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Abstract

We provide the impact on asset prices of trade by search and bar-
gaining. Under natural conditions, prices are higher if investors can
find each other more easily, if sellers have more bargaining power, or
if the fraction of qualified owners is greater. If agents face risk limits,
then higher volatility leads to greater difficulty locating unconstrained
buyers, resulting in lower prices. Information can fail to be revealed
through trading when search is difficult. We discuss a variety of fi-
nancial applications and testable implications.
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In over-the-counter (OTC) markets, an investor who wants to sell an
asset must search for a buyer, incurring opportunity or other costs. When
two counterparties meet, their bilateral relationship is strategic. Prices are
set through a bargaining process that reflects each investor’s alternatives to
immediate trade. The buyer, in particular, considers the costs that he will
eventually incur when he wants to sell, and so on for all future owners.

We build a dynamic asset-pricing model that captures these features. Un-
der natural conditions, prices are higher if investors can find each other more
easily, if sellers have more bargaining power, or if the fraction of qualified
owners is greater. If agents face risk limits, then higher volatility leads to
greater difficulty locating unconstrained buyers, resulting in lower prices. In-
formation can fail to be revealed through trading when search is difficult. We
show how the explicitly calculated equilibrium allocations and prices depend
on investors’ search abilities, bargaining powers, risk limits, and risk aversion,
and discuss a variety of financial applications and testable implications.

Our model of search is a variant of the coconuts model of Diamond (1982).
The search-and-bargaining specifics are similar to those of the monetary
model of Trejos and Wright (1995). Our objectives and results are different.
Investors contact one another randomly at some mean rate λ, a parameter
reflecting search ability. When two agents meet, they bargain over the terms
of trade. Gains from trade arise from heterogeneous costs or benefits of
holding assets. For example, a risk-averse asset owner begins to search for a
potential buyer when the asset ceases to be a relatively good hedge of his en-
dowment. This could magnify the effective risk premium due to incomplete
risk sharing, beyond that of a liquid but incomplete-markets setting such as
Constantinides and Duffie (1996).

The effect of trading frictions on asset prices has been studied by Amihud
and Mendelson (1986), Constantinides (1986), Vayanos (1998), and Huang
(2003), who take exogenously specified trading costs.

While abstract, we view our search-based theory of asset pricing as rele-
vant (although by no means complete) for many OTC markets, particularly
those in which it may be difficult to quickly identify counterparties with
whom there are likely gains from trade. These may include the markets for
mortgage-backed securities, corporate bonds, emerging-market debt, bank
loans, and OTC derivatives, among other instruments. We believe that we
also capture some of the impact on real-estate values of imperfect search, of
the relative impatience of investors for liquidity, and of outside options for
trade. Our framework can also be used to describe imperfect competition in
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exchange trading, for instance, in equities.
Introducing asymmetric information, we provide an example in which in-

vestors are sufficiently anxious about the threat of search delays that they
offer “pooling prices,” revealing no information. Wolinsky (1990) constructs
a steady-state partially-revealing equilibrium in a search model with asym-
metric information.1 The endogenous impact of asymmetric information on
trading costs and asset prices has been addressed by Kyle (1985), Wang
(1993), and Gârleanu and Pedersen (2000), among others.

Weill (2002) and Vayanos and Wang (2002) have extended our model to
the case of multiple assets, obtaining cross-sectional restrictions on asset re-
turns. In Duffie, Gârleanu, and Pedersen (2003), we introduce marketmakers,
showing that search frictions have different implications for bid-ask spreads
than do information frictions. Weill (2003) studies the implications of search
frictions in an extension of our model in which marketmakers’ inventories
“lean against” the outside order flow. Newman and Rierson (2003) presents
a model in which supply shocks temporarily depress prices across correlated
assets, as providers of liquidity search for long-term investors, supported
by empirical evidence of issuance impacts across the European telecommu-
nications bond market. In Duffie, Gârleanu, and Pedersen (2002), we use
the modeling framework introduced here to characterize the impact on as-
set prices and securities lending fees of the common institution by which
would-be shortsellers must locate lenders of securities before being able to
sell short. Difficulties in locating lenders of shares can allow for dramatic
price imperfections, as, for example, in the case of the spinoff of Palm, Incor-
porated, documented by Mitchell, Pulvino, and Stafford (2002) and Lamont
and Thaler (2003). Further discussion of implications for over-the-counter
markets is provided in Section 6.

Section 1 lays out the basic model and results, using risk-neutral agents.
Section 2 treats hedging motives for trade under risk aversion, and Section 3
provides a numerical example. Section 4 characterizes the implications of risk
limits on prices and trades. Section 5 provides an illustration of how search
frictions impede the dissemination of information through trade or prices.
Further implications and financial applications are discussed in Section 6.
Proofs and supplmentary results are relegated to appendices.

1Rational-expectations equilibria in frictionless markets are studied by Grossman
(1981), Grossman and Stiglitz (1980), and others. See also Serrano and Yosha (1993)
and Serrano and Yosha (1996).
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1 Basic Search Model of Asset Prices

This section introduces an over-the-counter market, that is, a setting in which
agents can trade only when they meet each other, and in which transaction
prices are determined through bargaining.

We fix a probability space (Ω,F , P r) and a filtration {Ft : t ≥ 0} of sub-
σ-algebras of F satisfying the usual conditions, as defined by Protter (1990).
The filtration represents the resolution over time of information commonly
available to investors. Asymmetric information is considered in Section 5.

Agents are risk-neutral and infinitely lived, with a constant time-preference
rate β > 0 for consumption of a single non-storable numeraire good.2

An agent can invest in a bank account — which can also be interpreted as
a “liquid” security — with a risk-free interest rate of r = β. Further, agents
may trade a long-lived asset in an over-the-counter market, in the sense that
the asset can be traded only bilaterally, when in contact with a counterparty.
We begin for simplicity by taking the illiquid asset to be a consol, which
pays one unit of consumption per unit of time. Later, when introducing the
effects of risk limits, or risk aversion, or asymmetric information regarding
dividends, we generalize to random dividend processes.

An agent is characterized by an intrinsic preference for asset ownership
that is “high” or “low.” A low-type agent, when owning the asset, has a
holding cost of δ per time unit. A high-type agent has no such holding cost.
We could imagine this holding cost to be a shadow price for ownership by
low-type agents, due for example to (i) low personal liquidity, that is, a need
for cash, (ii) high financing costs, (iii) adverse correlation of asset returns
with endowments (formalized in Section 2), (iv) a relative tax disadvantage,
as studied by Dai and Rydqvist (2003) in an empirical analysis of search-
and-bargaining effects in the context of tax trading,3 or (v) a relatively low
personal use for the asset, as may happen, for example, for certain durable
consumption goods such as homes. The agent’s intrinsic type is a Markov
chain, switching from low to high with intensity λu, and back with intensity

2Specifically, an agent’s preferences among adpated finite-variation cumulative con-
sumption processes are represented by the utility E

(∫ ∞

0
e−βt dCt

)

for a cumulative con-
sumption process C, whenever the integral is well defined.

3Dai and Rydqvist (2003) study tax trading between a small group of foreign investors
and a larger group of domestic investors. They find that investors from the “long side
of the market” get part of the gains from trade, under certain conditions, which they
interpret as evidence of a search-and-bargaining equilibrium.
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λd. The intrinsic-type processes of any two agents are independent.
A fraction s of agents are initially endowed with one unit of the asset.

Investors can hold at most one unit of the asset and cannot shortsell. Because
agents have linear utility, it is without much loss of generality that we restrict
attention to equilibria in which, at any given time and state of the world,
an agent holds either 0 or 1 unit of the asset. Hence, the full set of agent
types is T = {ho, hn, lo, ln}, with the letters “h” and “l” designating the
agent’s current intrinsic liquidity state as high or low, respectively, and with
“o” or “n” indicating whether the agent currently owns the asset or not,
respectively.

We suppose that there is a “continuum” (a non-atomic finite measure
space) of agents, and let µσ(t) denote the fraction at time t of agents of type
σ ∈ T . Because the fractions of each type of agent add to 1,

µho(t) + µhn(t) + µlo(t) + µln(t) = 1. (1)

Because the total fraction of agents owning the asset is s,

µho(t) + µlo(t) = s. (2)

Any two agents are free to trade the asset whenever they meet, for a
mutually agreeable number of units of current consumption. A given agent
contacts other agents “at random,” in the following sense. The agent contacts
some other agent at Poisson arrivals4 with some intensity parameter λ. The
agent contacted is drawn from the population at random, in the sense that,
for any subset of agents representing some fraction f of the population, the
contacted agent is in this set with probability f . Thus, the Poisson arrival
intensity of contacting this particular subset of agents is λf . Likewise, the
mean rate at which someone from this subset contacts the given agent is λf ,
for a total contact intensity of 2λf .

We also suppose that the contact processes of agents are pair-wise inde-
pendent, and appeal informally to the law of large numbers (see Footnote 8),
under which, for two disjoint sets of agents representing fractions f and g
of the population, respectively, the total current rate of contact by pairs of
agents from the respective sets is almost surely equal to the mean contact
rate, 2λfg. Our random-matching formulation and appeal to the law of large

4The exponential inter-contact-time distribution is natural, as it would arise from
Bernoulli (independent success-failure) contact trials, with a success probability of λ∆
during a contact-time interval of length ∆, in the limit as ∆ goes to zero.
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numbers is typical of the recent monetary literature (for instance, Trejos and
Wright (1995) and references therein). We also suppose that random switches
in intrinsic types are independent of the contacts.

