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Abstract 

 

Time varying correlations are often estimated with Multivariate Garch models that are linear 
in squares and cross products of the data.  A new class of multivariate models called dynamic 
conditional correlation (DCC) models is proposed. These have the flexibility of univariate 
GARCH models coupled with parsimonious parametric models for the correlations.  They are 
not linear but can often be estimated very simply with univariate or two step methods based 
on the likelihood function. It is shown that they perform well in a variety of situations and 
provide sensible empirical results. 
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I. INTRODUCTION 

Correlations are critical inputs for many of the common tasks of financial management.  

Hedges require estimates of the correlation between the returns of the assets in the hedge.  If the 

correlations and volatilities are changing, then the hedge ratio should be adjusted to account for the 

most recent information.  Similarly, structured products such as rainbow options that are designed 

with more than one underlying asset, have prices that are sensitive to the correlation between the 

underlying returns.  A forecast of future correlations and volatilities is the basis of any pricing 

formula.   

Asset allocation and risk assessment also rely on correlations, however in this case a large 

number of correlations are often required.  Construction of an optimal portfolio with a set of 

constraints requires a forecast of the covariance matrix of the returns.  Similarly, the calculation of the 

standard deviation of today’s portfolio requires a covariance matrix of all the assets in the portfolio.  

These functions entail estimation and forecasting of large covariance matrices, potentially with 

thousands of assets.   

The quest for reliable estimates of correlations between financial variables has been the 

motivation for countless academic articles, practitioner conferences and Wall Street research.  Simple 

methods such as rolling historical correlations and exponential smoothing are widely used.  More 

complex methods such as varieties of multivariate GARCH or Stochastic Volatility have been 

extensively investigated in the econometric literature and are used by a few sophisticated 

practitioners.  To see some interesting applications, examine  Bollerslev, Engle and 

Wooldridge(1988), Bollerslev(1990), Kroner and Claessens(1991),  Engle and Mezrich(1996),  

Engle, Ng and Rothschild(1990) and surveys by Bollerslev, Chou and Kroner(1992),  Bollerslev 

Engle and Nelson(1994), and Ding and Engle(2001).  In very few of these papers are more than 5 
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assets considered in spite of the apparent need for bigger correlation matrices.  In most cases, the 

number of parameters in large models is too big for easy optimization.    

In this paper Dynamic Conditional Correlation (DCC) estimators are proposed that have the 

flexibility of univariate GARCH but not the complexity of conventional multivariate GARCH.  These 

models, which parameterize the conditional correlations directly, are naturally estimated in two steps 

– the first is a series of univariate GARCH estimates and the second the correlation estimate.  These 

methods have clear computational advantages over multivariate GARCH models in that the number 

of parameters to be estimated in the correlation process is independent of the number of series to be 

correlated.  Thus potentially very large correlation matrices can be estimated.  In this paper, the 

accuracy of the correlations estimated by a variety of methods is compared in bivariate settings where 

many methods are feasible.   An analysis of the performance of Dynamic Conditional Correlation 

methods for large covariance matrices is considered in Engle and Sheppard(2001).   

 The next section of the paper will give a brief overview of various models for estimating 

correlations.  Section 3 will introduce the new method and compare it with some of the other cited 

approaches.  Section 4 will investigate some statistical properties of the method.  Section 5 describes 

a Monte Carlo experiment with results in Section 6.  Section 7 presents empirical results for several 

pairs of daily time series and Section 8 concludes. 

 

II. CORRELATION MODELS 

The conditional correlation between two random variables r1 and r2 that each have mean zero, is 

defined to be: 
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In this definition, the conditional correlation is based on information known the previous period;  

multi-period forecasts of the correlation can be defined in the same way.  By the laws of probability, 

all correlations defined in this way must lie within the interval [–1,1].  The conditional correlation 

satisfies this constraint for all possible realizations of the past information and for all linear 

combinations of the variables. 

 To clarify the relation between conditional correlations and conditional variances, it is 

convenient to write the returns as the conditional standard deviation times the standardized 

disturbance: 

(2) ( ) t,it,it,i
2
t,i1tt,i hr,rEh ε== − ,  i=1,2 

Epsilon is a standardized disturbance that has mean zero and variance one for each series. 

Substituting into (4) gives  
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Thus, the conditional correlation is also the conditional covariance between the standardized 

disturbances.   

 Many estimators have been proposed for conditional correlations.  The ever-popular rolling 

correlation estimator is defined for returns with a zero mean as: 

(4) 
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Substituting from (4) it is clear that this is only an attractive estimator in very special circumstances.  

In particular, it gives equal weight to all observations less than n periods in the past and zero weight 

on older observations.  The estimator will always lie in the    [-1,1] interval, but it is unclear under 

what assumptions it consistently estimates the conditional correlations.  A version of this estimator 

with a 100 day window, called MA100, will be compared with other correlation estimators. 

The exponential smoother used by RiskMetrics™ uses declining weights based on a 

parameter λ , which emphasizes current data but has no fixed termination point in the past where data 

becomes uninformative. 

(5) 
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It also will surely lie in [-1,1]; however there is no guidance from the data on how to choose lambda.  

In a multivariate context, the same lambda be used for all assets to ensure appositive definite 

correlation matrix. RiskMetrics™ uses the value of .94 for lambda for all assets.  In the comparison 

employed in this paper, this estimator is called EX .06.   

