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Common Factors in Prices, Order Flows and Liquidity

Abstract

How important are cross-stock common factors in the price discovery/liquidity provision

process in equity markets?  We investigate two aspects of this question for the thirty Dow

stocks.  First, using principal components and canonical correlation analyses we find that

both returns and order flows are characterized by common factors.  Commonality in the

order flows explains roughly half of the commonality in returns.  Second, we examine

variation and common covariation in various liquidity proxies and market depth (trade

impact) coefficients.  Liquidity proxies such as the bid-ask spread and bid-ask quote sizes

exhibit time variation which helps explain time variation in trade impacts.  The common

factors in these liquidity proxies are relatively small, however.
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1. Introduction

An open issue in the microstructure of equity markets is the role of common cross-

firm variation in short-horizon returns, order flows and liquidity.   Since order flows are

generally held to contain informed components, does common covariation in stocks’

orders account for the covariance structure of short-term returns?  Furthermore, is

liquidity driven by strong common factors?  The equity market breaks of 1987 and 1989,

as well as the debt market crisis of 1998, for example, are widely perceived as systematic

breakdowns in liquidity.

These issues are important for both microstructure theory and for institutional

trading practice.  Subrahmanyam (1991), Chowdhry and Nanda (1991), Kumar and Seppi

(1994), Caballe and Krishnan (1994) have all extended the work of Kyle (1984, 1985) to

multiasset markets by adding investors who are informed about macroeconomic factors

and/or who have portfolio-wide liquidity shocks (e.g., portfolio substitution).  In such

environments intermarket price discovery and order flow dynamics are obviously more

subtle than when private information and/or trading noise is purely idiosyncratic.

To date, however, little direct empirical research has been conduction on the

magnitudes of cross-stock interactions at the microstructure level. Given the sheer size

of the Fitch, ISSM, TAQ and TORQ databases, it is perhaps not surprising that previous

work has tended to focus on individual stocks in isolation from each other. This focus on

stocks in isolation has, however, left us ignorant of even the most basic facts about cross-

sectional interactions between stocks.

This paper answers these questions in two ways.  First, we use principal

components analysis to show that common factors exist in the order flows and returns of

the 30 stocks in the Dow Jones Industrial Average (DJIA).  In addition, canonical

correlation analysis documents that the common factor in returns is highly correlated with

the common factor in order flows.  Second, we find evidence of a common factor in
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quote-based proxies for liquidity, and to a lesser degree, in inferred price impact

coefficients, after controlling for previously documented time-of-day seasonalities.

We choose the thirty Dow stocks as our sample because the rapid pace of trading

there allows us to construct high-frequency trading measures which should closely

approximate the idea of contemporaneous (i.e. simultaneous) order flow across stocks (as

in Subrahmanyam (1991) and op. cit.) as well as giving us frequently updated prices.  In

particular, we aggregate trading for each stock over fifteen minute intervals and measure

price changes using the quote mid-points at the beginning and end of each interval.

This paper is organized as follows.  Section 2 establishes the motivation for the

study and reviews relevant earlier work.  A simple microstructure specification that serves

as the basis for the empirical analysis is discussed in Section 3.  Section 4 describes the

data.  The joint statistical properties of returns and signed order flows are analyzed in

Section 5; those of absolute returns and unsigned order flows, in Section 6.  Section 7

explores variation and covariation in liquidity proxies derived from quote data.  Section 8

attempts to relate variation in these proxies to the price impacts of trades.  A brief

summary concludes the paper in Section 9.

2. Economic Framework

a. Model

We start with a simple and conventional linear model of transaction-time market

dynamics for the ith firm:

ττττττ λ ,,,1,,, iiiiii uxmmr +=−= − (1)

where mi,τ  is the quote midpoint subsequent to trade τ, with associated first difference ri,τ

and xi,τ is the signed volume of trade τ.   Equation (1) partitions the quote midpoint change

into a component, ui,τ , due to public information unrelated to trade τ and a component,

ττλ ,, ii x , due to the private information inferred from trade τ.  The impact coefficient , τλ ,i ,
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is potentially time-varying. These components are permanent, in the sense of being

permanently impounded into the stock price.

If we adopt the timing convention that public information in ui,τ arrives after trade

τ, then the quote midpoint prevailing prior to trade τ is mi,τ–1.  The transaction price, τ,ip ,

of trade τ is given by the prevailing midpoint plus a disturbance:

τττ ,1,, iii smp += − (2)

Intuitively, τ,is  is the effective half-spread, an approximate measure of the trading cost to

the active side of the transaction.  This quantity is easy to compute, but some care must be

taken with its economic interpretation.  It is the difference between the transaction price

and the pre-trade quote midpoint, and so impounds the information inferred from the

trade.  The difference between the transaction price and the quote midpoint immediately

post-trade is ( ) τττττττ λλ ,,,,,1,, iiiiiii xsxmp −=+− − .  It is this last expression that constitutes

the transient component of the transaction price.

We ask several broad empirical questions about this model.  First, in equation (1)

do common factors exist in stocks’ order flows, xi,τ , due either to information or liquidity

shocks?   And if so, to what extent can commonality in order flows explain any

commonality in returns, ri,τ?  Second, does market depth (as measured by τλ ,i ) vary

stochastically over time.  And if so, is this time variation systematic across stocks?

