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1 Introduction

In many models of the nominal term structure, monetary authorities affect interest rates
mainly through inflationary expectations, and perhaps through short-term liquidity effects as
well. In practice, market participants attach particular significance to the stance of monetary
policy when assessing the outlook for short-term interest rates. The present paper takes
this perspective seriously. At the theoretical level, we formalize the idea that short-term
interest rates are mainly determined by the current and expected future pattern of monetary
policy. We also relate empirical interest-rate dynamics to a newly available historical series
of interest-rate targets.

We view the overnight rate of interest on fed funds as the prime instrument of monetary
policy, and we model it as the sum of two components: the “target,” which is changed
infrequently by the monetary authority in a way that imparts martingale-like behavior to
interest rates; and the deviations from the target, which are the outcome of continuous market
equilibrium and exhibit mean reversion toward zero. Our approach is closely related to that of
recent and less recent work on “peso problems” and interest-rate differentials in the exchange
rate literature.! Like most contributions to that literature, we focus on expectational relations
between nominal interest rates of different maturities, and do not explicitly address more
substantial policy issues. Still, our theoretical approach does offer insights on many issues of
academic and non-academic interest, especially in light of renovated emphasis on interest-rate
targeting and discount rate changes. Both our model and U.S. data feature long-memory
spreads between overnight and longer-term interest rates when the former are the immediate
instrument, and the latter the intermediate target, of monetary policy. This suggests that
the style of official intervention may only loosely control even short-term interest rates, and
allows us to extract from interest-rate and target data an estimate of the market’s expected
size and direction of target changes.

Section 2 proposes a stylized model to illustrate the basic ideas we put forward: when the
infrequent character of real-life target changes at a daily time scale is explicitly accounted for,
expectations of future policy actions introduce persistent spreads between interest rates of
different maturities. Longer-term yields are then driven by three factors: the current target,
the fluctuations of overnight rates about the target, and the expectations of future target
changes.

1The references most relevant to our work are Bertola and Svensson (1992), Rose and Svensson (1991),
and Lindberg, Svensson, and Séderlind (1991), where the notion of stochastic “devaluation risk” is introduced
and empirically implemented on exchange- and interest-rate data.



Section 3 confronts the model with recent U.S. money-market interest rates and with
historical target data which were made available to us by the Federal Reserve Bank of New
York. Several features of the data are qualitatively consistent with our modeling approach,
but the expectations-hypothesis relation that we take as a working assumption is rejected.
Our modeling approach and data provide an interpretation for this common finding: when
overnight rates are viewed as the sum of the official target process and deviations from it,
the former component appears responsible for much of the expectational bias in the data,
suggesting that it is the policy-induced component of fed funds dynamics to be erroneously
anticipated by the market.

In Section 4 we consider specific models of expectation formation, and extract a series of
expected target changes. The estimated series has statistical properties which are consistent
with modeling assumptions and predicts well the direction, if not the size, of realized changes.
The data do not contain sufficient information to precisely identify whether the expectational
bias is mostly due to erroneous anticipation of target changes’ size or of their timing. Section 5
summarizes what is learned from our theoretical and empirical work, and concludes outlining
directions for further research.

2 A simple model of interest-rate targeting

It is well understood that the process for short-term interest rates has displayed very long
memory since the Federal Reserve System (“the Fed”) was established in the 1920s. Mankiw
and Miron (1986) and others show that previously important interest-rate seasonals have
disappeared after the Fed’s inception, and that short-term nominal interest rates have ap-
proximately followed a martingale process. The long memory in interest rates is viewed as
the result of direct or indirect intervention of the Fed with the objective of stabilizing the
economy. Goodfriend (1990) relates this view to institutional information on interest-rate-
targeting practices. Historically, the Fed has indeed used direct targeting of overnight rates to
stabilize longer-term interest rates. Goodfriend notes that targets are changed infrequently
in practice, and surveys empirical evidence showing the Fed’s influence on interest rates.
Accordingly, we model the process followed by the overnight fed funds rate, 7, as the
sum of a target-rate process 7;, and deviations from it. The resulting perspective on the
term structure of interest rates is quite different from that afforded by the customary de-
composition of nominal rates in (expected) inflation and real interest rates. The two views
are complementary, however, and the one we choose in this paper has a number of novel

implications. First, it reverses the usual view of the relation between inflation and interest



rates: it is the stabilization policy, implemented by interest-rate targeting, which induces
long memory in nominal interest rates and thus inflation [ Goodfriend (1990) ]. Second, it
allows us to do without inflation data, whose quality and frequency fail to match those of
interest-rate data. Third, it points to the core of the effects of monetary intervention on in-
terest rates at the short end of the term structure: from this perspective, explaining interest
rates requires understanding the character of interest-rate targeting on the part of the Fed.

The model outlined in the rest of this section illustrates our basic theoretical perspective
in the simplest possible way. The specific modeling assumptions formalize ideas which feature
prominently in the relevant theoretical and empirical literature and, while not meant to be
fully realistic, the resulting model is representative of a wider class of model with qualitatively
similar implications (see Section 4 below for possible extensions).

We model the limited and mean-reverting nature of fed funds-rate fluctuations around

the target by the first-order stochastic difference equation
re—F = (1= k)(rim1 — Fem1) + €, (1)

where ¢, is a white-noise error, and 0 < & < 1 is a given constant. The r; process is more
tightly targeted the smaller the standard deviation o of €;, and the higher the mean-reversion
parameter k.

As to the behavior of the target #;, we do not fully specify the way in which the Fed
decides target changes. We model the process of target changes in minimal fashion taking
target changes to be independent of the process (1), and to be infrequent, with v < 1 the
known probability of a target change on any day ¢{. We also assume in this section that,
when a target change occurs, all adjustment “pressure” is released, and only the accrual of
new information leads the Fed to contemplate a new target change in either direction. This
rather extreme assumption incorporates Mankiw and Miron’s (1986) idea that Fed targeting
is responsible for martingale-like behavior of short-term rates.