Defining the conditional covariance matrix of returns as: 

(6) ( ) ttt1t H'rrE ≡− , 

these estimators can be expressed in matrix notation respectively as: 

(7) ( ) ( ) ( ) 111
1

1','
1

−−−
=

−− −+== ∑ tttt

n

j
jtjtt HrrHandrr

n
H λλ  

An alternative simple approach to estimating multivariate models is the Orthogonal GARCH 

method or principle component GARCH method.  This has recently been advocated by 

Alexander(1998)(2001).  The procedure is simply to construct unconditionally uncorrelated linear 
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combinations of the series r.  Then univariate GARCH models are estimated for some or all of these 

and the full covariance matrix is constructed by assuming the conditional correlations are all zero.  

More precisely, find A such that ( ) VyyEAry tttt ≡= ',  is diagonal. Univariate GARCH models are 

estimated for the elements of y and combined into the diagonal matrix Vt.  Making the additional 

strong assumption that ( ) ttt1t V'yyE =−  is diagonal, then  

(8) 1
t

1
t AV'AH −−=  

In the bivariate case, the matrix A can be chosen to be triangular and estimated by least squares where 

r1 is one component and the residuals from a regression of r1 on r2 are the second.  In this simple 

situation, a slightly better approach is to run this regression as a GARCH regression, thereby 

obtaining residuals which are orthogonal in a GLS metric. 

 Multivariate GARCH models are natural generalizations of this problem.  Many specifications 

have been considered, however most have been formulated so that the covariances and variances are 

linear functions of the squares and cross products of the data.  The most general expression of this 

type is called the vec model and is described in Engle and Kroner(1995).  The vec model 

parameterizes the vector of all covariances and variances expressed as vec(Ht).  In the first order case 

this is given by 

(9) ( ) ( ) ( ) ( )111 ' −−− Β+Α+Ω= tttt HvecrrvecvecHvec  

where A and B are n2xn2 matrices with much structure following from the symmetry of H.  Without 

further restrictions, this model will not guarantee positive definiteness of the matrix H.   

Useful restrictions are derived from the BEKK representation, introduced by Engle and 

Kroner(1995), which, in the first order case, can be written as: 

(10) ( ) ''' 111 BBHArrAH tttt −−− ++Ω=  
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Various special cases have been discussed in the literature starting from models where the A 

and B matrices are simply a scalar or diagonal rather than a whole matrix, and continuing to very 

complex highly parameterized models which still ensure positive definiteness.  See for example 

Engle and Kroner (1995),  Bollerslev, Engle and Nelson (1994),  Engle and Mezrich (1996),  Kroner 

and Ng (1998) and Engle and Ding (2001) for examples.  In this study the SCALAR BEKK and the 

DIAGONAL BEKK will be estimated. 

As discussed in Engle and Mezrich (1996), these models can be estimated subject to the 

“variance targeting” constraint that the long run variance covariance matrix is the sample covariance 

matrix.  This constraint differs from MLE only in finite samples but reduces the number of 

parameters and often gives improved performance.  In the general vec model of equation (9), this can 

be expressed as 

(11) ( ) ( ) ( ) ( )∑=Β−Α−=Ω
t

tt rr
T

SSvecIvec '
1

    where,  

This expression simplifies in the scalar and diagonal BEKK cases.  For example for the scalar BEKK 

the intercept is simply 

(12) ( )Sβα −−=Ω 1  

 

III. DYNAMIC CONDITIONAL CORRELATIONS 

 This paper introduces a new class of multivariate GARCH estimators which can best be 

viewed as a generalization of Bollerslev(1990)’s constant conditional correlation estimator.  In 

  

(13) { }titttt hdiagDwhereRDDH ,, ==  
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where R is a correlation matrix containing the conditional correlations as can directly be seen from 

rewriting this equation as: 

(14) ( ) RDHDE tttttt == −−
−

11
1 'εε , since ttt rD 1−=ε  

The expressions for h are typically thought of as univariate GARCH models, however, these models 

could certainly include functions of the other variables in the system as predetermined variables or 

exogenous variables.  A simple estimate of R is the unconditional correlation matrix of the 

standardized residuals.  

This paper proposes an estimator called dynamic conditional correlation or DCC.  The 

dynamic correlation model differs only in allowing R to be time varying: 

(15) tttt DRDH =  

Parameterizations of R have the same requirements that H did except that the conditional variances 

must be unity.  The matrix Rt remains the correlation matrix. 

 Kroner and Ng (1998) propose an alternative generalization which lacks the computational 

advantages discussed below. They propose a covariance matrix which is a matrix weighted average of 

the Bollerslev CCC model and a Diagonal BEKK, both of are positive definite.  They clearly nest the 

two specifications. 

Probably the simplest specification for the correlation matrix is the exponential smoother 

which can be expressed as: 
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a geometrically weighted average of standardized residuals.  Clearly these equations will produce a 

correlation matrix at each point in time.  A simple way to construct this correlation is through 

exponential smoothing.   In this case the process followed by the 

(17) ( )( ) ( )
t,jjt,ii

t,j,i
t,j,i1t,j,i1t,j1t,it,j,i

qq

q
,q1q =+−= −−− ρλεελ  

q’s will be integrated. 