Similarly, we also ask whether there are commonalities in the effective half-spreads τ,is  in

equation (2).

In a portfolio context, comovements in stock price changes,τ,ir , are generally held

to arise from common factors in future cash flows and discount rates (or in revisions of

expectations of these quantities).   Most microstructure models distinguish between trade

(signed order flow) and non-trade components of returns.  Order flows, τ,ix , are usually

viewed as comprising liquidity- and information-motivated components.  Either of these

might reasonably be hypothesized to derive (partly) from influences common across firms.
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Dynamic hedging strategies, tax and calendar-related effects and simple momentum

trading could all plausibly lead to correlated liquidity trading.  Private information about

common, macroeconomic variables would cause correlated informed trading.  Correlation

in the non-trade permanent components of returns, τ,iu , could arise from announcements

with common effects (e.g., monetary policy).

Informed order flow is not separately observed by uninformed market participants,

including the quote setters.  The expected intensity of informed order flow is, however,

reflected in the impact coefficients τλ ,i .  We hypothesize that time variation and common

factors may exist in these coefficients.  Fluctuations in the supply of liquidity may,

similarly, lead to time variation in τ,is .

b. Previous Literature

Our investigation of cross-stock interactions builds on a foundation of prior work

on the price, volume, and liquidity properties of individual stocks viewed in isolation

(surveyed in O'Hara (1995) and Hasbrouck (1996a)).  The study of common factors in

stock returns is a classic theme in financial economics.  Although the standard asset

pricing models (e.g., CAPM, APT) do not assign a significant role to trading per se, Lo

and Wang (1997) show that certain assumptions about portfolio rebalancing and

liquidation imply a factor structure for trading volume.

The approach in our paper, in contrast to Lo and Wang (1997), is more descriptive

and statistical, and assigns no distinctive role to factor portfolios.  This may be justified by

noting that modern microstructure theory ascribes a prominent informational role to

trading.  Cross-firm commonalities in informationally-motivated order flows need not

necessarily parallel the factor structure in returns.

Chordia, Roll, and Subrahmanyam (1998) explore cross-sectional interactions in

liquidity measures using quote data.  They assign a particular role to the market portfolio.

In contrast, our study characterizes relationships involving returns and order flows as well
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as liquidity.  However, while we study a cross-section of just the thirty Dow firms,

Chordia et al use a cross-section of roughly one thousand stocks.

Another line of research on cross-sectional interactions is the work on index

arbitrage and the cash/futures basis.1  In this case, however, strong interactions across

markets are expected a priori, since, after all, it is exactly the same portfolio which is

traded in different locations. In contrast, the Dow stocks in our study, while closely

related (i.e., given their common price factors), are far from perfect substitutes.  In some

sense, we are trying to quantify how close is “closely related” in terms of common factors

in prices, volume and liquidity.

Two forms of  time-varying liquidity have been previously documented. First,

Wood, McInish, and Ord (1985), Jain and Joh (1988) and Foster and Viswanathan (1990)

(among others) study deterministic (e.g., time-of-day) components.  Second, variation has

been studied around earnings reports (Lee, Mucklow, and Ready (1993)), dividends

(Koski (1996)), stock splits (Desai, Nimalendran, and Venkataramaan (1998)), take-over

announcements (Foster and Viswanathan (1994)) and other identifiable events.  We, in

contrast, are interested in stochastic (rather than predictable) variation in liquidity and, in

particular, in possible co-variation due to common components rather than largely

idiosyncratic firm-specific events.

An important paper which does look at stochastic liquidity is Foster and

Viswanathan (1995) who use simulated method of moments to estimate a repeated one-

period Kyle model with time-varying parameters.  Caballe and Krishnan (1994) extend

their approach by adding a second stock to look at interaction effects.  In contrast, ours is

a less structural approach distinguishing between common and idiosyncratic factors for a

broader cross-section of stocks.

                                               
1 See MacKinlay and Ramaswamy (1998),  Chan, Chan, and Karolyi (1991), Chan (1993),
Hasbrouck (1996b), Harris, Sofianos, and Shapiro (1994), and Miller, Muthuswamy, and
Whaley (1994).
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3. Methodology

The primary purpose of this paper is to characterize the properties of the model in

equations (1) and (2) across firms.  To achieve this, we use panel specifications across

firms and across time periods.  In particular, we aggregate trades within fifteen minute

intervals to get a time-aggregated version of equation (1):

tiiititititititi uxuxmmr ,,,,,,1,,, +≈+=−= ∑− τ ττλλ (3)

where mi,t is the quote midpoint prevailing at the close of interval t, tix , is the sum

∑τ τ,ix of the trades in interval t, and the market depth parameterτλ ,i for each trade τ  is

assumed to be a constant, ti ,λ , within each interval.

We employ principal component and canonical correlation techniques to

investigate commonalities in returns and order flow.   These approaches assume latent

random components.   Principal components analysis is used to determine the linear

compounds with maximal power in explaining the total variance of a set of variables (e.g.,

returns or order flows) across firms.  Canonical correlation analysis determines the linear

compounds with maximal power in explaining the covariances between order flows and

returns.

Unlike order flows and returns, the market impact parameters are linear projection

(regression) coefficients that are not directly observable.  Time variation and common

factors in the ti ,λ  are characterized here using regressions in which the depth coefficients

are projected onto a set of predetermined variables.

