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1. Introduction 
 
 The purpose of Abarbanell and Lehavy’s (henceforth, A&L) paper is to provide 

insights into the vast and, at times, conflicting research on the properties of analysts’ 

earnings forecasts.  The main point of their analysis is that many of the seemingly 

anomalous and conflicting results originate in researchers’ failure to incorporate the 

appropriate distributional properties of analysts’ forecast errors.  Because those 

observations fall into two distinct regions of the distribution of forecast errors – the center 

and the tails – A&L refer to them as the middle and the tail asymmetries.   

 A&L show that scaled forecast errors are not normally distributed.  This is an 

important observation as many researchers rely on statistical techniques that are sensitive 

to the distributional properties of the underlying variable.  While the non-normal 

distribution of forecast errors is the central point of A&L’s analysis, they note in their 

footnote 7 that there are no theoretical reasons to expect forecast errors to be normally 

distributed. 

 We interpret A&L’s message as (1) that many conclusions drawn by researchers may 

be quite sensitive to the use of analyses that either explicitly or implicitly rely on specific 

distributional assumptions, and (2) that the observations in the two asymmetries may 

unduly affect the conclusions reached in the literature.  In the spirit of A&L, recent 

research on analysts’ loss function (Basu and Markov, 2003; Gu and Wu, 2003; and Liu, 

2003) investigates the determinants of the distribution of analysts’ forecast errors.  That 

research shows that at least some of the previous results, such as analyst forecast bias and 

forecast inefficiencies, are sensitive to the distributional assumptions, thus supporting 

A&L’s first point.   
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 The conclusions reached by A&L with regards to the second point are more 

controversial, mainly because of their use of unconventional data analysis techniques.  

Based on their empirical analysis, A&L conclude that the inefficiency documented in the 

literature is caused by the ‘tail asymmetry,’ a small subset of extreme negative forecast 

errors.  This implies, that analysts’ earnings forecasts are not nearly as inefficient as 

previous researchers have suggested.  While this finding questions a substantial body of 

research, in the remainder of this discussion we raise points that may influence the 

reader’s confidence in this result.  For example, our tests question A&L’s conclusion that 

the serial correlation in consecutive analysts’ forecast errors is caused by the tail 

asymmetry.  Further, when we investigate whether these asymmetries are driven by the 

distribution of earnings or the distribution of analysts’ forecasts, we find that both 

asymmetries are present in the two components of forecast errors, albeit in attenuated 

form.    

This discussion proceeds as follows: Section 2 discusses the analysis of the 

distributional properties of analyst forecasts.  Section 3 focuses on analysts’ bias whereas 

analysts’ inefficiency is discussed in Section 4. Section 5 discusses the link between 

analysts’ forecast errors and unexpected accruals. Conclusions and suggestions for future 

research are presented in Section 6.  

 

2. Distributional Properties of Analyst Forecast Errors 

A&L’s analysis relies on price deflated consensus forecast errors (CFEj,q), defined as: 
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where for firm j and quarter q, ZAEPSj,q represents the actual earnings per share as 

reported by Zacks Investment Research (ZIR), ZCFj,q represents the ZIR consensus 

forecast outstanding just prior to the disclosure of the quarterly earnings, and Pj,q-1 

represents the stock price at the beginning of quarter q.    

Before discussing their results and interpretations, it is important to note that A&L 

subjected their sample to several screens that could affect the conclusions they reach.  

First, observations with data unavailable on COMPUSTAT are deleted.  While this is 

unavoidable for some of the empirical evidence documented, it is not necessary for most 

of the analyses performed by A&L.  In fairness, A&L indicate, that their results are not 

affected by this data selection.  Second, the sample is winsorized based on values of 

CFEj,q, the dependent variable in most of their analyses.  This procedure selects 

observations for analysis based on their ex-post realization.  Although this appears to be 

common in accounting research, it makes interpretation of the results difficult for two 

reasons.  First, it may result in an understatement of the standard errors in subsequent 

analyses, thus overstating the levels of confidence when hypotheses are rejected.  Second, 

it may induce associations that would not otherwise exist.1  Both of these consequences 

are problematic when deriving the distributional properties of the dependent variable, 

especially when one of the main focuses of the analysis is to investigate the impact of 

extreme observations on prior results.  Admittedly, some of the observations that are 

deleted in the winsorization are the result of data errors (e.g., Zacks enters a code of 999 

for instances when the forecasts are not available).  Another source of errors is the small 

denominator problem (e.g., when stock prices are near zero).  For these data points, there 