 A natural alternative is suggested by the GARCH(1,1) model.   

(18) ( ) ( )j,i1t,j,ij,i1t,j1t,ij,it,j,i qq ρβρεεαρ −+−+= −−−  

Rewriting gives, 

(19) , , , , ,
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1
1

s
i j t i j i t s j t s

s
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β

∞

− −
=

 − −= + − 
∑  

The unconditional expectation of the cross product is ,i jρ  while for the variances: 

(20) 1i,i =ρ . 

The correlation estimator 

(21) 
tjjtii

tji
tji

qq

q

,,,,

,,
,, =ρ  

will be positive definite as the covariance matrix, [ ]t,j,it qQ = , is a weighted average of a positive 

definite and a positive semidefinite matrix.  The unconditional expectation of the numerator of (21) is 

,i jρ  and each term in the denominator has expected value one.  This model is mean reverting as long 

as 1<+ βα  and when the sum is equal to one it is just the model in (17).  Matrix versions of these 

estimators can be written as: 

(22) ( )( ) ,Q'1Q 1t1t1tt −−− +−= λεελ and 
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(23) ( ) ( ) 111 '1 −−− ++−−= tttt QSQ βεεαβα  

where S is the unconditional correlation matrix of the epsilons.   

 Clearly more complex positive definite multivariate GARCH models could be used for the 

correlation parameterization as long as the unconditional moments are set to the sample correlation 

matrix.  For example, the MARCH family of Ding and Engle(2001) can be expressed in first order 

form as 

(24) 111 ')'( −−− ++−−= tttt QBABASQ ooo εειι  

where ι  is a vector of ones and o  is the Hadamard product of two identically sized matrices which is 

computed simply by element by element multiplication.  They show that if ( )BAandBA −−',, ιι  are 

positive semi-definite, then Q will be positive semi-definite. If any one of the matrices is positive 

definite, then Q will also be.  This family includes both of the models above as well as many 

generalizations.  

   

IV. ESTIMATION 

The DCC model can be formulated as the following statistical specification: 

(25) 
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The assumption of normality in the first equation gives rise to a likelihood function.  Without this 

assumption, the estimator will still have the QML interpretation.  The second equation simply 

expresses the assumption that each of the assets follows a univariate GARCH process.  Nothing 

would change if this were generalized.   
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The log likelihood for this estimator can be expressed as 

(26) 
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which can simply be maximized over the parameters of the model.  However one of the objectives of 

this formulation is to allow the model to be estimated more easily even when the covariance matrix is 

very large.  In the next few paragraphs several estimation methods will be presented which give 

simple consistent but inefficient estimates of the parameters of the model.  Sufficient conditions will 

be given for the consistency and asymptotic normality of these estimators following Newey and 

McFadden(1994). Let the parameters in D be denoted θ  and the additional parameters in R be 

denoted φ .  The log likelihood can be written as the sum of a volatility part and a correlation part: 

(27) ( ) ( ) ( )φθθφθ ,, CV LLL +=  

The volatility term is  

(28) ( ) ( )( )2 21
log 2 log '

2V t t t t
t

L n D r D rθ π −= − + +∑  

and the correlation component is:  
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t
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1
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The volatility part of the likelihood is apparently the sum of individual GARCH likelihoods 
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which will be jointly maximized by separately maximizing each term. 

The second part of the likelihood will be used to estimate the correlation parameters.  As the 

squared residuals are not dependent on these parameters, they will not enter the first order conditions 

and can be ignored. The resulting estimator will be called DCC LL MR if the mean reverting formula 

(18) is used and DCC LL INT with the integrated model in (17). 

The two step approach to maximizing the likelihood is to find 

(31)  ( ){ }θθ VLmaxargˆ =  

and then take this value as given in the second stage 

(32) ( ){ }φθ
φ

,ˆmax CL .   

Under reasonable regularity conditions, consistency of the first step will ensure consistency of 

the second step. The maximum of the second step will be a function of the first step parameter 

estimates, so if the first step is consistent, then the second step will be too as long as the function is 

continuous in a neighborhood of the true parameters.   

Newey and McFadden (1994) in Theorem 6.1, formulate a two step GMM problem which can 

be applied to this model.  Consider the moment condition corresponding to the first step as 

( ) 0=∇ θθ VL .  The moment condition corresponding to the second step is ( ) 0,ˆ =∇ φθφ CL .  Under 

standard regularity conditions which are given as conditions i) to v) in Theorem 3.4 of Newey and 

McFadden, the parameter estimates will be consistent, and asymptotically normal, with a covariance 

matrix of familiar form. This matrix is the product of two inverted Hessians around an outer product 

of scores.  In particular, the covariance matrix of the correlation parameters is: 

(33) ( ) =φV  

( ) ( ) ( )[ ]{ } ( ) ( )[ ]{ }( ) ( )1 11 1
'C C C V V C C V V CE L E L E L E L L L E L E L L E Lφφ φ φθ θθ θ φ φθ θθ θ φφ

− −− −
∇ ∇ − ∇ ∇ ∇ ∇ − ∇ ∇ ∇ ∇      
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Details of this proof can be found in Engle and Sheppard (2001) 

 Alternative estimation approaches can easily be devised which are again consistent but 

inefficient.  Rewrite (18) as 

(34) ( ) ( ) ( ) ( ), , , , , 1 , , 1 , , 1 , , , ,1i j t i j i j t i j t i j t i j t i j te e e q e qρ α β α β β− − −= − − + + − − + −  

where tjtitjie ,,,, εε= .  This equation is an ARMA(1,1) since the errors are a Martingale difference by 

construction.  The autoregressive coefficient is slightly bigger if α is a small positive number, which 

is the empirically relevant case.  This equation can therefore be estimated with conventional time 

series software to recover consistent estimates of the parameters. The drawback to this method is that 

ARMA with nearly equal roots are numerically unstable and tricky to estimate.  A further drawback 

is that in the multivariate setting, there are many such cross products that can be used for this 

estimation.  The problem is even easier if the model is (17) since then the autoregressive root is 

assumed to be one.  The model is simply an integrated moving average or IMA with no intercept. 

