NEW YORK UNIVERSITY

N

ELomNARD N PEE

L 3 ]2
SCHOOL 3 F BUSINESS

Department of Finance
Working Paper Series 1998

FIN-98-049

Predictability and Transaction Costs: The
Impact on Rebalancing Rules and Behavior

Anthony Lynch, Pierluigi Balduzzi

October 22, 1998

This Working Paper Series has been generously supported by a grant from

CDC Asset Management

AMERICAS






Predictability and Transaction Costs: The
Impact on Rebalancing Rules and Behavior
by

Anthony Lynch* and Pierluigi Balduzzi*

22 October, 1998.

* New York University.

+ Boston College

The authors thank John Campbell, Jennifer Carpenter, George Constantinides, Ned Elton, Silverio
Foresi, John Heaton, and Robert Whitelaw, and especially the editor and referee for helpful con-

versations and comments. Financial support from New York University Summer Research Grants

is gratefully acknowledged.






Predictability and Transaction Costs: The
Impact on Rebalancing Rules and Behavior

Abstract

We consider the impact of transaction costs on the portfolio decisions of a long-lived agent
with isoelastic preferences. In particular, we focus on how portfolio choice, rebalancing
frequency and average cost incurred change over the lifecycle and are affected by return
predictability. Two types of costs are evaluated: proportional to the change in the holding
of the risky asset and a fired fraction of portfolio value. We find that realistic transaction
costs can materially affect rebalancing behavior, creating no-trade regions that widen near
the investor’s terminal date. At the same time, realistic proportional and fixed costs have
little effect on the midpoint of the no-trade region, unless liquidation costs differ across
assets. Return predictability calibrated to U.S. stock returns is found to have large effects on
rebalancing behaviour relative to independent and identically distributed (i.i.d.) returns with
the same unconditional distribution. For example, return predictability causes rebalancing
frequency to increase, and cost incurred to increase by an order of magnitude, at all points in
the investor’s life. No-trade regions early in life are wider when returns are predictable than
when they are not. Finally, we find that the nature of the return predictability, including the

presence or not of return heteroscedasticity, can have large effects on rebalancing behavior.
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Introduction

We consider the impact of transaction costs on the portfolio decisions of a long-lived agent
with isoelastic preferences. In particular, we focus on how portfolio choice, rebalancing
frequency and average cost incurred change over the lifecycle and are affected by return pre-
dictability. Two types of costs are evaluated: proportional to the change in the holding of the
risky asset and a ﬁ:ced fraction of portfolio value. Transaction costs, investor characteristics
and the return-generating process are all calibrated to the U.S. experience.

We have several major results. The presence of realistic transaction costs is found to
materially affect rebalancing behavior. For example, the presence of a realistic fixed cost
causes rebalancing frequency to decline considerably. At the same time, realistic proportional
and fixed costs have little effect on the midpoint of the no-trade region, unless liquidation
costs differ across assets. We find that rebalancing behavior changes over the investor’s
life, particularly near the terminal date when no-trade regions widen, rebalancing frequency
drops, and less is spent on rebalancing. The presence of predictability calibrated to U.S.
equities is found to have a big effect on rebalancing behavior. In particular, at all points in
the investor’s life, return predictability causes rebalancing frequency to increase, and cost
incurred to increase by an order of magnitude. In addition, no-trade regions early in life are
wider when returns are predictable than when they are not.

The nature of the return predictability can also have a large effect on portfolio choice.
With the unconditional distribution held fixed, increasing the magnitude of the single-period
predictability causes no-trade regions to widen. On the other hand, increasing the persistence
of the predictive variable causes no-trade width, as a function of the predictive variable, to
become more u-shaped; i.e., the no-trade region is wider for extreme values of the predictive
variable. Finally, we calibrate return heteroscedasticity to an equilibrium model and find
that its presence has a big impact on the slopes of no-trade width and no-trade midpoint
expressed as functions of expected return.

Portfolio choice in a multiperiod setting with realistic transaction costs and realistic

return predictability is of interest for several reasons. First, a mutual fund manager typically



has an horizon that is much shorter than that of investors (see, for example, Brown, Harlow
and Starks (1996) who discuss the calendar year focus of fund managers). Assessing how
this shorter horizon affects the manager’s portfolio choices relative to the investor’s optimal
choices allows the cost of this shorter horizon for the investor to be qualitatively evaluated.
This cost is likely to be sensitive to the presence of transaction costs and return predictability.

Second, transaction costs have been advanced as a potential explanation of the equity
premium puzzle (see He and Modest (1995) and Luttmer (1996a and b))." The ability of
transaction costs to explain this puzzle depends on the frequency of portfolio rebalancing
and the form of the rebalancing rule that they induce. The presence of return predictability
is likely to affect these dimensions of portfolio choice.

Third, portfolio rebalancing rules in the presence of predictability and transaction costs
are of interest in their own right. Return predictability using publicly available instruments
has been well documented, and possession of private information implies an ability to predict
returns. Utilizing predictability to increase utility, especially in the presence of transaction
costs, is a difficult problem, but the gains from doing so are potentially large.? In particular,
we would like to understand the impact of varying the form of the predictability. Doing
so will help us understand how predictability and transaction costs jointly affect portfolio
choices.

Portfolio choice with realistic transaction costs and no return predictability is also of
interest. In his seminal 1969 paper, Samuelson disproves the notion that different portfolio
choices are appropriate at different stages of an investor’s life. Samuelson’s argument is
cast in a framework where the investor exhibits isoelastic preferences (constant relative risk

aversion CRRA) and faces a constant investment-opportunity set with zero transaction costs.

IThe equity premium puzzle says that aggregate consumption is too smooth and not sufficiently correlated
with equity return to explain the magnitude of the premium on U.S. equities (relative to T-bills) in the
context of the time-separable representative agent model with a reasonable risk aversion parameter (Mehra
and Prescott (1985)).

2Gee Kandel and Stambaugh (1996) who discuss the gains in a one period setting, Brennan, Schwartz
and Lagnado (1996), and Barberis (1997) who discuss the gains in a multiperiod setting, and Balduzzi and
Lynch (1998) who discuss the gains in a multiperiod setting with and without transaction costs.



An interesting question is whether his result is robust to the presence of transaction costs.3

The impact of proportional and fixed transaction costs on the portfolio choice of an
infinite-lived CRRA investor facing a constant opportunity set is well-understood. With
proportional transaction costs, Constantinides (1986) and Davis and Norman (1990) find
that the optimal rebalancing rule involves a no-trade region with an upper and lower bound
for the holding of the risky asset in the portfolio. When the holding goes outside the no-trade
region, the investor rebalances to bring the holding back to the closest bound. With fixed
transaction costs alone, Schroder (1995) and Morton and Pliska (1993) also find a no-trade
region, but rebalancing puts the risky-asset holding inside the region.*

At least two papers have addressed the issue of portfolio choice over the lifecycle in
the presence of transaction costs. Schroder shows how a longer horizon reduces the no-trade
region and increases rebalancing frequency in the presence of fixed costs. Gennotte and Jung
(1994) show how proportional transaction costs imply no-trade regions that widen near the
end of an investor’s life. However, neither of these papers considers fixed and proportional
costs simultaneously, intermediate consumption, or, most importantly, return predictability.’

A long line of literature has established that returns are predictable.® Recent work
has attempted to assess the impact of return predictability on investor utility and portfo-

lio choice. Kandel and Stambaugh (1996) explore the effects of ignoring predictability in

3Recently, other authors have qualified Samuelson’s result by adding realistic features to his set-up. Bodie,
Merton, and Samuelson (1992) and Jagannathan and Kocheralokota (1996), for example, show how portfolio
allocations to the risky asset may decline over an investor’s lifetime because of human capital.

4Duffie and Sun (1990) analyze the impact of transaction costs that are a fixed fraction of total portfolio
value for consumers who decide the interval of time until their next rebalancing at the time of their current
rebalancing.

5There ‘are a number of related papers that consider the effects of transaction costs on portfolio choice
and market equilibrium, and on the individual’s first order condition. Heaton and Lucas (1996), Vayanos
(1996) and Koo (1991) investigate the equilibrium implications of proportional transaction costs and other
frictions. Hansen, Heaton, and Luttmer (1995), Luttmer (1996a), and He and Modest (1995) develop
pricing-operator tests of asset-pricing models which explicitly account for bid-asked spreads and short-sale
constraints. Luttmer (1996b) explores the impact of fixed transaction costs on the joint distribution of
consumption and asset returns. None of these papers studies how portfolio choice changes over an individual’s
life when she faces transaction costs and return predictability of the magnitude observed in the U.S. economy.

8Campbell (1987) and Fama and French (1989), among others, find that stock return variation can be
explained by the one-month Treasury bill rate, by a contemporaneous and a lagged measure of the term
premium, and by the dividend yield.



a myopic setting, where the investor rebalances monthly. Brennan and Schwartz (1996),
Brennan, Schwartz, and Lagnado (1996) and Barberis (1997) analyze numerically the im-
pact of myopic versus dynamic decision-making, when the consumer is allowed to use the
conditional distribution of returns. Campbell and Viceira (1996) obtain a closed-form solu-
tion to the consumer’s multiperiod problem in the presence of predictability by using log-
linear approximations to the budget constraint; Kim and Omberg (1996) solve an analogous
continuous-time problem but without intermediate consumption.

None of these papers simultaneously consider the impact of return predictability and
transaction costs on portfolio choice. The only paper to do so is Balduzzi and Lynch (1998)
whose focus is on the utility costs associated with ignoring predictability and behaving
myopically. The focus in this current paper is on the form of the rebalancing rule, average
portfolio holdings, average spending on transaction costs and rebalancing frequency over the
lifecycle. Also, the current paper assesses the impact on portfolio choice of varying the return
predictability, while the earlier paper only considers one form of predictability calibrated to
U.S. equities. Finally, the current paper considers the impact on portfolio choice of return
heteroskedasticity, realistic death probabilities and differential liquidation costs across assets.
None of these are considered in the other paper.

We solve the consumer’s problem numerically and calibrate asset returns to the U.S
economy using the quadrature approximation techniques of Tauchen and Hussey (1991) as
applied by Balduzzi and Lynch. The opportunity set consists of two assets: a riskless and a
risky asset. When returns are allowed to be predictable, the economy has one state variable
designed to capture the predictive ability of dividend yield for U.S. equity returns. The
return-ge}lerating process is calibrated to the predictibility of U.S. equity return, but other
forms of predictabiliy are also calibrated. Rebalancing frequencies, average costs incurred,
and average holdings are obtained by simulating asset return time-series and using the in-
vestor’s portfolio rebalancing rules. The main results of the paper can be summarized as
follows.

No-trade regions widen dramatically close to the terminal date. For an investor facing



a proportional cost of 50 basis points and no fixed cost, the no-trade region does not start
widening (more than 0.05 wider) until the last year of life. Adding a fixed cost of 0.01% of
portfolio value only causes the widening to start 6 months earlier.” There is good intuition
for why no-trade regions widen late in life. Rebalancing early in life provides benefits over
several subsequent periods, but rebalancing late in life can only provide benefits until the
investor dies. Thus, the investor is more inclined to rebalance early in life than late in life,
which implies smaller no-trade regions early in life.

Return predictability calibrated to U.S. returns has large effects on rebalancing behaviour
relative to independent and identically distributed (i.i.d.) returns with the same uncondi-
tional distribution. In particular, return predictability causes rebalancing frequency to in-
crease, and cost incurred to increase by an order of magnitude, at all points in the investor’s
life. Further, no-trade regions early in life are wider when returns are predictable than when
they are i.i.d.. As an example, consider the rebalancing behavior early in life of an investor
facing a proportional cost of 50 basis points and a fixed cost of 0.01% of portfolio value.
When facing the unconditional, i.i.d. return, the investor rebalances once every 43 months,
incurs an average monthly rebalancing cost of 0.106 basis points of portfolio value and uses
an average no-trade width of 0.180. On the other hand, with predictability calibrated to U.S
equities, the same investor, early in life, rebalances once every 11 months, incurs an average
monthly rebalancing cost of 0.898 basis points of portfolio value and uses an average no-trade
width of 0.295. Predictability increases the benefits from incurring transaction costs and re-
balancing, which explains why the investor rebalances more frequenctly and spends more on
transaction costs. The widening of the no-trade region can be explained by two effects. First,
cross-state variation in the position of the no-trade region means that this period’s trade may
be reversed next period. Second, predictability reduces conditional volatility which reduces
the cost of a suboptimal risky-asset holding (see Constantinides (1996) and Gennotte and

Jung (1994) who discuss this point but in the context of the volatility of i.i.d. returns).