To obtain a panel series for the effective half-spreads, we construct within-period

averages, tis , , of the τ,is  in equation (2) for each trade within the fifteen minute interval.

The panel series are then studied using principal components.
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4. Data

a. Overview

The data for this study are from the NYSE’s TAQ database, which contains all

trades and quotes for stocks listed on the NYSE, the AMEX and NASDAQ’s National

Market System.   Our sample is limited to the thirty Dow stocks.  This selection is

motivated by 1) our intention to include firms for which common factors in liquidity

trading (e.g., because of indexation) and information are plausible a priori and 2) the fact

that we need actively traded stocks to construct approximately concurrent order flows at

high frequencies.  The sample covers the 252 trading days in 1994.  Table 1 gives

summary statistics for market activity in the sample.

It is necessary to establish a common time-frame for the data series.  We use

fifteen-minute intervals covering 9:30 to 9:45, 9:45 to 10:00, . . . 15:45 to 16:00 for a

total of 26 intervals per trading session on the NYSE.  A time subscript t indexes these

intervals.  A fifteen-minute time resolution represents a compromise between, on the one

hand, needing to look at correlations in contemporaneous order flows across stocks (e.g.,

at a one-second resolution few trades are contemporaneous) and, on the other, seeking to

minimize simultaneity problems.  In particular,  at shorter horizons there is less time for

feed-back effects from prices into subsequent order submissions due to portfolio insurance

and other positive feed-back strategies.  In addition, specification (3) ignores transitory

mid-point dynamics.  An interval significantly shorter than fifteen minutes would

exacerbate these omitted dynamics.

b. Constructed data series

Three groups of variables are constructed from the TAQ data: returns, order flows

and liquidity measures.
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Returns.  We use the log quote midpoint return, defined as

( )1,,, log −= tititi mmr (4)

where mi,t is the midpoint of the NYSE bid and offer quotes for firm i prevailing at the end

of interval t.

Order flows.  Unsigned order flow measures are derived from the consolidated trade data.

Denote the number of trades for firm i in interval t by ni,t.  For the τth trade, tin ,,,1�=τ ,

in interval t, let τ,ip  and τ,iv  be the price per share and share volume.  The total share

volume in the interval is ∑ =
tin

iv,

1 ,τ τ , and the total dollar volume is ∑ =
tin

ii vp,

1 ,,τ ττ .

Because studies of short-term price-trade dynamics suggest that the trade impact is

concave in size (see Madhavan and Smidt (1991) and Hasbrouck (1991)), we also

examine the cumulative square-root of the dollar volume (“SRD volume”)∑ =
tin

ii vp,

1 ,,τ ττ .

We also explore size effects by constructing order flow measures based on small (≤2,000

shares), medium (2,001-10,000 shares) and large (>10,000 shares) trades.

Signed order flow measures, ( ) ττ ,, ii vvsign , corresponding to the above are derived

by letting the imputed sign (i.e., direction) of a trade be the sign of the difference

1,, −− ττ ii mp .  Thus, a trade at the ask price is positive; a trade at the bid is negative.  The

individual signed trades are then summed over period t to obtain cumulative signed

number, share volume, dollar volume and square-root dollar volumes.  Trades occurring at

the quote midpoint are dropped from the sum (effectively assigned a sign of zero).

Liquidity measures.  A specification such as equation (3) with observations aggregated

over fifteen-minute intervals is a convenient way to estimate the “permanent” component

of market depth.  But the specification will not be informative about the transient

component in the individual transaction prices.    One of the measures we use to study this

is the effective half-spread τ,is averaged (weighted by dollar volume of trade) across
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trades in fifteen-minute intervals to get the (previously described) tis , .  This reflects (in a

general sense) the cost paid by the trade initiator.

The effective spread is an ex post measure of liquidity.   A trader may estimate

liquidity ex ante (i.e. prior to submission of an order) on the basis on the displayed quotes

and the sizes of the quotes.  Suppressing the firm subscript i for the sake of notational

economy, let Bτ and Aτ denote the per share bid and ask at trade time τ, and let BNτ and

ANτ denote the posted size of these quotes.  Thus, a prospective purchaser knows that, if

hers is the first market buy order to arrive, she can buy at least ANτ  shares at the ask price

At.  We employ the following measures:

τττ BA −=Spread

( )τττ BAlogSpread Log =

( ) ( )BA NN τττ loglogSize Log +=

( ) ( ) ( )( )BA NNBA τττττ loglogSlope Quote +−=

( ) ( ) ( )( )BA NNBA τττττ logloglogSlope Quote Log +=

The first three of these are standard.  The last two combine both price and quantity

information.  Intuitively, they may be viewed as summary measures of the liquidity supply

curve.  As depicted in Figure 1, the quote slope is the slope of the dotted line connecting

the bid and ask price/quantity pairs.  If more quantity is added at either the bid or ask, or if

either quote is moved closer to the other, the line will flatten.  As drawn in the figure, the

line joining the quote/quantity pairs for any particular observation need not pass through

the “origin” ( )τm,0 .  The log quote slope is defined in a similar fashion, except that log

prices are used on the vertical axis.