(35) ( ) ( )tjitjitjitjitji qeqee ,,,,1,,1,,,, −+−−=∆ −−β , 

which is simply an exponential smoother with parameter λ β= .  This estimator will be called DCC 

IMA. 

 

V. COMPARISON OF ESTIMATORS 

In this section, several correlation estimators will be compared in a setting where the true correlation 

structure is known.  A bivariate GARCH model will be simulated 200 times for 1000 observations or 

approximately 4 years of daily data for each correlation process.  Alternative correlation estimators 

will be compared in terms of simple goodness of fit statistics, multivariate GARCH diagnostic tests 

and Value at Risk tests. 
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 The data generating process consists of two gaussian GARCH models; one is highly persistent 

and the other is not.  

(36) 

2 2
1, 1, 1 1, 1 2, 2, 1 2, 1

1,
1, 1, 1, 2, 2, 2,

2,

.01 .05 .94 , .5 .2 .5

1
~ 0, , , ,

1

ε ρ
ε ε

ε ρ

− − − −= + + = + +

    
= =    

    

t t t t t t

t t
t t t t t t

t t

h r h h r h

N r h r h
 

 

 The correlations follow several processes that are labeled as follows: 

• Constant  9.=tρ  

• Sine  ( )200/2cos4.5. tt πρ +=  

• Fast Sine  ( )20/2cos4.5. tt πρ +=  

• Step  ( )5005.9. >−= ttρ  

• Ramp  ( )200/mod tt =ρ  

 

These processes were chosen because they exhibit rapid changes, gradual changes and periods of 

constancy. Some of the processes appear mean reverting while others have abrupt changes.  Various 

other experiments are done with different error distributions and different data generating parameters 

but the results are quite similar. 
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Figure 1 

 

 Eight different methods are used to estimate the correlations – two multivariate GARCH 

models, Orthogonal GARCH, two integrated DCC models and one mean reverting DCC plus the 

exponential smoother from RISKMETRICS and the familiar 100 day moving average.  The methods 

and their descriptions are: 

• SCALAR BEKK – scalar version of (10) with variance targeting as in (12) 

• DIAG BEKK- diagonal version of (10) with variance targeting as in (11) 

• DCC IMA – Dynamic Conditional Correlation with integrated moving average estimation as in 

(35)  

• DCC LL INT –Dynamic Conditional Correlation by Log Likelihood for integrated process 
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• DCC LL MR – Dynamic Conditional Correlation by Log Likelihood with mean reverting model 

as in (18)  

• MA100- Moving Average of 100 days 

• EX .06 –Exponential smoothing with parameter=.06  

• OGARCH- orthogonal GARCH or principle components GARCH as in (8). 

 

 Three performance measures are used.  The first is simply the comparison of the estimated 

correlations with the true correlations by mean absolute error.  This is defined as: 

(37) ∑ −= ttT
MAE ρρ̂

1
 

and of course the smallest values are the best.  A second measure is a test for autocorrelation of the 

squared standardized residuals.  For a multivariate problem, the standardized residuals are defined as  

(38) ttt rH 2/1−=ν  

which in this bivariate case is implemented with a triangular square root defined as: 

(39) 

( ) ( )2
,11
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The test is computed as an F test from the regression of 2
,1 tν  and 2

,2 tν on 5 lags of the squares and 

cross products of the standardized residuals plus an intercept.  The number of rejections using a 5% 

critical value is a measure of the performance of the estimator since the more rejections, the more 

evidence that the standardized residuals have remaining time varying volatilities.  This test can 

obviously be used for real data. 
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 The third performance measure is an evaluation of the estimator for calculating value at risk.  

For a portfolio with w invested in the first asset and (1-w) in the second, the value at risk, assuming 

normality, is  

(40) ( ) ( )( )22
11, 22, 11, 22,ˆ1.65 1 2* 1t t t t t tVaR w H w H w w H Hρ= + − + −  

and a dichotomous variable called hit should be unpredictable based on the past where hit is defined 

as: 

(41) ( )( ) 05.*1* ,2,1 −−<−+= tttt VaRrwrwIhit  

The Dynamic Quantile Test introduced by Engle and Manganelli (2001) is an F test of the hypothesis 

that all coefficients as well as the intercept are zero in a regression of this variable on its past, on 

current VaR, and any other variables.  In this case 5 lags and the current VaR are used. The number 

of rejections using a 5% critical value is a measure of model performance. The reported results are for 

an equal weighted portfolio with w =.5,  and  a hedge portfolio with weights 1,-1.   

