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Stalking the “Efficient Price”  
in Market Microstructure Specifications:  

An Overview 

Abstract 

The principle that revisions to the expectation of a security’s value should be 

unforecastable identifies this expectation as a martingale.  When price changes can 

plausibly be assumed covariance stationary, this in turn motivates interest in the random 

walk.  In the presence of the market frictions featured in many microstructure models, 

however, this expectation does not invariably coincide with observed security prices such 

as trades and quotes.  Accordingly, the random walk becomes an implicit, unobserved 

component.  This paper is an overview of econometric approaches to characterizing this 

important component in single- and multiple-price applications. 
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1. Introduction 

 In modeling security price dynamics, the martingale and its statistically expedient 

variant, the random walk, have long figured prominently.  Historically, the martingale 

and random-walk models have usually been employed in security price studies at daily 

and longer horizons.  At long horizons, it is common (and often appropriate) to ignore the 

finer details of the trading process.   A random-walk specification estimated directly for 

monthly closing stock prices, for example, is a reasonable point of reference or departure. 

 Over shorter intervals (e.g., trade-to-trade), however, market frictions and effects 

attributable to trading process often introduce short-term, transient effects.   The most 

prominent example is perhaps the “bounce” arising from trades that randomly occur at 

the bid or ask prices.  Such effects introduce dependencies into the price dynamics.  In 

consequence the unadorned random walk is no longer an attractive or reasonable 

specification. 

 Despite this, it is grossly incorrect to conclude that martingales have no further 

relevance.  Traders still rely on their beliefs about what the security is worth.  In virtually 

all microstructure models, the expectation of terminal security value conditional on 

current information plays a crucial role.  Broadly speaking, when the information set is 

increasingly refined (“a filtration”) this (indeed, any) sequence of conditional 

expectations is a martingale.  In recognition of this, many structural microstructure 

models are formed by adding trading-related effects to a random walk that is simply 

called the “efficient price”.    Consistent with this usage, the present paper will use the 

term “efficient price” to refer to a martingale expectation of future (perhaps terminal) 

prices. 

 When we introduce microstructure effects into a price model, we break the 

identity between the observed price and the underlying expected-value martingale.   To 

address this difficulty, we need econometric approaches that allow us to characterize this 
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structural, implicit, unobserved martingale.  This note seeks to summarize and review 

such approaches.1 

 These approaches are mostly drawn from the econometric literature that focuses 

on macroeconomic time series.  Statistical theorems and proofs are valid, of course, 

whether t indexes years or seconds.  Nevertheless, model specifications and identification 

restrictions are often highly dependent on the assumed underlying structural economic 

model.  Restrictions that are reasonable for macroeconomic time series might well be 

objectionable in analyses of microstructure data (and vice versa).  There are no one-size-

fits-all statistical models. 

2. Random walk decompositions 

a.  Martingales in market microstructure 

 In the usual theoretical models, the martingale property of security prices is a 

manifestation of “market efficiency”, a property of the dynamic economic equilibrium.  

Although the original formulations relied on frictionless perfect market assumptions, the 

martingale property is robust to certain imperfections that fall under the microstructure 

purview.  Perhaps most importantly, asymmetric information does not inevitably cause 

non-martingale behavior (Easley and O'Hara (1987); Glosten and Milgrom (1985); Kyle 

(1985)).   

 The effects of fixed transaction costs, inventory control and price discreteness are 

more complicated.  In the Roll (1984) model, for example, “bid-ask bounce” leads to 

transaction price changes that are negatively dependent.  The model is typical, however, 

in that long-run changes in transaction prices are dominated by an implicit martingale, the 

midpoint of the bid and ask quotes (which is, in Roll’s application, unobserved).   The 

                                                 
1 Hamilton (1994) is a textbook reference for most of the standard time-series results 

invoked in this paper.  Hasbrouck (1996) discusses related microstructure applications of 

this material. 
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question then becomes, how can we make inferences about the implicit, unobserved 

martingale, based on the observed data.   

 Analysis of similar situations in macroeconomic time series yields some useful 

results.  We summarize these below, but first note a key assumption.  In analyzing long-

horizon data, the empirical studies of the martingale behavior generally estimate random-

walk specifications.  The random-walk is a martingale that possesses sufficient regularity 

(specifically stationary, independent increments) to be amenable to estimation on the 

basis of a single time series realization.  We adopt a corresponding assumption here.  