In the following, we focus on market ezpectations of future target changes, which we model
in an equally minimal fashion. We denote with z; = E;(Af7;) the market’s expectation, as
of t, of the size of the nezt target-change realization, occurring at time t > t. In reality,
of course, such expectations presumably depend in complex ways on a variety of detailed
policy-relevant information. By definition, however, the expectation revisions represented by
changes in z; are unpredictable: only new information should induce the market to revise
its expectation of future target changes occurring at time 7. Together with the “pressure

release” assumption above, such unpredictability implies a simple univariate representation



for the {z;} process:
(2)

z_1 + error;, when t # ¢;
= ”
errory, when t =,

where the error is unpredictable on the basis of the market’s past information (which obvi-
ously includes z;—1). The expectational nature of z; implies that it should follow a martingale
when target changes are not realized and, by assumption, z is reset to zero (or, more gener-
ally, to a value drawn from an independent, mean-zero distribution) at every time { when a
target change is realized.

Before proceeding, we note that the process (2) is meant to describe expectations as
formed by the market. Systematic discrepancies between the {z;} process and the process
governing actual target changes may arise for at least one reason: the Fed may not follow a
stable policy or may hide the one it follows, so as to enhance the effectiveness of policy actions
by surprising the market. As a result, the changing array of parameters characterizing the
process of target changes is not known to the market, requiring potentially endless learning
on their part.

To link the dynamics of overnight rates (and targets) to longer-maturity yields, we sup-
pose that arbitrage keeps the interest rates on longer-term maturities in line with market
expectations of future overnight fed funds rates. A linear expectations-hypothesis term struc-
ture is then a fair description of the equilibrium relation between short-term and overnight

fed funds rates: .

Ro= Y Blrees) (3)

-
3=0
i.e., the yield R; on a 7 days-maturity loan at time ¢ is the average of the future overnight
rates {ri4,} expected to prevail during the life of the credit instrument.?
In the Appendix we calculate each term of the summation in (3) using our assumptions,
to obtain
_ 1—(1—1/)T] [1—(1—/6)’]
Ri=r1 - —— 2z — | (ry—T). 4
t =Tt + [ o ¢+ T (re—Te) (4)
The resulting term structure features three factors: the target 7y, which (on the basis of
market information ) follows a generalized random walk on random time steps; the expectation

of the next target change’s size z;, which is stationary but has local martingale dynamics

2See Cook and Hahn (1990) and Campbell and Shiller (1991) for recent surveys of theoretical and empirical
issues relevant to (3).



between target changes; and the deviation ry — 7, of overnight rates from current targets,
which is stationary and reverts linearly towards zero.

As the time to maturity shortens, the yield converges to the overnight fed funds rate,
Ri(1) = ry: thus, day-by-day fluctuations in the very short end of the term structure reflect
mainly expected movements around the current target 7;. At the other extreme, Ri(o0) =
7i + 2z if v > 0. The further into the future one looks, the less important is the current
deviation from target (k is the relevant parameter for the fading relevance of this factor),
and the more relevant the possibility of a target change (by z;, given current information).
This “expected target change” factor is novel and peculiar to our interest-rate-targeting
setup.

The stylized model of this section is quite close in spirit to Mankiw and Miron’s (1986)
framework of analysis but, as is appropriate at the very fine time scale we wish to consider,
it accounts for infrequency of target changes. Ouly if v = 1 would target changes occur
every day, to imply that the overnight rate itself would behave as a martingale (plus a mean
reverting process). Expectations of future target changes play a separate and very important
role in our model, and we shall see in Section 4 that our perspective leads quite naturally to

a relaxation of the resetting assumptions above.

3 Taking the model to the data

We now turn to confront the insights afforded by the model outlined above with real-world
data which may be generated by a similar mechanism.

New daily historical fed funds targets were made available to us by the Federal Reserve
Bank of New York (FRBNY). The target data are those on which the trading desk’s open
market operations were based on any given day, or “indications of the fed funds rate expected
to be consistent with the degree of reserve pressure specified by the Federal open market com-
mittee (where a trading range was indicated, the midpoint of that range is provided).” While
professional “fed watchers” are usually able to infer current targets from a variety of economic
and policy variables, the historical data we use were not previously disclosed. In line with
evidence of renewed emphasis on fed funds rates, however, from 1991 the FRBNY publishes
target data in the Spring issue of its Quarterly Review, resuming a practice interrupted in
1983.

As to overnight and longer-term interest rate data, we obtained from the Board of Gov-

ernors of the Fed daily closing-quote series for overnight interest rates on fed funds and for



three-month “term fed funds” of comparable liquidity and risk characteristics.>

Figure 1 plots the target fed funds rate, the overnight fed funds rate, and the three-month
fed funds rate from January, 1985 through December, 1991. All three series are translated
on a continuously compounded basis,* and market holidays are filled with observations from
the last day the market was open.

We see in the Figure that target changes are indeed infrequent on a daily time scale. There
are 66 target changes in the seven-year span of Figure 1, hence the target is changed (on
average) only every five weeks or so. The data also tell us that targets are most often specified
in quarter points (before continuous compounding), so that realized target changes are usually
25 or 50 basis points in absolute value. In principle, this is not a problem for the simple
model specified above: as long as the market attaches positive probability to different quarter-
point increments, the ezpected size z, of target changes can be a continuous random variable
even when target-change realizations (hence expectational errors) have discrete distributions.
Indeed, such lumpiness in target changes may be naturally associated to their infrequency.
The Fed might conceivably intervene using a finer single-tick mesh, but usually decides to
specify targets in quarter-point (eight ticks) increments. Specifying “round” targets might
well facilitate communications between policy makers and the New York desk and, to the
extent that the Fed intends to clearly signal its policy moves, between the desk and the
market as well. The timing of target changes would then be determined by rounding to the
closest quarter-point of an underlying, continuously updated “shadow” target process.