   

VI.  RESULTS 

 Table I presents the results for the Mean Absolute Error for the eight estimators for 6 

experiments with 200 replications.  In four of the six cases the DCC mean reverting model has the 

smallest MAE.  When these errors are summed over all cases, this model is the best.  Very close 

second and third place models are DCC integrated with log likelihood estimation, and scalar BEKK.   

 In Table II the second standardized residual is tested for remaining autocorrelation in its 

square.    This is the more revealing test since it depends upon the correlations;  the test for the first 

residual does not.  As all models are misspecified, the rejection rates are typically well above 5%.  

For three out of six cases, the DCC mean reverting model is the best.  When summed over all cases it 

is a clear winner.   
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The test for autocorrelation in the first squared standardized residual is presented in Table III.  

These test statistics are typically close to 5% reflecting the fact that many of these models are 

correctly specified and the rejection rate should be the size.  Overall the best model appears to be the 

diagonal BEKK with OGARCH and DCC close behind.  

 The VaR based Dynamic Quantile Test is presented in Table IV for a portfolio that is half 

invested in each asset and in Table V for a long-short portfolio with weights plus and minus one.  The 

number of 5% rejections for many of the models is close to the 5% nominal level in spite of 

misspecification of the structure.  In five out of six cases, the minimum is the integrated DCC log 

likelihood; and overall, it is also the best method followed by the mean reverting DCC and the IMA 

DCC.  

 The value at risk test based on the long short portfolio finds that the Diagonal BEKK is best 

for 3 out of 6 while the DCC MR is best for two.  Overall, the DCC MR is observed to be the best.  

 From all of these performance measures, the Dynamic Conditional Correlation methods are 

either the best or very near the best method.  Choosing among these models, the mean reverting 

model is the general winner although the integrated versions are close behind and perform best by 

some criteria.  Generally the log likelihood estimation method is superior to the IMA estimator for the 

integrated DCC models. 

 The confidence with which these conclusions can be drawn can also be investigated.  One 

simple approach is to repeat the experiment with different sets of random numbers.  The entire Monte 

Carlo was repeated two more times.  The results are very close with only one change in ranking 

which favors the DCC LL MR over the DCC LL INT. 
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TABLE  I 

MEAN ABSOLUTE ERROR OF CORRELATION ESTIMATES 

MODEL SCAL 

BEKK 

DIAG 

BEKK 

DCC LL 

MR 

DCC LL 

INT  

DCC 

IMA 

EX .06 MA 100 O-GARCH 

         

FAST SINE  0.2292  0.2307  0.2260  0.2555  0.2581  0.2737  0.2599  0.2474 

SINE  0.1422  0.1451  0.1381  0.1455  0.1678  0.1541  0.3038  0.2245 

STEP  0.0859  0.0931  0.0709  0.0686  0.0672  0.0810  0.0652  0.1566 

RAMP  0.1610  0.1631  0.1546  0.1596  0.1768  0.1601  0.2828  0.2277 

CONST  0.0273  0.0276  0.0070  0.0067  0.0105  0.0276  0.0185  0.0449 

T(4) SINE  0.1595  0.1668  0.1478  0.1583  0.2199  0.1599  0.3016  0.2423 

 

 

TABLE II 

FRACTION OF 5%TESTS FINDING AUTOCORRELATION IN SQUARED 

MODEL SCAL 

BEKK 

DIAG 

BEKK 

DCC LL 

MR 

DCC LL 

INT  

DCC IMA EX .06 MA 100 O-GARCH 

         

FAST SINE  0.3100  0.0950  0.1300  0.3700  0.3700  0.7250  0.9900  0.1100 

SINE  0.5930  0.2677  0.1400  0.1850  0.3350  0.7600  1.0000  0.2650 

STEP  0.8995  0.6700  0.2778  0.3250  0.6650  0.8550  0.9950  0.7600 

RAMP  0.5300  0.2600  0.2400  0.5450  0.7500  0.7300  1.0000  0.2200 

CONST  0.9800  0.3600  0.0788  0.0900  0.1250  0.9700  0.9950  0.9350 

T(4) SINE  0.2800  0.1900  0.2050  0.2400  0.1650  0.3300  0.8950  0.1600 



 20

STANDARDIZED SECOND RESIDUAL 

 

TABLE III 

FRACTION OF 5% TESTS FINDING AUTOCORRELATION IN SQUARED 

STANDARDIZED FIRST RESIDUAL 

 

 

 

TABLE IV 

FRACTION OF 5% DYNAMIC QUANTILE TESTS REJECTING 

VALUE AT RISK:  Equal Weighted 

MODEL SCAL 

BEKK 

DIAG 

BEKK 

DCC LL 

MR 

DCC LL 

INT  

DCC IMA EX .06 MA 100 O-GARCH 

FAST SINE  0.0300  0.0450  0.0350  0.0300  0.0450  0.2450  0.4350  0.1200 

SINE  0.0452  0.0556  0.0250  0.0350  0.0350  0.1600  0.4100  0.3200 

STEP  0.1759  0.1650  0.0758  0.0650  0.0800  0.2450  0.3950  0.6100 

RAMP  0.0750  0.0650  0.0500  0.0400  0.0450  0.2000  0.5300  0.2150 

CONST  0.0600  0.0800  0.0667  0.0550  0.0550  0.2600  0.4800  0.2650 

T(4) SINE  0.1250  0.1150  0.1000  0.0850  0.1200  0.1950  0.3950  0.2050 

 