That is, it will be assumed that price changes are covariance stationary and ergodic.    

b. The univariate random-walk decomposition 

 Suppose that the (unobservable) efficient price, mt , follows a random walk: 

  1t t tm m u−= +  (1) 

where 2 20; ; 0 for t t u t sEu Eu Eu u t sσ= = = ≠ .  The (observed) transaction price is equal to 

this plus a component that impounds various microstructure effects: 

  t t tp m s= +  (2) 

 How might st be characterized?  If we view st as arising from bid-ask bounce, 

discreteness, inventory effects and the like, the defining feature of st appears to be 

transience, i.e., an absence of permanent effect on prices.  We formalize this by requiring 

st to be a zero-mean covariance-stationary process: 0tEs =  and the autocovariances 

t t kEs s −  depend only on k. 

 It is perhaps unsurprising that this decomposition given in equation (2) is 

unidentified.  For example, given that 100tp = , there is nothing in the model that allows 

us to assert 99 and 1t tm s= = , as opposed to, say, 102 and 2t tm s= = − .  It turns out, 

however, that the properties of the observed price process do suffice to identify the 

variance of the random walk component, 2
uσ .   

 Specifically, consider the innovations (moving average) representation of ∆pt is: 

  1 1 2 2t t t tp ε ψ ε ψ ε− −∆ = + + +!  (3) 
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Since ∆pt is assumed to be covariance stationary, the MA representation exists by virtue 

of the Wold Theorem.  In estimation situations, it is typically obtained by inverting 

estimates of the corresponding autoregressive model.  It can be shown that the random-

walk variance is given by: 

  ( )22 2
1 21u εσ ψ ψ σ= + + +!  (4) 

(See Watson (1986).)  Intuitively, the random-walk variance is identified because in a 

long sample of data, price changes are dominated by the random-walk component. 

 Now while this is a useful result, one might well seek to go further.  We therefore 

ask, are there economic features of microstructure models that support stronger 

identifying restrictions? 

c. Analysis of two structural models 

 The macroeconomic literature identifies two identifying restrictions that are, in a 

sense, polar.  These restrictions suggest economic microstructure models, which are 

described below. 

A special case: The pure asymmetric information model 

 In the macroeconomic literature, it was first suggested that st be driven entirely by 

the random-walk innovation, ut (Beveridge and Nelson (1981)).  A microstructure model 

along these lines can be constructed as follows.  First, drawing on the asymmetric 

information models, we assume that the efficient price is driven entirely by the trade 

direction 

  

1

1, if the trade is a sale to the dealer
1, if the trade is a buy from the dealer

t t t

t

t t

m m u

q

u qλ

−= +

−
= +
=

 (5) 

The qt are trade-direction indicators (identically and independently distributed with 

( ) ( )Pr 1 Pr 1 1 2t tq q= − = = + = ).  The λ coefficient is a trade impact parameter that 

reflects what the dealer learns from the trade.  Notice that there is no component to 

t tm u∆ = beyond that induced by trades: there is no non-trade “public” information. 
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 Next, we assume that the dealer must recover a fixed cost of trading c, so that 

  t t tp m c q= +  (6) 

All randomness in this model derives from one variable (qt).  In consequence, strong 

identification is possible.  The econometrician (or a market participant) who knows the 

price record 1 2, , ,t t tp p p− − …  can compute  mt ( )and t ts c q= .  It is emphasized here that st 

and ut are perfectly (and positively) correlated. 

A special case: a pure “public information” model 

 The assumption of perfect correlation between the mt and st innovations is a 

strong restriction.  Watson (1986) discusses the case where these two processes are 

completely uncorrelated.  This is the case with the Roll (1984) model discussed above, 

wherein the trade direction is assumed independent of the efficient price increment.  The 

model now comprises, however, two sources of randomness.  In consequence, the 

econometrician (or market participant) can only estimate mt subject to error, even if the 

full price record { }1 1, , , ,t t tp p p+ −… … is known. 

 From a microstructure perspective, an either/or choice between these two polar 

identification restrictions is an unattractive one.  Models with public and private 

information, that also feature trade-related transient price effects, are unlikely to fit neatly 

into either framework. 

d. Permanent-transitory decompositions 

 The random-walk decomposition presented in equations (1) and (2) belongs to the 

broader class of permanent-transitory (PT) decompositions (Quah (1992)).  The 

generality afforded by this broader class may be described as follows.  A random walk 

(such as mt in (1)) is said to be integrated of order one, denoted I(1).  More generally, an 

I(1) time series is one that contains a random walk and possesses covariance-stationary 

first-differences.  In equation (2), for example, pt is also I(1).   Analogously to the 

random-walk decomposition for the security price given in (2), a permanent-transitory 

decomposition is: 

  t t tp f s= +  (7) 
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where ft is I(1) and st is covariance-stationary, that is, I(0).  The essential generalization 

here is that the permanent component ft need not be a random walk.  This is frequently 

useful in macroeconomic time series.   