An alternative to our informal appeal to the law of large numbers is to
construct a sequence of random-matching economies with increasingly large
finite populations, and to treat our results in the form of limits of equilibria,
which seems an unappealing distraction from our main goal.

In equilibrium, as we shall see, low-type asset owners sell to high-type
non-owners. Other pairs of agents have no gains from trade. When hn and
lo agents meet, they bargain over the price. An agent’s bargaining position
depends on his outside option, which in turn depends on his ability to find
other counterparties. In characterizing equilibria, we rely on the insight from
bargaining theory that trade happens instantly.5 This allows us to derive a
dynamic equilibrium in two steps. First, we calculate the equilibrium masses
of the different investor types. Second, we compute agents’ value functions
and transaction prices.

By our informal appeal to the law of large numbers, the rate of change
of the mass µlo(t) of low-type owners is

µ̇lo(t) = −2λµhn(t)µlo(t) − λuµlo(t) + λdµho(t), (3)

almost surely. The first term reflects the fact that agents of type hn come
into contact with those of type lo at a total almost-sure rate of 2λµhn(t)µlo(t).
At these encounters, trade occurs and agents of type lo switch to type ln.
The last two terms in (3) reflect the migration of owners from low to high
intrinsic types, and from high to low intrinsic types, respectively.

The rate of change of µhn is, likewise,

µ̇hn(t) = −2λµhn(t)µlo(t) − λdµhn(t) + λuµln(t). (4)

When agents of type hn and lo trade, they become of type ho and ln,
respectively, so

µ̇ho(t) = 2λµhn(t)µlo(t) − λdµho(t) + λuµlo(t) (5)

5In general, bargaining leads to instant trade when agents do not have asymmetric
information. Otherwise there can be strategic delay. In our model, it does not matter
whether agents have private information about their own type for it is common knowledge
that a gain from trade arises only between between agents of types lo and hn.
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and

µ̇ln(t) = 2λµhn(t)µlo(t) − λuµln(t) + λdµhn(t). (6)

We note that Equations (1)–(4) imply Equations (5)–(6).
We focus mainly on stationary equilibria, that is, equilibria in which the

masses of each type are constant, but our framework can be applied more
generally.6 The following proposition asserts the existence, uniqueness, and
stability of the steady state.

Proposition 1 There is a unique constant solution µ = (µho, µhn, µlo, µln) ∈
[0, 1]4 to (1)–(6). From any initial condition µ(0) ∈ [0, 1]4 satisfying (1) and
(2), the unique solution µ(t) to this system of equations converges to µ as
t→ ∞.

A particular agent’s type process {σ(t) : −∞ < t < +∞} is, in steady-
state, a 4-state Markov chain with state-space T , and with constant switching
intensities determined in the obvious way7 by the steady-state population
masses µ and the intensities λ, λu, and λd. The unique stationary distribution
of any agent’s type process coincides with the almost-surely constant cross-
sectional distribution µ of types characterized8 in Proposition 1.

Turning to the determination of an equilibrium transaction price, denoted
P , we first conjecture, and verify shortly, a natural steady-state equilibrium
utility for remaining lifetime consumption. For a particular agent, this utility
depends on the agent’s current type, σ(t), in T , and the wealth W (t) in his

6Duffie, Gârleanu, and Pedersen (2003) and Weill (2003) conduct welfare analyses that
call for deviations from steady state.

7For example, the transition intensity from state lo to state ho is λu, the transition
intensity from state lo to state ln is 2λµhn, and so on, for the 4 × 3 switching intensities.

8This is a result of the law of large numbers, in the form of Theorem C of Sun (2000),
which provides the construction of our probability space (Ω,F , P r) and agent space [0, 1],
with an appropriate σ-algebra making Ω × [0, 1] into what Sun calls a “rich space,” with
the properties that: (i) for each individual agent in [0, 1], the agent’s type process is
indeed a Markov chain in T with the specified generator, (ii) the unconditional probability
distribution of the agents’ type is always the steady-state distribution µ on T given by
Proposition 1, (iii) agents’ type transitions are almost everywhere pair-wise independent,
and (iv) the cross-sectional distribution of types is also given by µ, almost surely, at
each time t. This result settles the issue of existence of the proposed equilibrium joint
probabilistic behavior of individual agent type processes with the proposed cross-sectional
distribution of types. This still leaves open, however, the existence of a random-matching
process supporting the proposed type processes.
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bank account. Specifically, we show that the lifetime utility is W (t) + Vσ(t),
where, for each σ in T , Vσ is a constant to be determined. Because of
linear utility, any rate of consumption withdrawals from liquid wealth W (t)
is optimal; we simply assume that agents adjust their consumption so that
W (t) = 0 for all t.

In order to calculate Vσ and P , we consider a particular agent and a
particular time t, let τl denote the next (stopping) time at which that agent’s
intrinsic type changes, let τm denote the next (stopping) time at which a
counterparty with gain from trade is met, and let τ = min{τl, τm}. Then, by
definition,

Vlo = Et

[
∫ τ

t

e−r(u−t)(1 − δ) du+ e−r(τl−t)Vho1{τl<τm}

+ e−r(τm−t) (Vln + P ) 1{τl≥τm}

]

Vln = Et

[

e−r(τl−t)Vhn

]

(7)

Vho = Et

[
∫ τl

t

e−r(u−t) du+ e−r(τl−t)Vlo

]

Vhn = Et

[

e−r(τl−t)Vln1{τl<τm} + e−r(τm−t) (Vho − P ) 1{τl≥τm}

]

,

where Et denotes Ft-conditional expectation. Calculating the right-hand
side of (7), and then differentiating both sides with respect to t, we get the
steady-state equations

0 = rVlo − λu(Vho − Vlo) − 2λµhn(P − Vlo + Vln) − (1 − δ)

0 = rVln − λu(Vhn − Vln)

0 = rVho + λd(Vho − Vlo) − 1 (8)

0 = rVhn + λd(Vhn − Vln) − 2λµlo(Vho − Vhn − P ).

More generally, allowing the vector µ(t) of agent-type masses to be away
from its steady-state solution, we extend our notation by letting (V (t), P (t))
denote the dependence of the solutions of the continuation-utility vector
V (t) = (Vlo(t), Vln(t), Vho(t), Vhn(t)) and the price P (t) on t. Then (8) extends
to the linear system of ordinary differential equations (ODEs)

dV (t)

dt
= K(t)V (t) + k(t)P (t), (9)
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where K(t) and k(t) are the 4× 4 and 4× 1 coefficients corresponding to the
right-hand side of (8). The corresponding boundary conditions are that the
value functions approach their steady-state values as t→ ∞.

The price P is determined through bargaining. A high-type non-owner
has a reservation value ∆Vh = Vho − Vhn for buying the asset. A low-type
owner has a reservation value ∆Vl = Vlo − Vln for selling the asset. The gain
from trade between these agents is ∆Vh −∆Vl. We study equilibria in which
the seller gets a fixed fraction q of the gain from trade, in that

P = ∆Vl(1 − q) + ∆Vh q . (10)

This price is the outcome of Nash (1950) bargaining in which the seller’s
bargaining power is q. Any q can be justified in the simultaneous-offers game
of Kreps (1990), or by the alternating-offers bargaining game considered in
Appendix A. Not all models of bargaining allow the equilibrium bargaining
outcome to depend on agents’ outside options, as we do. Intuitively, outside
options do matter here because there is a risk of a breakdown of bargaining
due to changes in agent type (Binmore, Rubinstein, and Wolinsky (1986)),
and because the value of the asset stems in part from dividends paid during
bargaining.

The combined system of linear equations formed by (8) and (10) have a
unique solution (V, P ) because the associated 5× 5 coefficient matrix is non-
singular. A dynamic-programming verification argument found in Appendix
C confirms that the proposed investor strategies constitute an (infinite-agent,
infinite-time) subgame-perfect Nash equilibrium. That is, if two agents with
gains from trade meet at time t, the potential buyer tenders the price P , the
potential seller tenders the same price P , and both prefer to immediately
trade at that commonly announced price.

Theorem 2 Fix any given bargaining power q. For any initial distribution
µ(0) of agent types, there is a unique associated subgame-perfect Nash equi-
librium, which satisfies (9)-(10). There is a unique steady-state equilibrium,
corresponding to the steady-state distribution µ of types, in which the steady-
state equilibrium price is

P =
1

r
− δ

r

r(1 − q) + λd + 2λµlo(1 − q)

r + λd + 2λµlo(1 − q) + λu + 2λµhnq
. (11)

This price (11) is the present value, 1/r, of dividends, reduced by an illiquid-
ity discount. The price is lower and the discount is larger, ceteris paribus, if
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the distressed owner has less hope of switching type (lower λu), if it is more
difficult for the owner to find other buyers (lower µhn), if the buyer may more
suddenly need liquidity himself (higher λd), if it is easier for the buyer to find
other sellers (higher µlo), or if the seller has less bargaining power (lower q).

These intuitive results are based on partial derivatives of the right-hand
side of (11) — in other words, they hold when a parameter changes without
influencing any of the others. We note, however, that the steady-state type
fractions µ themselves depend on λd, λu, and λ. The following proposition
offers a characterization of the equilibrium steady-state effect of changing
each parameter.

Proposition 3 The steady-state equilibrium price P is decreasing in δ, s,
and λd, and is increasing in λu and q. Further, if s < λu/(λu + λd), then
P → 1/r as λ → ∞, and P is increasing in λ for all λ ≥ λ̄, for a constant
λ̄ depending on the other parameters of the model.

