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1 Introduction

This paper studies the link between the targeting activity of the overnight fed funds rate
on the part of the Federal Reserve, and the time-series properties of short-term interbank
rates. While the relation between the overnight fed funds rate and bank reserves or other
monetary aggregates have been extensively investigated [see, for example, Bernanke and
Blinder (1992)), the effects of interest rate targeting on the behavior of short-term rates seem
somewhat neglected. Important exceptions include Cook and Hahn (1989), who look at the
reaction of government-bond rates to target changes, and Simon (1990), who concentrates
on tests of the expectations-hypothesis relation between overnight fed funds rates and three-
month Treasury-bill rates.

One crucial piece of information to our analysis is the daily series of overnight fed funds
rate targets set by the Federal Reserve or, more precisely, the “indications of the fed funds
rate expected to be consistent with the degree of reserve pressure specified by the Federal
Open Market Committee (Federal Reserve Bank of New York).” This series is from the
Federal Reserve Bank of New York, and was used in the related paper by Balduzzi, Bertola,
and Foresi (1993) to investigate the implications of targeting procedures for the performance
of the expectations hypothesis.

The top panel of Figure 1 displays the overnight fed funds rate and the target, while
the bottom panel shows the one-, two-, and three-month term fed funds rates. The sample
period goes from January 3, 1985, to December 31, 1991. (Details on the data are presented
in Appendix A.)

It is apparent from the figure that the overnight rate quickly reverts to a target which,
in turn, is highly persistent. Hence, we may model the overnight rate as the sum of two
components: a random-walk-like target, and a mean-reverting deviation from the target.'

In turn, if we take an expectations-hypothesis view of the term structure, longer-maturity
rates should be averages of expected future overnight rates. As the maturity of the contract
increases, the more time is given (in expectation) to the overnight rate to revert to the
expected future target (which equals the current one). As a result, short-term rates should
be “close” to the target, the more so, the longer the maturity.

Consider, however, the autocovariance functions of spreads of overnight-, one-, two-, and
three-month rates from the target which are shown in Figure 2. Overnight spreads are
quite volatile about the target, with a standard deviation of 29 basis points, but short-
lived. Surprisingly, though, one-, two-, and three-month spreads are also quite volatile, with
standard deviations of about 30 basis points, and quite long-lived. Moreover, both volatility
and persistence increase with maturity (except for an inversion of such ordering between the

_ The notion that interest rate targeting induces a random-walk-like behavior in short-term rates has
been discussed, for example, by Mankiw and Miron (1986). This is also an assumption used in popular
“abitrage-free” models of the term structure, such as Ho and Lee (1986).



Overnight Fed Funds Rate and Target

s — Overnight Fed Funds
Fed Funds Target

85 86 87 88 89 90 a1 92

Term Fed Funds Rates

~ N N
85 86 87 88 89 90 91 92

Figure 1: Fed fund rates

one- and the two-month term fed funds rates, at very short lags).

This paper develops a simple expectations-hypothesis model of the term structure that
accounts for the stylized facts above. We formalize the notion that ¢) the Federal Reserve
targets the overnight rate, ii) target changes are predictable. As a result, two factors drive
short-term rate spreads: the current deviation of the overnight rate from the target, and
expectations of future target changes. The first factor is quickly mean reverting, and its
relevance decreases with the maturity of the instrument. The second factor, on the other
hand, is persistent, and its relevance increases with maturity, thus making longer-maturity
spreads more volatile and persistent.

The paper is organized as follows: Section (2) presents the term-structure model and
studies its implications for the time-series properties of spreads of different maturities; in
Section (3) we amend the model to account for the biweekly pattern in overnight rates, and
we produce theoretical autocovariance functions for spreads of different maturity.
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Figure 2: Empirical autocovariance of fed fund rates
2 Interest rate targeting and the term structure

This section develops a model of the term structure of interest rates which explicitly incor-
porates persistent expectations of future changes in the target.

2.1 A term-structure model

Our analysis draws on the term-structure model of Balduzzi, Bertola, and Foresi (1993) which
emphasizes the role of interest rate targeting. We model the fluctuations of the overnight
rate around the target as reverting towards a zero mean

re— 7 = (1 — k)(re—a — Fio1) + €, (1)



where ¢, is a white-noise error with standard deviation o, and 0 < k£ < 1 is a given constant.
The overnight rate is more tightly targeted the higher the mean-reversion parameter & and
the smaller o.