 From a microstructure perspective, however, the usefulness of this generality is 

questionable.  If ft is not a random-walk, then it can’t be a martingale, nor therefore can it 

be an unbiased conditional expectation of the security’s eventual value.  Nor will its 

variance generally equal the long-run variance of the security price.   One cannot go so 

far as to say that such a component could never be of interest to a trader (or 

econometrician), but a justification could only be based on the particulars of well-defined 

structural model.  Outside of such a model, it is difficult to conjecture why a permanent 

non-martingale price component warrants general interest. 

 Furthermore, the examples in the last section illustrate that identification of 

simple random-walk decompositions in microstructure settings is problematic.  The 

additional generality implicit in a PT decomposition renders identification even more 

difficult. 

3. Multiple prices and cointegration 

a. Cointegration: a microstructure perspective 

 A single security often exhibits multiple “prices”.  The most recent transaction 

price, the bid quote, the offer quote, to say nothing of trade and quote prices that arise in 

different trading venues, can each lay a claim to being the “true price” (at least for some 

set of traders or potential traders).   Indeed, most traders would prefer to form beliefs 

about the security from the full set of prices.  The electronic trading screens available for 

many securities present such a set.    

 As in the one-price case, the trader (and the econometrician) is forming a belief 

about the security value.  Such beliefs, if defined by a sequence of conditional 

expectations, must still evolve as a martingale.  What is new here is that this expectation 

is now conditional on multiple prices.  From an econometric perspective, we are trying to 

characterize a single implicit random walk that is common to all of the prices. 
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 A statistical model of the joint behavior of such a set of prices must reflect two 

considerations.  First, each price (considered individually) is I(1) (contains a random 

walk).  Second, pairs of prices are linked in the long run by arbitrage and/or equilibrium 

relationships.  Therefore, any two prices will not arbitrarily diverge over time.  These 

considerations imply that the set of prices embodies a single long-term component.  

Formally, we say that the set of prices is cointegrated. 

 Cointegration is related to, but quite distinct from, correlation.  The daily high-

water mark of the Hudson River at 96th Street is highly correlated with the measurement 

taken at 14th Street.  But the two series of measurements are not cointegrated because 

neither is individually integrated.  (Neither measure will tend to wander off over time 

without bound.)   Moreover, cointegration is a stronger restriction than correlation.  The 

daily price changes of Ford and GM are positively correlated due to common industry 

effects.  But there are no obvious equilibrium or arbitrage relationships that tie the two 

firms together: one might eventually go bankrupt while the other thrives.  On the other 

hand, the bid and offer quotes for GM are almost certainly cointegrated.  The difference 

between these two prices (the ask less the bid) is the spread.  The spread cannot go 

negative or explode without bound (given any reasonable economic model of competitive 

liquidity provision). 

 The analysis of macroeconomic time series has yielded many useful results in the 

specification and estimation of cointegrated models.   Relative to macro applications, 

however, microstructure cointegrated models are usually much simpler.   Macroeconomic 

analyses are complicated because the precise nature of the cointegrating relations is 

unknown.  In the long run, for example, the proportion of consumption to national 

income is likely to be stationary.  (That is, the log of consumption and the log of income 

are cointegrated.)  But since there is no obvious way to specify the proportion a priori, it 

must be estimated.  Microstructure models are more precise.  Although the price of GM 

on the New York and Boston Exchanges might differ at any given time, it is sensible to 

assume that this difference is stationary.  Formally, this identifies a basis for the 

cointegrating vectors. 
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b.  A dual market example 

 Suppose that we are interested in a security that trades in two different markets.  It 

is convenient to generalize the random-walk decomposition discussed in Section 2.b to 

allow for two prices: [ ]1 2t t tp p p ′= .  That these two prices are driven by the same 

implicit efficient price can be expressed as: 

  1 1

2 2

1
1

t t
t t

t t

p s
p m

p s
    

= = +    
    

 (8) 

As in equation (1) above mt follows a random walk.  The price equation is a bivariate 

generalization of equation (2) 

 As in the univariate case, the variance of the random walk is identified.  The 

moving average representation for tp∆  is notationally the same as the one given in 

equation (3): 

  1 1 2 2t t t tp ε ψ ε ψ ε− −∆ = + + +!  (9) 

Here, however, [ ]1 2t t tε ε ε=  is a vector process, where the two components reflect the 

innovations (“new information”) revealed in the first and second markets.  The ψi are 

two-by-two matrices.  This vector moving average (VMA) representation is usually 

obtained by inverting a vector error correction model. 