"Gennotte and Jung report a similar result but for the more restrictive case where the risky asset return
is a binomial process.



We are also able to characterize hedging demand over the lifecycle. When predictability
is calibrated to U.S equities, average risky-asset holding and no-trade midpoint both increase
moving backward from the terminal date. This decline in risky-asset holding as the terminal
date approaches indicates that hedging demand decreases as the investor’s horizon becomes
shorter.

Rebalancing behavior is sensitive to investor characteristics. Increasing the investor’s
risk aversion coefficient causes average risky-asset holding and no-trade midpoint to drop
considerably, while no-trade width is also lowered. These results are consistent with the
high risk-aversion investor caring more about the dispersion of wealth. The absence of
intermediate consumption causes the no-trade region to widen later in life. Further, when
returns are predictable, average risky asset holding and no-trade midpoint rise more rapidly
and to a higher level moving backwards from the terminal date. By increasing future wealth
relative to current wealth at any given time 7, the absence of consumption makes the future
more important (which increases hedging demand), and makes the investor’s time-7 problem
less like the single-period problem.

The presence of a realistic fixed cost causes rebalancing frequency to decline considerably.
For example, when a fixed cost of 0.01% of portfolio value is added to a 50 basis point
proportional cost, rebalancing frequency drops from once every 4.7 months to once every 43
months for i.i.d returns and from once every 3.7 months to once every 11 months for return
predictability calibrated to U.S. equities.® However, realistic proportional and fixed costs
have little effect on average risky-asset holding and, in particular, no-trade midpoint unless
liquidation costs differ across the two assets. Thus, the magnitude of an investor’s hedging
demand is robust to the presence of transaction costs.

On the other hand, no-trade regions late in life are lowered when the investor without
intermediate consumption faces a liquidation cost on the risky but not the riskless asset. In

fact, the upper boundary of the no-trade region converges to the risky-asset holding in the

8These results are consistent with those of Schroder who found that a small fixed cost (but no proportional
cost) could cause rebalancing frequency to drop dramatically from the no-cost case.



absence of transaction costs. The lowering of the no-trade region late in life is understandable
since a reduction in the risky-asset holding involves a cost that must otherwise be incurred
at the terminal date. Thus, differential liquidation costs across the two assets can have a big
impact on rebalancing behavior, consistent with recent work by Heaton and Lucas (1997).

The nature of the return predictability can have large effects on rebalancing behavior.
We focus on three return parameters: the magnitude of the single-period predictability;
persistence of the predictive variable; and, the contemporaneous correlation between return
and the predictive variable (which we refer to as the hedgeability parameter). Holding the
unconditional distribution fixed, increasing the magnitude of the single-period predictability
causes no-trade regions to widen. T he same two effects that cause wider no-trade regions
when returns are predictable also cause no-trade regions to widen when the magnitude of the
single-period predictability increases: increased cross-state variation in the position of the
no-trade region which increases the likelihood that this period’s trade will be reversed next
period; and, reduced conditional volatility which reduces the cost of a suboptimal risky-asset
holding.

Decreasing the persistence of the predictive variable causes no-trade width, as a function
of the predictive variable, to become more u-shaped; i.e., the no-trade region is wider for
extreme values of the predictive variable. This result makes sense because an investor facing
an extreme expected return is less likely to rebalance if the extreme value reverts quickly to
its unconditional mean: the benefits of rebalancing are less likely to outweigh the cost.

However, the correlation between return and the predictive variable does not appear to
have a first order effect on the no-trade width. This result is a little surprising since the
magnitude and sign of the hedgeability parameter determines the magnitude and sign of
return autocorrelation. Intuition suggests that negative (positive) return autocorrelation
narrows (widens) the no-trade region. The idea is that, when return autocorrelation is
negative, a high risky-asset holding is likely to be followed by a negative return that makes
next period’s holding less extreme. But for a given value of the predictive variable, the

expected return next period is the same irrespective of this period’s return or risky-asset



holding. Since portfolio decisions are made knowing the predictive variable, the intuition does
not apply. Instead, the magnitude of the single-period predictability is the most important
determinant of no-trade width. In fact, only one process we consider has no-trade widths that
are below the unconditional no-trade width in some states. This return-generating process
has low single-period predictability and a negative value for the hedgeability parameter.

Finally, return heteroscedasticity can also have big effects on rebalancing behavior. Al-
lowing conditional volatility to be a steeper positive function of expected return causes
no-trade width and no-trade midpoint to be less positive (or more negative) functions of
expected return. These two effects are explained in turn. As discussed above, higher volatil-
ity increases the cost of a sub-optimal risky-asset holding. Thus, an increase in conditional
volatility going from one state to another is associated with a reduction in no-trade width.
With respect to no-trade midpoint, the investor’s risk aversion causes the no-trade midpoint
to be a decreasing function of conditional volatility.

Thus, realistic transaction costs and return predictability can have a significant impact
on the way individuals rebalance their portfolios over their lives. The implication is that
the simultaneous presence of transaction costs and return predictability is likely to affect
the joint distribution of consumption and equity return. Thus, calibration studies using
transaction costs to explain the equity premium may be sensitive to the introduction of
predictability in returns.

Further, our results on rebalancing frequencies have implications for existing studies
(He and Modest and Luttmer (1996a)) documenting how proportional transaction costs
weaken Hansen-Jagannathan (1991) bounds on intertemporal marginal rates of substitution

(IMRSs)

i

These bounds follow from necessary conditions on IMRSs in equilibrium and
become weaker relative to the frictionless bound as the data frequency becomes higher.
Consequently, they are likely to be uninformative for data frequencies that are too much
higher than the rebalancing frequency of individuals. For example, saying an IMRS lies
inside the one-month transaction cost bound may not be very informative if investors are

rebalancing every year.
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Thus, our results shed some light on the informativeness of the bounds in these papers.

For example, Luttmer finds, using quarterly data, that a proportional cost of 0.5% causes
the bound to be within one standard error of zero. With predictability and a proportional
cost of 0.5%, we find that our investor rebalances every 3.7 months which is only slightly less
frequently than every quarter. While our reported rebalancing frequency is averaged across
states and starting risky asset weights, it suggests that the bounds reported by Luttmer are
informative.’

Further, our results indicate that the shorter horizons of fund managers (relative to
those of investors) reduce their incentive to trade. An overconfident manager is likely to
trade too much, leading to the payment of excessive transaction costs. However, by reducing
the manager’s incentive to trade, the shorter horizon limits the payment of unnecessary
transaction costs by the fund, holding all else equal. So while the shorter horizon of a fund
manager is likely to have a number of disadvantages, its ability to discourage trading may
be an advantatge that has not been emphasized before.

Finally, our results for the case of unpredictable returns indicate that Samuelson’s (1969)
irrelevance result is not robust to the introduction of transaction costs. Even so, we find that
the average allocation to the risky asset tends to remain constant over the investor’s lifetime,
unless liquidation costs differ across assets. In this limited sense, Samuelson’s (1969) original
intuition extends to the case of transaction costs.

A number of recent papers emphasize the importance of non-financial wealth particularly
early in life (see, for example, Koo, 1995, Bodie, Merton and Samuelson, 1992, and Heaton
and Lucas, 1997). Because of the potentially large impact of non-financial wealth, care must
be taken;when applying our results to a young investor. The impact of non-financial wealth
is likely to depend on its correlation with risky-asset return and its impact on the transaction
costs faced by the investor. For example, if most of an investor’s wealth is non-financial,

then a fixed cost proportional to the investor’s financial wealth understates the cost of the

90ur results are only suggestive since the rebalancing interval our investor faces depends on the sequence
of return realizations since the last rebalancing.



investor’s time. However, our results are directly applicable to an investor who has reached
retirement age: the investor could be 80 years and 1 month old in the first period and 101
years old at the terminal date.

The paper is organized as follows. Section I describes the optimization problem that we
solve. Section II calibrates asset returns to the U.S. economy, transaction costs to those
faced by U.S. investors, and the investor’s profile to that of a U.S. investor. Section III
describes the technique used to solve the investor’s problem and discusses the details of the
simulations used to obtain rebalancing frequencies, average holdings and average transaction

costs incurred. Section IV presents the results while Section V concludes.

I. Optimal Portfolio Allocation with Transaction Costs

This section lays out the constraints and preferences faced by the consumer and characterizes

the optimization problem.

A. Constraints and Preferences

We consider situations where two assets are available for investment: a risky asset and a
riskless asset. We assume that the return on the risky asset from time ¢ to ¢t + 1, Ry, 18
either i.i.d. for all t, or predictable using an instrument available at ¢, D;. The risk-free
rate R/ is assumed to be constant. Also, the consumer faces transaction costs which are
proportional to wealth.

We consider the optimal portfolio problem of a consumer with a finite life of T' periods.
Preferences are assumed to be of the constant-relative-risk-aversion type (CRRA) and time

separable with a rate of time preference equal to 8. Expected lifetime utility is given by

E [i & o |zl} (1)

t=1 1—v

where ¢; is consumption at time t, v is the relative-risk-aversion coefficient and Z; is the

10



vector of state variables for the consumer at time t. When transaction costs are non-zero, the
inherited portfolio allocation d; is an element of Zi, since its value determines the transaction
costs to be paid at time t. When returns are predictable, the predictive variable at time t,
Dy, is also an element of Z;.

The formulation in (1) allows the investor to live until the terminal date with probability

1. A death probability can be incorporated by generalizing the investor’s objective function:

1—-
T el

3 ;(HT=1ﬁT)1—_—;|Zl (2)

where 3, = B(1 — p;) and p; is the probability of dying at time ¢ given that the investor
survived until ¢ — 1.

Since other studies of optimal portfolio choice have considered situations where expected
lifetime utility only depends on terminal wealth (for example, Brennan, Schwartz, and

Lagnado, 1996), we also consider the following preferences:

p[¥ ] ®)

where W, is the investor’s wealth at time ¢. Thus, we can assess the sensitivity of our results
to allowing utility to depend on intermediate consumption.

The law of motion of the consumer’s wealth, W, is given by
Wir = (Wi — e)(1 = £,) [oa(Risr — BY) + R] (4)

where « is the share of wealth allocated to the risky asset, and f; is the transactions cost
paid at t per dollar of wealth (which might be zero if no trading occurs at t). We further
define x as the fraction of wealth consumed and Ry as the rate of return on wealth, net of

the transaction costs incurred. Hence, we have

Wit = (1 ~ k) WiBwenn NG)

11



In general, we model the cost of transacting f as a function of the difference between the
chosen risky asset allocation,a, and allocation to the risky asset inherited from the previous
period, @ The inherited allocation satisfies:

& = ap-1(1 = k1) Wit (1 = fe1) Ry _ o1 Ry
£ W, a-1(R; — Rf) + RT’

(6)

Specifically, we assume that transaction costs have two components, the first proportional to
the change in the holding of the risky asset, and the second a fized fraction of the total value
of the portfolio:!°

f = ¢1la— @&+ dola—azo, b1,02 >0 (7)

where I,_s0 is an indicator function which equals one if a—é& # 0, and equals zero otherwise.
The second term reflects the fixed cost of rebalancing one’s portfolio, regardless of the size
of the rebalancing; this fixed cost increases with the investor’s wealth, since it is likely to
depend on the opportunity cost of the investor’s time.

The law of motion for wealth in (4) implicitly assumes that consumption at time t is
obtained by liquidating costlessly the risky and the riskless asset in the proportions &; and
(1 —@&). In the case of the terminal-wealth investor in (3), it is sufficient if the proportional
liquidation cost is the same for the risky and the riskless assets. Further, transaction costs
at time ¢ are based on portfolio value after time-t consumption, and are paid by costlessly
liquidating the risky and the riskless assets in the proportions o and (1 — o).

