
on different dates of the month. Therefore, cross-sectional analysis on two consecutive days
may involve completely different sets of reference names. Averaging CDS premiums over
months substantially reduces this problem.

Combining these monthly averages of CDS premiums with the default parameters im-
plied from the equity and option markets, risk-neutral loss given default LQ can be computed.
Table 6 shows the number of valid LQ estimates produced by each model of default for each
of the three maturities pertaining to the CDS contract, 1 year, 3 years and 5 years. An
estimate of LQ is valid if it falls within the unit interval. As expected, the diffusion-only
model provides a very small number of valid estimates, particularly for short maturities.
Over my sample period from 2002 to 2005, with one year to maturity, this type of model
can only produce 734 CDS premiums whose levels are economically sensible (greater than 5
basis points) and out of these, only 138 lead to a valid estimate of LQ. Even for a horizon of
five years – the most common maturity underlying CDS contracts – pure diffusion models
still have troubles matching the level of observed CDS spreads. In contrast, all the other
three models which allow for jump-to-defaults are able to match the levels of CDS premiums
quite well. The number of valid LQ estimates produced by these models is five to ten times
larger than that of their pure-diffusion counter-part. In the remaining part of the paper,
I will only consider model II whose jump intensity is linearly related to the instantaneous
volatility of returns. This model yields the highest number of valid estimates. As a check, all
the exercises presented below are repeated for the other two jump models and no material
differences in results can be found.

Figure 6 plots the average implied loss rate LQ and the associated risk-neutral default
probabilities λQ across different rating classes. The graphs are constructed using prices
of CDS contracts with five years to maturity but the same pattern is found with other
maturities as well. In a risk-neutral sense, highly rated firms are characterized by low λQ as
well as low LQ. At the other end of the spectrum, creditors of firms that are close to defaults
are expected to recover much less in actual defaults.

To investigate whether the correlation between LQ and λQ stems from any particular
sub-period in the sample, I break the sample into quarters and compute the cross-sectional
correlation between LQ and λQ for each quarter. These correlations and other time series
statistics of LQ and λQ are reported in Table 7. As can be seen, except for the third quarter
of 2002, the correlation between LQ and λQ is positive in every quarter in the sample.
However, in the 4th quarter of 2002 and the first two quarters of 2005, the correlation seems
small in magnitude. One point worth mentioning at this juncture is that my procedure of
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Table 6
Number of valid LQ estimates

Option data are obtained from Option Metrics from Jan 1996 - June 2005. Exclusion criteria are described
in the text of the paper. Equity prices are assumed to follow the process:
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The parameters of the equity process, b, c, σ and β, are estimated by minimizing the differences between
the model-implied option prices and market prices, using the least square criterion on a monthly basis.
b, c, σ are constrained to be non-negative. β is constrained between the unit interval. Four models are
estimated. In model I, all four parameters are estimated. In model II, the constant coefficient of the jump
intensity, b, is set to zero. In model III, c is set to zero. In this model, jump intensity is a constant. In
model IV, only σ and β are estimated. This model only allows default to happen through the diffusive
forces due to the CEV structure. For each of these models, the estimated parameters b, c, σ and β are
used to compute risk-neutral default probabilities. These probabilities are combined with CDS premiums
to form estimates of loss given default LQ. CDS premiums are obtained from Fitch Rating’s ValuSpread.
Exclusion criteria are described in the text. CDS premiums with 1, 3 and 5 year(s) to maturity are used
in estimating LQ. The “total” column reports the number of LQ estimates in cases b, c, σ and β imply
economically sensible CDS spreads - greater than 5 basis points. The “valid” column reports the number
of valid LQ estimates. A valid estimate of LQ must fall between 0 and 1.

CDS with CDS with CDS with
1 year to maturity 3 years to maturity 5 years to maturity

Model valid total valid total valid total

I 4134 4795 4890 5600 5084 5813
II 4176 4796 4917 5602 5108 5825
III 3946 4643 4728 5455 4919 5663
IV 138 734 782 1615 1097 1800

estimating LQ is roughly equal to dividing the CDS premiums by λQ37. If the estimates
are contaminated with large errors, this procedure may artificially introduce a negative
correlation between LQ and λQ. The fact that despite this possibility, a consistently positive
relationship between LQ and λQ can be found seems to reinforce their positive correlation.