 Define the matrix sum of the moving average coefficients by 

( ) 1 21 Iψ ψ ψ= + + +! , where I is the 2 2×  identity matrix.  It is a property of this model 

that the rows of ( )1ψ  are identical.  The intuition here is that this sum reflects the impact 

of an initial disturbance on the long-run component which is common to all prices.  Let Ψ 

denote one of the (identical) rows of ( )1ψ .  Then the variance of the random-component 

is: 

  2
uσ ′= ΨΩΨ  (10) 

where ( )tVar εΩ = .  (This is the multivariate analog of equation (4)). 

c. Price discovery: the information share (variance) approach 

 The random-walk variance reflects contributions from both markets.  To see this, 

we may write out equation (10) in full as: 
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  [ ]
2

11 1,22
1 2 2

21,2 2
u

σ σ
σ

σ σ
  Ψ 

= Ψ Ψ    Ψ  
 (11) 

where ( ) ( ) ( )2 2
1 1 2 2 1,2 1 2; ; and ,t t t tVar Var Covσ ε σ ε σ ε ε= = = .  Now if the covariance 

matrix happened to be diagonal (that is, if 1,2 0σ = ), then equation (11) would imply a 

clean decomposition of the random-walk variance between the two markets.  Hasbrouck 

(1995) suggests that these relative contributions be considered the “information shares” 

of the two markets. 

 More generally, when the innovations in the two markets are correlated (that is, 

when 1,2 0σ ≠ ), the covariance terms in equation (11) can’t be attributed to either market.  

In such situations, Hasbrouck suggests constructing upper and lower bounds for the 

information shares by orthogonalizing (rotating) the covariance matrix to maximize and 

minimize the explanatory power of a particular market.  These bounds, it might be 

emphasized, are not the usual estimation confidence intervals.  They arise from 

insufficient identification, and so might be large even with a data sample of “infinite” 

size.2 

 This characterization of the random-walk variance is very useful, but also 

somewhat limited.  Are there reasonable identification restrictions that might offer a more 

detailed picture?  Unfortunately, from an economic perspective, further identification 

restrictions are generally no more attractive here than they were in the univariate case 

discussed above. 

d. Price discovery: The permanent-transitory (PT) approach 

 The permanent-transitory decomposition discussed in connection with the single 

price framework (Section 2.d) can also be extended to cointegrated systems.  That is, 

                                                 
2 In practice, these bounds will be tighter as the correlation between the innovations in the 

two markets approaches zero.  This in turn is largely a function of the time resolution in 

the analysis.  GM bid-price changes computed for the New York and Boston Exchanges 

over a one-month horizon have a correlation near one; the corresponding price changes 

computed over a one-second resolution have a correlation near zero. 
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  1 1

2 2

1
1

t t
t t

t t

p s
p f

p s
    

= = +    
    

 (12) 

where ft is I(1), but not necessarily a random walk.  As in the univariate case, this 

additional generality aggravates the identification problems.  In the context of 

macroeconomic time series, Gonzalo and Granger (1995) suggest identifying ft (up to a 

normalization) by two conditions: 

a) ft is an exact linear function of the current variables, in this case the pt. 

b) The residual transitory component, [ ]1 2t ts s ′ , has no permanent effect 

on pt. 

Harris, McInish, and Wood (2000) apply this approach to trade price data from multiple 

equity markets. 

 In the two-price application, the Harris et al common factor approach is 

tantamount to specifying t tf a p=  where [ ]1 2a a a= , subject to a normalization: 

1 2 1a a+ = .  Intuitively, ft  in this model is a weighted average of current trade prices. 3  

Harris et al suggest that a1 and a2 are useful measures of the price discovery originating in 

the two markets.  These parameters can be estimated easily from the vector error 

correction model. 

 Relative to the information shares discussed in connection with the random-walk 

decomposition model, the a’s possess a very appealing feature.  Whereas the information 

shares can only be determined within a range, the a’s are exactly identified.  In the 

application presented in Harris et al, moreover, the estimates are generally reasonable. 