The overnight rate is quite volatile around the current target, reflecting the inherent
difficulty of controlling a price target by quantity intervention in a turbulent market: in
general, the change in reserve assets implemented by the desk’s open-market operations is
not exactly consistent with the specified overnight-rate target. Further, desk operations

are implemented shortly after 11 AM in New York, and no coincident market-rate series

3While similar theoretical and empirical work could be performed on T-bill or commercial-paper yields,
the liquidity, tax, and default characteristics of such securities are quite different from those of interbank
instruments, and the time-varying effects introduced by such features [ for which see, e.g., Simon (1990) and
Bernanke (1990) ] would spoil our analysis of expectational factors.

‘Let 79 be the quoted overnight fed funds rate, the corresponding continuously compounded rate r is
given by r = 100[In(1 + r9/360000)365]. The same formula applies to quoted fed-funds-rate targets. Similarly,
quoted three-month fed funds rates R? are converted to their continuously-compounded counterpart according
to R = 100[In(1 + R? 91/360000)365/91].



is available to us. Our interest-rate data are 5 PM closing rates, and time lag introduces
additional noise in the spread between measured overnight rates and targets.

Fed funds rates also display pronounced spikes in the last two days of “reserve mainte-
nance periods,” when banks must meet reserve requirements calculated over two-week “com-
putation periods” ending on Monday. Every other Tuesday and Wednesday, the banking
sector as a whole may be trying to increase net reserve positions or to unload excess reserves.
The resulting market tensions impart wide fluctuations to the overnight fed funds rate: our
empirical work below takes such seasonal effects into account.’

Official documents suggest that the interest-rate targeting perspective of our model may
not be equally applicable to all available data. Chairman Volcker’s anti-inflationary policies
officially focused on monetary-aggregate rather than interest-rate targets. Quantity targets
were de-emphasized starting in 1982, and gradually replaced by the semi-official interest-rate
targets plotted by the step function of Figure 1. It is apparent in the Figure that targets
were still not strictly implemented in the first part of the available sample. Indeed, only in
1987 did the Fed stop declaring targets for M1, a clear indication of the mounting difficulty
of controlling aggregates rather than interest rates. Recent official Fed documents reflect a
prevalence of price over quantity targets which was also typical of monetary policy in the
1970s [ e.g., Hetzel (1981) ].° As it is apparent from Figure 1, however, tight targeting was de
facto abandoned in the aftermath of the 1987 stock market crash (no formal fed funds-target
rate was indicated from October 19, 1987 through November 3, 1987) and during the highly
volatile Gulf War period (from August 1990 through February 1991).

This institutional information confirms that the modus operandi of monetary policy is far
from constant over time. We choose to work on data from November 4, 1987 through August
1, 1990, when the character of monetary policy appears relatively homogeneous: the period

roughly coincides with the tenure of Alan Greenspan as Chairman of the Fed, but excludes

5Biweekly clearing of the market for reserve assets might in principle invalidate our assumption that inno-
vations to the overnight rate/target spread are independent of those in target-change expectations: market-
clearing overnight rates might conceivably themselves reflect anticipations of target changes if banks distribute
reserve requirements towards times of expected lower cost within the maintenance period. However, the ev-
idence in Campbell (1987) indicates such anticipation effects are not apparent in overnight-rate data. They
would only operate at biweekly horizons anyway, and we abstract from them in our theoretical models and
empirical work on 3-month term fed funds rates.

®In their section on policy implementation, recent issues of the Quarterly Review of the FRBNY (Spring
1990; Spring 1991, pp.66-71; Spring 1992, p.84) lament instability of the relation between fed funds rates
and the amount of borrowing. In 1990, for example, the trading desk of the FRBNY was prompted to signal
policy moves so clearly as to minimize possibility of misunderstanding, because it was considered paramount
to fix the right rate rather than adjust the reserves.



obvious sources of instability such as the 1987 stock market crash period and the highly
volatile period following the invasion of Kuwait. It will become apparent below, however, that
even during this sub-period interest rates need not have been based on a stable expectational
structure, and appear to incorporate the likelihood of future and ongoing “monetary regime”
shifts.

For this period, Figure 2 displays the autocorrelation functions of overnight and three-month
interest rates (both decay very slowly, as is also apparent from the long cycles of these series
in Figure 1), as well as autocorrelations of their spread from contemporaneous targets.

Autocorrelations of the spread between overnight rates and targets display biweekly sea-
sonality corresponding to the maintenance period, but otherwise decay very quickly, consis-
tently with the mean-reverting dynamics postulated in equation (1). Conversely, the spread
between three-month rates and targets is just as persistent as the level of the three-month
interest rate. Such long-lived spreads are qualitatively consistent with the theoretical model
outlined above, where deviations of longer-term interest rates from the overnight rates and
targets are driven by target-change expectations 2; as well as by mean-reverting dynamics
around the current target. With z; a martingale between target changes and relatively in-
frequent target changes, the spread between short-term and overnight interest rates should
indeed display long memory to the extent that intervals between target changes are long
relative to the life of the credit instrument.”

3.1 Seasonality in the overnight rate process

We now estimate the law of motion of overnight interest rates around the target. To account
for the biweekly seasonal effects which are apparent in Figures 1 and 2, we use ten level
dummies (one for each working day of the maintenance period) and ten mean-reversion
dummies. We estimate the model

re — Ty = dy + (1 = ke)(re—1 — Tr—1 — di-1) + €, (5)

"These findings are not specific to the limited period we consider. Indeed, sizable and persistent spreads
between 3-month fed funds rates and contemporaneous targets are quite apparent in Figure 1, indicating that
“expected target change” term-structure factors are quantitatively important for all recent U.S. monetary
policy.



where t indexes business days;® r; is the overnight fed funds rate; 7, is the target; d; =
di410 is a time-varying intercept with biweekly periodicity, which captures seasonality in
the conditional mean of 7¢; k; = ky410 is a time-varying mean-reversion parameter, also with
biweekly periodicity, meant to capture variations in targeting intensity. As not only the level,
but also the volatility of the fed funds rate is affected by the maintenance-period cycle, we
allow the standard deviation {0} of the serially uncorrelated error ¢; to vary over time, and
impose a seasonal pattern with oi410 = 0:.° We estimate the process in (5) by maximum
likelihood, assuming €; to be normally distributed. The results are reported in Table 1.