Standardizations.  To differentiate stochastic sources of common time-variation from

deterministic sources, series are standardized to remove time-of-day effects.  For a

representative variable “z”, let zi,d,k denote the observation for firm i for fifteen-minute
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subperiod k on day d.  The standardized value is ( ) kikikdikdi zz ,,,,
*

,, σµ−= where µi,k and

σi,k  are the mean and standard deviation for firm i and subperiod k, estimated across days.

5. Returns and signed volume measures

The central relationship in market microstructure is that between returns and order

flows (i.e., signed as buyer- or seller-initiated) as in equation (1) or (3).  This section

describes the commonalities in returns and order flows, considered both separately and

jointly.

a. Principal components

Table 2 summarizes features of returns and signed measures of trading activity.

The reported means and standard deviations are computed from the unstandardized series

to indicate the scale and variability of the raw data. For each standardized variable, we

estimate the correlation matrix ][ , jiρ  where ji ,ρ  is the correlation ( )*
,

*
, ,Corr tjti zz , i.e., the

correlation between standardized variates for firms i and j.  Due to the standardization,

this correlation matrix is also the covariance matrix.

For a given variable, the importance of common factors across firms is measured in

a principal components framework.  The first principal component of the standardized

random vector ( )*
,30

*
,2

*
,1

* ,,, tttt zzzZ �=  is the linear combination *
taZ  for a coefficient vector

a that maximizes ( )*Var tZa  subject to normalization restrictions.  This variance is the

largest eigenvalue of the correlation matrix.  The second principal component is the

variance-maximizing linear combination, subject to the requirement that it is uncorrelated

with the first principal component, and so on.  Since the eigenvalues sum to the trace of

the correlation matrix (which equals the dimension of *
tZ , or thirty here), the extraction of

the eigenvalues partitions the total standardized variance into uncorrelated components of

decreasing importance.  For example, if the standardized variables were perfectly

positively correlated (i.e., identical), the largest eigenvalue would be thirty, and the
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remaining eigenvalues would be zero.  If all standardized variables were uncorrelated,

each of the thirty eigenvalues would be one.

The first eigenvalue of (standardized) returns in Table 2 is 6.32.2  This implies that

%2130/32.6 = of the total variation in returns can be explained by a single common

factor.  The second and third eigenvalues are close to one, however, indicating that

additional common factors are of negligible importance.   The first eigenvalues of the

signed volume measures also suggest commonality.  This is most evident for trades in the

small (≤2,000 shares) and medium (2,001-10,000 shares) size classes, and less so for the

large block trades (>10,000 shares).

b. Canonical correlations

With two sets of variables, such as returns and signed order flow for all firms,

common factors may be constructed using canonical correlation analysis.  Denoting the

two sets of variables as *tZ  and *
tY , the first canonical components are the linear

combinations *
taZ  and *

tbY  such that the correlation ( )** ,Corr tt bYaZ  is maximized.

From among the various trading volume measures, we restrict our analysis to

signed square-root dollar (SRD) volume, for brevity.  We chose this variable simply

because, among all of the signed volume measures, it is the one that is generally most

highly correlated with returns at the individual firm level.  Table 3 reports correlations of

                                               

2 If the data are multivariate normal, then eigenvalues of the sample covariance matrix

have a known asymptotic distribution (Morrison (1976)): with n observations on

( )Σ,~ µNz
d

, ( ) ( )2
..

2,0~ i

distasy

ii Nln ψψ−  where ψi and l i are the population and sample

values of the ith eigenvalue.  In this application we are working with an estimated

correlation matrix and normality is doubtful.  Nevertheless, direct application of the

asymptotic approximation yields an estimated standard error for the first eigenvalue of

( ) 12.0000,632.62 2 = .
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the canonical and principal components.  For each set of variables (i.e., returns and signed

square-root dollar volume), “C” denotes a canonical factor and “P” denotes a principal

component.

The correlation structure of the factors is revealing in several respects.  Note first

that the first principal component (P1) of returns is highly correlated (0.82) with the first

principal component for signed SRD volume.  Recall that the first principal component

maximizes explained variance only within a single set of variables (i.e., just returns or just

signed volume).  This does not imply anything about the correlation between principal

components constructed for different variable sets.   Maximizing the correlation between

linear compounds is, however, the objective of a canonical correlation procedure.  In a

sense, we may take the 0.82 as a starting point.  The canonical correlation analysis

maximizes this correlation at 0.83.  The canonical factors are also highly correlated with

the principal components.  For returns, the correlation between the first canonical factor

and first principal component is 0.99; for signed SRD volume, 0.98.  This suggests that

the commonality within returns or signed SRD volume is essentially identical to the

commonality between these variables.

The second canonical factors are also highly correlated (0.58), suggesting that the

first canonical factors do not capture all of the commonalities among the two sets of

variables.  The second canonical factors are not strongly correlated with the second

principal components (as the first), however.

The degree of residual commonality may also be illustrated by estimating the

following (panel) regression

30,,1for  ,,,1
*
, �=++= ieCr ti

SSRDV
tiiti βα (5)

where SSRDV
tC ,1  is the first canonical factor for the signed square-root dollar volume series.

The residual commonality may be quantified by performing a principal component analysis

on the residual covariance matrix.  This is formally known as a partial principal
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components analysis.  From Table 2, the first eigenvalue of the standardized return

covariance matrix is 6.32.   The first eigenvalue of the residual covariance matrix from

regression (5) is 2.13, implying that roughly two-thirds of the first return component is

explained by the first canonical SSRDV factor.  This suggests that the factor structure of

short-horizon returns has a strong microstructure foundation in the factor structure of

order flows.