The c;ostless-consumption assumption is not so onerous given the availability of money-
market bank accounts, and given that equities pay dividends. To the extent that the risky
asset’s dividend exceeds the consumption out of the risky asset, k&W, a dividend reinvest-
ment plan can be used to costlessly reinvest the excess dividend in the risky asset. However,

portfolio rebalancing rules are likely to be highly sensitive to any cost differential associ-

10Ty order to keep notation simple, when all variables in a mathematical expression are contemporaneous
we drop the time subscript.
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ated with using the risky rather than the riskless asset for consumption (see, for example,
Heaton and Lucas, 1997). The impact of relaxing this assumption is assessed by allowing
the terminal-wealth investor in (3) to pay a proportional cost to liquidate the risky asset at
the terminal date. In particular, we assume proportional costs of ¢ and 0 to liquidate the
risky and riskless assets respectively. Thus, transaction costs paid at the terminal date are

given by
fr = ¢rér. (8)

B. Optimization Problem

We now consider the consumer’s optimization problem. Given our parametric assumptions,

the Bellman equation faced by the consumer is given by!!

(W T )

1_'7 K, 1—’)/ 1_7

E [a(Zes1, t + 1) RiflZe]
fort=1,...,T—-1 (9)

The optimization problem is homogeneous of degree (1 —y) in wealth which implies that the
solution is invariant to wealth. Thus the Bellman equation can be rewritten:
a(Zt, t) K/%_’y (1 — K}t)l_’y

1= R, AT

E [a(Zes1,t + 1) Rip | Ze]

fort=1,...,T -1 (10)

The Bellman equation (10) is solved by backward iteration, starting with ¢ = T'—1. Thus,
a(Zy,t) is obtained by solving the optimization problem in (10) using a(Z¢y1,t + 1) from

the previous iteration. In the first iteration, a(Zr,T) is taken to be 1 for the intermediate-

1 This form of the value function derives from the CRRA utility specification in (1) and (3), and from the
linearity in W of the budget constraint, equation (5).

13



consumption investor in (2). For the terminal-wealth investor in (3),
a(ZT,T) = (1 — ¢TdT)l—7. (11)

This specification for a(Zy,T) collapses to the usual a(Zr,T) = 1 when the cost of liqui-

dating the risky asset is set equal to 0; i.e., ¢7 = 0.

II. Calibration Details

In this section, we describe how the model is calibrated to U.S. data along three dimensions:

transaction costs; investor profile; and, return-generating process.

A. Transaction Costs

Given our transaction cost function in (7), one can observe that the proportional component
of transaction costs is given by ¢,|a—&|W, where W, is the portfolio value after consumption.
The cost of changing the holdings of the risky asset to aW,, and then of changing them back
to &W,, amounts to 2¢1|a — &|W,. Hence, 2¢; has the interpretation of the ratio of a bid-
asked spread plus commission (plus any possible price impact) over the value of the asset
traded. We allow ¢; to take values of 0.5% and 2.5%. Lesmond, Trzcinka, and Ogden (1996)
calculate average round-trip proportional transaction costs to be 1.2% and 10.3% for large
and small firms respectively. These estimates bracket the ¢; values that we use. In particular,
the low ¢; value of 0.5% is consistent with their average cost of trading a large firm while a
¢, of 2.5% implies a round-trip cost of 5%. Thus, the high ¢; value is chosen to lie midway
between the average cost of trading large and small firms. Their measure of transaction costs
is typically 15% to 20% smaller than the spread-plus commissions estimator employed by
Stoll and Whaley (1983) and Bhardwaj and Brooks (1992), suggesting that their estimates
are unlikely to overstate the actual costs.

In regard to the fixed transaction costs parameter ¢s, the lower value of 0.01% that

14



we use falls within a range of fixed-cost lower bounds that make observed U.S. per-capita
consumption consistent with asset returns (see Luttmer (1996b)).'> Further, this value of
¢, translates into paying a fee of $10 whenever a $100,000 portfolio is reshuffled. Viewed as
the opportunity cost for an individual investor to process information and instruct a broker
to change portfolio composition, this value for ¢, seems small. Thus, the actual fixed costs
faced by an investor probably lie between the high and low values of 0.1% and 0.01% that
we use.

The three possible ¢, values of 0, 0.5%, and 2.5%, are combined with three possible b
values of 0, 0.01%, and 0.1%, to give nine transaction cost combinations, which are listed in
Panel A of Table 1. The first two characters of the label identify the proportional cost with
PO, P1 and P2 corresponding to ¢; values of 0, 0.5%, and 2.5%, respectively. The label’s
last two characters identify the fixed cost parameter with FO, F1 and F2 corresponding
to ¢, values of 0, 0.01%, and 0.1%, respectively. Thus, the nine labels POF0, POF1, POF2,
P1F0, P1F1, P1F2, P2F0, P2F1, P2F2, correspond to the nine possible [¢1, ¢-] combinations
(expresssed in %) [0,0], [0,0.01], [0,0.1],[0.5,0], [0.5,0.01], [0.5,0.1],[2.5,0], [2.5,0.01], [2.5,0.1].

The P1F0 setting is usually used when other aspects of the investor’s problem are varied.

B. Investor Profiles

The various investor profiles considered are listed in Panel B of Table 1. The standard
investor, who is denoted “si”, has a relative risk aversion coefficient v equal to 4, receives
utility from intermediate consumption, has a zero probability of death prior to the terminal
date, anq pays a zero cost to liquidate either asset for consumption. The “si” investor’s first
and last decisions are made at ¢t = 1 and ¢ = 239 respectively: so the investor lives for 240
months. The rate of time preference for the “si” investor is taken to be 1/ R/

The standard investor is perturbed along a number of dimensions. The high risk-aversion

investor denoted “ha” is identical to the standard investor except v is set equal to 7.

We also consider the impact of a non-zero probability of death prior to the terminal date.

12Further details are available from the authors on request.
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The mortality rates that we use are taken from the 1994 Group Annuity Mortality Table
developed by the Society of Actuaries Group Annuity Valuation Task Force (1995) (GAM-
94). The reported mortality rate for a male of age t is the probability that the male dies
during year t, given that he is alive at the start of year t. Similarly, the monthly death rate
at time t is the conditional probability of death between ¢ and ¢t + 1 given that the investor
is alive at time t. The reported annual rates are converted to monthly death rates assuming
a constant monthly death rate over the year.

Since we do not model labor income, we take male mortality rates for the retirement
ages of 81 onward. The “pd” investor is 81 years and 1 month at time ¢ = 1. GAM-94
mortality rates are used until ¢ = 240 at which point the “pd” investor dies with probability
1. In other words, upon reaching 101 years of age, the “pd” investor dies with probability
1. The GAM-94 annual mortality rate starts off at 7.378% for the 81 year-old man and rises
to 34.112% for the 100 year old man. Thus, the monthly death rate starts off at 0.637% for
the first 11 months and finishes at 3.417% for the last 12.* On the other hand, the “dl”
investor experiences the GAM-94 mortality rates through until ¢ = 468 or age 120, which is
the year that the mortality rate becomes 1 in GAM-94. The GAM-94 annual mortality rate
has climbed to 50% by year 119.

The “nc” investor is identical to the standard investor except the investor’s utility only
depends on terminal wealth. The final consumer profile is identical to the “nc” profile except
that the entire proportional transaction cost of ¢; must be paid to liquidate the risky asset.
The cost of liquidating the riskless asset is zero and the profile is denoted “cl”. Portfolio
rebalancing rules for the “nc” and “cl” profiles can be compared to assess the impact of

imposing’ a liquidation cost to consume from the risky asset.

13Regarding time 1 as the end of the first month of the “pd” investor’s 81st year, months 1 through 11
have a probability of death derived from the year 81 mortality rate. Moving to the end of the “pd” investor’s
life, months 228 through 239 are the beginnings of the months in year 100, and so the year 100 mortality
rate is used. Month 240 is the start of year 101 and the individual is assumed to die with probability 1 at
this time.
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C. Law of Motion for Returns

In order to estimate a law of motion for the investment opportunity set we need to identify
real-life counterparts for the three variables R, Rf, and D. Specifically, we use the monthly
rate of return on the value-weighted NYSE index as a proxy for the risky return R, the
one-month Treasury-bill rate as a proxy for the risk-free rate R, and the twelve-month
dividend yield on the value-weighted NYSE index as a proxy for the predictive variable D.
Both the stock return and interest rate series are deflated using monthly CPI inflation. We
calibrate real returns since they are more likely to be stationary, investors generally care
more about real returns, and there is no money in our model. Also, the dividend yield and
stock return series are converted to a continuously compounded basis; hence, R is replaced
by r = In(1 + R) and the dividend yield D is replaced by d = In(1 + D). Without loss of
generality, we normalize the d process to be mean zero with unit variance. The stock return,
interest rate, and dividend yield series are from CRSP; the CPI series is from CIT IBASE.
The data period used is from 1927:1 to 1996:11. The continuously compounded riskfree rate
is estimated to be the mean of the continuously compounded one-month Treasury-bill rate

over this period, which gives a value for R/ of 0.04454%.

C..1 Approzimating the Data assuming Constant Variance

We assume that [r, d]’ follows the vector autoregressive model (VAR):

Tir1 = Qp + bpdy + €441, (12)

diy1 = aq + bad; + vig1, (13)

where b,, by, a,, and a4 are coefficients and [e,v]' is a vector of mean-zero, serially uncor-

related, multivariate normal disturbances, with constant covariance matrix whose diagonal

2

elements are o

and ¢? and whose off-diagonal element is peyTeoy. Similarly, the uncon-

2

2 and o2 respectively. Without loss of generality, we

ditional variances for r and d are o

normalize the mean of d, ug, to be zero and its variance, o2, to be 1. With this normaliza-
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tion, ag = 0 and a, = p, where g, is the unconditional mean of r. Specification (12)-(13)
assumes that d is the only state variable since all information available at ¢ about 71y is
contained in d;. This characterization of the investment opportunity set is in line with other
papers on optimal portfolio selection (e.g., Barberis, 1996; and Campbell and Viceira, 1996).
The VAR is estimated using ordinary least squares (OLS).

We discretize the VAR using a variation of the gaussian quadrature method described
by Tauchen and Hussey (1991). First, Tauchen and Hussey’s method is used to discretize
the dividend yield, treating it as a first-order autoregressive process. Second, we exploit the

fact that the VAR implies the following expression for stock returns:
Ter1 = Gr + bpdy + NVL1 + Utgr, (14)

where 7 is the regression coefficient from regressing e on v, and v is 1.i.d. normally distributed
with variance o2 and is uncorrelated with v. The quadrature method is used to calibrate a
discrete distribution for the innovation u. We can then calculate a discrete distribution for
o1 for each {d;+1,d;} pair from the discretization of d, since vy, = dir1 — aq — bady.

This approach ensures that d is the only state variable. We chose a specification with 19
quadrature points for the dividend yield and 3 points for the innovations in stock returns.
Balduzzi and Lynch (1998) also use this approach and find that the approximation is able

to capture important dimensions of the predictability in the data.!?

C..2 Varying the Return Pfedictability

An interesting question is how portfolio choice varies with the nature of the return pre-
dictability. We assess this by holding the return parameters o, and p, constant and varying
b,04, by, and pe,. The first parameter, b,o4, is the single-period variation in r that is pre-
dictable. The second parameter, by, measures the persistence of the expected return process,

since expected return is a linear function of d. The third parameter, p.,, measures the

14When we increase the number of quadrature points to 20 for dividend yield or to 6 for stock return inno-
vations, the results for the “si” investor are virtually unchanged using the P150 or P1F1 cost combinations.
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extent to which next period’s shock to r covaries with next period’s shock to expected re-
turn. It is also an increasing function of r’s autocorrelation, taking a value of zero when r’s
autocorrelation is zero.

When using the Tauchen-Hussey approximation to discretize d, a weighting function
must be chosen that, together with the chosen quadrature rule, determines the values taken
by d at the 19 quadrature points. We would like the values taken by d to remain the
same across different parameterizations of the return predictability. Doing so ensures that
portfolio choice for a given state can be meaningfully compared across return-generating
processes. Consequently, we take the weighting function to be the conditional distribution
of dyy, implied by the data VAR parameters, given d; equal to zero. Since Tauchen and
Hussey suggest using this weighting function to approximate the data VAR, this weighting
function is the natural choice for all the discretizations.

Panel C of Table 1 presents VAR parameter values for both the data and the various
quadrature approximations used. Mean return is not reported since this parameter is held
constant across the return-generating processes and the quadrature approximation matches
this moment exactly. Ten discretizations are considered and are labelled SO through S9.
Discretization SO attempts to replicate the predictability in the data. Cofnparing the data
VAR parameters (1st row) to the VAR parameters for SO (2nd row) shows that the approx-
imation is doing a good job, except that the predictable single-period variation in 7 (b.04)
is understated. Thus, our results are likely to understate the impact of predictability on
portfolio choice.