                                                 
1 In a different context, Kothari, Sabino, and Zach (2003) show that even small deletion of extreme 
observations can bias the results.  Specifically, using data simulated to represent correct pricing (no market 
inefficiencies) they demonstrate that by deleting the top and bottom 1 to 2 percent of the observations, 
researchers are likely to wrongly reject market efficiency.  
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is no need to winsorize the dependent variable.  Rather, it would be sufficient to delete 

observations with 999 codes, or very low stock prices or to consider other denominators, 

such as the standard error of forecast errors.  Our own analysis (discussed below) shows 

that the tail asymmetry is most pronounced when deflating by price. 

The distribution of analysts’ forecast errors for the entire sample is summarized in 

A&L’s Table 1 and plotted in their Figure 1.  The results in Table 1, particularly the 

results reported in Panel A, confirm prior results: the mean of the forecast errors 

distribution is negative, the median is zero.  In addition, Panel B of Table 1 shows that 

the absolute value of the forecast errors in the 5th and 10th percentiles is approximately 

twice as large as the forecast errors in the 90th and the 95th percentiles.  This evidence is 

interpreted as indicative of the presence of the tail asymmetry.   The existence of the 

middle asymmetry is documented in Panel C of Table 1 and Panel B of Figure 1.  Both 

Panel C of Table 1 and Panel B of Figure 1 suggest that the frequency of small positive 

forecast errors is larger than the frequency of small negative forecast errors.   

The conclusions related to the presence of the middle and tail asymmetries reached by 

A&L, however, are based on visual inspections of the table and figures.  As such, it is 

difficult to infer the magnitude and statistical significance of those visual findings.  

Moreover, the inconsistency in the scales of the figures relative to the underlying 

distributions contributes to the readers’ difficulty of interpretation.  For example, while 

Figure 1 Panel A plots the cumulative distribution for the entire sample of forecast errors, 

Panel B (as does Figure 3) only plots the distribution truncated symmetrically around 

zero, which has been rescaled to represent 100 percent of the distribution within that 

interval.  However, truncation and rescaling increases each bar in Panel B of Figure 1 by 
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a factor of 1.09.2  A similar approach is used in Panels A, B, and C of Figure 3.  In this 

case, the distributions are reported only for the -0.5 to +0.5 intervals, effectively rescaling 

the figures by a factor of 1.2.  These rescalings can exaggerate the visual impression of 

the importance of the middle asymmetry.     

To provide some additional evidence on the prevalence of these two asymmetries, we 

compute the frequency of the analysts’ forecast errors distribution in symmetric intervals 

around the mean.3   We choose the width of those intervals to be 0.5 standard deviations 

of the analysts’ forecast errors distribution.  Following the instructions in A&L we 

collected a sample of 29,285 analysts’ forecast errors (versus their 33,580).4  This sample 

size is limited because of matching with COMPUSTAT.  However, all of the subsequent 

results are also performed using the entire sample of 55,386 analysts’ forecast errors.  

None of our conclusions differ between the full and the reduced sample.   We report the 

results for the reduced sample to make them comparable to the analysis of A&L.    

We compute analysts’ forecast errors following the same procedure as A&L by using 

the ZIR actual earnings and deflate by price, multiplying by 100.  The mean, median, and 

standard deviation of the analysts’ forecast errors sample is -0.0875, 0.7429, and 0.00523, 

respectively (compared to A&L’s -0.126, 0.995, and 0.000, respectively).  For this 

sample, we compiled the frequency of the forecast error distribution in symmetric 

intervals around the mean.  In addition, we decompose the analysts’ forecast errors into 