Table 7 also reports cross-sectional averages of LQ, λQ and CDS premiums with five
years to maturity for every quarter in the sample. The sample averages of LQ are around the
range of values that have been adopted by prior researchers as well as practitioners (between
40% to 60%). Apart from the very similar decreasing patterns of average CDS premiums
and average λQ, it is striking to see that average LQ seems to increase after the bankruptcy
wave of the 2002. The sample period from 2002 to 2005 has observed a significant decrease
in the number of bankruptcies and therefore λP. In light of the widely documented positive
correlation between LP and λP, it seems reasonable to conjecture that the current sample
period is also coupled with a decrease in LP. Since the difference between LP and LQ is
related to recovery risk premiums, a decreasing LP and stability in LQ suggest the overall
recovery risk premium has decreased.

37This would be the case if the CEV process collapses to a log-normal diffusion. In such a case, jump
intensity is a constant λQ and CDS premium is simply λQLQ.
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Figure 6 Loss Given Default and Default Probabilities by Ratings
Loss given defaults implied using CDS premiums with five years to maturity and an equity model with
Constant Elasticity of Variance and a jump to default component - the intensity of which is proportional
to the conditional volatility of returns. Rating groups beyond A1 and Caa2 are not included because there
are too few estimates within these ratings groups.

Given the positive correlation between LQ and λQ, an interesting question arises: what
characteristics of the firm are driving this correlation? To investigate this issue, I regress
LQ and λQ on firm characteristics that could potentially affect both of these variables. The
specification of these regressions is as follows:

λQi = a0 + a1Leveragei + a2Profitabilityi + a3Tangibilityi + a4Qratioi + a5V olatilityi + εa
i(38)

LQi = b0 + b1Leveragei + b2Profitabilityi + b3Tangibilityi + b4Qratioi + b5V olatilityi + εb
i(39)

Leverage is measured as book value of long term debt divided by book value of asset. Prof-
itability is the ratio of EBITDA to sales while tangibility is measured as the expenses on
plant property and equipment divided by book value of assets. Volatility is historical volatil-
ity of daily returns on equity using a 90-day window. Since I use yearly balance sheet data
from COMPUSTAT to measure firm characteristics, LQ

t and λQ are first averaged over each
calendar year. I run the same regressions for each year in the sample and for the whole
sample, controlling for fixed year effects. Results are reported in Table 8.

Of the five firm characteristics, leverage and volatility seem to be the most important and
consistent factors in explaining the positive correlation between LQ and λQ. The coefficients
of leverage and volatility are statistically and economically significant for both LQ and λQ. It
shows that, on average, 1% increase in leverage leads to approximately 0.60% increase in LQ
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Table 7

Time series statistics of LQ

This table reports quarterly time series statistics of the implied loss given default measure LQ using a CEV
model of equity with jumps where the jump intensity is proportional to the conditional return variance:
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The parameters of the equity process, c, σ and β, are estimated by minimizing the differences between the
model-implied option prices and market prices, using the least square criterion on a monthly basis. c, σ are
constrained to be non-negative. β is constrained between the unit interval. The estimated parameters c, σ
and β are used to compute risk-neutral default probabilities. λQ denotes risk-neutral default probabilities
with a five-year horizon. These probabilities are combined with CDS premiums to form estimates of
loss given default LQ. CDS premiums and option prices are obtained, respectively, from Fitch Rating’s
ValuSpread and Option Metrics. Exclusion criteria are described in the text. CDS premiums with 5 years
to maturity are used in estimating LQ. The second column contains the cross-sectional correlation between
LQ and λQ for each quarter in the sample. The subsequent two columns report cross-sectional variances
and sample means of LQ for each quarter of the sample. The last two columns contain cross-sectional
means of CDS premiums, with five years to maturity, and λQ.