The model fits the data well, and the residuals have satisfactory statistical properties. Bi-
weekly patterns are statistically significant for levels ({d;}), serial correlations ({£;}), and
volatilities ({o;}). These parameters are precisely estimated, and offer insights into the na-
ture of targeting and seasonal patterns during the period under scrutiny.'® The intercept
parameters {d;} are all close to zero, indicating that systematic seasonal effect on the level of
the fed funds rate are economically (if not statistically) insignificant. Conversely, the inten-
sity of mean-reversion changes quite dramatically over the biweekly period: we find diversion
from the target on day 3 of the biweekly cycle, the Wednesday closing the maintenance pe-
riod, while strong reversion towards the target is induced on the following Thursday and
Friday. The variability of innovations in the fed funds rate also follows a marked seasonal
pattern. The standard deviations {o;} are higher on average during the first week of the

period, especially between Tuesday and Thursday, with a peak on Wednesday.

3.2 The performance of the expectations hypothesis

We next seek evidence on the basic expectational relation (3) by estimating the equation

-1

Ti+s
Z t: —rt = a[Re ~ 1e] — ¢¢ + Nyr-1, (6)
s=0

8 Annualized Friday rates are those applicable to positions spanning the weekend; missing data for market
holidays other than weekends are filled with the previous trading day’s rates.

9The stochastic seasonality exhibited by the fed funds rate could alternatively be captured by an autore-
gressive process with ten lags. However, the coefficients of our simple AR(1) process with seasonal variation
are much easier to interpret.

193ee Campbell (1987) for similar empirical evidence on weekly seasonals in fed funds rates in 1980-83,
when reserve requirements were lagged over weekly maintenance periods.



where R, is the interest rate on a loan of maturity 7, ¢; is a time-varying intercept which
may capture liquidity and term effects, and 7 is an expectational error. Under the premium-

augmented expectations hypothesis,

T—1
Ei(r4s
R, = 2—‘(—’:*—)+¢t, 3"
s=0

and the coefficient a of the regression should equal one if expectations are unbiased.

In Table 2 we present results from estimation of (6) on Ry, the three-month fed funds rate.
We allow for an intercept ¢, with biweekly seasonal periodicity, i.e., we-impose bt = dit10
for every t. In spite of the very pronounced “maintenance period” seasonal pattern, the
hypothesis that ¢; = 0 for all ¢ is not rejected: thus, the data are consistent with at least an
unconditional version of the premium-free expectational relation (3).

Conditionally, however, the expectations hypothesis does not receive support from the
data. While the spread between three-month and overnight rates has substantial predictive
power for future behavior of the latter, the slope coefficient « is significantly lower than the
unitary value implied by (3). Unexplained time-variation in unobservable term premia could
of course be responsible for excess volatility of longer-term interest rates, which would bias «
towards zero in the way suggested by Mankiw and Miron’s (1986) work on quarterly data of
three- and six-month maturity. Interestingly, however, the problem appears much less severe
in our sample of recent daily observations than for the longer series of quarterly three- and
six-month rate data considered by Mankiw and Miron. We choose to take the absence of
term premia as a maintained identifying assumption, and we proceed to examine the origin
of the bias in tests of (3') in terms of expectational errors.

As in Section 2, we suppose that longer-term interest rates correctly embody the market’s
expectations of future overnight rates. However, we relax the standard requirement that the
data-generating process is completely known to economic agents, and reinterpret the perfor-
mance of tests of the expectations hypothesis from the vantage point of our simple theoretical
framework and newly-available target data. As argued above, imperfect knowledge of pol-
icy rules is indeed likely to be important in real-life settings, and market expectations of
future fed funds rates may well be biased, as documented by Simon (1990) with quarterly
data from the Goldsmith-Nagan Survey for various recent periods. While Simon does not

10



attribute expectational errors to specific features of interest-rate dynamics, our target data
and estimated fed funds process help us identify the source of expectational biases.
Under the expectations hypothesis (3'), the regressor of equation (6) can be decomposed

as follows:

r—1 _ r—1 —
Ri—-m = E (—“"D‘—z'=¢ e 7‘:) + E [—“Q——z= ( t:s o) _ (re — ft)]

(7)
= Ei (A7) + E(Orp-7,)-

Thus, E; (Ar,) denotes the market’s forecast of relevant future target-change variations,

T:l F _,,_' s
E (Ar)=R -7 — E; [25—0( “': t+s) :

and E;(A,,_7) denotes the forecast of the relevant variations around future targets.

In the context of our model, the latter expectational component can be identified if the
relatively stable process driving overnight fed funds rates around current targets is well under-
stood by market participants, who know its form and the parameters {d;, k¢, 0:}. Projecting
(5) forward yields Ey(riys — Fegs) = digs + (e = 7t — di) [T721(1 — kegi), which can be used

in the relevant calendar-day summations to obtain from (7):

Ei (A7) = Ry — 74— Lyy—s(ry = Ty — dy) — Ly, (8)
where
1 =1
Ldt = ; Z(l + 2Ft+s)dt+s
s=0

is a time-varying (but empirically rather small) intercept induced by seasonal effects, and
1 #-1 s

Lr-r == |1+ S+ 2Ft+s)H(1 — ki)
s=1 =1
is the term-structure loading on seasonally adjusted deviations from target. In these expres-
sions, 7 is the number of business days that fall within the maturity 7 of the instrument, and
Fiys is a dummy variable which equals one on Fridays, and zero otherwise: this accounts
for the fact that overnight rate quoted on Friday regulates contracts which expire on the
following Monday, and hence has an effective maturity of three days.