 The identification, however, comes at the cost of imputing to agents in the 

economy a dubious objective.  Specifically, why should a trader care about an average of 

current prices?  The average won’t generally be an optimal prediction of the price ten 

trades or ten minutes in the future.  If forward-looking traders rely on the conditional 

expectation of terminal value, they will prefer an information set that is as large as 

                                                 
3 There is nothing in the statistical specification, however, that requires the ai to be 

nonnegative, so perhaps ft is more accurately characterized as a portfolio. 
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possible.  If past prices contain useful information, why should they be excluded from the 

conditioning set? 

e. Information-share and common-factor measures of price discovery: a comparison 

 The relative merits of the information share (IS) and permanent-transitory (PT) 

measures of price discovery might be summarized as follows.  The information shares 

arise from a random-walk decomposition subject to minimal identification restrictions.  

The implicit random walk, being a martingale, is consistent with rational updating of 

conditional expectations.  Estimates of the information shares, however, can be 

determined only within bounds that are likely to be uncomfortably large in many 

applications.  The permanent factor coefficients (the a) in the PT approach, on the other 

hand, may be estimated much more precisely.   Their economic justification, however, 

rests on the presumption that the representative trader’s objective is an average of current 

prices. 

 The contrast has to this point, been made at an abstract level of economic and 

econometric principle.  The reader might well be wondering if material differences 

between the two approaches are likely to arise in practice.  To answer this question, I 

consider the implications of both approaches for three simple structural models.   That is, 

I consider the behavior of these specifications in situations when the structural models are 

known and the estimation procedures are applied to data generated by artificial, but 

nonetheless plausible, economic models. 

Price discovery example I: A two-market “Roll” model. 

 In this model, the quote midpoint mt is assumed to be driven by non-trade public 

information, which is available to all market participants.   The price in Market 1,2i =  is 

simply equal to the (common) efficient price, plus bid-ask bounce: 

  

1

1, with pr. 1 2
,  for 1,2

1, with pr. 1 2
,  for 1,2

t t t

it

it t it

m m u

q i

p m c q i

−= +

−
= =+
= + =

 (13) 



Page 14 

I assume that { }1 2, ,t t tu q q  are mutually uncorrelated.  The two markets in this model are 

(statistically) identical.  This symmetry suggests that, in a structural sense, neither market 

should dominate.  Any sensible attributions of price discovery should either be 

indeterminate or of equal share (0.5).  With parameter values 1 and 1uc σ= = , I 

generated 100,000 observations, and analyzed the data according the PT and IS 

approaches.   

 Table 1 summarizes the results.  The PT approach determines an attribution of 

price discovery to Market 1 that is (to reported precision) identical to the “correct” (that 

is, structural) value, 0.5.  The bounds implied by the information share approach certainly 

contain this value, but the range is a wide one (0.21, 0.79). 

 All else equal, one is drawn to the PT approach here because it appears to arrive 

at the correct value with little uncertainty.  There are, however, some drawbacks to this 

attribution.  The statistical properties of the PT common price factor, in this case 

1 20.5 0.5t t tf p p= +  differ dramatically from those of the structural efficient price.  With 

the parameter values used here, ( ) ( )2
11 and , 0t u t tVar m Corr m mσ −∆ = = ∆ ∆ = .  In the 

simulated data, however, ( ) 2.00tVar f∆ = and ( )1, 0.25t tCorr f f −∆ ∆ = − .   Thus, an 

analysis that takes ft as a proxy for the structural efficient price will grossly overestimate 

volatility and autocorrelation.  Under the IS approach, however, the estimated variance of 

the common price factor (the random walk) component is 1.01, with first-order 

autocorrelation that is zero (by construction).      

Price discovery example II: Two markets with private information. 

 Suppose that Market 1 is identical to the asymmetric information market 

considered in Section 2.c.  That is, the quote midpoint mt is driven purely by Market 1’s 

trades: 

  1 1t t tm m qλ−= +  (14) 

The transaction price in this market is 

  1 1 1t t tp m c q= + . 

Market 2 is the derivative (satellite) market, with trade prices given by 
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  2 1 2 2t t tp m c q−= + . 

Note that Market 2 relies on the lagged (stale) value of mt.  Thus, from a structural 

viewpoint, it is clear that all price discovery occurs in the first market.  For parameter 

values 1 2 1c c= =  and 1λ = , I simulated and analyzed 100,000 observations. 