Panel C orders the discretizations to emphasize how the impact of varying each VAR
parametér can be assessed. Within each comparison, parameters held fixed exhibit small
variations across generating processes due to the quadrature method not exactly matching
return parameters. The first four rows after the “Data” row show two pairs of comparisons:
S0 vs S1; and, S2 vs. S3. Each comparison fixes o, by, and pe,, while allowing b.04 to vary.
Similarly, moving from S4 to S5 to S3 keeps o, b,04, and p, approximately constant, while

allowing b; to vary from 0.962 to 0. Finally, the effect of varying pe, from -0.9 to 0.9 is
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assessed with two comparisons. The first (SO vs. S4 vs. S6) fixes by and b.o4 at 0.962 and
0.260 to match the data, while the second (S7 vs. S8 vs. S9) sets by equal to zero and halves
b.o, relative to the data. The parameter, b.0y4, is reduced to increase the number of states

with no-trade regions in the interior of the interval [0,1].'?

C..3 Approzimating the Data assuming Heteroscedasticity

From a general equilibrium perspective, variation in expected return is typically accompanied
by variation in conditional volatility. In particular, equilibrium models like Merton’s (1980)
dynamic CAPM imply a positive relation between expected return and conditional volatility.
Such a relation is likely to have a large effect on portfolio rebalancing rules. We assess this
effect by modifying the return generating process to allow conditional return volatility to be
a linear function of d. In particular, [r, d)’ still satisfies (12)-(13) but [e;41, v¢+1]' is a vector

of random variables that satisfies:

€t+1 = aeldtzet7 (15)

Vi1 = Uv]dtzut, (16)

where [z¢, 2] is multivariate normal white noise with z¢ and z¥ having zero means, unit
variances and a correlation of peyjq, and oejq, and oy, are the conditional volatilities of e;4;
and viy1. The constant pey)q is the conditional correlation between e and v. We take oy)q,
to be a constant, which implies that it equals the unconditional volatility o,,. On the other

hand, o4, is allowed to be a linear function of d;:

Teld, = Go + C1ds. (17)

15Notice that the unconditional volatility of r for the (S7 vs. S8 vs. S9) comparison is about 13%
lower than for the other discretizations. When the approximation technique matches a VAR with bg = 0,
byog = 0.132%, o, = 5.10%, and p., equal to 0.9 or -0.9, the resulting return generating processes, S7 and
S9, have o, = 4.818%. Thus, to obtain a return-generating with pey = 0, by = 0, and byoa = 0.132%, we
tried successfully with S8 to match o, = 4.818%, rather than use S3.
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We would like to vary ¢; while holding the unconditional volatility of e, o,, constant. To
do this, ¢ is always calculated, for a given (i, using the following equality and o, set equal

to its value in the data:

Go = vV oF — ¢t (18)

The quadrature approximation technique can be adapted to discretize this return-generating
process. The procedure is similar except that 7 in (14) becomes the coefficient, 1(d;), from a
conditional regression of e;1; on v41, and the distribution of u;4; that is discretized depends

on d;. In particular, for given (i, 0y, peyjd, and ¢y from (18), n(d;) satisfies:

_ Pevld0eide _ Pevia(Co + C1dy)
O Ou ’

n(d:) (19)
and the conditional distribution of u.+ while still normal and mean zero, has a volatility

Ou|d, given by

012L|dz = Uz]d:(l - p3v|d) = (CO + Cldt)Q(l - pgvld)' (20)

This return distribution is discretized for three values of ¢;. The first value is obtained
from the data using the residuals from the OLS regression of 74, on d;. The absolute value
of these residuals is regressed on d; and the slope coefficient is taken as (;. The first row of
Table 1’s Panel C reports the data’s ¢; as 1.358%, which implies a positive relation between
conditional volatility and conditional mean. Recent work using more instruments than just
dividend'yield has found a negative relation (see, for example, Glosten, Jagannathan and
Runkle (1993), and Whitelaw (1994)). Also, while intuition suggests that the relation should
be positive, a (; value of 1.358% may be too large to be plausible in an equilibrium setting.
Thus, the single-regime equilibrium model of Whitelaw (1998) is used to calibrate ¢ with
positive values. In particular, Whitelaw’s model implies ¢; values of 0.111% and 0.604%
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when the representative agent has a relative risk aversion of 2 and 40 respectively.®

The last three rows of Panel C report parameters for the three discretizations, HO,H1
and H2, which attempt to match ¢; values of 1.358%, 0.111% and 0.604%. Two points are
worth noting. The unconditional volatility for r, o, for each discretization is close to that
in data, suggesting that the use of (18) to calculate (p is allowing us to fix €’s unconditional

volatility. Second, the (; value for each discretization is close to the targeted value.

III. Solution and Simulation Details

This section describes how the consumer’s optimization problem is solved numerically and
explains the difference between conditional and unconditional portfolio choices. We also
discuss details of the simulations performed to calculate rebalancing frequency, average cost

incurred and average risky-asset holding.

A. Solution Technique

The investor’s dynamic programming problem is solved by backward recursion. At each
time ¢, the state variable &; is discretized and the Bellman equation is solved at each &
grid point. The following grid of points on the interval [0, 1] is used to discretize &, for all
t & =0,0.02,0.04,..,0.096,0.98, 1. In solving the optimization problem in (10), the (¢t + 1)
value function for each D, is linearly interpolated between &y, points.

In all the optimizations, the holdings of both the risky and the riskless asset are con-
strained to be positive (the short-sale restriction) which implies that the inherited portfolio
allocatiofl also lies between zero and one, 0 < & < 1. Constraining « to lie between 0 and
1 is realistic, since individual investors typically face high costs in taking short positions,
while institutional investors are often precluded by their clients from taking short positions

for speculative purposes.

16Whitelaw (1988) also presents a two-regime model that reproduces the negative relation between volatil-
ity and expected return. An interesting extension to this paper solves the investor’s problem given this
two-regime model for returns.
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The optimal a;, for a given state is found by first constraining o to lie on the same grid
as é: 0,0.02,0.04, ...,0.96,0.98, 1. Using a}(1) to denote the first-stage optimal ; and g(1)
to denote the first-stage grid size, the second-stage optimal a; is obtained from a finer grid
(9(2) = 0.2g(1)) constructed on the interval [o; (1) —g(1), e (1) +g(1)].}” The second stage is
repeated several times: the k-stage optimal o is obtained from a grid, (g(k) = 0.29(k — 1)),
constructed on the interval [of (k — 1) — g(k — 1), 05 (k — 1) + g(k — 1)].

The resulting o does at least as well as the first-stage optimal o; used by Balduzzi and
Lynch as the solution to the investor’s problem. Further, for ;(1) at an interior point on
the interval [0, 1], this procedure yields an «; that is at least a local optimum. Finally, the
numerical technique yields an approximate solution that converges to the actual solution as

the & grid becomes finer.'®

B. Unconditional versus Conditional Portfolio Choices

Facing a given return generating process, the investor can make unconditional (U) or con-
ditional (C) portfolio choices. When making unconditional choices, the investor uses the
steady state distribution and ignores any predictability of returns. In other words, the in-
vestor assumes returns are i.i.d. when making unconditional choices. In contrast, the investor
exploits return predictability when making conditional choices. Thus, we can evaluate the
impact of return predictability on portfolio choice when an investor faces proportional or

fixed transaction costs.

C. Simulation Details

To calculate average portfolio holdings, average transaction costs incurred, and rebalancing
frequencies, we simulate return histories with the discretized distribution and apply the in-

dividual’s portfolio rebalancing rule at each time t,t = 1, ...,239. For unconditional portfolio

I7If o} (1) is equal to 1, the second-stage grid is constructed on the interval [1 - g(1),1]. Similarly, if o (1)
is equal to 0, the second-stage grid is constructed on the interval [0, g(1)].

18When we increase the number of grid points from 51 to 101 for &, the results for the “si” investor are
virtually unchanged using the P1S0 or P1F1 cost combinations.
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choices, simulated returns are i.i.d. with the steady-state distribution. By making simulated
returns i.i.d. in this way, we are assuming that the investor making unconditional choices is
using the correct distribution. This procedure is repeated 100000 times and average portfo-
lio holdings and rebalancing frequencies at each time ¢ are obtained by averaging over the
100000 replications.

One issue is the starting values assumed for the individual’s state variables at time 1.
When returns are unpredictable, the only state variable is &, which is set equal to the
midpoint of the no-.trade region at time 1. When returns are predictable, the two state
variables are the value of dividend yield, D, and the inherited allocation, &;. For each
history, the time 1 state is determined by sampling from the unconditional distribution for
D,. Once the time 1 state has been determined, & is taken to be the midpoint of the
no-trade region for that state at time 1. An ex ante concern is the sensitivity of the results
to these assumptions about the starting values for the state variables. However, we find that
their effect dissipates quickly, since the average holding, rebalancing frequency and average

cost incurred all quickly flatten out as a function of ¢, typically before ¢ is greater than 20.

IV. Results

This section reports several portfolio choice parameters for different combinations of propor-
tional and fixed transaction costs, varying investor profiles and a variety of return-generating
processes. Bach table and figure reports or plots some subset of the parameters described
next.

Optimal portfolio choice with fixed and proportional transaction costs involves a no-trade
region for the risky asset weight o, and lower and upper return points depending on whether
the upper or lower boundary is hit (Balduzzi and Lynch, 199é). Both return points lie inside
the no-trade region. With a fixed cost and no proportional cost, the upper and lower return
points are the same (see Schroder, 1995). With only a proportional cost, optimal portfolio

choice still involves a no-trade region, but the return points are now the boundaries of the
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no-trade region (see Constantinides, 1986, and Davis and Norman, 1990). When the investor
uses the conditional return distribution (C) rather than the unconditional (U), the form of
the rebalancing rule in each state is determined by the transaction cost structure as described
above. However, the position of the no-trade region varies across states (see Balduzzi and
Lynch, 1998).

Given this structure for the rebalancing decision, portfolio choice in a given state can be
characterized by the midpoint and width of the no-trade region together with the average
distance between the return points and boundaries. These three parameters can be averaged
across states at a given time ¢ using the steady-state distribution to give the time-¢ no-trade
midpoint, the time-¢ no-trade width and tl‘le time-¢ return distance, respectively.!®

For each ¢, three additional parameters are obtained from the simulations described in
section IV: rebalancing frequency, average cost incurred, and average holding of the risky
asset.20 Thus, there are six parameters all indexed by ¢ that characterize portfolio choice by
the investor. The seventh parameter is the first time ¢ that the width of the no-trade region

is at least 0.05 larger than at time 1.

A. Standard Investor facing Returns calibrated to U.S. Data.

Table 2 reports all seven portfolio choice parameters for the standard “si” investor facing the
SO return-generating process which is calibrated to U.S. equity return. The investor faces
one of the nine combinations of proportional (¢;) and fixed (¢2) parameters listed in Panel
A of Table 1. Parameter values are reported for both unconditional (U) and conditional (C)
portfolio choices. For each parameter, the first three rows apply to unconditional choices
while the. last three refer to conditional choices.

Table 2 reports time-series averages over two periods in the investor’s life for the six

19T ensure that the short-sale restriction is not understating the average no-trade width or return distance,
the averaging is performed across states for which the short-sale restriction is not binding. On the other
hand, since bounds of 0 or 1 still define ranges over which & moves, the averaging for the no-trade midpoint
is performed across all states irrespective of whether a short-sale restriction is binding.

20Rigky-asset holding is determined after any rebalancing has occurred.
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parameters indexed by #: rebalancing frequency, average cost incurred, average holding of
the risky asset, time-t midpoint, time-¢ width, and, time-t return distance. The first three
columns, labelled “Early”, average the relevant parameter value from ¢ = 96 to ¢ = 119 while
the last three columns are labelled “Late” and average from ¢ = 216 to 239.

For a given time-series average (“Early” or “Late”) and return distribution (U or C),
parameter values are contained in a 3 by 3 subtable. For a given subtable, the fixed cost
parameter is constant across a row while the proportional cost parameter varies from 0% to
2.5% going from the first to the third column. Conversely, the proportional cost parameter
is constant down a column while the fixed cost parameter varies from 0% to 0.01% going
from the first to the third row.