The condition that s < λu/(λu + λd) means that, in steady state, there is
less than one unit of asset per agent of high intrinsic type.

It can be checked that the above results extend to treat risky dividends,
for instance in the following ways: (i) If the cumulative dividend is risky with
constant drift ν, then the equilibrium is that for a consol bond with dividend
rate of ν; (ii) if the dividend rate and illiquidity cost are proportional to
a process X with EtX(t+ u) = X(t)eνu, for some constant growth rate ν,
then the price and value functions are also proportional to X, with factors of
proportionality given as above, with r replaced by r−ν; (iii) if the dividend-
rate process X satisfies with EtX(t+ u) = X(t) +mu for a constant drift m
(and if illiquidity costs are constant), then the continuation values are of the
form X(t)/r + vσ for owners and vσ for non-owners, where the constants vσ

are computed in a similar manner.
Next, we model risky dividends using cases (i) and (iii) above, in the

context of risk aversion and risk limits.

2 Risk-Aversion

This section provides a version of the asset-pricing model with risk aversion,
in which the motive for trade between two agents is the different extent to
which they derive hedging benefits from owning the asset. We provide a sense
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in which this economy can be interpreted in terms of the basic economy of
Section 1.

Agents have constant-absolute-risk-averse (CARA) additive utility, with
a coefficient γ of absolute risk aversion and with time preference at rate β.
An asset has a cumulative dividend process D satisfying

dD(t) = µD dt+ σD dB(t), (12)

where µD and σD are constants, and B is a standard Brownian motion with
respect to the given probability space and filtration (Ft). Agent i has a
cumulative endowment process ηi, with

dηi(t) = µη dt+ ση dB
i(t), (13)

where the standard Brownian motion Bi is defined by

dBi(t) = ρi(t) dB(t) +
√

1 − ρi(t)2 dZ i(t), (14)

for a standard Brownian motion Z i independent of B, and where ρi(t) is the
“instantaneous correlation” between the asset dividend and the endowment
of agent i. We model ρi as a two-state Markov chain with states ρh and
ρl > ρh. The intrinsic type of an agent is identified with this correlation
parameter. An agent i whose intrinsic type is currently high (that is, with
ρi(t) = ρh) values the asset more highly than does a low-intrinsic-type agent,
because the increments of the high-type endowment have lower conditional
correlation with the asset’s dividends. As in the basic model of Section 1,
agents’ intrinsic types are pairwise-independent Markov chains, switching
from l to h with intensity λu, and from h to l with intensity λd. An agent
owns either θn or θo units of the asset, where θn < θo. For simplicity, no
other positions are permitted, which entails a loss in generality. Agents
can trade only when they meet, as previously. The agent type space is
T = {lo, ln, ho, hn}. In this case, the symbols ‘o’ and ‘n’ indicate large and
small owners, respectively. Given a total supply Θ of shares per investor,
market clearing requires that

(µlo + µho)θo + (µln + µhn)θn = Θ, (15)

which, using (1), implies that the fraction of large owners is

µlo + µho = s ≡ Θ − θn

θo − θn

. (16)
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We consider a particular agent whose type process is σ, and let θ denote
the associated asset-position process (that is, θ(t) = θo whenever σ(t) ∈
{ho, lo} and otherwise θ(t) = θn). We suppose that there is a perfectly liquid
“money-market” asset with constant risk-free rate of return r, which, for
simplicity, is assumed to be determined outside of the model (as is typical
in the literature treating asset-pricing models based on CARA utility). The
agent’s money-market wealth process W satisfies

dW (t) = (rW (t) − c(t)) dt+ θ(t) dD(t) + dη(t) − P dθ(t),

where c is the agent’s consumption process, η is the agent’s cumulative en-
dowment process, P is the asset price per share (which is constant in the
equilibria that we examine), and the last term thus captures payments in
connection with trade. The consumption process is required to satisfy mea-
surability, integrability, and transversality conditions stated in Appendix C.

We consider a steady-state equilibrium, and let J(w, σ) denote the in-
direct utility of an agent of type σ ∈ {lo, ln, ho, hn} with current wealth
w. Assuming sufficient differentiability, the Hamilton-Jacobi-Bellman (HJB)
equation for an agent of current type lo is

0 = sup
c∈R

{− e−γc + Jw(w, lo)(rw − c+ θoµD + µη)

+
1

2
Jww(w, lo)(θ2

oσ
2
D + σ2

η + 2ρlθoσDση) − βJ(w, lo)

+ λu[J(w, ho) − J(w, lo)] + 2λµhn[J(w + Pθ, ln) − J(w, lo)]},

where θ = θo − θn. The HJB equations for the other agent types are similar.
Under technical regularity conditions found in Appendix C, we verify that
J(w, σ) = −e−rγ(w+aσ+ā), where

ā =
1

r

(

log r

γ
+ µη −

1

2
rγσ2

η −
r − β

rγ

)

,

and where, for each σ, the constant aσ is determined as follows. The first-
order conditions of the HJB equation of an agent of type σ imply an optimal
consumption rate of

c = − log(r)

γ
+ r(w + aσ + ā).
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Inserting this solution for c into the respective HJB equations leaves

0 = ralo + λu

e−rγ(aho−alo) − 1

rγ
+ 2λµhn

e−rγ(Pθ+aln−alo) − 1

rγ
− (κ(θo) − θoδ̄)

0 = raln + λu

e−rγ(ahn−aln) − 1

rγ
− (κ(θn) − θnδ̄) (17)

0 = raho + λd

e−rγ(alo−aho) − 1

rγ
− κ(θo)

0 = rahn + λd

e−rγ(aln−ahn) − 1

rγ
+ 2λµlo

e−rγ(−Pθ+aho−ahn) − 1

rγ
− κ(θn),

where

κ(θ) = θµD − 1

2
rγ

(

θ2σ2
D + 2ρhθσDση

)

(18)

δ̄ = rγ(ρl − ρh)σDση > 0. (19)

Similar in spirit to the basic model of Section 1, Nash bargaining yields a
price P satisfying alo − aln ≤ Pθ ≤ aho − ahn. More precisely, given a
bargaining power q,

q
(

1 − erγ(Pθ−(alo−aln))
)

= (1 − q)
(

1 − erγ(−Pθ+aho−ahn)
)

. (20)

An equilibrium is determined by a solution (alo, aln, aho, ahn, P ) ∈ R
5 of Equa-

tions (17) and (20).
In order to compare the equilibrium for this model to that of the basic

model, we use the linearization ez − 1 ≈ z, which leads to

0 ≈ ralo − λu(aho − alo) − 2λµhn(Pθ − alo + aln) − (κ(θo) − θoδ̄)

0 ≈ raln − λu(ahn − aln) − (κ(θn) − θnδ̄)

0 ≈ raho − λd(alo − aho) − κ(θo)

0 ≈ rahn − λd(aln − ahn) − 2λµlo(aho − ahn − Pθ) − κ(θn)

Pθ ≈ (1 − q)(alo − aln) + q(aho − ahn).

These equations are of the same form as those in Section 1 for the indirect
utilities and asset price in an economy with risk-neutral agents, with divi-
dends at rate κ(θo) for large owners and dividends at rate κ(θn) for small
owners, and with illiquidity costs given by δ̄. In this sense, we can view the
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λ λu λd s r β q δ
60 1.0 0.1 0.80 0.05 0.05 0.5 0.875

Table 1: Base-case parameters for basic model.

basic model as a risk-neutral approximation of the effect of search illiquidity
in a model with risk aversion. The approximation error goes to zero for small
risk aversion γ or small agent heterogeneity (that is, small ρl − ρh). Solving
specifically for the price P in the associated linear model, we have

P =
κ(θo) − κ(θn)

rθ
− δ̄

r

r(1 − q) + λd + 2λµlo(1 − q)

r + λd + 2λµlo(1 − q) + λu + 2λµhnq
. (21)

The expression (19) for δ̄ shows that the illiquidity cost in the basic model
can be interpreted as a hedging-based incentive to trade. This incentive is
increasing in the risk aversion γ, the endowment-correlation difference ρl−ρh,
and the volatilities of dividends and endowments.

3 Illustrative Example

We consider an example that serves to illustrate both the basic model and
the model with risk aversion, and how the latter can be well approximated
by the former.

Table 1 contains the exogenous parameters for the base-case risk-neutral
model. With the tabulated switching intensities for intrinsic types, agents
are in a high intrinsic state for an average of 10 years out of every 11, that is,
λu/(λu+λd). The search and switching intensities shown imply the stationary
fractions of each type that are listed in Table 2. We see that only a small
fraction of the asset, 0.0054/0.8 or about 0.67% of the total supply, is mis-
allocated through search frictions to low intrinsic types. The equilibrium
asset price, 19.05, however, is substantially below the perfect market price
of r−1 = 20, reflecting a significant impact of illiquidity on the price, despite
the relatively small impact on the asset allocation.

Our base-case version of the risk-aversion model is specified by the basic-
model parameters of Table 1 as well as the parameters of Table 3. The
parameters of these tables are consistent in the following sense. First, the
“illiquidity cost” δ = δ = 0.875 of low-intrinsic-type is that implied by (19)

13



µho µhn µlo µln P
0.7946 0.1145 0.0054 0.0855 19.05

Table 2: Steady-state masses and asset price, basic model.