                                                 
2 Panel C of Table 1 of A&L reports that 9 percent of the observations fall outside the [-1.0, +1.0] interval, 
thus the remaining observations are rescaled by a factor of 1.09 to add up to 100 percent. 
3 This discussion then, raises the question on how one would document the presence of any unusual 
patterns, such as middle and tail asymmetries, for a given distribution.  To derive such a test, one would 
have to first define what the distribution should look like absent any unusual patterns.  The derivation of 
what the distribution should be and what should be considered as the tail of the analysts’ earnings forecast 
errors distribution is beyond the scope of our discussion.   
4 We use COMPUSTAT data for the period 1987-1999 given the evidence in Collins and Hribar (2002). 
Using this sample period we use SFAS No. 95 (FASB 1987) statement of cash from operations data to 
estimate accruals, rather than a balance sheet approach. 
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actual earnings and consensus forecasts (both price deflated).  For comparison purposes, 

we included the expected frequencies and their 95 percent confidence interval for 29,285 

independent draws from a normal distribution.  Following A&L, we use the normal 

distribution as a benchmark.5  The results are reported in Table 1.   

 

INSERT TABLE 1 AROUND HERE 

 

 Consistent with A&L, our results indicate, that relative to a normal distribution, the 

forecast errors distribution is characterized by a significant over-representation of very 

small negative forecast errors (the left-tail asymmetry), a significant under-representation 

of small forecast errors below the mean, and a significant over-representation of small 

forecast errors above the mean (jointly the middle asymmetry).  Also, consistent with 

A&L, we find that the observations falling into the left-tail asymmetry are indeed very 

negative, and much more frequent than those suggested by the normal distribution.  

However, they comprise only 2.107 percent of the sample.6  Whether such a small 

frequency is likely to affect the conclusions reached in subsequent tests depends on the 

statistical procedures used.  At any rate, it seems advisable for researchers to conduct 

diagnostics including the impact of influential observations and to examine the sensitivity 

of their conclusions depending on whether parametric or non-parametric tests are used.  

We will return to this issue in Section 4.      

                                                 
5 We recognize that there is no economic theory suggesting how analysts’ forecast errors are distributed.  
We use the normal distribution as a benchmark only.   Further, note that the confidence intervals computed 
in Table 1 assume independent draws.  However, the confidence intervals need to be widened because 
analysts’ earnings forecast errors are not likely to be independent. 
6 Of course, this assessment depends on the width of the intervals used (0.5 standard deviations in our 
case).  However, even if one were to include the next interval, the frequency of occurrence of the left-tail 
asymmetry would be not greater than 2.6 percent. 
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 The middle asymmetry is much more pronounced than the left-tail asymmetry.  We 

find 12.313 percent of the observations in the interval of 0.5 standard deviations below 

the mean (that is 6.8 percentage points less than expected from a normal distribution).  

However, there are 67.041 percent of the observations in the interval of 0.5 standard 

deviations above the mean (48.0 percentage points more than expected from a normal 

distribution).  In summary, as concluded by A&L, the left-tail asymmetry is characterized 

by a small number (i.e., 2 to 3 percent) of very negative forecast errors; the middle 

asymmetry is characterized by a very large number of very small (0.05 percent of stock 

price) forecast errors.  The economic implications of those two asymmetries depend on 

the specific economic context and on the research method used.  For example, while very 

frequent, the very small magnitude analysts’ forecast errors comprising middle 

asymmetry are not likely to be significant in a pricing context. 

An interesting question raised is whether the “unusual” shape of the analysts’ forecast 

errors distribution results from the distribution of earning or analysts’ earnings forecasts.  

When decomposing forecast errors into price-deflated earnings and price-deflated 

forecasts (the two components of analysts’ forecast errors, see equation (1) above) we 

find that both the middle and tail asymmetries are still present, but attenuated.   The 

results reported in Table 2 indicate that the percentage of analysts’ forecast errors falling 

in the interval to the left of three standard deviation below the mean is 15 times larger 

than that of a normal distribution (2.107/0.135).  In contrast, the ratio of observations in 

the tail (relative to a normal distribution) is 7.35 (0.992/0.135) for actual earnings and 

6.53 (0.882/0.135) for analysts’ forecasts.  We find a similar attenuation for the middle 

asymmetry: the ratio of analysts’ forecast errors falling in the interval one half standard 

deviations above the mean to the number of observations falling one half standard 
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deviations below the mean is 5.22 (67.041/12.313).  In contrast, this ratio is 1.57 

(48.266/30.646) for actual earnings and 1.31 (45.442/34.591) for analysts’ forecasts.  