The first row of each subtable shows the three combinations with a zero fixed cost: POF0,
P1F0, and P2F0. Consistent with previous literature, the return distance always equals zero
for these cost combinations irrespective of whether the investor is early or late in life, or
whether the conditional or unconditional distribution is being used. On the other hand, the
first column of each subtable shows the three cost combinations with a zero proportional
cost: POF0, POF1, and POF2. Consistent with Schroder (1995)’s finding of a single return
point, the return distance always equals half the no-trade width for these cost combinations
with a zero proportional cost. Finally, the remaining cells of each subtable have nonzero
proportional and fixed costs. For these cells, the return distance both early (reported) and
late (unreported) is always positive but less than half the no-trade width.?!

Figures 1 through 4 plot parameters as a function of ¢ for three cost combinations: P1F0,
POF1, and P1F1. Each figure contains three graphs, one for each cost combination while
Figure 4 contains a fourth graph for the case of no transaction costs, POF0. Each graph
plots the relevant parameters for the “si” investor using the unconditional as well as the

conditional distribution for risky asset return. Figure 1 plots average rebalancing frequency

21When one or both no-trade boundaries hit the short-selling constraints in all states at time ¢, the no-
trade width is taken to be 1. However, determining the time-t return distance becomes problematic. The
widening of the no-trade region late in life means that the no-trade boundaries start hitting the short-selling
constraints in an increasing number of states as ¢ approaches 240. Eventually, the short-selling constraint is
hit in every state which explains why the return distance is not reported late in life.
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while Figure 2 plots the average transaction cost incurred per month. Each of the three
graphs in Figure 3 plots both the no-trade width and the return distance while the no-trade

midpoint and average holding of the risky asset are plotted in Figure 4.

A..1 Portfolio Choice over the Lifecycle

The first question that we address is portfolio choice over the lifecyle. Table 2 shows that both
average rebalancing frequency and average cost incurred are lower “Late” in the investor’s life
than “Early”. Facing the P1F1 cost combination and the C information set, the investor’s
rebalancing frequency drops from 8.85% early in life to 6.36% averaged over the final 24
months, while the average cost incurred expressed in basis points of the portfolio’s value
drops from 0.898 to 0.700. The bottom graphs in Figures 1 and 2 show that these decreases
are particularly pronounced just prior to the terminal date when the rebalancing frequency
is below 2.5% and the average cost incurred is below 0.35 basis points.

Consistent with this result, we find that the no-trade width is always much larger “Late”
than “Early”. Table 2 shows that the average no-trade width increases from 0.295 to 0.403
going from “Early” to “Late” for the investor facing P1F1 costs and using C. Figure 3
confirms this result showing that the no-trade width exceeds 0.75 at time ¢ = 239 for the
investor facing P1F1 costs and using C.

The intuition for the widening of the no-trade region near the end of an investor’s life
is as follows. Early in the investor’s life, a decision to rebalance may eliminate the need to
rebalance for several periods in the future. In this sense, the transaction cost of rebalancing
is being spread over the next several periods. However, near the end of the investor’s life,
this poteﬁtial benefit from rebalancing is limited by the small number of remaining periods
in the investor’s life.

This intuition suggests the widening is not likely to occur until ¢ is close to the terminal
date. The last panel of Table 2 confirms this, showing that the time of widening of the
no-trade region is always later than t = 210 except for ¢, = 2.5%. For P1Fl, the time of
widening is ¢ = 221 for U and ¢ = 230 for C.
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This intuition also suggests that the no-trade region widens earlier when the investor’s re-
balancing frequency is lower. The reason is that a lower rebalancing frequency indicates that
a longer period of time between rebalancing is needed to make rebalancing now attractive.
This implication is confirmed in Table 2. Rebalancing frequency for a given cost combina-
tion is lower for U than C policies, while for a given information set, rebalancing frequency
decreases moving across a row (¢, increasing, ¢, fixed) or down a column (¢, increasing, ¢2
fixed). The last panel of Table 2 reports the time, ?, at which the no-trade region becomes
considerably wider relative to time 1. As expected, for any given cost combination, the time
of widening is earlier for U than C portfolio choices. Also, for a given information set, the
time of widening is earlier moving across a row or down a column.

The other dimension of interest is the average holding of the risky asset over the investor’s
life and its relation to the midpoint of the no-trade region. These parameters are reported
in Table 2 and plotted in Figure 4. The behaviour of these parameters over the investor’s
life depends on whether the investor uses the U or C distribution. If the U distribution is
being used, both the midpoint and the average holding are constant over the investor’ life.
While the U and C distributions have similar no-trade midpoints and average risky-asset
holdings at time-240, the C distribution causes »the investor to hold more of the risky asset
early in life. For example, from Table 2, the investor facing P1F1 has an average holding of
approximately 0.59 both “Early” and “Late” when using U. Use of C causes the investor’s
average “Early” holding to increase to 0.703 while leaving the investor’s average “Late”
holding largely unaffected at 0.608.

The same result can be seen in Figure 4 where the same patterns are documented for four
cost combinations including POF0. Average holding and midpoint with return predictability
(C) start declining toward the U values almost from the start of the investor’s life, and by
the end (t = 239), the two are virtually identical. This finding for the no-transaction-cost
case is consistent with evidence in Brennan, Schwartz and Lagnado (1996), Barberis (1997)
and Campbell and Viceira (1996). Our paper shows that hedging demand is robust to the

presence of transaction costs
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Two final observations are in order. First, the decline in the o for C toward the o for
U becomes more rapid as the investor becomes older. Second, the average holding is always .

higher than the midpoint.

A..2 Impact of Return Predictability on Rebalancing

This section assesses the impact of return predictability on portfolio choice by comparing
two investors. The comparison is between an investor fully exploiting predictability that
is present in return (C investor) and an investor facing an i.i.d. return whose distribution
equals the steady-state distribution for the predictable return (U investor). Our focus is on
the seven parameters described above.

Table 2 shows that rebalancing frequency both “Early” and “Late” is higher when the
investor faces C rather than U. The difference is particularly pronounced when the fixed
cost is non-zero. For example, rebalancing frequency for the P1F1 investor “Early” in life
increases from 2.32% (or once every 43 months) with i.i.d. returns to 8.85% (or once every
11 months) when returns are predictable. If the investor only faces the proportional cost
(P1F0), once every 4.7 months with U becomes once every 3.7 months with C. Figure 1
shows that the rebalancing frequency is higher throughout the investor’s life when facing C
rather than U for the three cost combinations plotted.

An even stronger result is the effect of return predictability on the actual cost incurred
by the investor. Table 2 shows that the cost incurred per month is typically an order of
magnitude higher when the investor faces C rather than U, irrespective of the cost combi-
nation or whether the investor is young or old. The P1F1 investor early in life spends 0.106
basis poiflts of portfolio value per month when facing U, but spends 0.898 basis points when
facing C. Similarly, over the last two years of life, this same investor spends 0.700 rather than
0.030 basis points if facing C rather than U. Thus, return predictability causes the investor
to spend considerably more on transaction costs. The increased rebalancing and spending is
not surprising since return predictability increases the benefits from trading.

At the same time, the no-trade width early in life is much wider when the investor uses
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the conditional rather than the unconditional distribution. Table 2 shows that the no-trade
width early in life for the P1F1 investor increases from 0.18 to 0.295 if returns are predictable.
Near the end of the investor’s life, the difference narrows, as can be seen in Figure 3. Earlier
work on transaction costs without predictability finds that no-trade regions increase when
return volatility decreases (see Constantinides (1986) and Gennotte and Jung (1994)). The
reason is that the cost of a sub-optimal o choice increases in the return volatility. Going
from the U to C distribution, the conditional volatility of return decreases. Thus, this same
reasoning helps explain why no-trade region widen when returns are predictable. The other
reason for wider no-trade regions is cross-state variation in the position of the no-trade
region. The current risky-asset holding may be very far from the optimal a today, but be
very close to the optimal a next period.

No-trade regions can widen as rebalancing frequencies increase for the following reason.
With predictable returns, the state changes through time and an inherited portfolio selection,
&, that is inside the no-trade region for one state, can be outside for another. With i.i.d.
returns, there is only one state of the world and so rebalancing does not occur due to changes
in the state.

Table 2 also shows that return predictability causes the widening of no-trade regions to
start later in life, for all cost combinations. As discussed above, this result is consistent with
greater benefits from rebalancing when returns are predictable. Finally, return predictability

also increases the return distance, especially when the fixed cost is high.

A..3 Varying Transaction Costs

Table 2 h;ighlights how most of the reported parameters vary systematically with the propor-
tional cost (¢1) and the fixed cost (¢2). Rebalancing frequency is decreasing in both ¢; and
in ¢,. This result is robust to the age of the investor and the presence of predictability. In
particular, within each 3 by 3 subtable for rebalancing frequency in table 2, the frequencies
decrease going across any row (¢; increasing) or down any column (¢ increasing). This

result is consistent with the intuition that a larger cost per trade (¢; or ¢, bigger) leads to
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fewer trades.

The presence of a small fixed cost has a particularly large impact. With i.i.d. returns,
adding a 0.01% fixed cost to a proportional cost of 0.5% causes rebalancing frequency to
drop from once every 4.7 months to once every 43 months (from 21.17% to 2.32%). With
predictable returns, the rebalancing frequency drops from once every 3.7 months to once
every 11 months (from 27.07% to 8.85%). This fixed cost (0.01%) is an order of magnitude
smaller than the smaller proportional cost (0.5%) that we consider. This fixed cost can have
such a large effect because it is a percentage of entire portfolio value while the proportional
cost is a percentage of the dollar change in risky-asset holding. The entire portfolio value is
typically much larger than the dollar change in risky-asset holding.

Turning to cost incurred, its relation to the cost parameters ¢, and ¢, is more compli-
cated. While cost incurred increases monotonically with ¢; early in life, the same is not true
at the end of the investor’s life. Early in life, the relation between cost incurred and ¢, is
monotonically increasing when ¢, is zero or low, but becomes monotonically decreasing when
#; is high. Late in life, the relation between cost incurred and ¢; is not even monotonic.
The convoluted nature of these relations between total cost incurred and cost per trade is
understandable. While an increase in the cost per trade may be expected to reduce trading
frequency, its impact on total trading cost is ambiguous.

Excessive rebalancing is curbed by widening the no-trade region. Consequently, no-trade
width is increasing in both ¢; and in ¢;. This result is robust to the age of the investor
and the predictability of returns. In particular, within each 3 by 3 subtable for rebalancing
frequency in table 2, the widths increase going across any row (¢, increasing) or down any
column (@ increasing). On the other hand, return distance is increasing in the fixed cost
parameter (¢;), but is insensitive to changes in ¢;. Since the fixed cost must be non-zero for
the return distance to be positive, this finding is not surprising.

Table 2 and Figure 3 show that, for a given distribution (U or C) and time of life, the
no-trade midpoint is unaffected by variation in ¢; or ¢,. Note that the cost to consume out

of either asset is zero across all these specifications. On the other hand, the extent to which
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the average risky-asset holding exceeds the midpoint is monotonically increasing in both ¢
and in ¢,. For a given return distribution (U or C) and time of life (“Early” or “Late”),
average holding less no-trade midpoint increases going across a row (¢ increasing) or down
a column (¢, increasing). The likely reason is that rebalancing occurs less frequently when
transaction costs are high. Since the expected risky asset return exceeds the riskless rate,
less rebalancing is likely to result in larger holdings of the risky asset, holding the no-trade
midpoint constant.

Finally, as described and explained above, the time of widening of the no-trade region is
monotonically decreasing in both ¢; and in ¢;. So bigger costs cause the no-trade region to

start widening earlier.

B. Varying the Investor’s Profile.

Table 3 reports portfolio choice parameters, for a number of different consumer profiles
summarized in Panel B of Table 1 and described in detail in section III. Time-series averages
for “Early” and “Late” in life are reported for an investor facing either the unconditional
(U) or conditional (C) return distribution. The C distribution is the SO return-generating
process which is calibrated to U.S. returns. The investors face cost combination P1F0 with

¢, = 0.5% and no fixed cost.

B..1 Varying Risk Aversion

The “ha” and “si” investors are identical except that the “ha” investor has a risk aversion
coefficient of 7 rather than 4. Parameters for “si” and “ha” are reported in the first two
columns of the “Early” and the “Late” sides of Table 3. The higher risk aversion causes
rebalancing freqency and cost incurred to be higher for the “ha” investor. On the other
hand, average risky-asset holding and the no-trade midpoint are much lower for the “ha”
investor than the “si” investor. When facing the C distribution, the average risky-asset
holding “Early” in life drops from 0.700 for “si” to 0.472 for “ha”.