As to the behavior of the target, we argue the following: Target changes are not influenced
by the temporary deviations of the overnight rate from the target. Moreover, the Federal
Reserve typically revises the target by small increments, so as not to “whipsaw” the market;
when a sizable change in the target is required, several small changes in the same direction
are implemented. This gives rise to positive serial correlation in target changes that we
model as follows:

AFN: =p AFNt—l + €Nn (2)

where N, denotes the number of target changes between time zero and time ¢, 0 < p <1
regulates the serial correlation in target changes, and £y, is a mean-zero, serially uncorrelated
error independent from ¢;. The absence of an intercept term in (2) implies the unconditional
average of target changes to have mean zero. Note that equation (2) holds only as an
approximation, since target changes take place by discrete amounts, typically a multiple of
12.5 basis points.

We denote with z; the time-t market expectation of the next target change, formed at the
end of day t. Between target changes, the expectation of the next target change 1s revised
according to the daily flow of new information. On the day of a target change z; relates to
the realized target change through the parameter p. We formalize this behavior as follows

5= ] A1 +(;, 1if there is no target change at ¢,
¢ pAT; + (i, if there is a target change at ¢,

where (; is a mean-zero serially uncorrelated error, independent from e, with standard
deviation oy.

On the day of a target change the market already accumulates information on the fol-
lowing target change. This assumption is consistent with the timing of the data used in
the following Section (3) which are 5p.m. closing quotes: on the day of the target change
we observe interest rates which incorporate the target-change event, as well as additional
information concerning the nezt target change.

The probability v of a target change taking place on any given day is assumed to be
constant. Hence, the probability distribution of the number of target changes, n, over s

periods is given by
s . §—n
( n ) vl —v) ™.

Note that our assumptions on the behavior of A7, imply that 7, is nonstationary. Such
nonstationarity should not be taken literarily, but can be viewed as an approximation of the
behavior of the overnight target over short periods of time.
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Finally, we assume the interest rate of maturity 7, R(r), to satisty
= B r
Rir) = 3 Bdressd,
s=0 T
a pure expectations-hypothesis model of the term structure of interest rates.

Under these hypotheses, interest rates are linear in the two factors z and (re — 7¢) (see
Appendix B for details)

Ry(7) = 7 + Lrr (1) (re = 72) + Lz (7)1, (3)
with factor loadings
1-(1—k)
L'rt—Ft(T) = kT ’ (4)

and

L = 1S [5 (0 )ra-nmr] )

7 s=1 Ln=1

The factor loadings (5) and (4) depend on the features of interest rate targeting. An
increase in targeting intensity affects negatively Lr,_7(7): as k increases, the overnight rate
reverts more quickly to the target, making current spreads less relevant for future overnight
rates, and hence for current short-term rates as well. More important for our main point,
the longer the maturity, the smaller the factor loading L —7 (7).

The factor loading L., (7) increases when target changes become more frequent (higher v),
and hence future target changes are more likely. More persistence in target changes (higher
p) increases L, (T): current expectations of the next target change have higher “information
content” as to the subsequent ones. Unlike L,,_7 (1), Lz (7) is increasing in 7: the longer
the maturity, the higher the chance that the target will change before the maturity of the
instrument, and the more relevant the current expectation z; in determining average interest
rates before maturity. This feature is crucial for our model to replicate the ranking of
autocovariance functions observed in Figure 2.

2.2 Time-series properties of spreads

We now investigate the time-series properties of the spreads of interest rates of different
maturity from the target.

If contemporaneous and lagged overnight spreads do not influence the Federal Reserve’s
decision to revise the target, they should also be irrelevant to market participants’ revision
of z,. Thus, the assumed orthogonality of the two processes AT and r; — 7; implies that z; is
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orthogonal to r; — 7;. Based on equation (3) we can then write the autocovariance function
of the maturity-7 spread, Cov [Ry4s(7) — Fi4s, Ri(7) — 74} , which represents the main object
of interest of this paper. We have

Cov [Rt+s(7') - 7_"t+s, Rt(T) — ft] = L,,-t_,,-t(T)z COV(TH_S - 'Ft+s, Tt — ft) + th(T)2 COV(ZH.S, Zt). (6)

As we discussed above, longer-maturity spreads attach a larger weight to the expected-
target-change factor z. Hence, they inherit the time series properties of the former to a
larger extent than shorter-maturity rates.

For given factor loadings, L,,(7) and L,,_7(7), the autocovariance functions in (6) depend
on the autocovariances of z; and r; — 7; which we calculate in the following.