γ ρh ρl µη ση µD σD Θ θo θn

0.0035 −0.5 0.5 10000 10000 1 0.5 16000 20000 0

Table 3: Additional base-case parameters with risk-aversion.

from the hedging costs of the risk-aversion model. Second, the total number
of shares Θ and the investor positions θo and θn imply the same fraction
s = 0.8 of the population holding large positions, using (16). In order to
illustrate that the investor positions are of realistic magnitudes, we provide
in Appendix B the associated Walrasian (perfect markets) model, with un-
constrained trade sizes, which has an equilibrium large-owner position size of
17,818 shares and a small-owner position size of −2, 182 shares. Third, the
certainty-equivalent dividend-rate per share, (κ(θo) − κ(θn))/(θo − θn) = 1,
is the same as that of the base-case model.

Figure 1 shows how prices depend on the search intensity λ. (Note that λ
does not affect δ or κ( · ), so the risk-neutral model is the same for all values
of λ.) The figure reflects the fact that as the search intensity λ becomes
large, the allocation and price become Walrasian (Proposition 3).

Figures 2 and 3 show how the price depends on risk aversion and volatility.
As we vary the parameters in these figures, we compute both the equilibrium
solution of the risk-aversion model and the solution of the associated basic
risk-neutral model that is obtained by the linearization (21), taking δ from
(19) case by case.

We see that the price decreases with risk aversion and volatility and that
both effects are large for our benchmark parameters. Also, these figures
show that equilibrium behavior of the OTC market model with risk aversion
is generally well approximated by a model of the basic risk-neutral sort.
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Figure 1: Price response to search intensity.

4 Risk Limits and Endogenous Position Size

In this section, we consider the impact of risk limits and illiquidity on prices
and on the equilibrium allocation of risky assets. Specifically, we consider
explicit limits on the volatilities of agents’ positions, an idealization of risk
limits imposed in practice, such as bounds on volatility or value at risk (VaR).

Consider the following variant of the basic model of Section 1. Agents
have the same preferences, including intrinsic-type processes, and the same
search technology of the basic model. Rather than an asset paying a constant
dividend rate, however, we suppose that the illiquid asset has a dividend-rate
process X that is Lévy, meaning that it has independent and identically dis-
tributed increments over non-overlapping time periods of equal lengths. Ex-
amples include Brownian motions, simple and compound Poisson processes,
and sums of these. Assuming that X(t) has a finite second moment, it fol-
lows, for any times t and t+ u, that

Et [X(t+ u) −X(t)] = mu, (22)

for a constant drift m, and that, letting vart( · ) denote Ft-conditional vari-
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ance,

vart (X(t+ u) −X(t)) = σ2
Xu, (23)

for a constant volatility parameter σX > 0.
We will consider economies in which counterparties choose to trade at

a price P (X(t)) at time t, for some Lipschitz function P ( · ) that we shall
calculate in equilibrium. The total gain in market value associated with
holding one unit of the asset between times t and t+ u is9

Gt,u = P (X(t+ u)) − P (X(t)) +

∫ t+u

t

X(s) ds. (24)

Agents are restricted to asset positions with a volatility limit σ, in the sense
that an agent is permitted to hold a position at any time t of size θ, long or

9The dividend process X is integrable with respect to t over compact time intevals
since, without loss of generality, a Lévy process may be taken to be a right-continuous
left-limits process.
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Figure 3: Price response to scaling ση and σD by σ.

short, only if it the associated mark-to-market volatility is no greater than a
policy limit σ, in that10

limu↓0+

1

u
vart (θGt,u) ≤ σ̄2, (25)

replacing the position limits of 0 and 1 used in the basic model.
With only these adjustments of the basic model, by risky dividends and

by risk limits on positions, we anticipate an equilibrium asset price per share
of the form

P (X(t)) =
X(t)

r
+ p, (26)

for a constant p to be determined. The portion X(t)/r of the price that
depends on X is the same as that in an economy with no liquidity effects,
because illiquidity losses do not depend on X(t).

10Because
∫ t+u

t
X(s) ds is absolutely continuous with respect to u, this instantaneous

volatility measure is determined by the limiting variance of [P (X(t + u)) − P (X(t))]/u,
and the dividend part of the gain plays no role in this restriction.
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The conjectured price process of (26) has a constant volatility, so we
conjecture an equilibrium in which agents are either long or short by a fixed
position size θ to be determined. These holdings are determined so that a
high-type agent holds as large a long (positive) position as the risk limits
allow, while a low-type agent holds as large a short position as allowed. (The
model remains tractable if one also imposes a short-selling restriction or cost.)
The total supply of shares per investor is some constant Θ.

The masses of the four types of agents evolve according to Equations (3)-
(6). Equation (1) continues to hold, and market clearing implies that

(µlo + µho − µln − µhn)θ = Θ, (27)

that is,

µlo + µho = s ≡ Θ

2θ
+

1

2
, (28)

where we have used (1). Hence, one can solve for the equilibrium masses by
exploiting the solution obtained for the basic model of Section 1, but, in this
case, the fraction s of long position holders is endogenous.

The steady-state equilibrium price is of the conjectured form (26), and
the indirect utility of an investor of type σ is of the form

V (X(t), σ) = θσ

X(t)

r
+ θvσ, (29)

where θσ is θ or −θ, depending on the type, and where the coefficients vσ

are to be determined. The coefficients for the price and value functions are
solved similarly to (8) and (10), in that

0 = rvlo − λu(vho − vlo) − 2λµhn(2p− vlo + vln) −
(m

r
− δ

)

0 = rvln − λu(vhn − vln) +
(m

r
− δ

)

0 = rvho − λd(vlo − vho) −
m

r
(30)

0 = rvhn − λd(vln − vhn) − 2λµho(vho − vhn − 2p) +
m

r
2p = (vlo − vln)(1 − q) + (vho − vhn)q.

In particular,

P (x) =
1

r
x+

m

r2
− δ

r

r(1 − q) + λd + 2λµlo(1 − q)

r + λd + 2λµlo(1 − q) + λu + 2λµhnq
.
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Thus, the volatility of the price is constant, and equal to σX/r, so the largest
admissible security position size is

θ =
rσ̄

σX

. (31)

The main feature of interest of the equilibrium position size θ is that it
decreases with the volatility of the asset, which implies the following.

Proposition 4 For a given bargaining power q, fix the unique equilibria
associated with two economies that differ only with respect to the dividend
volatility coefficient, σX . The larger dividend volatility is associated with
longer expected search times for sale, and a lower asset price.

This inverse dependence of the price on the volatility of the asset is a
liquidity effect, brought about by a reduction in the risk-taking capacity of
an investor relative to the total risk to be held. A larger volatility thus implies
a smaller quantity of agents whose risk capacity qualifies them to buy the
asset (that is, fewer liquid investors who do not already own the asset). In
practice, risk limits reflect agency and financial distress costs that we do not
model here.

5 Asymmetric Information

It is natural that information about future dividends held privately by agents
may be transmitted through trading. If agents observe only their own trans-
actions, one would expect that the speed with which information is spread is
related to agents’ search intensities. According to this intuition, information
is always disseminated, although slowly, if search intensities are low. We
show, however, that this need not be the case. If meeting intensities are low,
agents are eager to trade when they meet since they know that failure to
trade is costly. This can lead to pooling equilibria in which no information
is revealed through trading. We show that such pooling equilibria exist only
for sufficiently small search intensities. We do not study equilibria in which
information is disseminated through bargaining interaction, as did Wolinsky
(1990), although this would also be interesting.

We model asymmetric information as follows. A Lévy dividend-rate pro-
cessX has a constant jump-arrival intensity λJ . At each successive jump time
τ , the dividend jump size X(τ) −X(τ−) is, with some probability 1 − ζ, of
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mean J0, and with probability ζ of mean J1 > J0. The unconditional mean
jump size is therefore Jm = γJ1 + (1 − ζ)J0.

At each jump time, in the event that the next jump is to be drawn with the
high conditional mean, a proportion ν ∈ [0, 1] of the agents, independently
selected, are immediately informed of this fact. The remaining agents are
not. The allocation of this information is independent of agents’ intrinsic
liquidity types. In the event that the jump is to be drawn with the low
conditional mean, nobody receives information regarding this fact. Thus,
each agent is informed with probability γν, and, conditional on not having
received private information after the last jump, has a conditional mean of

Ju =
ζ(1 − ν)J1 + (1 − ζ)J0

1 − ζν

for the next jump size.
Other than risky dividends and private information of this character, the

assumptions of the basic model of Section 1 apply.
In order to keep our analysis relatively simple, we assume that, once two

agents meet, one of them is drawn randomly to make a take-it-or-leave-it of-
fer. We use the notation qσ for the probability that an agent of type σ is the
quoting agent. We are looking for conditions under which there is a pooling
equilibrium in which sellers quote a price at which both informed and unin-
formed buyers are willing to buy, rather than quoting a more aggressive price
at which uninformed buyers would decline to trade. Likewise, buyers quote
pooling prices. Before we determine these pooling prices, we point out that
our pooling equilibrium also requires that agents with no gains from trade
must not reveal information by trading with each other. This is, however,
consistent with optimal behavior. For instance, an uninformed owner of low
intrinsic type does not sell to an informed agent with low discount rate, since
there are no gains from trade between the two. If such a trade were to take
place, then the uninformed would become informed, but the expected utility
of these agents would remain unchanged.11 Such trades are ruled out, for
instance, if there is an arbitrarily small non-zero cost of making an offer.

We now turn to the determination of the value functions and pooling
prices. The indirect utility of an informed agent of type σ is, in equilibrium,

11We note, however, that in a partially revealing equilibrium, in which being informed
would be valuable for future behavior, there could exist strictly positive gains from such
a trade.
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of the form

θσ

X(t)

r
+ vσi,

where θσ is 0 or 1 depending on whether the type is an owner, and where
vσ,i is, for each σ, a coefficient to be calculated, and where the subscript i
denotes “informed.” Similarly, the equilibrium indirect utility of uniformed
agents of type σ is

θσ

X(t)

r
+ vσu.