MODEL SCAL 

BEKK 

DIAG 

BEKK 

DCC LL 

MR 

DCC LL 

INT  

DCC IMA EX .06 MA 100 O-GARCH 

FAST SINE  0.2250  0.0450  0.0600  0.0600  0.0650  0.0750  0.6550  0.0600 

SINE  0.0804  0.0657  0.0400  0.0300  0.0600  0.0400  0.6250  0.0400 

STEP  0.0302  0.0400  0.0505  0.0500  0.0450  0.0300  0.6500  0.0250 

RAMP  0.0550  0.0500  0.0500  0.0600  0.0600  0.0650  0.7500  0.0400 

CONST  0.0200  0.0250  0.0242  0.0250  0.0250  0.0400  0.6350  0.0150 

T(4) SINE  0.0950  0.0550  0.0850  0.0800  0.0950  0.0850  0.4900  0.1050 
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TABLE V 

FRACTION OF 5% DYNAMIC QUANTILE TESTS REJECTING 

VALUE AT RISK:  Long - Short 

MODEL SCAL 

BEKK 

DIAG 

BEKK 

DCC LL 

MR 

DCC LL 

INT  

DCC IMA EX .06 MA 100 O-GARCH 

FAST SINE  0.1000  0.0950  0.0900  0.2550  0.2550  0.5800  0.4650  0.0850 

SINE  0.0553  0.0303  0.0450  0.0900  0.1850  0.2150  0.9450  0.0650 

STEP  0.1055  0.0850  0.0404  0.0600  0.1150  0.1700  0.4600  0.1250 

RAMP  0.0800  0.0650  0.0800  0.1750  0.2500  0.3050  0.9000  0.1000 

CONST  0.1850  0.0900  0.0424  0.0550  0.0550  0.3850  0.5500  0.1050 

T(4) SINE  0.1150  0.0900  0.1350  0.1300  0.2000  0.2150  0.8050  0.1050 

 

 

 VII.   EMPIRICAL RESULTS 

 Empirical examples of these correlation estimates will be presented for several interesting 

series.  First we examine the correlation between the Dow Jones Industrial Average and the 

NASDAQ composite for ten years of daily data ending in March 2000.  Then we look at daily 

correlations between stocks and bonds, a central feature of asset allocation models.  Finally we 

examine the daily correlation between returns on several currencies around major historical events 

including the launch of the Euro.  Each of these data sets has been used to estimate all of the models 

described above.  The DCC parameter estimates for the integrated and mean reverting models are 

exhibited with consistent standard errors from (32) in Appendix 1.  In this table the statistic referred 

to as likelihood ratio is the difference between the log likelihood of the second stage estimates using 

the integrated model and using the mean reverting model.  As these are not jointly maximized 

likelihoods, the distribution could be different from its conventional chi squared(1) asymptotic limit.  
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Furthermore, non-normality of the returns would also affect this limiting distribution.  A. Dow Jones 

and Nasdaq.    

            The dramatic rise in the NASDAQ over the last part of the 90’s perplexed many portfolio 

managers and delighted the new internet start-ups and day traders.  A plot of the GARCH volatilities 

of these series in Figure 8 reveals that the NASDAQ has always been more volatile than the Dow but 

that this gap widens at the end of the sample. 
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Figure 2 
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 The correlation between the Dow and NASDAQ was estimated with the DCC integrated 

method, using the volatilities in the figure above.  The results are quite interesting. 
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Figure 3 

 

While for most of the decade the correlations were between .6 and .9, there were two notable drops.  

In 1993 the correlations averaged .5 and dropped below .4, and in March of 2000 they again dropped 

below .4.  The episode in 2000 is sometimes attributed to sector rotation between “new economy” 

stocks and “brick and mortar” stocks.  The drop at the end of the sample period is more pronounced 

for some estimators than for others. Looking at just the last year in Figure 4, it can be seen that only 

the Orthogonal GARCH correlations fail to decline and that the BEKK correlations are most volatile. 
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Figure 4 

 

B.  Stocks and Bonds 

 The second empirical example is the correlation between domestic stocks and bonds.  Taking 

bond returns to be minus the change in the 30 year benchmark yield to maturity, the correlation 

between bond yields and the Dow and the Nasdaq are shown in Figure 5 for the integrated DCC for 
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the last ten years.   The correlations are generally positive in the range of .4 except for the summer of 

1998 when they become highly negative, and the end of the sample when they are about zero.  While 

it is widely reported in the press that the Nasdaq does not seem to be sensitive to interest rates, the 

data suggests that this is only true for some limited time periods including the first quarter of 2000, 

and that this is also true for the Dow.  Throughout the decade it appears that the Dow is slightly more 

correlated with bond prices than is the Nasdaq. 
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C.  Exchange Rates 

 Currency correlations show dramatic evidence of non-stationarity.  That is, there are very 

pronounced apparent structural changes in the correlation process.   In Figure 6, the breakdown of the 

correlations between the Deutschmark and the Pound and Lira in August of 1992 is very apparent.   

For the Pound this was a return to a more normal correlation while for the Lira it was a dramatic 

uncoupling. 
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 Figure 7 shows currency correlations leading up to the launch of the Euro in January 1999.  