correlation variance mean mean mean
Quarter LQ and λQ of LQ of LQ of CDS of λQ

2002-3 -0.15 0.06 0.45 0.0572 0.3913
2002-4 0.00 0.06 0.41 0.0513 0.3839
2003-1 0.12 0.05 0.42 0.0419 0.3368
2003-2 0.18 0.06 0.52 0.0395 0.2536
2003-3 0.28 0.07 0.50 0.0324 0.2288
2003-4 0.18 0.07 0.57 0.0262 0.1720
2004-1 0.07 0.06 0.55 0.0214 0.1579
2004-2 0.21 0.07 0.59 0.0234 0.1454
2004-3 0.05 0.06 0.49 0.0219 0.1930
2004-4 0.22 0.06 0.55 0.0168 0.1281
2005-1 0.02 0.07 0.53 0.0124 0.0970
2005-2 0.02 0.09 0.55 0.0100 0.1207

and .14% in λQ, holding everything else constant. Given the wide variations of leverage in the
cross-section of firms, such a relationship between LQ and leverage implies significant cross-
sectional variations in LQ. Holding everything else constant, a firm with a 20% leverage
will have a LQ 12% lower than that of an otherwise the same firm with a 40% leverage.
Why should leverage be related to default probabilities and loss given default? Higher
leverage leads to higher probabilities of default since higher leverage means larger fixed
interest commitments a firm has to make every period. At the same time, as argued by
Acharya, Bharath, and Srinivasan (2004), bankruptcy proceedings of high-leverage firms
may be more difficult to resolve38. As such, higher leverage can lead to both higher LQt and
λQ. Likewise, higher volatility means the chance a firm cannot fulfill its interest commitment
during a period is higher, which means a higher λQ. In addition, greater volatility of assets

38Because higher leverage may be associated with greater dispersed ownership requiring greater coordina-
tion among bargaining parties.
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Table 8
Cross-sectional Analysis of LQ and λQ

The following two cross-sectional regressions of yearly average risk-neutral default probabilities ( λQ) and
yearly average risk-neutral loss given default (LQ) on firm characteristics are run in each year of the sample
(2002, 2003, 2004, 2005) and the whole sample, controlling for fixed-year effects.

λQi = a0 + a1Leveragei + a2Profitabilityi + a3Tangibilityi + a4Qratioi + a5V olatilityi + εa
i

LQi = b0 + b1Leveragei + b2Profitabilityi + b3Tangibilityi + b4Qratioi + b5V olatilityi + εb
i

LQi and λQi are estimated using a CEV model of equity with jumps whose intensity is proportional to the
conditional return variance:

dSt

St
= (r + cσ2S−2β

t )dt + σS−βdBQs
t

The parameters of the equity process, c, σ and β, are estimated by minimizing the differences between the
model-implied option prices and market prices, using the least square criterion on a monthly basis. c, σ
are constrained to be non-negative. β is constrained between the unit interval. The estimated parameters
c, σ and β are used to compute risk-neutral default probabilities λQ for each month. These probabilities
are combined with CDS premiums, with five-year maturities, to form estimates of LQ. Monthly LQ and
λQ are then averaged over each year. CDS premiums and option prices are obtained, respectively, from
Fitch Rating’s ValuSpread and Option Metrics. Exclusion criteria are described in the text. Leverage,
Profitability, Tangibility, and Qratio are, respectively, measured as debt/asset, EBITDA/sales, PPE/asset,
firms’ market value divided by asset. PPE stands for property, plant and equipment expense. Asset and
debt (long-term debt + short-term debt), sales, PPE and EBITDA are book values and obtained, when
available, from the COMPUSTAT quarter and annual files. Firms’ market value is computed as (asset -
book value of equity + market cap). Price and shares outstanding data (in computing value of the firms) are
obtained from the CRSP file. Volatility is standard deviation of equity returns, using a 90-day estimation
horizon. For each variable, the first line contains point estimates while the second line contains t-statistics.
N and adj-R2 are, respectively, the sample size and the adjusted-R2 statistics of each regression.

all years 2002 2003 2004 2005
λQ LQ λQ LQ λQ LQ λQ LQ λQ LQ

Intercept 0.071 0.279 0.269 0.127 0.164 0.193 0.047 0.076 0.021 0.295
7.058 13.619 7.323 2.915 8.962 5.381 3.315 2.070 1.926 6.946

Leverage 0.140 0.596 0.149 0.551 0.176 0.590 0.106 0.603 0.109 0.548
7.962 16.664 2.341 7.286 5.043 8.621 4.405 9.574 5.286 6.876

Profitability -0.063 -0.221 -0.049 -0.316 -0.103 -0.241 -0.065 -0.098 -0.024 -0.243
-3.966 -6.790 -0.730 -3.948 -3.491 -4.154 -2.926 -1.701 -1.340 -3.458

Tangibility -0.054 0.025 -0.170 -0.013 -0.066 0.019 -0.024 0.046 -0.017 0.037
-5.199 1.186 -4.347 -0.279 -3.267 0.471 -1.743 1.260 -1.275 0.728