We define the reservation-value coefficients for each of the four cases as
follows: ∆vlu = vlou − vlnu, ∆vhu = vhou − vhnu, ∆vli = vhoi − vhni, and
∆vhi = vhoi − vhni. We look for equilibria in which, naturally, informed
agents have higher reservation values than those of uninformed agents, and
all efficient trade can potentially happen, that is,

∆vhi ≥ ∆vhu ≥ ∆vli ≥ ∆vlu. (32)

The only problematic relation, ∆vhu ≥ ∆vli, is ensured by choosing the
“informational advantage,” namely λJ(J1−Ju), small enough relative to the
liquidity disadvantage, determined by δ. Proposition 6 in Appendix C makes
this statement precise. Appendix C also provides a complete analysis.

Here, we give only a flavor of the analysis required. In particular, pool-
ing requires that certain incentive-compatibility constraints be met. For
instance, an informed low-type owner must prefer to quote a price accepted
by all high-type non-owners, rather than quoting a more aggressive price,
which would be accepted only by informed non-owners. That is,

∆vhu + vlni ≥ Pr(i | i) (∆vhi + vlni) + (1 − Pr(i | i))vloi , (33)

where Pr(i | i) is the probability of the buyer being informed given that the
seller is informed. There are three other such constraints, but two of the four
conditions in total are sufficient, since they imply the other two. The analysis
in Appendix C shows that these incentive-compatibility constraints guarantee
the existence of a pooling equilibrium. Below, we provide an example in
which a pooling equilibrium exists for an open set of parameters. A pooling
equilibrium exists, however, only if the meeting intensity λ is sufficiently
low.12 If λ is high, then uninformed high-valuation non-owners, for instance,

12There is one parameter configuration, namely s = λu/(λu +λd), under which a high λ
need not destroy the pooling equilibrium. That should come as no surprise, since in this
knife-edge case even a competitive market equilibrium is supported by a range of prices
bounded by the proposed pooling prices.
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find it profitable not to offer a price that reflects good information, but,
rather, one that is only accepted by uninformed sellers. The intuition behind
the result is simple: Failure to trade at any given opportunity is less costly
when meeting other agents is easy. We summarize with the following result.
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Figure 4: The shaded area is the set of (λ, ν), fixing other parameters, for which a
pooling equilibrium exists. The lower (broken) line shows the lowest fraction ν of informed
investors consistent with the pooling (incentive compatibility) condition for quotation by
uninformed buyers. The upper (solid) line shows the highest value of ν consistent with
the pooling condition for quotation by informed sellers. The other parameters used to
generate this graph are λu = 1, λd = 0.1, s = 0.8, r = 0.05, δ = 1, λJ = 0.2, J0 = 1,
J1 = 1.1, and ζ = 0.5.

Theorem 5 For any set of parameters for which s 6= λu/(λu + λd), there
exists a search intensity λ̄ such that, for all λ > λ̄, a pooling equilibrium
cannot exist.

When search is less intense, however, pooling equilibria may exist for an open
set of parameters. Figure 4 provides an illustrative numerical example.
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We use the parameters of Table 1 and take J0 = 1, J1 = 1.1, λJ = 0.2,
and ζ = 0.5. We compute, for a range of contact intensities (λ), the minimal
and maximal proportions of informed agents, ν, consistent with a pooling
equilibrium. We see that, as λ increases, ν is confined to a smaller and smaller
interval, depicted as the shaded region of Figure 4, until the two sufficient
incentive-compatibility conditions can no longer be satisfied simultaneously.
One can see that the seller’s incentive constraint for pooling is more sensitive
to λ than is the buyer’s, because the buy side of the market is larger than
the sell side. Hence, as λ increases, a seller’s meeting intensity converges to
infinity, which makes it tempting for the seller to quote aggressive prices.
The buyer’s meeting intensity, on the other hand, is bounded as λ increases.

6 Market Implications

We turn to some implications of our model for functioning over-the-counter
(OTC) markets. Our main object is asset pricing in OTC markets, or more
specifically markets characterized by bilateral negotiation that is delayed by
search for suitable counterparties. The associated price effects may be rele-
vant for private equity, real estate, and OTC-traded financial products such
as interest-rate swaps and other OTC derivatives, mortgage-backed securi-
ties, corporate bonds, government bonds, emerging-market debt, and bank
loans.

Even in the most liquid OTC markets, the relatively small price effects
arising from search frictions receive significant attention by economists. For
example, the market for U.S. Treasury securities, an over-the-counter market
considered to be a benchmark for high liquidity, is subject to widely noted
illiquidity effects that differentiate the yields of on-the-run (latest-issue) se-
curities from those of off-the-run securities. Positions in on-the-run securities
are normally available in large amounts from relatively easily found traders
such as hedge funds and government-bond dealers. Because on-the-run is-
sues can be more quickly located by short-term investors such as hedgers
and speculators, they command a price premium, even over a package of off-
the-run securities of identical cash flows. Ironically, the importance ascribed
to this relatively small premium is explained by the exceptionally high vol-
ume of trade in this market, and also by the importance of disentangling the
illiquidity impact on measured Treasury interest rates for informational pur-
poses elsewhere in the economy. Longstaff (2002) measures relatively larger
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illiquidity effects on government security prices during “flights to liquidity,”
which he characterizes as periods during which a large demand for quick ac-
cess to a safe haven causes Treasury prices to temporarily achieve markedly
higher prices than equally safe government securities that are not as easily
found.

Part of the price impact represented by the spread between on-the-run
and off-the-run treasuries is conveyed by shortsellers who are willing to pay
a lending premium to owners of relatively easily located securities. A search-
based theory is developed in Duffie, Gârleanu, and Pedersen (2002). Empir-
ical evidence of the impact on treasury prices and securities-lending premia
(“repo specials”) can be found in Duffie (1996), Jordan and Jordan (1997),
and Krishnamurthy (2002). Fleming and Garbade (2003) document a new
U.S. Governnment program to improve liquidity in treasury markets by al-
lowing alternative types of treasury securities to be deliverable in settlement
of a given repurchase agreement, mitigating the costs of search for a partic-
ular issue. Related effects in equity markets are measured by Geczy, Musto,
and Reed (2002), D’Avolio (2002), and Jones and Lamont (2002). Difficulties
in locating lenders of shares sometimes cause dramatic price imperfections,
as was the case with the spinoff of Palm, Incorporated, one of a number of
such cases documented by Mitchell, Pulvino, and Stafford (2002).

The potential for much larger price impacts in relatively less liquid OTC
markets is exemplified in a study of Chinese equity prices by Chen and Xiong
(2001). Certain Chinese companies have two classes of shares, one exchange
traded, the other consisting of “restricted institutional shares” (RIS), which
can be traded only privately. The two classes of shares are identical in every
other respect, including their cash flows. Chen and Xiong (2001) find that
RIS shares trade at an average discount of about 80% to the corresponding
exchange-traded shares. Similarly, in a study involving U.S. equities, Silber
(1991) compares the prices of “restricted stock” — which, for two years, can
be traded only in private among a restriced class of sophisticated investors —
with the prices of unrestricted shares of the same companies. Silber (1991)
finds that restricted stocks trade at an average discount of 30%, and that
the discount for restricted stock is increasing in the relative size of the issue.
These price discounts would be difficult to explain using standard liquid-
market models based on asymmetric information, given that the two classes of
shares are claims to the same dividend streams, and given that the publicly-
traded share prices are easily observable.

Our model can be used to predict the implications of a widespread shock
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to the abilities or incentives of traders to take asset positions. Such a “wealth
shock” can be captured in our model by a simultaneous move by many (a
non-zero mass of) investors to the low intrinsic state, leading to a sudden
increase in the number of sellers (µlo rises) and reduction in the number of
buyers (µhn falls). As a result, the price drops. A similar effect would occur
with an upward shock to the transition intensity λd with which investors
migrate to the low intrinsic state. The price drop is caused in part by a
higher fraction of assets held by distressed traders, but, importantly, also
by the worsened bargaining position of sellers. The effect is temporary if
the transition intensities λu and λd are unaffected by the shock, and can
otherwise be long-lived. As we have shown in Sections 2–4, if agents are
risk averse or have risk limits, an increase in the risk of the asset has similar
implications. Higher risk (in the form of higher dividend volatility or higher
correlation between the dividends and the endowment processes) leads to
larger utility losses for distressed agents. Agents can compensate for the
increased risk by reducing their position limits, but then a larger fraction of
the agents must hold the risky asset, and liquidity is further reduced because
finding a buyer becomes more difficult. Hence, shocks to volatility can lead
to liquidity problems and price drops, especially if risk-management practices
imply a simultaneous tightening of position limits.

Search frictions also help explain how the relative size of an asset in the
economy may affect its price (or price-dividend ratio). Proposition 3 shows
that if a higher fraction (s) of the agents must hold the asset, then the price
must fall. This resembles the usual effect of a downward-sloping demand
curve. When comparing stocks in the cross section, however, there is the
additional effect that more investors typically participate in the market for
larger stocks, which also usually have a greater presence by marketmakers.
(Duffie, Gârleanu, and Pedersen (2003) introduce marketmakers and endo-
genize their search intensity.) If, for instance, the number of investors par-
ticipating in the market for a firm’s shares is proportional to the size of the
company, then this corresponds in our model to a higher13 search intensity
λ, leading to a more liquid market with a higher price-dividend ratio. (This
result also holds if we assume that non-owners switch markets in a manner
implying that the value V ln of being a non-owner is equal to some constant
for all markets.)