Sample counterpart of E; (A,,_z, ) can be computed from (8) inserting estimates of {k¢, d:}
in the factor-loading expressions L.,z and Lg,. The resulting expectational series can then

be compared to the realized target-change series. For such comparisons to be statistically
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meaningful, we need to account for the fact that the factor-loading expressions are (highly
nonlinear) functions of the parameters given in Table 2. We therefore implement a simple
Monte Carlo procedure based on the estimated asymptotic covariance matrix of the estimates
(see the Appendix), and report empirical standard errors for each of the point-estimate
comparisons below.

When we regress Ay, on the sample counterpart of E; (Ar,) and a constant, we obtain a
slope coefficient o' = 0.503, with negligible empirical standard error. Recalling that we had
o = 0.576 in Table 2, where the test was run on raw data, we find that the expectations-
hypothesis test uncovers an even more pronounced bias when focused on the target component
of fed funds dynamics. To interpret this result, consider that the theoretical value of o' (to

which the estimated parameter should converge in probability) is given by

cov” [Aﬂ ’ E, (Aﬂ )]
var* [E; (Ar)]

plim o' =

where an asterisk (*) denotes moments calculated with respect to the true target-change pro-
cess. If the rational-expectations restriction E; (Az,) = Ej (Ar,) is violated, the o' regression

coefficient is lower than one in probability limit if
cov* [As,, Et (Ar,)] < var® [E (Ar,)], (9)

asis the case in our data. As the dynamics of fed funds deviations from target are independent

of the targeting process, theoretical value of the regression coeflicient a is

cov* [Aﬂ , By (Aﬂ)] + var® [Et (A'I‘t—-ﬂ )]
var* [Et (Aﬂ)] + var* [Et (Art—f't)]

plim a = > plim o/,

the inequality following from var* [E; (Ar,—7)] > 0 and (9). Hence, and quite intuitively,
the empirically more pronounced bias of the expectations-hypothesis test for the target com-
ponent of fed funds is consistent with our modeling framework if the remaining component
of fed-funds dynamics, namely their fluctuations around the target, is well understood and
correctly anticipated by market participants.

Of course, time-varying term premia could also induce the finding that o' < a < | under
standard rational-expectations assumptions. It is instructive, however, to consider which
moment conditions would need to be satisfied by such exogenous premia to rationalize the
result. The Appendix derives probability limits of a and o' allowing for a general premium
process and maintaining rational expectations. Those expressions suggest that time-varying

premia might counterfactually imply that a is estimated to be smaller than o'. In fact,

12



stationary term premia need not covary strongly with the highly persistent expected-target-
change component Ej (A ) which our data and modeling approach make it possible to
identify. Inasmuch as premia covary little with expectations of policy changes, it would be
hard for them to strongly bias the estimated coefficient o’ below one. Conversely, term
premia (especially if liquidity-motivated) might well correlate positively with the overnight
rate’s spread from its currently targeted level, or with E;(A,_7) = Ef (Ar—7). Such
correlation could easily imply that the estimated a coefficient differs from one by a more

substantial quantity than o' does.

4 Expected target changes

The empirical procedures and results of the previous section did not need to be specific as
to which time-series properties may be attributed to the target-changes process by market
participants, or which ones might be appropriate to describe its actual behavior. Recall that
in Section 2 the timing of target changes was governed by a constant-probability binomial
distribution; the expected size z; of the next realized target change was modeled as a martin-
gale between target changes (reflecting its expectational nature), and assumed to be reset to
zero, on average, upon realization of a target change. When applied to the market’s expecta-
tions of future fed-fund behavior, these assumptions made it possible to derive a conveniently
simple factor-loading expression for z;.

In light of Section 3’s evidence, the behavior of the realized and anticipated target-
changes series may be quite loosely related to each other. In this section, however, we briefly
discuss to what extent the behavior of the targeting process and/or of its market-expectations
counterpart may be captured by the model in Section 2, or by more complex and realistic
versions of it.

Consider the timing assumptions first. It would not be difficult to specify and solve a
model where the probability of a target change is time-varying (and at least partially reset
upon target-change realizations). To see whether such extension is called for by our data,
note that a constant daily probability v of a target change would imply that the length of
constant-target spells is binomially distributed with parameter v, and unrelated to other

observable data.
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Figure 3 plots the sample spells’ empirical distribution function, along with their theoretical
counterpart based on the empirical frequency of target-change events. The two panels of the
Figure measure time in calendar days and in business days (as in our theoretical model),
respectively. In both cases, the empirical and theoretical distributions are quite close in
shape and position: formally, the Kolmogorov-Smirnov goodness-of-fit statistic [ see, e.g.,
De Groot (1986), p.556 ] fails to reject the null hypothesis at conventional significance levels
(p-values are 29.01% and 24.05% for the distributions of Figure 3.a and 3.b, respectively).
Consistently with the empirical evidence of Figure 3, the data reveal no pattern of serial
correlation in the length of constant-target spells, indicating that the daily target-change
probability » is well approximated by a constant in this sample. We have also informally
tested for correlation between the target changes’ size and timing. Target-change sizes do not
vary much around their quarter-point mode, and are essentially unrelated to the length of the
previous no-change spell length. We conclude that the data provide little information about
such potentially interesting features, and no evidence against the model’s timing assumptions.

Conversely, the “resetting” assumption of Section 2 is patently at odds with the data.
This assumption was motivated above by Mankiw and Miron’s (1986) martingale-policy ideas,
but turns out to be too stringent for the period and time scale we consider. In our sample,
target changes were quite clearly correlated over time (see Figure 1). The thirteen positive
target changes occurring in 1988 and early 1989 are followed by nine negative ones, and such
sign runs are of course extremely unlikely in a small sample of target changes.