6. Absolute returns and trading volume

Although the motivating specification (1) for our analysis involves signed order

flows and returns, it is also worthwhile to consider their unsigned (absolute value)

counterparts.   There are two reasons for this.  First, signing a trade by reference to the

prevailing quote midpoint is a procedure subject to uncertainties and errors.  For example,

roughly one third of the trades are typically priced at the quote midpoint and, therefore ,

cannot be signed.  Secondly, our analysis is a logical extension of the “price/volume”

literature for individual securities and indexes.   Trading volume (variously measured) and

absolute price change are generally found to be positively correlated (see Karpoff (1987)

and Gallant, Rossi, and Tauchen (1992), among others).  The present analysis can be

viewed as a multifirm extension.  In particular, it asks whether the price/volume

correlation extends to common factors in prices and volumes.

Table 4 reports statistics for the absolute returns and unsigned volume measures

(corresponding to the signed variables in Table 2).  Most importantly, the first eigenvalue

of absolute returns is smaller than that of signed returns (3.64 vs. 6.32), suggesting a

weaker common factor. This finding does not carry through, however, to the volume

measures, for which the first eigenvalues are generally larger than the corresponding

values for signed volumes.  This may, in part, be a consequence of errors in signing trades.

Table 5 summarizes the canonical correlations for the absolute measures (and

corresponds to the signed measures given in Table 3).  The general pattern is similar to
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that of Table 3.  The first canonical factors are moderately highly correlated (0.73) and are

also correlated with their corresponding principal components.   Thus, the comovements

in absolute intraday price changes also have a strong microstructure foundation in absolute

SRD volume.

7. Liquidity measures

Table 6 presents descriptive statistics on the liquidity proxies and the eigenvalues

of their correlation matrices.  Because spreads and related quantities are likely to be

strongly affected by the relative tick size, stocks that split during the year were dropped

from the liquidity analysis.  The sample here is the remaining twenty-four Dow firms that

did not have stock splits in 1994.

The eigenvalues in Table 6 are, therefore, constructed from correlation matrices of

dimension twenty-four.  Even allowing for this, they are generally smaller than the

corresponding magnitudes for returns or order flows (cf. Tables 2 and 4).  This suggests

that common variation in liquidity, at least over fifteen minute aggregation intervals is not

large and, thus, that the determinants of variation in liquidity are largely (though not

exclusively) firm-specific.

8. Price impacts

This section attempts to assess the variation and common covariation in the market

depth parameters, λi,t, in equation (3).   Up to this point we have characterized common

co-variation in returns, order flows, etc. using general multivariate techniques.  This

approach does not work for the depth parameters because they are not directly observed.

We therefore proceed by positing specific determinants.

Natural candidates for these determinants are the liquidity proxies and summary

measures (e.g., spreads, depths, etc.) from the last section.  These may be presumed to

impound (in part) ex ante the expected cost of asymmetric information, which is, in turn,
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linked by economic theory to the price impact of a trade (the depth coefficient).   With this

in mind we posit a linear specification for the liquidity parameter in equation (3):

( ) ti
L

ttitti PLdf ,
*
,, ,, ελ += (6)

where f denotes a linear function, dt  is a vector of time-of-day dummy variables, *
,tiL is one

of the liquidity proxies from the last section (standardized by firm and time-of-day), L
tP is

the first principal component (across firms) of the chosen standardized liquidity proxy and

εi,t is the residual. L
tP  is included as a proxy for the common liquidity factor.  When

substituted into equation (3), we have:

( )[ ]
( )titititi

L
tititiitititii

tititi
L

ttittitititi

uxxPhxLxdx

uxPLdfuxr

,
*
,,

*
,

*
,

*
,

*
,

*
,

,
*
,,

*
,,

*
,,

*
,

             

,,

+++++=

++=+=

εγδα

ελ
(7)

where the asterisks denote variables standardized by time-of-day.  This is a linear

specification in which returns are regressed against order flow, *
,tix , and order

flow/liquidity interaction terms  *
,

*
,

*
,

*
,  and , ti

L
ttititii xPxLxd .

We are primarily interested in the explanatory power of the liquidity proxy/signed

order flow term, *
,

*
, titi xL  and the associated common factor proxy *,ti

L
t xP .  Time-of-day

dummy variables are included because, even though *
,tir  and *

,tix are standardized to

remove time-of-day effects, this need not pick up time-of-day variation in λi,t.

To estimate equation (7) via least squares, the composite residual ( )tititi ux ,
*
,, +ε

must be uncorrelated with the explanatory variables.  Since *
,tix appears in both the residual

and the explanatory variable set, there is an obvious potential for dependence.  A sufficient

condition for least squares consistency is that that the εi,t are zero-mean and independent

of *
,

*
,

*
,

*
,

*
,  and ,, ti

L
ttitititti xPxLxdx .3

                                               