 Table 2 summarizes the results.  As in the previous example, the PT approach 

attributes nearly all of the price discovery to the Market 1 (the structurally correct 

answer).  The IS approach also makes this determination.  In contrast to the last example, 

the bounds of the price discovery share are very tight.  (This is a consequence of there 

being only one source of randomness in the Market 1 price.  Because the 1tp  dynamics 

are driven entirely by 1tq , mt can be recovered exactly from current and past prices.) 

 Although the PT and IS approaches give similar determinations of price 

discovery, the behavior of the common price factors differs strongly (as in the last 

example).  The random-walk component in the IS approach has moments that are very 

similar to those of the efficient price.  The PT price factor ft  has a variance that is more 

than four times as large as that of the efficient price, however.  The factor also exhibits 

strong negative autocorrelation. 

Price discovery example III: Two markets with public and private information. 

 Example III combines features of Examples I and II.  The quote midpoint mt is 

driven by Market 1’s trades and a non-trade (“public information”) component: 

  ( )2
1 1  where ~ 0,t t t t t um m q u u Nλ σ−= + +  (15) 

The transaction price in this market is 

  1 1 1t t tp m c q= + . 

As in example II, Market 2 is the derivative (satellite) market, with trade prices based 

stale (lagged) information. 

  2 1 2 2t t tp m c q−= + . 

Once again, Market 1 is in a structural sense, the clear leader. 

 The parameter values used for the simulations were 1 1c = , 2 0c =  and 1λ = .    
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A supporting economic story here might be that 1 2c c>  because the costs of market-

making (including monitoring and regulatory systems) in an environment with informed 

trading are larger than the costs of a passive system.   Market 2 crosses trades cheaply 

(costlessly) at stale prices.4  I simulated and analyzed 100,000 observations. 

 Table 3 reports the results.  The PT approach attributes 60% of the price 

discovery to Market 1; the bounds of the IS attribution are (90%, 98%).   Thus (up to an 

estimation error) the IS bounds contain the correct value.  The PT attribution is a 

substantial underestimate, and also lies below the lower bound of the IS range.  As in the 

earlier examples, the statistical properties of the random-walk component in the IS 

approach are quite close to those of the structural efficient price.  In contrast with the 

earlier examples, this also characterizes the PT common factor. 

Summary 

 The examples studied here cover a range of structural models: one in which all 

information is public; one in which all information is private (trade-related); and one with 

a mix of public and private information. 

 In the analysis of these examples, neither the PT nor the IS approaches always 

arrives precisely at the structurally-correct determination.  The bounds generated by the 

IS approach usually contain (up to estimation error) the true value.  This cannot be said of 

the PT approach, which may be quite misleading (as in example III).    

 It might be alleged in favor of the PT approach that it sometimes achieves a 

precise identification when the IS bounds are vague (as in example I).  But the price 

factor so constructed in this situation is substantially more volatile and autocorrelated 

than the structural efficient price.   This raises questions about the extent to which the PT 

factor approximates the structural efficient price. 

                                                 
4 In the analysis of example II, the parameterization was 1 2 1c c= = .  Setting 1 1c =  and 

2 0c =  in Example II yields a system that is noninvertible, and therefore cannot be 

estimated by a VECM. 
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 On balance, therefore, the IS approach appears to support more reliable inference.  

As long as the price component of interest is presumed to follow a random walk, the IS 

analysis offers the most accurate characterization.   The random-walk restriction on the 

efficient price is motivated by the economic logic that this component should behave as a 

martingale.  It might well be the case that other microstructure considerations motivate 

interest in non-random-walk price components.  But absent such structural economic 

considerations, the rationale for alternative statistical restrictions (as in the PT approach) 

is, in microstructure applications, unclear.  

4. Multiple markets with different trading frequencies 

 The discussion of the multiple-market models in the previous section made no 

note of a particular feature that greatly simplified the analysis.  Specifically, the data 

record contained contemporaneously-determined prices for each market for each time t.  

This feature is unfortunately quite problematic in practice.  Transaction frequency often 

differs dramatically across the various markets in which a security is traded.  Obtaining a 

multivariate transaction price series in which the component prices are determined 

approximately contemporaneously, therefore, requires thinning the data set.  

 Thinning is not an innocuous procedure.  By discarding prices established in the 

higher-frequency market that are not close in time to trades in the low-frequency market, 

the analyst suppresses any economic value these “intermediate” prices might have.  

Furthermore, inferences about price discovery that includes these intermediate times 

might be reversed in an analysis that focuses only on times with coincident (or nearly 

coincident) prices.  Two examples illustrate these points. 