The higher risk aversion also causes the no-trade width to be smaller. “Early” in life
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facing the C distribution, the no-trade width is 0.176 for the “si” investor, but drops to
0.136 for the “ha” investor. Consistent with rebalancing frequency being higher for “ha”
than “si”, the no-trade region starts widening later for “ha” than “si”.

Several of these results follow from the high-~ investor caring more about the dispersion

of wealth. For example, a narrower no-trade region means a less dispersed portfolio payoft.

Similarly, shifting down the no-trade region also reduces the volatility of the portfolio payoff.

B..2 Adding Death Probabilities prior to a Terminal Date of Age 101

The “pa” and “si” investors differ only to the extent that “pa” has a positive death probability
prior to the terminal date while “si” does not. The death probability at each t for “pa” is
calibrated to match mortality rates for U.S. males with ¢ = 1 corresponding to 80 years and
1 month old and ¢ = 240 corresponding to 101 years old. The “pa” investor is assumed to
die with probability 1 at time ¢ = 240. The third column of Table 3 and Figure 5 report
parameters for “pa”. The main result is that all parameter values are virtually identical to
those obtained for the “si” investor. Positive death probabilities are analogous to lower rates
of time preference, which cause the investor’s time-7 problem (for any given 7 < 239) to be
more like the time-239 problem. Consequently, we expect the ¢ = 1 no-trade width to be
larger, and the widening of the no-trade region to start earlier, for “pa” than “si”. However,
the death probabilities faced by U.S. males in their 80s and 90s are not large enough to

materially alter rebalancing rules.

B..3 Allowing the Investor to Live Beyond Age 101

A furthexl question is to examine rebalancing behaviour between the ages of 81 and 1 month
and 101 but relax the assumption that death is a probability one event upon reaching 101. To
examine this question, the “dl” investor differs from the “pd” investor in that the probability
of death between 101 and 120 is also calibrated to U.S. males (see section III for details).
Table 3 reports portfolio parameters for these two investors averaged over the two year period

starting at age 88 (“Early”) and at age 98 (“Late”). Portfolio parameters for the “Early”
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period are virtually identical for both “pd” and “dl”. However, the “Late” parameters for
«d]” are much more like the “Early” parameter values than like the “Late” values for “pd”.
In fact, the last two rows of Table 3 and Figure 5 indicate that the no-trade widening for
“dI” remains less than 0.05 until ¢ = 454 using U or until ¢ = 458 using C. This result
suggests that the no-trade region only widens close to the time when death is certain. U.S.
investors as old as 100 have annual mortality rates through until 120 that are much lower
than 1. Thus, rebalancing behavior of older investors in the U.S. may optimally not involve

the rapid widening of the no-trade region that we documented above.

B..4 Eliminating Intermediate Consumption

Another interesting question is the effect of intermediate consumption on portfolio choices.
The “nc” and “si” investors whose portfolio paramaters are reported in Table 3 and plotted
in Figure 6, only differ to the extent that “nc” does not care about intermediate consumption.
The top-right graph of Figure 6 shows that the absence of intermediate consumption causes
no-trade regions to widen later in life, irrespective of whether the investor uses the Uor C
distribution. This result is confirmed by the last two rows of Table 3 which show that the
time of no-trade widening is later for “nc” than “si” irrespective of whether the investor uses
U or C. Further, when the investor uses the conditional ditribution, the average risky-asset
holding and no-trade midpoint rise more rapidly for “nc” than “si” as ¢ goes from 239 back
to 1 (see the middle graphs of Figure 6).

The implication is that the presence of intermediate consumption causes the one-period
problem to converge more slowly to the infinite-period problem as ¢ declines from 239. This
finding follows from intermediate consumption causing end-of-period wealth to be a smaller
percentage of current-period wealth, especially as ¢t approaches 239. This reduced importance
of future wealth means that more periods are needed for the multi-period problem to converge
to the infinite-period problem.

Finally, when the investor uses the conditional distribution, the average risky-asset hold-

ing and the no-trade midpoint both rise less in the presence of intermediate consumption.
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The two middle graphs in Figure 6 show that these two parameters are lower at time ¢ =1
for “si” than for “nc”’. To understand why, first note that hedging demand arises because
the investor cares about the future. As mentioned above, consumption lowers future wealth

relative to current wealth, and hence makes the future less important.

B..5 Adding a Cost to Liquidate the Risky Asset

We reported above that the no-trade midpoint is unaffected by the magnitude of either the
fixed or proportional cost parameter. However, this result is likely to be sensitive to the
assumption of costless consumption out of either asset. To explore the impact of relaxing
this assumption, Table 3 and Figure 6 report choice parameters for the “cl” investor who
is the same as the “nc” investor except the “cl” investor pays a proportional cost equal to
¢, = 0.5% to liquidate the risky asset at t = 239. Note that liquidation of the riskless asset
is still costless so a wedge exists between the liquidation costs of the two assets, that may
affect no-trade midpoints as ¢t approaches 239.

Table 3 and especially Figure 6 show that rebalancing behaviour just prior to the terminal
date is very different for the “cl” investor than for the “nc” investor. The clearest illustration
that differential liquidation costs affect rebalancing rules is contained in the bottom two
graphs in Figure 6. These two graphs show the boundaries of the no-trade region for the
“nc” and “cl” investors facing the P1F0 cost structure. The left graph shbws the boundaries
for investories facing the U distribution of SO, while the right graph shows the average
boundaries for investors facing the C distribution. Also plotted in each graph is the risky
asset holding chosen by the investor facing zero transaction and liquidation costs and facing
the relevz;nt distribution. For the “nc” investor, the upper no-trade boundaries moves up
and the bottom boundary moves down as the region widens late in life. On the other hand,
the upper bound for the “cl” investor drops late in life while the bottom boundary drops
lower than that of the “nc” investor. In fact, the upper boundary converges to the no-cost
rebalancing point as ¢ approaches 239. The drops in the two boundaries near the terminal

date make sense since any holding of the risky asset on that date attracts a liquidation cost.
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Thus, reducing the risky asset holding just prior to the terminal date is more attractive and
increasing it is less attractive.

Continuing the comparison of “cl” to “nc”, the increase in rebalancing due to the dropping
upper boundary more than offsets the reduced rebalancing due to the lower bottom boundary.
Table 3 reports that both rebalancing frequency and cost incurred are higher “Late” in life
for “cI” than “nc”. This result holds for both the U and C distribution as the top left graph

in Figure 6 confirms.

C. Varying the Return-generating Process.

Results for a variety of return-generating processes are contained in Table 4 and Figures
7 and 8. The cost combination is P1F0 and the “si” investor makes the decisions. The
return-generating processes are organized, as in Panel C of Table 1, to allow the impact of
each return parameter to be assessed in turn. For each return parameter, up to two sets
of comparisons are available. Within a comparison, the return parameters are chosen to
ensure that the parameters of the unconditional distribution are the same. Table 4 reports
choice parameters “Early” in life for an investor facing the conditional distribution together
with choice parameters when facing the resulting unconditional distribution.?? Figures 7 and
8 report ¢t = 1 no-trade widths plotted as a function of the dividend state for conditional
portfolio choices.?® The investor’s no-trade width when facing the associated unconditional

distribution is also graphed as a flat line and labelled U.

C..1 Varying the Magnitude of the Single-period Return Predictability

The parameter b,o4 controls the magnitude of the single-period predictability. The first

panel of Table 4 contains two comparisons, S0-S1 and S$2-S3, for which all return parameters

22 A5 expected, unconditional portfolio choice parameters within a comparison are almost always the same
across return-generating processes. The only exception is rebalancing frequency which is sometimes higher
as a result of the coarser grid for return when the correlation between return and dividend yield is zero.
Thus, for a given comparision, unconditional parameters are obtained by averaging across the U parameters
for the return-generating processes within the comparison.

231f one of the no-trade boundaries in a state equals 0 or 1, then width in that state is not plotted.
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except b.oq are held fixed. The top left and top right graphs in Figure 7 plot the no-trade
width for the S0-S1 and S2-S3 comparison respectively.

The main result is the increase in no-trade width that accompanies an increase in single-
period predictability, irrespective of whether b, and p,, have data values (as in SO vs. S1)
or have values of zero (as in S2 vs. S3). Table 4 reports an increase in no-trade width from
0.121 to 0.176 going from S1 (b,o4 =0.13%) to SO (b,04 =0.26%) and from 0.261 to 0.398
going from S3 (b,04 =0.26%) to S2 (b,oq = 0.53%).

Figure 3 shows that while the other two return parameters affect the shape of the curve
that plots no-trade width as a function of dividend state, decreasing b.o,4 shifts the curve
down in both comparisons. In particular, the no-trade width for S1 with b,04 = 0.13% drops
below the unconditional width in some states.

As b.o4 increases, conditional single-period volatility decreases because unconditional
volatility remains constant within comparisons. As discussed above, lower return volatility
leads to wider no-trade regions since the cost of a sub-optimal « are lower. This provides one
reason for why no-trade regions are wider when b,04 increases. Another reason stems from
the positive relation between b,04 and the volatility of conditional expected return. This
positive relation means that the absolute difference between expected return next period and
this period is likely to be bigger. Thus, if b,0, increases and no-trade width is held fixed,
it is more likely that this period’s rebalancing will need to be reversed next period due to
a shift in expected return. Instead, no-trade width increases when b,0, increases to reduce
such rebalancing.

The S0-S1 comparison in the first panel of Table 4 also shows that an increase in b,0, when
Pev 18 nom-zero leads to a higher average risky asset holding and a higher no-trade midpoint.
In other words, increasing the magnitude of the single-period predictability magnifies any
hedging demand. Finally, going from S2 to S3, b,.04 decreases and so does the average cost
incurred (from 2.495 to 0.156 basis points). The same is not true going from SO to S1 since
b4 decreases but average cost incurred increases slightly (from 0.854 to 0.897 basis points).

This last result is a little puzzling but is likely due to the non-zero values for b; and pe, in
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SO and S1 comparison versus the zero values in S2 and S3.

C..2 Varying the Persistence of the Predictive Variable

The parameter by controls the persistence of the predictive variable, dividend yield, and we
are interested in how this persistence affects rebalancing behaviour. The second panel of
Table 4 and the middle graph of Figure 7 report results for the S4-S5-S3 comparison which
fixes b.04 and p, and varies by.

With respect to the no-trade width, the across-state averages reported in Table 4 do
not reveal any clear pattern. However, the graph reveals that no-trade width is a very
different function of the dividend state depending on the magnitude of b,. In particular, as
by decreases going from S4 to S5 to S3, we see that the no-trade width goes from being flat
to u-shaped as a function of the dividend state. In other words, as the predictive variable
becomes less persistent, the investor is less inclined to rebalance when confronted with an
exteme value for dividend yield, and so the no-trade region widens for extreme d states.
This disinclination to rebalance is understandable since a less persistent predictive variable
implies that expected return is also less persistent. Consequently, the benefits of rebalancing
in an extreme state are less likely to outweigh the cost since expected return reverts more
quickly to its unconditional value.

Since the S4-S5-S3 comparison sets p,, equal to zero, the investor does not have a hedging
demand and so the no-trade midpoint and average risky-asset holding are similar across
the three return-generating processes and the unconditional i.i.d. process. However, the
persistence of d has a large positive effect on the average cost that the investor incurs.
Going from S3 to S5 to S4 in Table 4, by increases monotonically from 0 to 0.96 while the
average cost incurred also increases monotonically from 0.156 to 0.518 basis points. This
result is not surprising and for the following reason. When conditional expected return is
persistent, the benefit from rebalancing is more likely to exceed the associated transaction

cost and so the investor optimally spends more on transaction costs.
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C..3 Varying the Contemporaneous Correlation between Return and the Pre-

dictive Variable

For the investor to be able to hedge against future predictability, p., must be non-zero.
Thus, pey is referred to as the hedgeability parameter. The third panel of Table 4 and the
bottom two graphs in Figure 7 contains choice parameters for two comparisons, S0-54-56
and S7-S8-S9. Within each comparison, the only return parameter that is varying is pey.

The average no-trade width does not sytematically vary with p,, since the nature of the
relation is different across the two comparisons. This result is surprising since the sign of
pey determines the sign of the return autocorrelation. Turning to the graphs in Figure 7,
we see that the sign of p,, impacts the relation between no-trade width and dividend state.
The shape of the relation differs across the two graphs due to the different values for by in
each comparison. However, in both graphs, a large positive p., produces no-trade regions
that are wider for high d states and lower for low d states than those produced by a large
negative pgy.