3 The dummy variable coefficients δi in equation (7) are not identified without further

restrictions (e.g., that one of them is zero).  Present purposes require, however, identifying
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We estimated specification (7) separately for each firm.  Table 7 reports the cross-

firm means of incremental R2 contributions.  We use two alternative orderings of the

variables that effectively attribute the joint explanatory power of the common-factor

liquidity term *
,ti

L
t xP  and the own-firm liquidity term *

,
*
, titi xL to one variable or the other.  In

Panel A, the ordering is *
,

*
,

*
,

*
,

*
,  and ,, tititi

L
ttitti xLxPxdx , which attributes any joint power to

the common factor term *
,ti

L
t xP .  In Panel B, the ordering is *

,
*
,

*
,

*
,

*
,  and ,, ti

L
ttitititti xPxLxdx ,

which attributes the joint power to *
,

*
, titi xL .  The sum of the two terms is unaffected by the

ordering (up to rounding error), and is on the order of 3–5%.  The decomposition of the

sum, of course, differs between the two panels.  For the log quote slope liquidity proxy,

the principal component term explains at most 0.9% of the variance, leaving 3.7%

explained by the own-firm term (Panel A).  When the principal component term is added

last, however, its incremental explanatory power is a mere 0.1%.  Even taking the higher

figure, however, it appears that common covariation in liquidity is dominated by firm-

specific variation.  Thus, the strong common liquidity factors suggested by the brief (but

intense) periods of market crisis (e.g., 1987, 1989, etc.) do not appear to exist in “normal”

trading regimes.

The composite specification (7) admits stochastic variation in λi,t (via the εi,t term).

But this variation is confounded with other sources of residual variation, and so is not

econometrically identified.   To test for this possibility we use a panel regression to

estimate a variant of equation (6):

tittitiiti DLd
i ,

*
,, εηγδαλ ++++= (8)

where Dt is a vector of date dummy variables (i.e., one for each day).  The associated

coefficient vector η is the same for all firms.  The coefficients η1 (for day 1), η2 (for day

                                                                                                                                           

only the explanatory power associated with a set of variables (for which coefficient

identification is not necessary).
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2), . . . can be interpreted here as estimates of the daily realizations of a random (daily)

liquidity factor.  In other words, on a given day k, liquidity is partially driven by a realized

factor ηk common across all firms.

The new composite specification for returns (corresponding to equation (7)) is:

( )
( )titititittitiitititii

tititittiitiititititi

uxxDxLxdx

uxDLduxr

,
*
,,

*
,

*
,

*
,

*
,

*
,

,
*
,,

*
,,

*
,,

*
,

             +++++=

+++++=+=

εηγδα

εηγδαλ
(9)

Because the η coefficient vector is common across all firms, this specification is estimated

jointly as a panel regression for all twenty-four firms.  The results (not reported for

brevity) are similar to the regressions in Table 7.  The incremental explanatory power of

the date dummy terms is sensitive to the ordering of the variables, but is always dominated

by the own-firm liquidity term. As before, time variation in effective liquidity seems to be

largely firm-specific.

9. Conclusions

Taking as our starting point a linear microstructure specification in which returns

are driven by signed order flow, this paper assesses the extent and role of cross-firm

common factors in returns, order flows and market liquidity.  We implement the analysis

for the thirty Dow stocks in 1994 at short-term fifteen-minute intervals using time-

aggregated trade and quote data.

We find that common factors exist in both absolute and signed order flow.  These

explain part, but not all, of the common variation in absolute and signed returns.  This

conclusion does not depend on whether the common factors were constructed using

principal components (given cross-sectional variance within a single set of variables, e.g.,

returns) or canonical correlations (given cross-sectional covariance between two sets of

variables, e.g., returns and signed order flow).

Our assessment of liquidity is less supportive of economically significant common

factors.  After standardizing to remove time-of-day effects, the strength of any common
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factors in spreads and related liquidity measures, as judged by the first principal

components of the correlation matrices, is modest.  This is confirmed by cross-sectional

regressions in which price impact coefficients are projected on various explanatory

variables.  Own-firm effects dominate the principal component (“common factor”) effects

and daily liquidity factor estimates.  Thus, the systematic liquidity effects visible during

market crises such as 1987 and 1989 do not appear to characterize normal trading.
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Table 1.  Descriptive Statistics

The sample is the thirty Dow firms for all trading days in 1994.  The daily return is computed as the
first difference of the log end-of-day quote midpoint.

Symbol Name

Mean
Price

($/Share)

Mean Bid-
Ask Spread
($/Share)

Average
Daily

Trades

Std. Dev. of Daily
Return x100

(percent)

Cross-firm Mean: 51 0.16 608 1.5

AA Alcoa 78 0.21 200 1.4
ALD Allied Signal 44 0.18 191 1.5
AXP American Express 29 0.15 501 1.6
BA Boeing 45 0.16 554 1.2
BS Bethlehem Steel 20 0.15 211 2.4
CAT Caterpillar 90 0.21 333 1.6
CHV Chevron 63 0.17 408 1.1
DD DuPont 57 0.15 447 1.2
DIS Disney 43 0.15 780 1.4
EK Eastman Kodak 47 0.15 519 1.8
GE Gen'l Electric 68 0.16 1,238 1.1
GM Gen'l Motors 51 0.16 1,226 1.8
GT Goodyear 38 0.19 260 1.5
IBM IBM 63 0.16 1,251 1.7
IP Int'l Paper 72 0.19 232 1.3
JPM JP Morgan 63 0.17 362 1.1
KO Coca Cola 45 0.14 902 1.1
MCD McDonalds 43 0.15 737 1.3
MMM MMM 67 0.18 363 1.1
MO Phillip Morris 56 0.15 1,200 1.4
MRK Merck 33 0.14 1,707 1.4
PG Proctor Gamble 58 0.16 503 1.3
S Sears 48 0.16 425 1.6
T ATT 53 0.14 1,152 1.0
TX Texaco 63 0.16 342 0.9
UK Union Carbide 28 0.15 382 2.0
UTX United Tech 64 0.19 159 1.3
WX Westinghouse 13 0.13 548 1.7
XON Exxon 61 0.14 698 1.0
Z Woolworth 18 0.15 400 2.4
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Table 2.  Signed Returns and Signed Volume Measures