Data thinning example I 

 Suppose that the efficient price evolves as a random walk, 

  1t t tm m u−= + , (16) 

where t indexes “minutes”.  Market 1 (the “high-frequency market”) has a trade every 

minute at price 1t tp m= .  Market 2 (the “low-frequency market”) has a trade every 100 

minutes: 
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  2

 if mod( ,100) 0
, otherwise

t
t

m t
p

Undefined
=

= 


 (17) 

From a structural perspective, all the price discovery at intermediate times (that is, times 

at which ( )mod ,100 0t ≠ ) is occurring in Market 1.  If we thin the data set to the 

“endpoint” times 100  for 1,2,t i i= = …, then the two markets will appear to be 

informationally equivalent. 

Data thinning example II: 

 This example, although perhaps extreme, illustrates the problem with relying 

solely on endpoint prices.  We extend the previous example to “penalize” Market 1 as 

follows:  

  ( )1
1

, if mod ,100 0
, otherwise

t
t

t

m t
p

m
− =

= 


 (18) 

That is, Market 1 still performs all of the price discovery during intermediate times, but 

uses stale prices at the endpoints.  Viewed over all t, Market 1 performs 99% of the price 

discovery.  But viewed solely from the endpoints, Market 1 appears completely 

redundant.5 

Thinning: a summary 

 Market data are not always conveniently timed, and it is probably too strong a 

pronouncement to assert that thinning is never justified.  But the above examples should 

introduce an element of doubt or qualification to the practice.  Thinning is essentially 

censoring, and price patterns that clearly characterize a full data record may be obscured 

or reversed in a censored sample. 

 Moreover, the examples featured exogenous trading occurrences.  If trade 

occurrence is endogenous to the information process, the possibilities of misleading 

inference increase further.  Suppose, for example, that in reaction to new information, 

                                                 
5 That is, a time-series analysis of endpoint price changes would (in a sufficiently large 

sample) find Granger-Sims causality running from Market 2 to Market 1, but not the 

reverse. 
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traders in the satellite market refrain from transacting until prices in the dominant market 

have “settled down”. 

5. Conclusions 

 From an econometric perspective, market frictions such as bid-ask bounce, 

discreteness, inventory control, etc., generally introduce transient components into 

security price processes.  In the presence of such components, these prices aren’t 

martingales.  The martingale still figures prominently in the analysis because this 

property characterizes a sequence of conditional expectations, such as those formed by 

traders regarding a security’s ultimate value.  This sequence of expectations is 

unobserved, however, and so the martingale must be regarded as an implicit one. 

 With this perspective, the present paper summarizes econometric approaches to 

characterizing the unobserved random walk component of a security price.  These 

techniques mostly originated in the analysis of macroeconomic time series.  While the 

basic results are invariant to time scale, however, there are structural economic features 

of microstructure settings that must be taken into account. 

 Thus, decompositions that characterize the random-walk component implicit in a 

price series with covariance-stationary first differences play a prominent role.  It is 

generally possible to compute the variance of this component, and to characterize 

contributions to this variance.  When the supporting data comprise prices of the same 

security from multiple markets, these techniques support qualified attributions of price 

discovery.   

 Stronger results, however, such as determining precisely the location of the 

implicit random-walk component at a given time, rely on identification restrictions that 

are not plausible in microstructure settings, irrespective of their merits in macroeconomic 

applications.  Moreover, general permanent-transitory decompositions used in 

macroeconomics, when applied to microstructure price data, characterize non-martingale 

factors.  While non-martingale factors might be of interest in a particular structural 
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model, they are poor proxies for optimally formed and updated expectations of security 

value.  

 The paper considers the attribution of price discovery in multiple markets using 

simulated data from simple structural models of trading.  The analysis contrasts the 

information share approach discussed in Hasbrouck (1995), in which the price component 

of interest is forced to be a random walk, with the approach suggested by Harris, 

McInish, and Wood (2000), in which the price component is permanent in the sense of 

Gonzalo and Granger (1995).   Although the latter approach can sometimes appear to 

offer greater precision, the information share computation is more reliable. 