13A higher total mass, µ, of participating agents leads to higher search intensities λµ,
so if we re-normalize the mass to µ = 1, we must simultaneously increase λ.
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Such cross-sectional asset-pricing results are studied more directly by
Weill (2002), who extends our model to the case of multiple assets and shows,
among other things, that securities with a larger free float (shares available
for trade) are more liquid and have lower expected returns. Vayanos and
Wang (2002) also extend our model so as to explain concentrations of trade
in a favored security, explaining for example the price difference between
on-the-run and off-the-run Treasury bonds.

Duffie, Gârleanu, and Pedersen (2003) introduce marketmakers.14 Out-
side investors remain able to find other investors with intensity λ, but in
addition find marketmakers with some intensity ρ. This framework captures
the feature that investors bargain sequentially with marketmakers. Market-
makers have access to a liquid inter-dealer market, allowing us to abstract
from marketmakers’ inventory considerations, which have now been treated
by Weill (2003).

The price negotiation between a marketmaker and an investor reflects
the investor’s outside options, including in particular the investor’s ability
to meet and trade with other investors or marketmakers. We show that the
marketmaker’s bid-ask spread is lower if the investor can more easily find
other investors by himself. Further, the spread is lower if an investor can
more easily approach other marketmakers. In other words, more “sophisti-
cated” investors get tighter spreads from the marketmaker. Examples can be
found in the typical hub-and-spoke structure of contact among marketmak-
ers and their customers in OTC derivative markets. This distinguishes our
theory from traditional information-based theories that predict that more so-
phisticated (in this setting, more informed) investors get wider spreads from
marketmakers (Glosten and Milgrom (1985)).

The search-and-bargaining framework is a reasonable stylization of broker-
dealer behavior in OTC markets for fixed-income derivatives. In these mar-
kets, a “sales trader” and an outside customer negotiate a price, implicitly
including a dealer profit margin, that is based in large part on the customer’s
(perceived) outside option. In this setting, the risk that customers have su-
perior information about future interest rates is often regarded as small. The
customer’s outside option depends on how easily he can find a counterparty
himself (proxied by λ in our model) and how easily he can access other
dealers (proxied by ρ in our model). As explained by Commissioner of In-

14Other search-based models of intermediation include Rubinstein and Wolinsky (1987),
Bhattacharya and Hagerty (1987), Moresi (1991), Gehrig (1993), and Yavaş (1996).
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ternal Revenue (2001) (page 13) in recent litigation regarding the portion of
dealer margins on interest-rate swaps that can be ascribed to profit, dealers
typically negotiate prices with outside customers that reflect the customer’s
relative lack of access to other market participants. In order to trade OTC
derivatives with a bank, for example, a customer must have, among other
arrangements, an account and a credit clearance. Smaller customers often
have an account with only one, or perhaps a few, banks, and therefore have
fewer search options. Hence, a testable implication of our search framework
is that (small) investors with fewer search options receive less competitive
prices. We note that these investors are less likely to be informed, so that
models based on informational asymmetries alone would reach the opposite
prediction.

Our results have been extended to illustrate that temporary external sup-
ply imbalances may have much bigger impacts on prices than would be the
case with perfectly liquid markets, and that the degree of these price impacts
can be mitigated by providers of liquidity such as underwriters, hedge funds,
and marketmakers. Weill (2003) uses our approach to characterize the opti-
mal behavior of marketmakers in absorbing supply shocks in order to mitigate
search frictions by “leaning against” the outside order flow. Newman and
Rierson (2003) use our approach in a search-based model of corporate bond
pricing, in which large issues of credit-risky bonds temporarily raise credit
spreads throughout the issuer’s sector, because providers of liquidity such
as underwriters and hedge finds bear extra risk as they search for long-term
investors. They provide empirical evidence of temporary bulges in credit
spreads across the European Telecom debt market during 1999-2002 in re-
sponse to large issues by individual firms in this sector. Studying a different
set of markets, Mikkelson and Partch (1985) find empirical support for “the
notion that underwriting spreads are in part compensation for the selling ef-
fort.” In particular, they find that underwriting spreads are positively related
to the size of the offering.
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Appendices

A Explicit Bargaining Games

The setting considered here is that of Section 1, with two exceptions. First,
agents can interact only at discrete moments in time, ∆t apart. Later, we
return to continuous time by letting ∆t go to zero. Second, the bargaining
game is modeled explicitly.

We follow Rubinstein and Wolinsky (1985) and others in modeling an
alternating-offers bargaining game, making the adjustments required by the
specifics of our setup. When two agents are matched, one of them is chosen
randomly — the seller with probability q̂, the buyer with probability 1 − q̂
— to suggest a trading price. The other either rejects or accepts the offer,
immediately. If the offer is rejected, the owner receives the dividend from
the asset during the current period. At the next period, ∆t later, one of
the two agents is chosen at random, independently, to make a new offer.
The bargaining may, however, break down before a counteroffer is made. A
breakdown may occur because either of the agents changes valuation type,
whence there are no longer gains from trade. A breakdown may also occur
if one of the agents meets yet another agent, and leaves his current trading
partner. The latter reason for breakdown is only relevant if agents are allowed
to search while engaged in negotiation.

We consider first the case in which agents can search while bargaining.
We assume that, given contact with an alternative partner, they leave the
present partner in order to negotiate with the newly found one. The offerer
suggests the price that leaves the other agent indifferent between accept-
ing and rejecting it. In the unique subgame perfect equilibrium, the offer
is accepted immediately (Rubinstein (1982)). The value from rejecting is
associated with the equilibrium strategies being played from then ownards.
Letting Pσ be the price suggested by the agent of type σ with σ ∈ {lo, hn},
letting P̄ = q̂Plo + (1− q̂)Phn, and making use of the motion laws of Vlo and
Vhn, we have

Phn − ∆Vl = e−(r+λd+λu+2λµlo+2λµhn)∆t(P̄ − ∆Vl) +O(∆2
t )

−Plo + ∆Vh = e−(r+λd+λu+2λµlo+2λµhn)∆t(−P̄ + ∆Vh) +O(∆2
t ) .

These prices, Phn and Plo, have the same limit P = lim∆t→0 Phn = lim∆t→0 Plo.
The two equations above readily imply that the limit price and limit value
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functions satisfy

P = ∆Vl (1 − q) + ∆Vh q, (A.1)

with

q = q̂. (A.2)

This result is interesting because it shows that the seller’s bargaining power,
q, does not depend on the parameters — only on the likelihood that the seller
is chosen to make an offer. In particular, an agent’s intensity of meeting other
trading partners does not influence q. This is because one’s own ability to
meet an alternative trading partner: (i) makes oneself more impatient, and
(ii) also increases the partner’s risk of breakdown, and these two effects cancel
out.

This analysis shows that the bargaining outcome used in our model can
be justified by an explicit bargaining procedure. We note, however, that
other bargaining procedures lead to other outcomes. For instance, if agents
cannot search for alternative trading partners during negotiations, then the
same price formula (A.1) applies with

q =
q̂(r + λu + λd + 2λµlo)

q̂(r + λu + λd + 2λµlo) + (1 − q̂)(r + λu + λd + 2λµhn)
. (A.3)

This bargaining outcome would lead to a similar solution for prices, but the
comparative-static results would change, since the bargaining power q would
depend on the other parameters.

B Walrasian Equilibrium with Risk Aversion

This section derives the competitive equilibrium with risk averse agents (as
in Section 2) who can immediately trade any number of risky securities. We
note that this is different from a competitive market with fixed exogenous
position sizes.

Suppose that the Walrasian price is constant at P , that is, agents can
trade instantly at this price. An agent’s total wealth — cash plus the value
of his position in risky assets — is denoted by W̄ . If an agent chooses to
hold θ(t) shares at any time t, then the wealth-dynamics equation is

dW̄t = (rW̄t − rθtP − ct) dt+ θt dDt + dηt.
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The HJB equation for an agent of intrinsic type σ ∈ {h, l} is

0 = sup
c,θ

{Jw(w, σ)(rw − c+ θ(µD − rP ) + µη)

+
1

2
Jww(w, σ)(θ2σ2

D + σ2
η + 2ρσθσDση)

+λ(σ, σ′)[J(w, σ) − J(w, σ′)] − e−γc − βJ(w, σ)},

where λ(σ, σ′) is the intensity of change of intrinsic type from σ to σ ′. Con-
jecturing the value function J(w, σ) = −e−rγ(w+aσ+ā), optimization over θ
yields

θσ =
µD − rP − rγρσσDση

rγσ2
D

. (B.1)

Market clearing requires

µhθh + µlθl = Θ,

with µh = 1 − µl = λu/(λu + λd), which gives the price

P =
µD

r
− γ

(

Θσ2
D +

σDση [ρlλd + ρhλu]

λu + λd

)

. (B.2)

Inserting this price into (B.1) gives the quantity choices

θh = Θ +
σηλd [ρl − ρh]

σD(λu + λd)
(B.3)

θl = Θ − σηλu [ρl − ρh]

σD(λu + λd)
. (B.4)

C Proofs

Proof of Proposition 1: Start by letting

y =
λu

λu + λd

,

and assume that y ≥ s. The case y ≤ s can be treated analogously. Setting
the right-hand side of Equation (3) to zero and substituting all components
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of µ other than µlo in terms of µlo from Equations (1) and (2) and from
µlo + µln = λd(λd + λu)

−1 = 1 − y, we obtain the quadratic equation

Q(µlo) = 0,

where

Q(x) = 2λx2 + (2λ(y − s) + λu + λd)x− λds. (C.1)

It is immediate that Q has a negative root (since Q(0) < 0) and has a root
in the interval (0, 1) (since Q(1) > 0).