The sample is the thirty Dow firms for all trading days in 1994.  The means and standard deviations

are for the raw series across firms and time.  Eigenvalues are based on series standardized to remove

time-of-day effects.   Trades are signed by reference to the quote midpoint prevailing at the time of

the trade. The signed volume measures are cumulated over fifteen-minute intervals.  Small trades are

2,000 shares or less; medium trades are 2,001-10,000 shares; large trades are >10,000 shares.

Eigenvalues

Variable

Mean
(not standardized
by time-of-day)

Std. Dev.
(not standardized
by time-of-day) First Second Third

Return -0.001 0.005 6.32 1.04 1.00

Total 0.635 3.344 3.36 1.44 1.27
Small 0.521 3.356 2.75 1.61 1.36
Medium 0.071 0.105 3.60 1.14 1.07

Trades

Large 0.043 0.054 1.67 1.09 1.08

Total 16.259 17.810 2.36 1.08 1.07
Small 0.542 9.135 3.92 1.15 1.11
Medium 5.556 5.446 3.03 1.12 1.09

Share volume
(100-shr lots)

Large 10.161 16.595 1.48 1.11 1.10

Total 9.123 10.728 2.38 1.09 1.07
Small 0.057 4.400 3.90 1.11 1.11
Medium 3.356 3.572 2.99 1.12 1.08

Dollar
volume
($10,000)

Large 5.711 9.357 1.48 1.11 1.10

Total 1.206 3.208 4.06 1.08 1.05
Small 0.229 3.350 3.51 1.32 1.20
Medium 0.489 0.566 3.36 1.13 1.08

Square root
of dollar
volume
( )210−× Large 0.488 0.668 1.64 1.10 1.08
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Table 3.  Canonical and Principal Factors of Returns
and Signed Square-root Dollar Volume

The sample is the thirty Dow firms for all trading days in 1994.    C1 and C2 are the first and second

canonical factors; P1 and P2 are the first and second principal components.

(Signed) Returns
Signed square-root

dollar volume
C1 C2 P1 P2 C1 C2 P1 P2

C1 1.00
C2 0.00 1.00
P1 0.99 0.04 1.00

(Signed)
Returns

P2 0.04 0.08 0.00 1.00
C1 0.83 0.00 0.82 0.03 1.00
C2 0.00 0.58 0.02 0.05 0.00 1.00
P1 0.82 0.03 0.82 0.04 0.98 0.05 1.00

Signed
square-root

dollar
volume P2 -0.04 0.10 -0.05 0.24 -0.05 0.17 0.00 1.00
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Table 4.  Absolute Returns and Unsigned Volume

The sample is the thirty Dow firms for all trading days in 1994.  Data series are aggregated over 15-

minute intraday intervals.  The means and standard deviations are for the raw series across firms and

time.  Eigenvalues are based on series standardized to remove time-of-day effects.  Letting *
,tiz  denote

the standardized value of a variable for firm i at time t, we construct the correlation matrix [ ]ji ,ρ

where ( )*
,

*
,, ,Corr tjtiji zz=ρ .  For each variable, the table reports the largest eigenvalues of this

correlation matrix.  The return is the log quote-midpoint return (using only NYSE quotes); trades,

share volume, dollar volume and (cumulative) square root dollar volume are computed for all trades.

Small trades are 2,000 shares or less; medium trades are 2,001-10,000 shares; large trades are

>10,000 shares.

Eigenvalues

Variable

Mean
(not standardized
by time-of-day)

Std. Dev.
(not standardized
by time-of-day) First Second Third

|Return| 0.161 0.032 3.64 1.10 1.09

Total 22.581 14.879 5.00 1.78 1.44
Small 19.344 13.114 4.61 1.82 1.47
Medium 2.626 1.559 4.43 1.21 1.19

Number
of Trades

Large 0.610 0.398 1.78 1.29 1.14

Total 388.823 241.130 3.41 1.29 1.17
Small 87.706 53.096 4.97 1.39 1.25
Medium 127.992 78.103 3.81 1.20 1.18

Share Volume
(100-shr lots)

Large 173.124 119.032 2.21 1.22 1.16

Total 188.941 131.576 3.60 1.23 1.15
Small 43.528 29.335 5.55 1.51 1.14
Medium 65.417 46.371 3.94 1.27 1.18

Dollar Volume
($10,000)

Large 79.996 60.174 2.23 1.18 1.14

Total 44.164 28.341 5.53 1.36 1.25
Small 25.169 16.440 5.35 1.44 1.21
Medium 12.564 8.168 4.27 1.22 1.15

Square root of
dollar volume
( )2100−×

Large 6.431 4.496 2.16 1.24 1.13
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Table 5.  Canonical and Principal Factors of Absolute Returns
 and Unsigned Square-root Dollar Volume

The sample is the thirty Dow firms for all trading days in 1994.  Data series are aggregated over 15-

minute intraday intervals and then standardized to remove time of day effects.   C1 and C2 are the first

and second canonical factors; P1 and P2 are the first and second principal components.