Autocovariance function of ry — 7y

The autocovariance of r, — 7; is simply that of an AR(1) process,

Cov(Tips — Toqs, Tt — T¢) =

(1 - k)'o?
TP ()

which decreases with the targeting intensity k£ at any number of lags.

Autocovariance function of z;

For simplicity, consider first the case of p = 0, that is no autocorrelation in target changes:

g = B + 351 G4, if there is no target change at ¢,
BT T80 Ceni if there is a target change at t,

where (; denotes a serially independent mean-zero error, with constant variance ag. The
unconditional autocovariance of z; is, by the law of total probabilities, Cov(zi4s,2:) = (1 —
v)*Var(z;). To calculate Var(z;), note that the innovations (; are serially independent and
cumulate only from the time of the last target change. Conditional on the last target change
having occurred at time t*, Var(z;|last target change at ¢*) = (¢ — t* 4+ 1)oZ, and therefore
the unconditional variance is Var(z;) = 102, (1 — v)*(s + 1)of = (1/v)0}.

When target changes are autocorrelated, the expectation series {z;} takes such autocor-
relation into account:

L. =4 at 25=1 Cids if there is no target change at ¢,
"7 p(zec1 4 me) + o Ciag, 1 there is a target change at ¢,

where 7, is an expectational error defined as ; = A7, — 2.1 which is realized only when a
target change is implemented. In Appendix C we show that the autocovariance function of



z; equals

s 2.2 2
COV(ZH_S,Zt) _ Z < ] ) l/n(l _ V)s—npnp_(j._l+—ad_li, (8)

n=0 n 1_p2

where o2 denotes the variance of 7;.

Note that a higher correlation in target changes (p) increases the variance and persistence
of z;. On the other hand, when target changes become more frequent (higher v) the variability
and average persistence of z; decreases: a higher number of target changes means that z; is
more often reset close to A7;, which in turn reverts to zero across target-change events [see
equation (2)].

Moreover, the parameters characterizing the information-acquisition process also affect
the time-series properties of z. A higher variance of {; increases the variance and the
persistence of z;. As the market’s expectations on the next target change become less
accurate (higher ,), the variability and persistence of 2; also increases.

Substituting (8) and (7) into (6) yields an explicit expression for the theoretical autoco-
variance function of spreads from the target.

3 Empirical analysis

This section extends the model illustrated above to account for the marked biweekly pattern
in the overnight fed funds rate, and produces theoretical autocovariance functions for spreads
of different maturities.

3.1 A term-structure model with biweekly effects

The autocovariance functions of Figure 2 show a marked biweekly pattern in overnight
spreads and, to a lesser extent, in one-month spreads as well. Hence, we proceed to incor-
porate such biweekly effects into our term-structure model.?

We modify equation (1) along the lines in Balduzzi, Bertola, and Foresi (1993) and assume
re — 7y = dy + (1 — ke)(re—1 — Fem1 — di1) + €, (1)

where d; = dy410 is a time-varying intercept which captures changes in the central tendency
of r, over the maintenance period. Similarly, we allow for a time-varying mean-reversion
parameter k, = kiy10 and a time-varying standard deviation et410 = Oet-

2The relevance of periodicities in the overnight fed funds rate over the maintenance period is well known;
see for example, Campbell (1987), and Barret, Slovin, and Sushka (1988).



Some care is needed in the treatment of weekends. There are no market quotes for
overnight rates during the weekend: the probability of a target change on Saturday or
Sunday is nil and thus expectations of target levels prevailing for interest rates quoted on
Friday are appropriate also for the (shadow) interest rate of Saturday and Sunday. For
other holidays in the sample we proceed “as if” a target change were possible during any
non-weekend day.

Interest rates are then given by (see Appendix B for details)
Ri(r) =7+ La(m)z + Ly, (7) (re = ¢ — di) + La,(7), 7 =30,60,91, (3"

where, since Friday-overnight rates regulate contracts which mature on Monday, L., () now
equals

L,(r)=

N |-

Sarem|s(0)ra-ni=l] )

s=1 n=1 1— P
with # = 7 — floor(72/7) and F, a dummy variable which equals one on Fridays and zero
otherwise; L,,_7(7), because of the biweekly effect in the mean reversion, is given by

LT:—T't(T) =

N

1+ tgl sﬁ(l - kt+j)] ; (4)

s=t+1 5=1

and finally
7~1
Ldt(T) = Z dt+i/T-
=0

3.2 Autocovariance functions

We now compare the implications of our model with the data in the “metric” of the autoco-
variance functions. The theoretical autocovariance functions calculated in Section (2.2) are
also modified to account for weekends and for the biweekly patterns in the overnight rate
(see Appendix D for details).