Since µlo is the largest and positive root of a quadratic with positive
leading coefficient and with a negative root, in order to show that µlo < η
for some η > 0 it suffices to show that Q(η) > 0. Thus, in order that µho > 0
(for, clearly, µho < 1), it is sufficient that Q(s) > 0, which is true, since

Q(s) = 2λs2 + (λu + 2λ(y − s))s.

Similarly, µln > 0 if Q(1 − y) > 0, which holds because

Q(1 − y) = 2λ(1 − y)2 + 2λ(y − s)(1 − y) + λd(1 − s).

Finally, since µhn = y − s+ µlo, it is immediate that µhn > 0.
We present a sketch of a proof of the claim that, from any admissible

initial condition µ(0) the system converges to the steady-state µ.
Because of the two restrictions (1) and (2), the system is reduced to two

equations, which can be thought of as equations in the unknowns µlo(t) and
µl(t), where µl(t) = µlo(t) + µln(t). The equation for µl(t) does not depend
on µlo(t), and admits the simple solution:

µl(t) = µl(0)e
−(λd+λu)t +

λd

(λd + λu)
(1 − e−(λd+λu)t).

Define G( · , · ) by

G(w, x) = −2λx2 − (λu + λd + 2λ(1 − s− w))x+ λds,

and note that µlo(t) satisfies

µ̇lo(t) = G(µl(t), µlo(t)).

The claim is proved by the steps:
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1. Show that µlo(t) stays in (0, 1) for all t, by verifying that G(w, 0) > 0
and G(w, 1) < 0.

2. Choose t1 high enough that µl(t) changes by at most an arbitrarily
chosen ε > 0 for t > t1.

3. Note that, for any value µlo(t1) ∈ (0, 1), the equation

ẋ(t) = G(w, x(t)), (C.2)

with boundary condition x(t1) = µlo(t1), admits a solution that con-
verges exponentially, as t → ∞, to a positive quantity that can be
written as −b +

√
b2 + c, where b and c are affine functions of w. The

convergence is uniform in µlo(t1).

4. Finally, using a comparison theorem (for instance, see Birkhoff and
Rota (1969), page 25), µlo(t) is bounded by the solutions to (C.2) cor-
responding to w taking the highest and lowest values of µl(t) for t > t1
(these are, of course, µl(t1) and limt→∞ µh(t)). By virtue of the pre-
vious step, for high enough t, these solutions are within O(ε) of the
steady-state solution µlo.

�

Proof of Theorem 2: We present here a sketch of the proof. The issue is
to show that any agent prefers, at any time, given all information, to play
the proposed equilibrium trading strategy, assuming that other agents do.
It is enough to show that an agent agrees to trade at the candidate equi-
librium prices when contacted by an investor with whom there are potential
gains from trade. Our calculations in Section 1 already imply that the value
function is equal to the utility of the consumption process generated by the
candidate trading strategy, at the candidate prices. We must now check that
any other trading strategy generates no higher utility.

The Bellman principle for an agent of type lo in contact with an agent of
type hn, is as follows. Selling the asset, consuming the price, and attaining
the candidate value of a non-owner with low valuation, dominates (at least
weakly) the value of keeping the asset, consuming its dividends and collecting
the discounted expected candidate value achieved at the next time τm of a
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trading opportunity or at the next time τr of a change to a low discount rate,
whichever comes first. That is, for an agent of type lo,

P + Vln ≥ E

[
∫ τ

0

(1− δ)e−rt dt+ e−rτ
[

(Vln + P ) 1{τ=τm} + Vho1{τ=τr}

]

]

,

where τ = min(τr, τm). There is a like Bellman inequality for an agent of
type hn. Both of these inequalities are satisfied in our candidate equilibrium.

Now, to verify the sufficiency of the Bellman equations for individual
optimality, consider any initial agent type σ0, any feasible trading strategy,
θ, an adapted process whose value is 1 whenever the agent owns the asset and
0 whenever the agent does not own the asset. The type process associated
with trading strategy θ is denoted σθ. The cumulative consumption process
Cθ associated with this trading strategy is given by

dCθ
t = θt

(

1 − δ1{σθ(t)=lo}

)

dt− P dθt. (C.3)

Following the usual verification argument for stochastic-control, for any
future time T ,

Vσ0
≥ E

[
∫ T

0

e−rt dCθ
t

]

+ E
[

e−rTVσθ

T

]

.

(This assumes without loss of generality that a potential trading contact does
not occur at time 0.) Letting T go to ∞ we have Vσ0

≥ U(Cθ). Because Vσ =
U(C∗), where C∗ is the consumption process associated with the candidate
equilibrium strategy, we have shown optimality.

The explicit solution is obtained by solving a linear system. The equations
for the coefficients of the value functions and prices are:

Vlo =
λuVho + 2λµhn(Vln + P ) + 1 − δ

r + λu + 2λµhn

Vln =
λuVhn

r + λu

Vho =
λdVlo + 1

r + λd

Vhn =
λdVln + 2λµlo(Vho − P )

r + λd + 2λµlo

P = (Vlo − Vln)(1 − q) + (Vho − Vhn)q.
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Define ∆Vl = Vlo −Vln and ∆Vh = Vho −Vhn to be the reservation values.
Let ψd = λd + 2λµlo(1 − q) and ψu = λu + 2λµhnq. Appropriate linear
combinations of the equations above yield

[

r + ψu −ψu

−ψd r + ψd

] [

∆Vl

∆Vh

]

=

[

1 − δ
1

]

.

Consequently,
[

∆Vl

∆Vh

]

=
1

r

[

1
1

]

− δ

r

1

r + ψu + ψd

[

r + ψd

ψd

]

, (C.4)

and the price is given by the expression stated in the theorem.

�

Proof of Proposition 3: The dependence on δ and q is seen immediately,
given that no other variable entering Equation (11) depends on either δ or q.

Viewing P and µσ as functions of the parameters λd and s, a simple
differentiation exercise shows that the derivative of the price P with respect
to λd is a positive multiple of

(rq + λu + 2λµhnq)

(

1 + 2λ
∂µlo

∂λd

(1 − q)

)

− (r(1 − q) + λd + 2λµlo(1 − q))

(

2λ
∂µhn

∂λd

q

)

,

which is positive if ∂µlo

∂λd

is positive and ∂µhn

∂λd

is negative.
These two facts are seen as follows. We noted above that µlo solves

Equation (C.1). Differentiating that equation with respect to λd, one finds,
for y = λu/(λu + λd), that

∂µlo

∂λd

=
s− µlo − 2λ ∂y

∂λd

µlo

2λµlo + 2λ(y − s) + λu + λd

> 0,

since ∂y

∂λd

< 0. Similar calculations show that

∂µhn

∂λd

=
−λd + 2λ ∂y

∂λd

µhn

2λµlo + λu + λd

< 0,
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which ends the proof of the claim that the price decreases with λd. Like
arguments can be used to show that ∂µlo

∂λu
< 0 and that ∂µhn

∂λu
> 0, which

implies that P increases with λu.
Finally,

∂µlo

∂s
=

λd + 2λµlo

2λµlo + 2λ(y − s) + λu + λd

> 0

and

∂µhn

∂s
=

−λu − 2λµhn

2λµlo + λu + λd

< 0,

showing that the price decreases with the supply s.
In order to prove that the price increases with λ for λ large enough, it

is sufficient to show that the the derivative of the price with respect to λ
changes sign at most a finite number of times, and that the price tends to its
upper bound, 1/r, as λ tends to infinity. The first statement is obvious, while
the second one follows from Equation (11), given that, under the assumption
s < λu/(λu + λd), λµlo stays bounded and λµhn goes to infinity with λ.

�

Proof of Transversality and Integrability for Section 2.

We impose on investors’ choices of consumption and trading strategies the
transversality condition that, for any initial agent type σ0, e

−βTE0J(WT , σt) →
0 as T goes to infinity. Intuitively, the condition means that agents cannot
consume large amounts forever by increasing their debt without restriction.
We must show that our candidate optimal consumption and trading strategy
satisfies that condition.

We conjecture that, for our candidate optimal strategy, E0J(WT , σT ) =
e(β−r)TJ(W0, σ0). Clearly, this implies that the transversality condition is sat-
isfied since e−βTE0J(WT , σT ) = e−rTJ(W0, σ0) → 0. This conjecture is based
on the insights that (i) the marginal utility, u′(c0), of time-0 consumption
must be equal to the marginal utility, e(r−β)TE0(u

′(cT )), of time T consump-
tion; and (ii) the marginal utility is proportional to the value function in our
(CARA) framework. (See Wang (2002) for a similar result.)
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To prove our conjecture, we consider, for our candidate optimal policy,
the wealth dynamics

dW =

(

log r

γ
− raσ − rā+ θσµD + µη

)

dt+ θσσD dB + ση dB
i − P dθσ

=

(

−raσ + θσµD +
1

2
rγσ2

η +
r − β

rγ

)

dt+ θσσD dB + ση dB
i − P dθσ

= M(σ) dt+
√

Σ(σ) dB̂ − P dθσ,

where M , Σ and the standard Brownian motion B̂ are defined by the last
equation.