With respect to these results, a couple of comments are in order. Intuition that negative
autocorrelation in (&; — a;_) leads to wider no-trade regions does not apply here. That
intuition is built around the autocorrelation in (& — a;—1) determining the direction and
magnitude of the relation between E[d:+1 — 04|G; and no time-t rebalance] and &;. So if the
autocorrelation is negative and &; is extreme, then &4, is expected to be less extreme, and
the need to rebalance is less urgent. However, here d; is known to the investor facing the
conditional distribution, and d; determines the expected ¢ + 1 return at ¢ through b,. So if
dy is known at ¢, p., has no impact on Elris1]t]. Since ryy1 determines Gyy1 — o, it follows
that E[d;ﬂ ~ oy|dy) is unaffected by oy or p., and so the earlier intuition fails.

Instead, the mechanism by which p,, affects no-trade width seems much more complex.
In particular, p,, determines the covariance of r;; with d4+, conditioning on d;. Expected
Tero at t+ 1 depends on di1; and, for a given o, 7,41 determines &.41. Thus, pe, is going to
determine the extent to which the ¢+ 1-shock to &;,; moves with the ¢+ 1-shock to expected

Te+2. Now the investor is more willing to rebalance at t if, in the absence of such rebalancing,
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a similar rebalancing is likely to be attractive at ¢ + 1. However, knowing the correlation of
the ¢t + 1 shocks is not enough to determine whether such a rebalancing is more attractive at
t + 1. Rather, the attractiveness of such a rebalancing at ¢t + 1 also depends on the expected
levels of ;41 and E[ry2|t + 1] given d;.

Further work is needed to better understand exactly how p,, affects no-trade region.
However, our work suggests that the wider no-trade region for the conditional SO investor,
relative to the U investor, is not being driven by the negative p,, for the SO process. Instead,
the magnitude of the single-period predictability (b.04) is the return parameter having the
biggest effect on the average no-trade region across states. In fact, S1, which has a low b,
value and a negative p., equal to the data pe,, is the only process with no-trade widths that
are below the unconditional no-trade width in some states.

A final note concerns the relation between the hedgeability parameter and two choice
parameters: average risky-asset holding and no-trade midpoint. Both these parameters are
monotonically decreasing in p,, for both the S0-S4-S6 and S7-S8-S9 comparisons. Thus,
hedging demand is positive when p,, is negative, as it is in the data, and negative when pe,
is positive. Earlier studies without transaction costs also found a positive hedging demand
when return is negatively correlated with expected future return and the CRRA investor has
a risk aversion coefficient greater than 1.2* Thus, the presence of transaction costs appears

to have little effect on the direction of hedging demand.

C..4 Allowing the Risky-asset Return to Exhibit Heteroscedasticity

The final panel of Table 4 and Figure 8 report results for return-generating processes that
allow returns to exhibit heteroscedasticity. As (; increases going from H2 to H1 to HO, the
positive slope for conditional volatility as a linear function of conditional mean is becoming
larger. The results in Table 4 which are averaged across states reveal no systematic patterns

going from H2 to H1 to HO. This is not surprising since the unconditional volatility of the

24Gee Barberis (1996), Campbell and Viceira (1996), Brennan, Lagnado and Schwartz (1996) and Kim
and Omberg (1996)).
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return residual (e) is the same across the three processes. In contrast, the plots of no-trade
width and no-trade midpoint as functions of the state in Figure 8 vary systematically going
from SO (no heteroscedasticity) to H2 to H1 to H0.?

As discussed above, the cost of a sub-optimal « is increasing in the conditional return
volatility. This reasoning implies that no-trade width is decreasing in conditional return
volatility across states. Thus, we expect the slope of the no-trade width as a function of the
state to become less positive going from SO to H2 to H1 to HO since ¢ 1s increasing going
across those states. The left graph of Figure 8 confirms this result.

Since ours is the first paper to consider the effect of return heteroscedasticity on portfolio
choice in a multiperiod setting, we also report no-trade midpoint by state in the right graph
of Figure 8. As (; increases, the slope of the conditional Sharpe ratio as a function of the
state becomes less positive or more negative. This implies that the slope of the no-trade
midpoint as a function of the state decreases going from S0 to H2 to H1 to HO. Again, the
right graph of Figure 8 confirms this result except perhaps for extreme dividend states. In
fact, conditional volatility in HO increases so rapidly as a function of the conditional mean
that the no-trade midpoint is a negative function at all but the extreme states. Thus, return

heteroscedasticity can potentially have a big impact on rebalancing behavior.

V. Conclusions

Transaction costs and return predictability are realistic features of the environment facing a
U.S. investor or mutual fund. How these two jointly affect portfolio choices by entities with
long horizons is not well understood. This paper considers the impact of transaction costs
on the portfolio decisions of a long-lived agent with isoelastic preferences. A particular focus
is how portfolio choice and rebalancing frequency change over the lifecycle and are affected
by return predictability. Two types of costs are evaluated: proportional to the change in the

holding of the risky asset and a fized fraction of portfolio value.

25Recall that conditional mean return in each state is held constant across return generating processes by
construction.
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We find that realistic transaction costs can materially affect rebalancing behavior, creat-
ing no-trade regions that widen near the investor’s terminal date. At the same time, realistic
proportional and fixed costs have little effect on the midpoint of the no-trade region, unless
liquidation costs differ across assets. Return predictability calibrated to U.S. stock returns is
found to have large effects on rebalancing behaviour relative to independent and identically
distributed (i.i.d.) returns with the same unconditional distribution. For example, return
predictability causes rebalancing frequency to increase, and cost incurred to increase by an
order of magnitude, at all points in the investor’s life. No-trade regions are wider early in
life when returns are predictable. Finally, we find that the nature of the return predictabil-
ity, including the presence of return heteroscedasticity, can have large effects on rebalancing
behavior.

The paper’s results have a number of implications. First, assessments of the impact of
transaction costs on the joint distribution of consumption and asset returns are likely to be
sensitive to whether returns are allowed to be predictable. Thus, the ability of transaction
costs to explain all or part of the equity premium puzzle may be sensitive to the assumed level
of return predictability. More work is needed to assess the importance of return predictability
for explanations of the observed equity premium that rely on transaction costs.

Second, our results on rebalancing frequencies have implications for existing studies
(He and Modest (1995) and Luttmer (1996a)) documenting how proportional transaction
costs weaken Hansen-Jagannathan bounds on intertemporal marginal rates of substitution
(IMRSs). When investors face a proportional cost of 50 basis points to trade equity, our
results for realistic predictability suggest that these weaker bounds can be informative for
data frequencies as high as a third of a year. Third, the short horizon of mutual fund man-
agers has the advantage that an overconfident manager churns less. Finally, Samuelson’s
(1969) result that optimal portfolio choices remain constant over an investor’s lifetime when
the opportunity set is constant, breaks down in the presence of transaction costs.

A number of extensions are feasible aﬁd of interest. The current paper has only two assets

and two types of transaction costs. Extending the framework to consider portfolio choice
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with multiple assets and a variety of cost structures would be interesting. The techniques
in this paper could also be used to consider portfolio choices by fund managers given the
compensation functions that they face. Finally, the framework could be extended to assess
the value of a piece of information, and how to rebalance a porfolio given that information,

in a setting with transaction costs.
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Table 1. Return-generating Processes, Transaction Costs, and Investor Profiles

The investor problem described in Section I is solved numerically for a variety of return-generating
processes, transaction costs, and investor profiles which are described below. Panel A lists the combinations

of proportional (¢,) and fixed (¢,) cost parameters that the investor faces. The parameters¢o, and @, are

defined in equation (7). Panel B characterizes the various investor profiles that we consider. For the “pd”
and “dl” profiles, t=1 is taken to be age 81 and 1 month when using CAM-94 to obtain death probabilities:
details are in section II. Panel C lists statistics for the various retum-generating processes considered and
for U.S. equity return. The return-generating processes are organized to facilitate comparative-static analysis

for each return parameter: the magnitude of the single-period predictability (bg, ), the persistence of the

predictability (by), the hedgeability parameter p, and the heteroscedasticity parameter (§). Retum-

generating processes are obtained using the quadrature procedure described in Section II.

Panel A: Transaction Cost Setfing

Transaction Cost Setting POFO ~ POF1  POF2  PIFO  PIF1  PlF2 P2F0  P2F1  P2F2
Proportional(p,) 0% 0% 0% 05% 05% 035% 235% 25% 2.5%
Fixed(9,) 0% 0.01% 0.1% 0% 0.01% 0.1% 0% 0.01% 0.1%
Panel B: Investor Profiles
Profile Description of Investor { Prob of Early Time of Intermediate Cost to Consume
Death Death Consump. from Risky (@)
si Standard 4 0 240 Yes 0
ha High Risk Aversion 7 0 240 Yes 0
pd Positive Death Prob. 4 CAM-9%4 240 Yes 0
d1 Die Later 4 CAM-9%4 468 Yes 0
nc No Intermediate Consumption 4 0 240 No 0
cl Costly Risky Liquidation 4 0 240 No o}
Panel C: Return-generating Processes
Parameter Process o, x 100 b, 6, x100 by Dev £,x 100
Being Varied | Data 5.510 0.310 0.972 -0.925 1.358
b, 0 % T T T4l T T o0 0se w3 o |
S1 5.445 0.130 0.962 -0.923 0
S2 5.507 0.527 0 0 0
S3 5.507 0.264 0 0 0
(bs | ST T T T ss0r T T ose0 0% o o ]
S5 5.507 0.260 0.386 0 0
S3 5.507 0.264 0 0 0
T T T[S T T T T sass T 0ds0 0962 | 0923 “o T T T
S4 5.443 0.260 0.962 0 0
S6 5.507 0.260 0.962 0.923 0
S7 4819 0.132 0 -0.900 0
S8 4.819 0.132 0 0 0
59 4318 0.132 0 0.900 0
| M T T T Sam 0260 0% w0904 1279 |
H1 5.443 0.260 0.962 -0.923 0.569
H2 5.432 0.260 0.962 -0.919 0.110




Table 2. Portfolio Choice Parameters as Transaction Costs Vary.

U.S. equity return is discretized using the quadrature procedure described in Section II to give the return-
generating process SO in Panel C of Table 1. The riskfree rate is assumed constant. The investor profile is
“si” which is characterized in Table 1. Nine transaction cost settings are considered, corresponding to the nine
settings in Panel A of Table 1. The width of the no-trade region, the midpoint of the no-trade region, and the
average return distance at a point in time t are obtained by averaging across states using the steady state
distribution. Rebalancing frequency, average cost incurred per month and average holding of the risky asset
are obtained by simulation of the investor’s portfolio choices. Both the solution technique used to solve the
investor’s problem and details of the simulation are contained in Section III. Parameters for both
unconditional (U) and conditional (C) portfolio choices are reported. The portfolio choice parameters are
averaged over two periods in an investor’s life: “Early” refers to the 2-year period from t=96 to t=119; and
“Late” refers the 2-year period from t=216 to t=239.The table also reports the first time that the width of the
no-trade region changes by more than 0.05 relative to time t=1.

Cost Proportional

Fixed Plo Plo Pl o P ® | P|o P o

F | o, 0l0% |1]05% [2]25% [0 [o% |[1]05% [2]25%

Early Late

Rebalancing | U |0 | 0% 100.00 21.17 14.70 | 100.00 8.30 0.13
5;3‘1“5“@ 1]0.01% 3.06 232 1.71 2.14 0.69 0.00

2 10.1% 132 111 0.72 0.25 0.09 0.00

c lo{o% 100.00 27.07 16.03 | 100.00 21.12 5.26

110.01% 15.03 8.85 4.65 13.72 6.36 171

21 0.1% 5.29 3.96 231 4.62 2.86 0.93
Average Cost | U |0 | 0% 0.000 0.096 0.309 0.000 0.037 0.002
i’/}g‘;léfdper 11]001% {0.031 0.106 0.300 0.021 0.030 0.000
(basis points 2 101% |o0.132 0.182 0.280 0.025 0.016 0.000
ofportfolio | C [0 | 0% 0.000 0.854 1612 0.000 0.702 1.063
value ) 1]001% |o.150 0.898 1576 0.137 0.700 1.036

2 101% |0529 1.098 1.524 0.462 0.830 0.995
Average U lo]o% 0.562 0576~ 0.604 0.562 0.584 0.646
Holding 1| 0.01% 0.574 0.586 0.611 0.571 0.593 0.654

2 [ 0.1% 0.580 0.593 0.616 0.596 0.617 0.672

c |o]o% 0.673 0.700 0.742 0.693 0.602 0.660

1]0.01% 0.685 0.703 0.745 0.587 0.608 0.666

2 10.1% 0.701 0.712 0.755 0.609 0.627 0.680
Midpointof | U [0 | 0% 0.562 0.563 0.562 0.562 0.562 0.543
No-trade 1]001% |o0.570 0.570 0.562 0.560 0.559 0.540
Region (No-
trade 2 [01% o560 0.560 0.559 0.562 0.555 0.532
Midpoint) C |0 |0% 0.673 0.690 0.699 0.693 0.580 0.558

1]001% |o0.681 0.684 0.691 0.581 0.575 0.552

2 [01% 0676 0.677 0.678 0.576 0.568 0.540




Table 2. cont.