The Lira has lower correlations with the Franc and Deutschmark from 93 to 96 but then they 

gradually approach one.  As the Euro is launched, the estimated correlation has moved essentially to 

one.  In the last year it drops below .95 only once for the Franc/Lira and not at all for the other two 

pairs. 
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Figure 7 
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From the results in Appendix 1, it is seen that this is the only data set for which the integrated DCC 

cannot be rejected against the mean reverting DCC.  The non-stationarity in these correlations is 

presumably responsible.  It is somewhat surprising that a similar result is not found for the prior 

currency pairs. 

 

D.  Testing the Empirical Models 

 For each of these data sets, the same set of tests can be constructed that were used in the 

Monte Carlo experiment.  In this case of course, the mean absolute errors cannot be observed, but the 

tests for residual ARCH can be computed and the tests for value at risk can be computed.  In the latter 

case, the results are subject to various interpretations as the assumption of normality is a potential 

source of rejection.  In each case the number of observations is larger than in the Monte Carlo 

experiment ranging from 1400 to 2600.   

 The p-statistics for each of four tests are given in Appendix 2.  The tests are the tests for 

residual autocorrelation in squares and for accuracy of value at risk for two portfolios.  The two 

portfolios are an equally weighted portfolio and a long short portfolio.  They presumably are sensitive 

to rather different failures of correlation estimates.  From the four tables, it is immediately clear that 

most of the models are misspecified for most of the data sets.  If a 5% test is done for all the data sets 

on each of the criteria, then the expected number of rejections for each model would be just over one 

out of 28 possibilities.  Across the models there are from 10 to 21 rejections at the 5% level! 

 Without exception, the worst performer on all of the tests and data sets is the moving average 

model with 100 lags.  From counting the total number of rejections, the best model is the Diagonal 

BEKK with 10 rejections.  The DCC LL MR, SCALAR BEKK,  O_GARCH and EX .06 all have 12 
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rejections while the DCC LL INT has 14.   Probably, these differences are not large enough to be 

convincing.  

 If a 1% test is used reflecting the larger sample size, then the number of rejections ranges from 

7 to 21.  Again the MA 100 is the worst but now the EX .06 is the winner.  The DCC LL MR ,  DCC 

LL INT and Diag BEKK are all tied for second with 9 rejections. 

  The implications of this comparison are mainly that a bigger and more systematic comparison 

is required.  These results suggest first of all that real data is more complicated than any of these 

models.  Secondly, it appears that the DCC models are competitive with the other methods, some of 

which are difficult to generalize to large systems.   

 

 

VIII.  CONCLUSIONS 

 In this paper a new family of multivariate GARCH models has been proposed which can be 

simply estimated in two steps from univariate GARCH estimates of each equation.  A Maximum 

Likelihood estimator has been proposed and several different specifications suggested.  The goal of 

this proposal is to find specifications that potentially can estimate large covariance matrices.  In this 

paper, only bivariate systems have been estimated to establish the accuracy of this model for simpler 

structures.  However, the procedure has been carefully defined and should also work for large 

systems.  A desirable practical feature of the DCC models, is that multivariate and univariate 

volatility forecasts are consistent with each other.  When new variables are added to the system, the 

volatility forecasts of the original assets will be unchanged and correlations may even remain 

unchanged depending upon how the model is revised.   
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 The main finding in this paper is that the bivariate version of this model provides a very good 

approximation to a variety of time varying correlation processes.  The comparison of DCC with 

simple multivariate GARCH and several other estimators shows that the DCC is often the most 

accurate.  This is true whether the criterion is mean absolute error, diagnostic tests or tests based on 

value at risk calculations. 

 Empirical examples from typical financial applications are quite encouraging as they reveal 

important time varying features that might otherwise be difficult to quantify.  Statistical tests on real 

data indicate that all of these models are misspecified but that the DCC models are competitive with 

the multivariate GARCH specifications and superior to moving average methods.   
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   Appendix 1    
         

Mean Reverting Model  Integrated Model 

         
         

  Asset 1 Asset 2      Asset 1 Asset 2   
 NQ DJ    NQ DJ  
  Parameter T-stat Log-Likelihood   Parameter T-stat Log-Likelihood 

alphaDCC 0.039029 6.916839405  lambdaDCC 0.030255569 4.66248 18062.79651
betaDCC 0.941958 92.72739572 18079.5857 LR TEST  33.57836423
         

  Asset 1 Asset 2      Asset 1 Asset 2   
 RATE DJ    RATE DJ  
  Parameter T-stat Log-Likelihood    Parameter T-stat Log-Likelihood 

alphaDCC 0.037372 2.745870787  lambdaDCC 0.02851073 3.675969 13188.63653
betaDCC 0.950269 44.42479805 13197.82499 LR TEST  18.37690833
         

  Asset 1 Asset 2      Asset 1 Asset 2   
 NQ RATE    NQ RATE  
  Parameter T-stat Log-Likelihood    Parameter T-stat Log-Likelihood 

alphaDCC 0.029972 2.652315309  lambdaDCC 0.019359061 2.127002 12578.06669
betaDCC 0.953244 46.61344925 12587.26244 LR TEST  18.39149373
         