It is quite straightforward to incorporate such serial correlation in the market’s expectation-
formation mechanisms, along the lines of Section 2. For example, consider maintaining the
assumption that the expectational {z;} process has martingale dynamics between target
changes, but writing

AFyN, = pATN,—1 + errory,, (10)

where N; denotes the number of target changes up to time t, the constant p denotes the
correlation of target changes over the random time steps of the target change’s process, and
the error has mean zero from market participants’ point of view.!!

If the law of motion (10) characterizes the market’s expectations, the univariate repre-

11 A5 noted above, the fact that realized target changes most often have 25- or 50-point size simply induces
a discrete probability distribution on the error term in {10), which is incousequential to our modeling of
expectations as a continuous process.
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sentation of the next target change’s expected size z; is:

(2)

2;_1 + error;, when t # t;
z = .
! pAT: + errory, when t =1.

Target-change expectations are indeed reset at ¢t if p = 0, but persist across target-change
realizations, as the data suggest, if p > 0.
As in the derivation of (4), we proceed under the assumption (3) that longer-term rates

reflect the market’s expectations of future overnight rates to obtain:
Ry =7+ Ley_s (i — Tt — dt) + L2t + La,, (11)

where L,,_z and Lg4, are defined above after equation (8), and the loading on the next
target-change expectation z; (derived in the Appendix) is

i

1 7—1 s s ) 1
LZ:E_Z(I'*'FHS)[Z(.)Vz(l"’/)s l—"i ’ (12)
e — ) 1-p
s=1 =1
a rather formidable, but easily programmed function of v and of the newly introduced pa-
rameter p.
Given estimates of the parameters determining the factor loadings in (11), it is possible

to extract target-change expectations from observable interest rate and target series:

_ Rt - ft - (Tl - Ft - dt) Ln—'r’g - Ldt
Zt = L .

(13)

This expression can also be used, in conjunction with the estimated parameters’ asymptotic
covariance matrix, to compute associated standard errors from the Monte Carlo experiments
discussed in the Appendix.

In keeping with the perspective of Section 3, the parameters of the process followed by
the fed fund’s deviations from target may be taken to characterize both actual realizations
and the market’s expectations. In what follows we explore the possibility of similarly infer-
ring estimates of v and p from actual data. The daily probability » of a target change may
be estimated by the empirical frequency of target changes. The target changes 24 times in
our sample of 716 business days. Since the term-structure model above presumes a constant
probability of target changes on every calendar day in the relevant forecasting horizon, we

use the estimate v = 24/716 = 0.034 and appropriate asymptotic standard errors (see the
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Appendix).!? A benchmark value of p and associated standard errors are also straightfor-

wardly estimated from the sample of realized target changes (see Appendix for details).
Using the estimates of Table 2 to compute the deviations factor loading L, _7 and the

time-varying intercept Lg,, the term-structure relationship (13) yields point estimates of the

target-change expectation series {z}.

Figure 4 plots the point estimate of the 2; series and empirical two-standard-error bands.
While the process of target changes is responsible for the EH failure in our modeling frame-
work, a calibration exercise like the one we perform can offer insights into the character of the
market’s misunderstanding of official targeting. The simple model featuring autocorrelated
target changes captures the idea that more than one target change is expected after the next
one is implemented and, while unmodelled time-variation in p and/or v could potentially
account for part of the extracted z; series’ variability, the model does appear to capture some
aspects of the market’s expectation-formation process.!

The sign of future policy actions is most often correctly predicted in Figure 4, but their size
is substantially overestimated at times, consistently with the evidence from the expectations-
hypothesis test. Most strikingly, the three-month fed funds rate surged much higher than
overnight market rates and targets at the end of 1987. In our framework, this indicates that
the market was expecting sharply higher interest rates in the very near future, yet the events
of late 1987 lie outside of the error bands implied by our estimated model’s parameters. Was
the market “irrational” in entertaining such expectations, i.e., were arbitrage opportunities
open to “smart” investors during that period? The question is of course very difficult to
answer with a single string of data, as it is well understood in the related literature on

learning and “peso problems” [ see e.g. Lewis (1991) ]. No surge in overnight rates was

1215 reality, of course, target changes could only be observed on days when the money market was open.
Implicitly, we are allowing the “shadow” target process triggering target changes to be continuously updated
during weekends and holidays, at the same speed as on business days. The evidence of Figure 3 indicated
that this does not do violence to our data: more realistic assumptions would have only minor effects on our
results.

13In the spirit of the calibration exercise, it may be interesting to compare the z, series extracted form data
with those the model assumes as to the market’s ezpectations in (2°). Regressing z, — z,..; on a constant and
z¢—1 only between target changes, we find that the intercept and slope coefficients (which should both be zero
under the null) are 0.000 and —0.019 with small empirical standard errors. A regression of z; on a constant
and Af; across realignment days yields an intercept of —0.086 and .a slope coefficient of 0.637 (with empirical
standard errors of 0.020 and 0.146, respectively), when the p estimate used in the expectational factor-loading
of expression (12) is 0.737.
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realized ez post, as the Fed successfully injected liquidity to control the market turbulence
induced by the stock market crash (which, despite our a priori sample selection, does affect
our data). Yet, a replay of the events which led to the Great Depression in 1929 was certainly
possible in 1987: on the basis of what is essentially a single observation, no objective statistical
procedure can ascertain whether the probability attached to the event by the market was in
any sense irrational. The expectational overshooting of mid-1989, though not as sharp, can
be similarly interpreted in terms of the market’s misperceptions of the extent to which the

Fed would be prepared to ease monetary policy after the interest-rate peak of early 1989.

5 Concluding comments

This paper proposes a formal framework of analysis for the effects of interest-rate targeting
on the term structure of interest rates. At a general level, our perspective and data offer
insights into the nature of the bias found by tests of the expectations hypothesis: given that
the variation in the fed funds rate is generated mainly by changes in targets rather than by
fluctuations about the target, and since the latter fluctuations are easily modeled and should
be well understood by the market, we gather evidence indicating that the bias pertains to
the policy-induced dynamics of the fed funds rate.