Cost Proportional
Fixed P| o P | o Pl o P | o P| @ o}
F | o, 0] 0% 05% | 2]25% |0]0% |1]05% 2.5%
Early Late
Width of No- 0 | 0% 0.000 0.092 0.188 0.000 0.217 0.690
trade Region 1]0.01% 0.140 0.180 0.276 0.172 0.348 0.762
gfc{g?de 210.1% 0.240 0.280 0352 0.407 0.562 0.875
0 | 0% 0.000 0.176 0.349 0.000 0.264 0.726
1 ]0.01% 0.197 0.295 0.452 0.204 0.403 0.802
2 10.1% 0.376 0.409 0.542 0.455 0.603 0.902
Distance 0 | 0% 0.000 0.000 0.000
;Ztlvlv;;lﬁes 11]001% |0.070 0.059 0.058
ond Return 2 [01% o120 0.124 0.114
Points 0| 0% 0.000 0.000 0.000
g:t“alnncle) 1 [001% loo0ss 0079 0070
2 101% |0.188 0.172 0.165
Time of Widening of No-trade
Region
0| 0% 239 227 190
1] 0.01% 235 221 182
210.1% 217 212 173
0| 0% 239 231 192
1]0.01% 238 230 190
2 | 0.1% 229 220 182
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Table 4. Portfolio Choice Parameters as the Return-generating Process Varies.

U.S. equity return is discretized using the quadrature procedure described in Section II and the riskfree rate
is assumed constant. The investor profile is “si” and the transaction cost setting is P1F0, and both are
characterized in Table 1. Twelve return-generating processes for the risky asset are considered,
corresponding to the twelve processes in Panel C of Table 1. The retun-generating processes are organized
to facilitate comparative-static analysis for each return parameter: the magnitude of the single-period
predictability (b, o4 ), the persistence of the predictability (by), the hedgeability parameterp,,, and the
heteroscedasticity parameter ((;). The retumn-generating processes within each comparison have the same
unconditional means and volatilities. Average cost incurred per month and average holding of the risky asset
are obtained by simulation of the investor’s portfolio choices. Both the solution technique used to solve the
investor’s problem and details of the simulation are contained in Section III. Parameters for conditional and
unconditional (U) portfolio choices are reported. The portfolio choice parameters are averaged over the 2-
year period from t=96 to t=119 which is denoted “Early” in the other tables. Average costincurred per month
is expressed in basis points of portfolio value.

Return Parameter being Varied Process
by =0.96; p,=-0.92; {;=0 | SO (b,04=0.26%) S1 (b,6:0.13%) | U (6,=5.5%)

%05 | Av. Cost/mth (bp) 0854 | 0.897 0.096
Av. Risky Holding 0.700 | | 0.638 0.576
No-trade Midpoint 0.690 | | 0.625 0.562
No-trade Width 0.176 0.121 0.092
by =0; p.,=0; ;=0 S2 (b,64=0.53%) 53 (b,6,=0.26%) | U (6;=5.5%)
Av. Cost/mth (bp) 2.495 | | 0.156 0.099
Av. Risky Holding 0.555 | | 0.560 0.569
No-trade Midpoint 0.546 | | 0.553 0.557
No-trade Width 0.398 0.261 0.087
b,6,=0.26%; p,=0; {;=0 | S4 (b=0.96) S5 (b=0.32) S3 (b=0) U (6=5.5%)

% | Av. Cost/mth (bp) . 0.518 0371 0.156 0.100
Av. Risky Holding 0.553 | 0.555 | 0.560 0.569
No-trade Midpoint 0.549 | 0.552 | 0.553 0.557
No-trade Width 0.180 0.270 0.261 0.086
b,6, =0.26%; b;=0.96; {;=0 | SO (p,=-0.92) S4 (p., =0) S6 (p.,=0.92) U (6,=5.5%)

P~ | Av. Cost/mth (bp) 0854 0518 1.749 0.097
Av. Risky Holding 0.700 | 0.553 | 0.478 0.574
No-trade Midpoint 0.690 | 0549 | 0.472 0.561
No-trade Width 0.176 0.180 0.197 0.090
b,64=0.13%,; b=0; {;=0 S7 (p.,=-0.90) S8 (p., =0) S9 (p.,=0.90) U (6=4.8%)
Av. Cost/mth (bp) 0.068 | 0.077 | 0.075 0.066
Av. Risky Holding 0.724 | 0.695 | 0.674 0.699
No-trade Midpoint 0.704 | 0.683 | 0.664 0.682
No-trade Width 0.202 0.187 0.176 0.090
b,0, =0.26%; b,=0.96; HO ({,=1.28%) H1 ({,=0.57%) |H2 ({,=0.11%)

¢, Pe,=-0.92
Av. Cost/mth (bp) 0.836 ! 0.808 l 0.837
Av. Risky Holding 0.684 I 0.682 I 0.693
No-trade Midpoint 0.673 | 0.668 | 0.685
No-trade Width 0.141 1 0.141 | 0.171
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Figure 1. Average Rebalancing Frequency: Unconditional vs Conditional Portfolio Choices.

Average rebalancing frequency is plotted for the standard investor, si, (CRRA utility,p = 1/R; y = 4, intermediate
consumption) facing return-generating process SO (quadrature approximation to U.S. data) and making unconditional (U)
and conditional (C) portfolio choices. The investor problem is described in Section I while section II describes the

quadrature approximation.
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Figure 2. Average Monthly Cost per $ of Portfolio Value: Unconditional vs Conditional Choices.

The average incurred cost per month is plotted for the standard investor, si,

(CRRA utility, B = 1/R;, y = 4, intermediate

consumption) facing retumn-generating process S0 (quadrature approximation to U.S. data) and making unconditional (U)

and conditional (C) portfolio choices. The investor problem is described in Section I
quadrature approximation.

while section II describes the



Nio—trade Width for ox,
= .
-
=+
=+ U
= - —
f\_
=
Rl
=
s w
ES e o
< L
=)
~
g S
~ | 7
O ae— —_— — — — — — —be ——— o— —_— ——— —_— — — — —_— e — ——
;_
= s . : . ,
= o a0 80 120 1680 200 240
t
Setting P1F0 (Proportional Cost Only): ¢,=0.003, ¢,=0.
No—tradse Width and Returmn Distamnce for o
= -
g_ N—T: U
o —_——— Ret: U
g— — — N-=T: C
- —— Reaet: C
—
=+
QD_
=)
e Yo
= S
T
=rF
~—
=+
g._—.____A_-—————*———_—_-—k——--——-__A—-—~——*—ﬁ___/
— L . . N J/
S . . T . - T - T T - - =T T T 7
=3 —
< o a0 80 120 180 200 240
t
Setting POF | (Fixed Cost Only): ¢,=0, ¢,=0. 0001.
No—trade Width and Returmn Distance for oy
=~
g—— — N—T U
o -—— Ret: U
g—- - — N-=T: C
o ——— Reaet: C
—
=+
=)
el
—_— I.f)—
= =
-
oj /
g.r— —_— e —~ — — —_— | — —— —— A -_— —_—_ i —_— — = —
~L
[~}
St -~ "’
= . -
< o a0 80 120 1680 200 240
t

Setting P1F1 (Proportional and Fixed Costs): ¢,=0.003, ¢,=0.0001.

Figure 3. No-trade Width and Return Distance: Unconditional vs Conditional Portfolio Choices.
The width of the no-trade region (N-T) and the average return distance (Ret) are plotted for the standard investor, si,
(CRRA utility, B = 1/R,, y =4, intermediate consumption) facing return-generating process SO (quadrature approximation
to U.S. data) and making unconditional (U) and conditional (C) portfolio choices. The investor problem is described in
Section I while section II describes the quadrature approximation.
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Figure 4. Average Risky Asset Holding and the No-trade Midpoint: Unconditional vs Conditional Choices.
The average holding of the risky asset and the midpoint of the no-trade region are plotted for the standard investor, si,
(CRRA utility, f = 1/R,, y =4, intermediate consumption) facing return-generating process SO (quadrature approximation
to U.S. data) and making unconditional (U) and conditional (C) portfolio choices. The investor problem is described in
Section I while section II describes the quadrature approximation.
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Figure 5. Portfolio Choice Parameters: Impact of a Positive Death Probability.

Portfolio choice parameters are plotted for three investor profiles described in Table 1: standard “si” (CRRA utility, p =
1/R;, y = 4, intermediate consumption); “pd™; and, “d1”. The transaction cost setting is P1F0 from Table 1: no fixed cost
and proportional cost (p;) set equal to 0.5%. The “pd” and “si” investors are the same except “pd” faces death
probabilities comparable to those for a U.S. man who is 81 years and 1 month old at t=1. The “dl” and “pd” investors only
differ in one respect: “pd” dies upon reaching 101 years or t=240, while “d]” faces death probabilities comparable to those
for a U.S. man through until 120 years or t=468. The investors face the return-generating process SO (quadrature
approximation to U.S. data) and make unconditional (U) and conditional (C) portfolio choices. The investor problem is
described in Section I while section II describes the quadrature approximation.
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Figure 6. Portfolio Choice Parameters: Impact of Intermediate Consumption and Liquidation Costs.
Portfolio choice parameters are plotted for three investor profiles described in Table 1: standard “si” (CRRA utilityP =
I/R;, vy = 4, intermediate consumption); “nc”; and, “cl”. The transaction cost setting is P1FO from Table 1: no fixed cost
and proportional cost (¢,) set equal to 0.5%. The “nc” and “si” investors are the same except “nc” has intermediate
consumption, while “cl” and “nc” only differ in one respect: the cost of liquidating the risky asset is 0.5% for “cI” vs. 0%
for “nc”. The investors face the return-generating process SO (quadrature approximation to U.S. data) and make
unconditional (U) and conditional (C) portfolio choices. The investor problem is described in Section I while section Il
describes the quadrature approximation.
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Figure 7. Width of No-trade Region by State at t=1: Varying Return Parameters.
The width of the no-trade region is plotted by state at t=1for the standard “si” investor (CRRA utility = /R, y = 4,
intermediate consumption) making conditional and unconditional (U) portfolio choices. The transaction cost setting is
P1F0 from Table 1: no fixed cost and proportional cost (¢,) set equal to 0.5%. Parameters of the return-gencrating
processes are summarized in Panel C of Table 1 while section II describes the quadrature approximation. The graphs are
organized to facilitate comparative-static analysis for each retum parameter: the magnitude of the single-period
predictability (b, o4), the persistence of the predictability (b,), the hedgeability parametep.,, and the heteroscedasticity
parameter (). The value of the parameter being varied is in brackets for each process. The investor’s problem is
described in section L
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Figure 8. Width and Midpoint of No-trade Region at t=1 by State with Conditional Choices: Introducing
Heteroscedasticity.

The width and midpoint of the no-trade region for t=1 are plotted by state for the standard “si” investor (CRRA utility,
B = 1/R, y =4, intermediate consumption) making conditional portfolio choices. The transaction cost setting is P1FO from
Table 1: no fixed cost and proportional cost (@;) set equal to 0.5%. Parameters of the four return-generating processes are
summarized in Panel C of Table 1 while section III describes the quadrature approximation. The heteroscedasticity.
parameter, {;, which measures the extent to which conditional volatility varies with condition mean, ranges from 0 to high
moving across retum-generating processes: S0 to H2 to H1to HO. The value off is in brackets for each process. Details
of the calculation of ¢, are contained in section II while the investor’s problem is described in section L.