Qratio -0.014 -0.039 -0.033 -0.037 -0.013 -0.040 -0.011 -0.036 -0.006 -0.041
-5.114 -6.868 -3.104 -2.912 -2.447 -3.998 -2.840 -3.542 -1.678 -3.143

Volatility 0.226 0.200 0.349 0.195 0.148 0.125 0.341 0.625 0.292 0.200
19.066 8.331 8.094 3.796 9.487 4.062 12.843 9.016 14.879 2.648

N 1499 1499 267 267 401 401 469 469 347 347
adj-R2 0.561 0.3147 0.302 0.325 0.301 0.303 0.364 0.386 0.469 0.221
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Figure 7 Decomposing CDS Premiums into Risk-neutral Expected Loss Given
Default and Default Probabilities

Cross-sectional averages of LQ are computed for each quarter for the sample period 2002:2005. LQ measures
are implied using a CEV model of equity with jumps where the jump intensity is proportional to the
conditional returns variance and CDS premiums with five years to maturity. The blue line (with squares)
graphs quarterly LQ averages while the green line (with circles) plots the quarterly average of default
probabilities during the next five years. The red line (with diamonds) represents quarterly averages of
CDS premiums.

increases the chance that a firm defaults with a very low asset value, which in turn increases
LQ.

To a lesser extent, firms’ profitability and q-ratios are also responsible for the correlation
between LQ

t and λQt . As can be seen in Table 8, higher profitability causes both LQ
t and

λQ to be lower. This is intuitive since more profitable firms are capable of producing more
sustainable cash-flows and thus more capable of fulfilling their interest obligations. What is
more, profitable firms are likely to own more productive assets which could fetch for more in
case of defaults. Therefore higher profitability is associated with both lower λQ and lower LQt .
In terms of q-ratios, higher q-ratio means higher future growth and possibly larger future
cash-flows, thus lowering the chance of default. At the same time, firms with high potentials
tend to find solutions to liquidity-driven defaults and return to productivity quicker (by
refinancing or court protection), expected loss given default on these firms is lower. Hence
a high q-ratio lowers both λQ and LQt .

With regard to the tangibility of firms’ assets, λQ are negatively related to tangibility
while no relationship between tangibility and LQ can be found. In the pooled regressions
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and in the year of 2002 and 2003, the relationship between tangibility and λQt is statistically
significant. However, these coefficients become insignificant in 2004 and 2005. This change
in significance can be explained as follows. Tangibility could be viewed as the extent to
which the assets of the firms can be used as security for extra debt, holding everything
else constant, thus proxying for the extra debt capacity of the firm. The easier a firm can
get refinancing when needed, the less likely a firm will default on its existing debts. This
extra debt capacity is particularly important in tight credit environments as is the case in
2002. This explains why both coefficients estimates and t-statistics of the tangibility variable
decrease over the sample period.

On the other hand, tangibility is insignificant in every regression of LQ. This result is
somewhat puzzling since tangible assets are easier to transfer among firms and thus should
reduce LQ in case of defaults. This puzzle could be due to several reasons. First, the variable
being used (Plant Property and Equipment Expense divided by Total Assets) may not be a
good proxy for tangibility. To this extent, I have tried other variables used in the literature
that proxy for the tangibility/specificity of firms’ assets such as industry median equipment
and machinery expense divided by total assets, industry median Q-ratio39, amortized R&D
expense divided by total assets40, and the results remain the same. Second, the effect of
tangibility may have been already captured by other variables. For example, firms may
choose their level of leverage taking the degree of tangibility of their assets into account. To
this extent, I re-run the above analysis using univariate regressions of LQ on tangibility and
other asset-specificity variables mentioned above but find no meaningful relationship. Third,
it could be that asset specificity/tangibility does not affect LQ but does affect recovery risk
premium πR

t . In fact, Acharya, Bharath, and Srinivasan (2004) find that in a distressed
industry, physical loss rates are related to the asset-specificity of the firm. Interpreting
the evidence here together with results from Acharya, Bharath, and Srinivasan (2004) in
the context of equation (38), it suggests that in distressed industries, the degree of asset-
specificity is directly related to the uncertainty of recovery in default thereby inducing a
higher recovery risk premium. This is also the conclusion reached by Acharya, Bharath,
and Srinivasan (2004) but their conclusion relies on the systematic nature of the industry
variables.