Absolute returns Square-root dollar volume
C1 C2 P1 P2 C1 C2 P1 P2

C1 1.00
C2 0.00 1.00
P1 0.97 -0.10 1.00

Absolute
returns

P2 0.17 0.63 0.00 1.00
C1 0.73 0.00 0.70 0.12 1.00
C2 0.00 0.53 -0.05 0.33 0.00 1.00
P1 0.69 -0.04 0.69 0.07 0.95 -0.07 1.00

Square-root
dollar

volume
P2 -0.10 -0.20 -0.07 -0.08 -0.13 -0.38 0.00 1.00
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Table 6.  Liquidity Measures

The sample is the twenty-four Dow firms that did not split during 1994 for all trading days in 1994.

The bid and ask for trade τ are denoted by Bτ and Aτ (dollars per share); AB NN ττ  and are the numbers

of shares (in 100-share round lots) posted at the bid and ask.  The spread is ττ BA − ; the log spread is

( )ττ BAlog ; the log size is ( ) ( )BA NN ττ loglog + ; the quote slope is ( ) ( ) ( )( )BA NNBA ττττ loglog +− ; the

log quote slope is ( ) ( ) ( )( )BA NNBA ττττ logloglog + .  For all of the preceding, we employ time-

weighted averages over the fifteen-minute intervals.  For a given trade at price p, the effective spread

is defined as ( ) 2BAp +− .  These are averaged by trade size over the interval.  The means and

standard deviations are for the raw series across firms and time.  Eigenvalues are based on series

standardized to remove time-of-day effects. Small trades are 2,000 shares or less; medium trades are

2,001-10,000 shares; large trades are >10,000 shares.

Eigenvalues

Variable

Mean
(not standardized
by time-of-day)

Std. Dev.
(not standardized
by time-of-day) First Second Third

Spread 0.15746 0.03830 2.00 1.10 1.07

Log Spread 0.00394 0.00224 2.84 1.67 1.32

Log Size 9.36776 1.91521 2.20 1.40 1.36

Quote Slope 0.01811 0.00844 2.58 1.27 1.15

Log Quote
Slope

0.00043 0.00024 3.07 1.55 1.16

Total 0.05932 0.01967 1.13 1.12 1.10

Small 0.05726 0.01657 1.14 1.13 1.09
Medium 0.05828 0.02416 1.17 1.14 1.11

Effective
Spread

Large 0.06077 0.03129 1.38 1.32 1.29
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Table 7.  Price Impact Regressions

For each firm the estimated specification is titi
L

tititiitititiiti exPhxLxdxr ,
*
,

*
,

*
,

*
,

*
,

*
, ++++= γδα  where *

,tir  is

the standardized log quote midpoint return for firm i, *
,tix is the standardized order flow (signed

square root dollar volume), dt is a vector of time-of-day dummies and *
,tiL  is one of the following

(standardized) liquidity proxies.  The bid and ask for trade τ are denoted by Bτ and Aτ (dollars per

share); AB NN ττ  and are the numbers of shares (in 100-share round lots) posted at the bid and ask.  The

spread is ττ BA − ; the log spread is ( )ττ BAlog ; the log size is ( ) ( )BA NN ττ loglog + ; the quote slope is

( ) ( ) ( )( )BA NNBA ττττ loglog +− ; the log quote slope is ( ) ( ) ( )( )BA NNBA ττττ logloglog + .  For all of the

preceding, we employ time-weighted averages over the fifteen-minute intervals.  L
tP is the first

principal component (constructed across all firms) of the liquidity proxy.  The incremental

explanatory power is computed assuming that the variables are added to the specification in the

indicated column order (left to right).  A separate regression is estimated for each firm.  Numbers in

the table are means across firms.

Panel A.  Ordering of variables has *
,

*
, titi xL last.

Incremental contribution to R2 from:
Liquidity Proxy, Lt

*
,tix *

,tit xd *
,ti

L
t xP *

,
*
, titi xL

Spread 0.240 0.005 0.006 0.022
Log Spread 0.240 0.005 0.007 0.023
Log Size 0.240 0.005 0.007 0.024
Quote Slope 0.240 0.005 0.009 0.037
Log Quote Slope 0.240 0.005 0.010 0.037

Panel B.  Ordering of variables has *
,ti

L
t xP last.

Incremental contribution to R2 from:
Liquidity Proxy, Lt

*
,tix *

,tit xd *
,

*
, titi xL *

,ti
L

t xP

Spread 0.239 0.005 0.027 0.003
Log Spread 0.240 0.005 0.026 0.002
Log Size 0.240 0.005 0.029 0.001
Quote Slope 0.240 0.005 0.045 0.001
Log Quote Slope 0.240 0.005 0.046 0.001
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Figure 1.  The Quote Slope

The bid and ask quotes prevailing at time τ are denoted by Bτ and Aτ.  
BNτ  and ANτ  are the numbers

of shares sought at the bid and available at the ask.  The quote midpoint is ( ) 2τττ BAm += . The

quote slope is the slope of the dotted line in the figure.
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