In order to implement the model we need to estimate several parameters characterizing
the overnight rate process, as well as the target-change process, and its understanding on
the part of market participants.

The time-varying intercept for the i-th day of the maintenance period, d;, is set equal
to the sample average of ry — 7; for that day. Let ¢ = 1 denote the second Monday of the
biweekly-maintenance period (which ends on Wednesday, ¢ = 3); we have

d; = .08, .016, .19, .15, .064, .12, .092, .042, .050, —.015, fori=1, ...,10.

These figures suggest that the overnight rate has been fairly “close” to the target in our
sample: the average spread amounts to less than eight basis points. Also, the biweekly
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pattern is evident, with the largest average spread from the target on the Wednesday ending
the maintenance period.

Similarly, the time-varying mean-reversion parameter for the :-th day of the maintenance
period, k;, is chosen to match the first-order sample autocovariance of ry — 7y — d; for that

day: k; = Cov((ri — 7; — di), (rie1 — Fie1 — di1))/Var(r; — 75 — d;). We have
k; = .21, .64, —.21, .74, .56, .42, .30, .64, .35, 47, for: =1, ...,10.

These figures confirm that interest rate targeting during our sample was quite effective. The
average k; equals .41, which means that almost half of the spread net of d; on any given day
was “reabsorbed” by the next one. The biweekly pattern is also apparent, and in fact on the
Wednesday closing the maintenance period the previous-day’s spread is exacerbated rather
than reduced.

Finally the time-varying standard deviation for the i-th day of the maintenance period,
O, is chosen to match the sample variance of ry — 7 for that day:

O = \ﬁ/ar(r,- — f) - k?Var(n_l - 7:)'
We have
ou = .26, .24, .49, .20, .15, .20, .16, .17, 16, .17, for : =1, ...,10.

Again, we have an indication of the exceptional volatility of the overnight fed funds rate at
the end of the maintenance period.

The parameter v is set equal to the observed frequency of target changes in our sample,
.036, while p = .62 is obtained from an OLS regression of A7y, on Ary,_,.

The remaining parameters o¢ and o, characterize the behavior of the unobservable market
expectation z;. While the two parameters cannot be recovered directly from the data, we
can make inference on them based on our model. More precisely, we chose o¢ and oy
as to minimize the sum of squared deviations of the theoretical autocovariance functions
Cov [Riys(T) — Foys, Re(7) — 7], from their empirical counterparts, for 7 = 30, 60, 91, and
lags s = 0, 30, 60, 120. Note, from (8), that o, and o, cannot be separately identified, and
our algorithm optimizes with respect to Var(z;) = (p*02 + 07/v)/(1 — p*) (see Appendix C
for this last equality). The least squares algorithm yields Var(z;) = .14, which is somewhat
large, given that the typical size of a target change in our sample is 12.5 or 25 basis points.
Still, this result is understandable given the restrictive assumptions of our expectations-
hypothesis model: we probably attribute to z; some of the variability in term fed funds rates
which is due to changes in unmodeled liquity and term premia.

Figure 3 presents the theoretical autocovariance functions for overnight and short-term
spreads. Comparison of Figures 2 and 3 shows how our model successfully replicates the
ranking of autocovariance functions.
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Figure 3: Theoretical autocovariance of fed fund rates

When the Fed targets the overnight rate, two factors drive longer-maturity spreads: short-
lived deviations of the overnight rate from the target, and persistent expectations of the next
target change. It is the second factor which makes spreads of all maturities variable and
persistent, and allows us to reproduce the observed ranking of autocovariance functions.

Our model replicates some of the biweekly pattern in the autocovariance function of
overnight spreads, while such periodicity is absent from longer-term spreads. The intuition
for this is that the averaging of future expected overnight fed funds rates, which takes place
through the expectations hypothesis, “gets rid” of seasonalities. Hence, the biweekly pattern
which we do observe in actual one-month spreads is probably due to the behavior of liquidity
and term premia which are absent form our framework.
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Appendix

A Data

When a target range for the overnight fed funds rate was indicated, the midpoint of that
range was used as the target value.

Daily closing-quote series for interest rates on overnight, one-, two-, and three-month fed
funds of comparable liquidity and risk characteristics are from the Board of Governors of
the Federal Reserve.