Finally, the difficulty in measuring asset tangibility and specificity, as recognized in the
literature, means that proxies for this characteristic may be estimated with large errors.
These estimation errors may explain the insignificance results found with various tangibility
and asset specificity measures. Moreover, at least part of the specificity/tangibility of the
assets should already be reflected in stock prices and hence firms’ market value and q-ratios.
To this extent, the fact that firms’ q-ratios are significantly negatively related to both λQ

and LQ suggests that asset tangibility/specificity may, at least partly, have been captured
by q-ratios.

39Acharya, Bharath, and Srinivasan (2004)
40Gabudean (2006)
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7 Concluding Remarks

In summary, I have set out a general pricing framework that allows the risk-neutral dynamics
of LQ and λQ to be separately and sequentially discovered. This framework allows, in prin-
ciple, for a general specification of LQ and its dependency on λQ or other exogenous factors.
In light of the recent Basel Capital Accord which emphasizes the importance of managing
value at risk, this framework can serve as a platform to further enhance our understanding
of the dynamics of loss given default.

Using equity and option data, I show that one can efficiently extract pure measures of λQ

that are not contaminated by recovery information. Equipped with this knowledge of pure
default dynamics, prices of any defaultable security on the same firm with non-zero recovery
can be inverted to compute the associated LQ corresponding to that particular security. Using
CDS data, I show that cross-sectionally LQ and λQ are positively correlated. This evidence
lends support to a recent finding that industry distressed condition rather than the supply
and demand of defaulted securities is responsible for the positive correlation between default
rates and losses observed in the data. Firm characteristics including leverage, volatility,
profitability and q-ratios are found to explain the positive correlation between LQ and λQ.

The empirical applications of the current framework can be extended in many directions.
The equity process can be specified in a way that incorporates debt data in a similar manner
to a Merton-type structural model. The use of a translated Geometric Brownian Motion
process used in JPMorgan’s E2C model and Das and Sundaram (2003) is an example. This
will combine the advantages of: (1) the economic structure of the Merton framework; (2)
the extra information by using both debt and equity data; and (3) the jump-to-default
dynamics present in the current setting. In addition, the current framework can also be
implemented using credit spreads from the bond market. Given the flexibility of the current
framework in accommodating different recovery assumptions, dynamics of recoveries implicit
from the bond market itself can be studied and compared under the three different recovery
assumptions.
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Appendix

A Iterative computation of the probabilities matrix

At each step N , let’s denote AN to be an (N +1)× (N +1) matrix that contains all possible
combinations of St+N∆t and rt+N∆t. The rows correspond to different values of S while the
columns represent r. So AN(i, j) refers to a pair of numbers SN(i) and rN(j). Let PN be an
(N + 1)× (N + 1) matrix that gives probabilities of each element of AN conditional on the
starting point St and rt, that is:

PN(i, j) = P (St+N∆t = SN(i), rt+N∆t = rN(j)|St, rt) (40)

To compute PN+1 at step N + 1, note that SN+1(i) can only be arrived from SN(i) or
SN(i− 1) and rN+1(j) can only be arrived from rN(j) or rN(j − 1)

PN+1(i, j) =
∑

ki=0,−1;kj=0,−1

P (SN+1(i), rN+1(j)|SN(i+ki), rN(j+kj))×PN(i+ki, j+kj) (41)

Since SN and rN are conditionally independent,

P (SN+1(i), rN+1(j)|SN(i+ki), rN(j+kj)) = P (SN+1(i)|SN(i+ki), rN(j+kj))P (rN+1(j)|rN(j+kj))
(42)

The particular functional forms of P (SN+1(i)|SN(i+ki), rN(j+kj)) and P (rN+1(j)|rN(j+kj))
are specified in the construction of the binomial trees for St and rt.

In matrix form,

PN+1 =

[
0 0
0 fdd(AN). ∗ PN

]

+

[
0 fud(AN). ∗ PN

0 0

]

+

[
0 0

fdu(AN). ∗ PN 0

]

+

[
fuu(AN). ∗ PN 0

0 0

]
(43)

where fud(AN) gives the transition probabilities for each of the pair in matrix AN when S
goes up and r goes down. fuu, fdu, fdd can be similarly defined. 0 (in bold form) denotes a
vector of zero and .∗ denotes element by element matrix product.
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