Define f by

f(Wt, σt, t) = EtJ(WT , σT ) = −Ete
−rγ(WT +aσT

+ā).

Then, by Ito’s Lemma,

0 = ft + fwM(σ) +
1

2
fwwΣ(σ) (C.5)

+
∑

{σ′ : σ′ 6=σ}

λ(σ, σ′) (f(w + z(σ, σ′)P, σ′, t) − f(w, σ, t)) ,

where λ(σ, σ′) is the intensity of transition from σ to σ′ and z(σ, σ′) is −1, 1,
or 0, depending on whether the transition is, respectively, a buy, a sell, or an
intrinsic-type change. The boundary condition is f(w, σ, T ) = −e−rγ(w+aσ+ā).

The fact that f(w, σ, t) = e(β−r)(T−t)J(w, σ) now follows from the facts
that (i) this function clearly satisfies the boundary condition, and (ii) it
solves (C.5), which is confirmed directly using (17) for aσ.

�

Proof of Proposition 4: As stated formally by Equation (31), the posi-
tion θ decreases with the volatility σX . As a consequence, the equilibrium
agent masses change with an increase in σX in the same way as when the
supply of the asset increases. That means, in particular, that µhn decreases,
which translates into longer search times for a seller (type lo). Proposition 3
establishes that the price decreases with the supply, whence also with the
volatility σX of the dividends.

�
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Analysis of pooling equilibria with asymmetric information: We
work under condition (32), which means that prices are set by the reservation
values of the informed seller and uninformed buyer, and that the bid is higher
than the ask. Let µ denote the non-jump part of the drift of X. That is,
Es[Xt −Xs] = (µ + νJm)(t − s). Under these conditions, the coefficients of
the value-functions and price satisfy

vloi =
λuvhoi + 2λµhn(p + vlni) + λJ(ζνvloi + (1 − ζν)vlou) + λJJ1 + r−1µ − δ

r + λu + 2λµhn + λJ

vlni =
λuvhni + λJ(ζνvlni + (1 − ζν)vlnu)

r + λu + λJ

vhoi =
λdvloi + λJ(ζνvhoi + (1 − ζν)vhou) + λJJ1 + r−1µ

r + λd + λJ

vhni =
λdvlni + 2λµlo(vhoi − p) + λJ(ζνvhni + (1 − ζν)vhnu)

r + λd + 2λµlo + λJ

(C.6)

vlou =
λuvhou + 2λµhn(p + vlni) + λJ(ζνvloi + (1 − ζν)vlou) + λJJu + r−1µ − δ

r + λu + 2λµhn + λJ

vlnu =
λuvhnu + λJ(ζνvlni + (1 − ζν)vlnu)

r + λu + λJ

vhou =
λdvlou + λJ(ζνvhoi + (1 − ζν)vhou) + λJJu + r−1µ

r + λd + λJ

vhnu =
λdvlnu + 2λµlo(vhou − p) + λJ(ζνvhni + (1 − ζν)vhnu)

r + λd + 2λµlo + λJ

p = (vloi − vlni)(1 − q) + (vhou − vhnu)q .

We may view p as an expected-price coefficient; the realized-price coefficient
is vloi − vlni or vhou − vhnu, depending on who makes the offer.

In order for a pooling equilibrium to obtain, no agent should be willing
to deviate from proposing the pooling prices. First, a low-valuation owner,
whether informed or not, must prefer to quote a price that is accepted by all
liquid non-owners, rather than quoting a more aggressive price, which would
be accepted only by informed non-owners. That is,

∆vhu + vlni ≥ Pr(i | i) (∆vhi + vlni) + (1 − Pr(i | i))vloi (C.7)

∆vhu + vlnu ≥ Pr(i |u) (∆vhi + vlnu) + (1 − Pr(i |u))vlou, (C.8)

where Pr(i | ξ) is the probability of the buyer being informed given that the
seller has information status ξ ∈ {i, u}. The left-hand side of (C.7) is the
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value ∆vhu to an informed low-type owner of quoting the pooling price (given
that there are gains from trade with this counterparty). The right-hand side
is the value ∆vhi of asking for the most aggressive price, namely the reserva-
tion value of an informed non-owner (again, given that there are gains from
trade with this counterparty). Similarly, (C.8) states that an uninformed
low-discount-rate owner prefers to quote the pooling price. We note that
(C.7)–(C.8) are based implicitly on an assumption about the uninformed
investors’ out-of-equilibrium beliefs. In particular, these beliefs must be con-
sistent with the assumption that investors are not willing to pay more than
their reservation values. One possible choice of out-of-equilibrium beliefs is
that conditional on any out-of-equilibrium price offer, the expected jump of
an uninformed remains Ju. While other beliefs are possible, there is no other
pooling equilibrium in terms of prices and allocations.

Also, a high-type non-owner, whether informed or not, must prefer to
buy at the pooling price with certainty rather than buying at a lower price
only from uninformed sellers, that is,

vhoi − ∆vli ≥ Pr(u | i) (vhoi − ∆vlu) + (1 − Pr(u | i)) vhni (C.9)

vhou − ∆vli ≥ Pr(u |u) (vhou − ∆vlu) + (1 − Pr(u |u)) vhnu. (C.10)

It turns out that only the optimality conditions of the informed seller (C.7),
and of the uninformed buyer (C.10) need to be checked. If these two condi-
tions are satisfied, the other two optimality conditions follow automatically.
(Proposition 6 below formalizes this claim.)

For a given set of parameters, either of the necessary and sufficient op-
timality conditions, (C.7) and (C.10), may or may not hold. Intuitively,
the first condition fails when, keeping all other parameters fixed, there are
“so many” informed agents (ν is sufficiently high) that an (informed) seller
would benefit by quoting an aggressive price and risking the loss of a trade
with an uninformed agent. Similarly, the second condition fails when, keep-
ing all other parameters fixed, an uninformed buyer perceives the proportion
of uninformed agents as too large given his own lack of information (ν is
sufficiently small or large).

Proposition 6 (i) The solution to the linear system (C.6) satisfies ∆vli ≥
∆vlu and ∆vhi ≥ ∆vhu. (ii) Fix all the parameters with the exception of
λ, J0, and J1. Then there exists ε > 0 such that, whenever (J1 − Ju) < ε,
∆vhu ≥ ∆vli for all λ > 0. (iii) If the solution to the linear system (C.6)
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satisfies ∆vhi ≥ ∆vhu ≥ ∆vli ≥ ∆vlu, then conditions (C.7) and (C.10)
ensure that this solution defines a pooling equilibrium.

Proof: Let φh = ∆vhi − ∆vhu and φl = ∆vli − ∆vlu. Appropriate linear
combinations of Equations (C.6) yield

[

r + λu + 2λµhn + λJ(1 − νζ) −λu

−λd r + λd + 2λµlo + λJ(1 − νζ)

] [

φl

φh

]

= λJ(J1 − Ju)

[

1
1

]

,

which is immediately checked to have a positive solution.
For part (ii) , note that, when J1 = J0 = Ju, for the same reasons as in the

main model, ∆vhi = ∆vhu > ∆vli = ∆vlu. Since the difference ∆vhu − ∆vli

is of the form
α0

λ+ β0

− α′
0 + α′

1λ

β′
0 + β′

1λ+ λ2
(J1 − Ju),

with all the coefficients bounded uniformly in λ and independent of the jump
sizes, and α0 > 0 and β0 > 0, the claim follows.

Let us now turn to part (iii) of the proposition. Consider a seller with
information status π ∈ {i, u}. The seller’s bargaining power does not matter,
since we assume that it is captured by an independent random draw that
determines which side makes the “take-it-or-leave-it” offer. Our analysis
first conditions on the event that the seller makes the offer. Equations (C.7)
and (C.8) can be written as

∆vhu ≥ ∆vhiPr(i |π) + ∆vlπ (1 − Pr(i |π)) .

In order to show that the constraint for π = i is stronger than the constraint
for π = u, it suffices to show that

∆vhiPr(i | i) + ∆vliPr(u | i) ≥ ∆vhiPr(i |u) + ∆vluPr(u |u),
which is equivalent to

(∆vhi − ∆vli)Pr(u | i) ≤ (∆vhi − ∆vlu)Pr(u |u),
which in turn holds because ∆vli ≥ ∆vlu and Pr(u | i) ≤ Pr(u |u).

Analogously, one deduces that the uninformed-buyer condition is stronger
than the informed-buyer condition. Consequently, if (C.7) and (C.10) hold,
then (C.8) and (C.9) also do, whence quoting pooling prices is optimal for
all agents, given that everybody else does the same. This proves that the
solution to (C.6) defines a pooling equilibrium.
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�

Proof of Theorem 5: Assume first that s < λu/(λu + λd). Consider,
for each pair consisting of an owner and a non-owner of a given type, the
difference of the equations in the system (C.6) corresponding to their value
functions. Since λµhn goes to infinity with λ, while λµlo is bounded, one
shows that

lim
λ→∞

∆vlu = lim
λ→∞

∆vli = lim
λ→∞

∆vhu < lim
λ→∞

∆vhi.

This conclusion is inconsistent with inequalities (C.7) and (C.8), which means
that a pooling equilibrium cannot obtain for high λ. The intuition for the
result is that an increase in λ increases without bound the ability to find an
informed buyer, who is willing to pay strictly more than the pooling price.

Analogously, when s > λu/(λu+λd), one shows that the reservation-value
coefficient of the uninformed seller, ∆vlu, does not converge (from below) to
the common limit as the search ability for sellers converges to infinity, making
it worthwhile to a buyer to quote aggressively.

�
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