Market holidays are filled with observations from the last day the market was open, and
all interest rates are converted to a continuously compounded basis

Three observations for the fed funds rate are treated as outliers (12-31-1985, 12-30-1986,
and 12-31-1986) and replaced with the value of the target on that same day.

B Factor loadings

For any t + s we have the definitional relation

Ei(riys) =7+ Ey

Nt+s—Nt
Z ATN4j + (Tegs — Ft+s):| (9)

i=1

where N4, is the number of target changes between time zero and time  + s and A7y, 4; 1s
the j-th target change after time t. Since target changes occur with fixed daily probability
v, and their timing is independent of z;, we can condition on their total number N;;s and
implement the known (binomial) form of the distribution of Nyi,:

Nips—Ne s n
o (" s £ (1 )0 8
7=1

n=1 j=1

Nt+s = Nt—i—n) .

Using the law of iterated expectations on equation (2), the expected size of the N; + j-th
target-change realization is

E(Afnajln 2§ >1) = p' 'z,

hence




Substituting (10) in (9), we find that
s 1_ n
Ey(Fiys) — 7o = 2 LZ:I ( ; ) v (1 —v)* " 1 _pp] :

Averaging this expression over the horizon relevant to an instrument of maturity 7 yields
the factor loading on the next target-change expectation z; in equation (3):

L) =LY [E ( . ) (1 - >1;”—} .

s=1 Ln=1 ]‘ - p

\‘

Moreover, it is easy to obtain
Ey(regs — Fias) = (re = 7e)(1 = K)°,
and the loading on r; — 7; in the term-structure model (3) is

el Ul

kt (11)

LH—’F: (T)

C Autocovariance function of z

Iterating the law of motion of z; backwards and using the law of total probabilities, we obtain
the unconditional autocovariance of z;:

Cov(2z4s,2t) = Z ( Z ) v™(1 — v)* " p"Var(z),

n=0

where Var(z;) is given by

Var(z;) = p?Var(z) + p*Var(n,) 4 Var (XS: (H.n)

n:o
00 262 + oty
= p*Var(z) + plos+ Y v(l —v)'(s+ 1ot = a 171— p;/ ’

s=0
and thus

s 2 .2 2
COV(Zt+s,Zt) = Z ( S ) I/n(]. _ V)s—npnp g, + U'C/I/.

n=0 n 1—p2

D Autocovariances and biweekly effects

When biweekly effects are explicitly accounted for, some modifications to our discussion of
the time-series properties of interest rates are needed. While the autocovariance function of
2, does not change, that of r; — 7; is modified as follows: We can write

Cov (Tigs — Tigss i — 7i) = Cov (Tiys = Figs — digs, Ti — T3 — d;) + Cov (dits,d;),
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where 7 denotes the day of the biweekly period. We have

Cov (Ti+s — Tigs — di+s;7'i —T; — d,) = H(l — kiﬂ-)Var(ri —r; — di), 1 =1,2,...10,
i=1
The i-th variance Var(r; — 7; — d;) is found by solving the system
Var(r; -7 - d,’) = (1 - k,')ZVaI‘(T',’_l - Tie1 — di-—l) + 0'521', 1 =1,2,...10,
to yield

[(1— k)21 = kica)?. . .(1 — kizs)?] 0%ig + ...+ (1 = ki)?0l s + 04
T (1= k(1 = Fi2)?. . (1 — kio)?] !

Var(r,- -7 = d,‘) =

for i = 1,2,...10. The second component of the autocovariance function of r; — 7 can be
easily calculated as follows:

Cov (dits, d;) = (diys — d)(di — d),
where d is the average of d; over the ten days of the biweekly maintenance period.

Moreover, since the quantity Lq,(7) also follows a biweekly pattern, we have
Cov [La(r), La(r)] = (B (r) = La(0)] [La(7) = La(7)]

where Ly, (7) is the average Lq(7) over the ten days of the biweekly maintenance period.

We obtain the autocovariance function of any yield in excess of the overnight target as
the average of the ten autocovariance functions:

Lai,,(T)Loy(7)CoV( 2145, 22) + Laiy (T)Lay(7)COV (Tigs — Tis = digs, i — Ti = d;)
+Cov [Ld;.},s(T)a Ld‘(T)] .

As shown in equations (5°) and (4') also L,,(7) and L., (7) are time varying and follow a
biweekly pattern. This does not complicate the analysis any further though, since the levels
of z, and ry — 7; — d; are free of biweekly periodicity.
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