At a more practical level, we propose stylized models of expectations formation, and
use their parametric structure to infer market expectations from interest-rate data. These
models offer interesting theoretical insights as to the number and time-series properties of
the factors driving the term structure of nominal interest rates in realistic settings. More
complex parameterizations of the type of model we consider are possible, and might better fit
historical experience. Inasmuch as unstructured tests of the expectations hypothesis indicate
that the process of target changes is not well anticipated by the market, however, specifying
sophisticated mechanisms of expectation formation and data generation may never eliminate
expectation biases, but only yield insights on their source.

Our theoretical and empirical work does suggest several directions for further research.
First, we may want to ask whether the expected target changes we measure are consistent
with the Fed’s desiderata. In its effort to anticipate future policy, the public accumulates
information, and this translates into highly persistent spreads between overnight targets and
longer-term rates. Such slack between the instruments and objectives of monetary policy
may or may not be desirable from the authorities’ point of view. The variability of the
innovations in z; is an indicator of how frantic is the information-acquisition process, and of

how successful is the Fed in keeping its intentions secret and preserving a discretionary role
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for policy. At the same time, however, a higher variability of the innovations in z; means
looser control on longer-term money market rates. A trade-off could arise between secrecy
and interest-rate control, of which the authorities should be (and probably are) aware. In
the same spirit, it would be important to evaluate different monetary regimes in terms of
the features of the fed funds rate process and, through the lenses of our model, compare the
market’s understanding of monetary policy across different periods.

Finally, we have shown that realistic specifications of interest-rate targeting processes
have distinctive implications for the joint behavior and serial correlation properties of money
market rates of different maturities. For example, deviations of shorter-term rates from the
target mainly reflect the short-lived variability of the fed funds rate about the target, and
should exhibit short memory; deviations of longer-term rates from the target are mainly
driven by expectations of proximate target changes, and should be long-lived. These and
other implications deserve to be formally tested in further work on interest rates of different
maturities, and such testing may provide additional measures of our framework’s descriptive

validity.
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Appendix

A The simple term structure model

Each of the expectations on the right-hand side of (3) can be conditioned on whether or not
a target change occurs in the relevant forecast horizon:

Et(’l‘t+3) = Pr(f >t+4+ S)Et(rt-}-sl{ >14 S) + Pr(f S t+ S)Et(rt+s|£ S t+ .5)
= Et(rt+s - F¢+s) + PI'({ >t+ S)Et(FH.s'f: >t+ 8)
+Pr(f <t 4 $)Ey(Fepsli <t + ) (A.1)
= (Tt - T_t)(l - k)s + PI‘({ >t+ S)Et(FH—sii >1+ -5)
+Pr(f < t 4 $)Ey(Feaslt <t +8),
where we make use of the assumption that deviations of the fed funds rate at t +- s are
independent of target change dynamics to obtain the second equality, while we calculate
E(rt4s — Ti4s) from (1) to obtain the last equality.
Our assumptions yield simple expressions for the expectations of future targets appearing

on the right-hand side of (A.1). If no target changes have occurred as of time t + s, we
obviously have

Et(FH_s'i >t+4+ S) = 7. (A'Z)
As to the terms where s >  — t is the conditioning event, we have
Efry,) = Tt BTy -7
= 7o+ Ei(z)
= 7+ 2z, foralls>0; (A.3)

the first equality follows from the assumption that the target is expected to remain constant
after £ [ formally, F;(z;) = 0 and 2 follows a martingale after ¢ ], and the second equality is

implied by z;’s martingale behavior between ¢ and t.
Using (A.2) and (A.3) in (A.1), and noting that Pr(t >t + s) = (1 — v)°, we obtain:

Et(rH-s) = (Tt - Ft)(l - k)s + (1 bt l/)sft + [1 - (1 - V)s](Ft + Zt). (A4)

The nominal yield on instruments of any maturity is now straightforward to calculate using
(A.4) in the summations on the right-hand side of (3):

Rt:n+[1—1—?—(1i] zt+[1;(1——kq (re - 7). (4)

VT kT

B Empirical standard errors

All statistics which depend on estimates of the parameters {k;,d;}, v, and p are subject to

randomness due to variability of the estimates around the true values. We account for this
by drawing 100 samples from the estimated joint asymptotic distribution of the estimates,
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and compute the empirical standard errors of the quantities of interest. By standard results,
the asymptotic distribution of the {k:,d;,0,} estimates in Table 2 is multivariate normal
and, by our independence assumption, is independent of v and p estimates. The sample
frequency © is bounded between zero and one and has asymptotic Beta distribution. To
simplify programming, we draw Monte Carlo samples from the asymptotic distribution of
the monotone log-odd ratio transformation In(#/(1 — #)). Maximum likelihood estimation
of the log-odds ratio yields the sampling frequency as the © point estimate, and a normal
asymptotic distribution. (The log-odds ratio point estimate is —3.362, with standard error

0.212.)
We use a similar approach to account for sampling variability in estimation of the target-
change correlation parameter p introduced in Section 4. We estimate the model

3

_ € _
Arn, = I-{-—efArN‘_l + errory,,

by nonlinear least squares, thus ensuring that the estimate of p = /(1 + ¢f) lies between
zero and one. We obtain an estimate £ = 1.030 (or p = 0.737). The standard error of the
(asymptotically normal) £ estimate is 0.742.