  Asset 1 Asset 2      Asset 1 Asset 2   
 DM ITL    DM ITL  
  Parameter T-stat Log-Likelihood    Parameter T-stat Log-Likelihood 

alphaDCC 0.0991 3.953696951  lambdaDCC 0.052484321 4.243317 20976.5062
betaDCC 0.863885 21.32994852 21041.71874 LR TEST  130.4250734
         

  Asset 1 Asset 2      Asset 1 Asset 2   
 DM GBP    DM GBP  
  Parameter T-stat Log-Likelihood    Parameter T-stat Log-Likelihood 

alphaDCC 0.03264 1.315852908  lambdaDCC 0.024731692 1.932782 19480.21203
betaDCC 0.963504 37.57905053 19508.6083 LR TEST  56.79255661
         

  Asset 1 Asset 2      Asset 1 Asset 2   
 rdem90 rfrf90    rdem90 rfrf90  
  Parameter T-stat Log-Likelihood    Parameter T-stat Log-Likelihood 

alphaDCC 0.059413 4.154987386  lambdaDCC 0.047704833 2.880988 12416.84873
betaDCC 0.934458 59.19216459 12426.89065 LR TEST  20.08382828
         

  Asset 1 Asset 2      Asset 1 Asset 2   
 rdem90 ritl90    rdem90 ritl90  
  Parameter T-stat Log-Likelihood    Parameter T-stat Log-Likelihood 

alphaDCC 0.056675 3.091462338  lambdaDCC 0.053523717 2.971859 11442.50983
betaDCC 0.943001 50.77614662 11443.23811 LR TEST  1.456541924
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Appendix 2 

P-STATISTICS FROM TESTS OF EMPIRICAL MODELS 

ARCH in SQUARED RESID1  

MODEL SCAL BEKK DIAG BEKK DCC LL MR DCC LL INT EX .06 MA100 O-GARCH 

NASD&DJ  0.0047  0.0281  0.3541  0.3498  0.3752  0.0000  0.2748 

DJ&RATE  0.0000  0.0002  0.0003  0.0020  0.0167 0.0000  0.0001 

NQ&RATE  0.0000  0.0044  0.0100  0.0224  0.0053  0.0000  0.0090 

DM&ITL  0.4071  0.3593  0.2397  0.1204  0.5503 0.0000  0.4534 

DM&GBP  0.4437  0.4303  0.4601  0.3872  0.4141 0.0000  0.4213 

FF&DM90  0.2364  0.2196  0.1219  0.1980  0.3637 0.0000  0.0225 

DM&IT90  0.1188  0.3579  0.0075  0.0001  0.0119  0.0000  0.0010 

 

ARCH in SQUARED RESID2   

MODEL SCAL BEKK DIAG BEKK DCC LL MR DCC LL INT EX .06 MA100 O-GARCH 

NASD&DJ  0.0723  0.0656  0.0315  0.0276  0.0604  0.0000  0.0201 

DJ&RATE  0.7090  0.7975  0.8251  0.6197  0.8224  0.0007  0.1570 

NQ&RATE  0.0052  0.0093  0.0075  0.0053  0.0023  0.0000  0.1249 

DM&ITL  0.0001  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 

DM&GBP  0.0000  0.0000  0.0000  0.0000  0.1366  0.0000  0.4650 

FF&DM90  0.0002  0.0010 0.0000  0.0000  0.0000  0.0000  0.0018 

DM&IT90  0.0964  0.1033  0.0769  0.1871  0.0431  0.0000  0.5384 

 

DYNAMIC QUANTILE TEST VaR1  

 

 

MODEL SCAL BEKK DIAG BEKK DCC LL MR DCC LL INT EX .06 MA100 O-GARCH 

NASD&DJ  0.0001 0.0000 0.0000 0.0000  0.0002 0.0000  0.0018 

DJ&RATE  0.7245  0.4493  0.3353  0.4521  0.5977  0.4643  0.2085 

NQ&RATE  0.5923  0.5237  0.4248  0.3203  0.2980  0.4918  0.8407 

DM&ITL  0.1605  0.2426  0.1245  0.0001  0.3892  0.0036  0.0665 

DM&GBP  0.4335  0.4348  0.4260  0.3093  0.1468  0.0026  0.1125 

FF&DM90  0.1972  0.2269  0.1377  0.1375  0.0652  0.1972  0.2704 

DM&IT90  0.1867  0.0852  0.5154  0.7406  0.1048  0.4724  0.0038 
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DYNAMIC QUANTILE TEST VaR2  

MODEL SCAL BEKK DIAG BEKK DCC LL MR DCC LL INT EX .06 MA100 O-GARCH 

NASD&DJ  0.0765  0.1262  0.0457  0.0193  0.0448 0.0000  0.0005 

DJ&RATE  0.0119  0.6219  0.6835  0.4423 0.0000  0.1298  0.3560 

NQ&RATE  0.0432  0.4324  0.4009  0.6229  0.0004  0.4967  0.3610 

DM&ITL 0.0000 0.0000 0.0000  0.0000  0.0209  0.0081 0.0000 

DM&GBP  0.0006  0.0043  0.0002 0.0000  0.1385 0.0000  0.0003 

FF&DM90  0.4638  0.6087  0.7098  0.0917  0.4870  0.1433  0.5990 

DM&IT90  0.2130  0.4589  0.2651  0.0371  0.3248 0.0000  0.1454 

 