 Finally, multiple-market analyses often compare venues with differing trading 

frequencies.  The desire for contemporaneously-determined prices motivates a thinning 

of the data, to include only those times (or small time windows) in which trades occurred 

in all markets.  This paper shows that this censoring can drastically affect the inferences 

concerning price discovery.  Clear patterns of price leadership in the full data set can be 

obscured or even reversed by the censoring. 
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Table 1.  Price discovery example I: A two-market “Roll” model 

The model is: 

 
( )2

1Efficient price: ;  ~ 0,

Trade direction: 1, each with pr. 1 2, for 1,2
Transaction price: ,  for 1,2

t t t t u

it

it t it

m m u u N

q i
p m c q i

σ−= +

= ± =
= + =

 

The model was simulated using parameter values 1 and 1uc σ= =  for 100,000 

observations.  A vector error correction model (VECM) was estimated for 10 lags.  The 

common price factor under the permanent/transitory approach is computed directly from 

the VECM (using the Granger-Gonzalo identification restriction).   In this approach, 

Market 1’s price discovery share is equal to the coefficient of Market 1’s price in the 

common factor.  The efficient price properties under the information share approach are 

computed by inverting the VECM to obtain a vector moving average (VMA) 

representation through 60 lags.  In this approach, Market 1’s price discovery share is 

equal to the proportion of variance (in the implicit random-walk price factor) that can be 

attributed to Market 1’s price innovations.  This is only identified within the given range. 

 

 
Structural Model 

Permanent/ 
Transitory 

Information 
Share 

Price discovery 
(Market 1’s share) 0.5 0.50 (0.21, 0.79) 

Price component 
analyzed Efficient price (mt) Permanent factor (ft) Random Walk 

Variance of (first-
difference of) 
price component 

1. 2.00 1.01 

Autocorrelation of 
(first-difference of) 
price component 

0. -0.25 0. 
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Table 2.  Price discovery example II: Two markets with private information 

The model is: 

 
1 1

1 1 1

2 1 2 2

Efficient price:
Trade direction: 1, each with pr. 1 2, for 1,2

Transaction prices: 

t t it

it

t t t

t t t

m m q
q i
p m c q
p m c q

λ−

−

= +
= ± =
= +
= +

 

The model was simulated using parameter values 1 2 1 and 1c c λ= = =  for 100,000 

observations.  A vector error correction model (VECM) was estimated for 10 lags.  The 

common price factor under the permanent/transitory approach is computed directly from 

the VECM (using the Granger-Gonzalo identification restriction).   In this approach, 

Market 1’s price discovery share is equal to the coefficient of Market 1’s price in the 

common factor.  The efficient price properties under the information share approach are 

computed by inverting the VECM to obtain a vector moving average (VMA) 

representation through 60 lags.  In this approach, Market 1’s price discovery share is 

equal to the proportion of variance (in the implicit random-walk price factor) that can be 

attributed to Market 1’s price innovations.  This is only identified within the given range. 

 

 
Structural Model 

Permanent/ 
Transitory 

Information 
Share 

Price discovery 
(Market 1’s share) 1. 0.98 (1.00, 1.00)1 

Price component 
analyzed Efficient price (mt) Permanent factor (ft) Random Walk 

Variance of (first-
difference of) 
price component 

1. 4.74 1.01 

Autocorrelation of 
(first-difference of) 
price component 

0. -0.39 0. 

1 The bounds are approximately equal. 
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Table 3.  Price discovery example III: 

Two markets, with public and private information 

The model is: 

 
( )2

1 1

1 1 1

2 1 2 2

Efficient price: ;   where ~ 0,

Trade direction: 1, each with pr. 1 2, for 1,2

Transaction prices: 

t t it t t u

it

t t t

t t t

m m q u u N

q i
p m c q
p m c q

λ σ−

−

= + +

= ± =
= +
= +

 

The model was simulated using parameter values 1 21, 0, =1 and 1uc c σ λ= = =  for 

100,000 observations.  A vector error correction model (VECM) was estimated for 10 

lags.  The common price factor under the permanent/transitory approach is computed 

directly from the VECM (using the Granger-Gonzalo identification restriction).   In this 

approach, Market 1’s price discovery share is equal to the coefficient of Market 1’s price 

in the common factor.  The efficient price properties under the information share 

approach are computed by inverting the VECM to obtain a vector moving average 

(VMA) representation through 60 lags.  In this approach, Market 1’s price discovery 

share is equal to the proportion of variance (in the implicit random-walk price factor) that 

can be attributed to Market 1’s price innovations.  This is only identified within the given 

range. 

 

 
Structural Model 

Permanent/ 
Transitory 

Information 
Share 

Price discovery 
(Market 1’s share) 1. 0.60 (0.90, 0.98) 

Price component 
analyzed Efficient price (mt) Permanent factor (ft) Random Walk 

Variance of (first-
difference of) 
price component 

2. 1.98 2.01 

Autocorrelation of 
(first-difference of) 
price component 

0. 0.00 0. 

 