C Performance of the expectations hypothesis
We consider an alternative framework where:
Ei(Ar,) = E; (A7)

We further allow for a time-varying premium ¢, which we assume to covariate positively with
E.(Ar) and E;(A,,-7,). Under these additional assumptions, when we regress the realized
Az, on our model’s estimate of E; (Ay,), we obtain a slope coefficient, o', whose theoretical
value is

var® [Ey (As,)] + cov™ [$r, B (Ar,)]
var* [Ey (Ar, )] + var* (é:) + 2cov* [de, By (A#,)]

Similarly, the theoretical coefficient of the expectations-hypothesis regression, a, becomes

plim &' =

var® [Eq (Ar,)) + var* [Eq (Ar,—r,)] + cov® [¢¢, By (Ar,)] + cov™ [64, Bt (Ar, )]
var* [Et (A’T' )] + var* [E¢ (Ar'..f‘t )] + var* (ét) + QCOV* [¢ty Eg (AF' )] + QCOV* [¢1, Et (A"t‘Ft )] )

plima =

Straightforward algebra shows that the theoretical value of @’ is greater than the theoretical
value of a if

cov* [pr, By (Are—r,)]  (var™[E; (Ar)] — var* (4¢))
> var* [E¢ (Ar,—7,)] (var™ (¢¢) + cov® [¢y, Bt (A7) .
This inequality is satisfied, for example, when the variability of E;(As,) is substantially

greater than that of ¢; and E;(A,,—7 ), while ¢; covariates strongly with E;(A,,—7) and
weakly with E; (Ar,).
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D Serially correlated target changes

For any s > 0 we have the definitional relation

Nt+.<"'Nt
Ei(riys) = Ey [(Teg4s — Tras) T Tt + Z ATN+j5 | 5 (D.1)

i=1

where Ny, is the number of target changes between time zero and time ¢ + s and A7y, 4; is

the j-th target change after time . Since changes occur with fixed daily probability v, and
their timing is independent of z;, we can condition on their total number N¢4, and implement

the known (binomial) form of the distribution of N;4:
Nigys—Ne s s ‘ ' i
E| > Afngi] = Z( i )1/’(1 — ) B[ Y AN | Nigs = Ne+i| . (D2)
=1 i=1 7=1

Using the law of iterated expectations on equation (2'), the expected size of the 7th target-
change realization is

E(Afn45li 252 1) =p 2, (D.3)
hence
Nips—=Ne s s . 4 _
E, Z ATN4j| Nigs = Ny + 1 :Z ( . )1/’(1—1/)5"zpj_1zt
j=1 =1 j:]

=z [ ( f ) Vil - I/)S'ill—__%] . (D.4)

Ei(Teqs) = Tt + 2 {Z ( j ) Vi1 — u)s_il—.———’i] . (D.5)

i=1

Substituting (D.4) in (D.1), we find that

Averaging this expression over the horizon relevant to an instrument of maturity 7 yields
equation (12) in the main text.
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Table 1. The fed funds-rate process: maximum likelihood estimates.

We estimate the model
re—Fo—de = (1 = ke)(re—1 = Fomr —det) + o,

where r; is the overnight fed funds rate; 7, is the target; d; is a time-varying intercept parameter with biweekly
periodicity; k¢ is a time-varying parameter which regulates mean reversion towards the target, also with
biweekly periodicity. The white-noise error term ¢, is allowed to display a biweekly seasonal heteroskedasticity
pattern. The model is estimated by maximum likelihood under the assumption of normality, using daily data
for the period 1987:11:05-1990:08:01. We report the Ljung-Box portmanteau statistic, @, distributed chi-
square (degrees of freedom in parenthesis). For each of the three sets of parameters {d.}, {k.}, and {o.}, we
report likelihood-ratio test statistics ALr for the hypothesis of no biweekly seasonality. These statistics have
chi-square distributions (degrees of freedom in parenthesis).

Statistics
R? 0.308
D-W | 1.979
Q(80) | 160.3
Parameter estimates
Coeflicient Coetlicient Coeflicient,
(se.) (s.e) (s.e.)
kq 0.274 d; 0.053 o1 0.130
(0.134) (0.011) (10.019)
ko 0.476 ds -0.009 o2 0.138
(0.107) (0.012) (0.019)
ks -0.213 ds 0.081 o3 0.398
(0.295) (0.033) ( 0.052)
k4 0.759 dy 0.104 04 0.190
(0.051) (0.016) (10.025)
ks 0.763 ds 0.043 o5 0.115
(0.062) (0.010) ( 0.014)
k¢ 0.120 dsg 0.084 g 0.094
(0.079) (10.007) (0.016)
k‘7 0.297 d7 0070 (244 0.115
(0.096) (10.009) (0.017)
ks 0.349 ds 0.019 o3 0.073
(0.051) ( 0.005 ) (0.013)
kg 0.577 dy 0.026 0y 0.094
(0.101) ( 0.007 ) (0.014)
k1o 0.103 dio 0.003 010 0.062
(0.070) (10.005 ) (0.014)
ALr(9) 131.9 /\iR(Q) 62.8 ALr(9) 459.9
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Table 2. A test of the expectations hypothesis

We estimate the model
t490
Ts

Z 9—1- —_—T = (Y[I{t - Tt] - ¢t + 11t490,
s=t

where R, is the interest rate on a loan of maturity 91 days, ¢, is a time-varying intercept with biweekly
seasonal periodicity which captures liquidity and term effects, and 7:490 is an expectational error. We use
daily overlapping observations, and the standard errors (in parentheses) are adjusted for heteroskedasticity
and serial correlation of moving-average form in the residuals 7490 [ see Hansen (1982) ]. We report the Wald
test statistic Aw for the null hypothesis that ¢, = 0 V ¢. The statistic is based on an adjusted estimated
covariance matrix [ Newey and West (1987) ] and is distributed chi-square (degrees of freedom in parenthesis).
The sample period is 1987:11:04-1990:05:04.

Statistics
R? | 0.371
Parameter estimates
Coeflicient

(s.e.)

«a 0.576
(0.182)

1 -0.003
(0.068)

d2 0.035
(0.068)

o3 -0.004
(0.083)

b4 -0.019
(0.067)

o5 0.007
(0.063)

b6 -0.009
(0.070)

b7 -0.002
(0.070)

s 0.018
(0.068)

9 0.018
(0.068)

d10 0.024
(0.057)

Aw (10) 16.38
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Figure 3: Empirical vs theoretical CDF of no—change spells
3.a: Calendar time
Kolmogorov—Smirnov statistic=0.69, p—value=27.857%
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