Thus, a challenge for future research is to explore why the pairing between actual 

earnings and forecasts increases the middle and the left-tail asymmetries.7  A promising 

line of research would be to analyze the economic setting in which analysts and managers 

operate; that is, what are analysts’ and managers’ objective functions (see Liu, 2003).  

 

INSERT TABLE 2 AROUND HERE 

 

The final element affecting the shape of the distribution of analysts’ forecast errors is 

the choice of the deflator.  The inverse of price has a right skewed distribution.  While 

deflating by price is often suggested in the literature (Christie, 1987), the earnings-price 

ratio is, among other factors, a function of a company’s assets-in-place relative to growth 

opportunities: Earnings typically result from assets-in-place, while price includes the 

value of assets-in-place plus growth opportunities.  Thus, firms with a larger fraction of 

assets-in-place will have higher earnings-price ratios.  Therefore, deflating by price is 

likely to affect the cross-sectional distribution of analysts’ earnings forecast errors, 

depending on the composition of the sample.8   Preliminary tests using the deflators 

considered by A&L indicate the frequency in the lowest cell of analysts’ forecast errors 

                                                 
7 In untabulated results, A&L reject normality on the basis of skewness and kurtosis (footnote 7), while 
acknowledging that there are no theoretical reasons to expect normality in the first place.  Nevertheless, the 
interesting question is whether the non-normality is present in the components used to compute price 
deflated analysts’ forecast errors.  Burgstahler and Dichev (1997), Dechow, Richardson, and Tuna (2003) 
Beaver, McNichols, and Nelson (2003) document distributional properties of reported earnings – and the 
consensus that emerges is that the earnings distribution has a discontinuity around zero and is not 
symmetric. 
8 For example, the accrual anomaly literature concludes that the choice of price versus sales as a deflator 
significantly changes the conclusions (e.g., Zach, 2003).  Relatedly, Dechow et al. (2003) shows that the 
distribution of earnings is materially affected by the choice of the deflator. 
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declines to 1.588 percent for undeflated forecast errors, 0.866 percent for forecast errors 

deflated by the absolute value of the consensus forecast, and to 0.545 percent for forecast 

errors deflated by the consensus forecast.9  Consistent with A&L’s footnote 13, these 

results suggest that the presence of the tail asymmetry does not depend on the use of one 

of those deflators.  However, the magnitude of the tail asymmetry is sensitive to the 

specific deflation, with price deflation providing the “highest” occurrence.  

 

3. Analyst Forecast Error Bias 

A&L emphasize that given the researcher’s choice of summary statistics, evidence 

can be found for analysts’ optimism, pessimism, or unbiasedness.  The conclusion is 

derived from their analysis in Table 1 and Figure 1.  Consistent with the literature, A&L 

document a negative mean forecast error – an indication that, on average, analysts are 

optimistic.   They point out that the median forecast error is zero, which they interpret as 

“suggesting unbiased forecasts” (page 5).  Finally, they suggest that one could interpret 

the fact that 48 percent of the forecast errors are positive compared to the fact that 40 

percent are negative (Panel A of Table 1) as evidence of analyst pessimism.   

This interpretation relies on the definition of bias.  Typically, bias is defined relative 

to an expectations model.  Thus, analysts’ forecasts would be unbiased if the expected 

value of the forecast errors were zero.  Assuming a quadratic loss function, the mean 

represents the best estimate of expectations.  Under these conditions, one would have to 

conclude that analysts’ forecasts are optimistic because the mean forecast error is 

negative.  One alternative is to examine the median.  The median forecast error is a 

measure of expectations of analysts’ forecasts only if analysts’ objectives are to forecast 

                                                 
9 In footnote 13, A&L report that they analyzed undeflated forecast errors and errors deflated by forecasts. 
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the median of the earnings distribution.  A sufficient condition for this to occur is that 

analysts’ loss function is linear, making forecasting the median the value-maximizing 

forecast.  Indeed, this is the motivation of a growing literature that tests hypotheses about 

analysts’ loss function (e.g., Gu and Wu 2003; Basu and Markov, 2003; Liu, 2003).  It is 

surprising that A&L dismiss this line of research by saying that this research strategy 

“will not provide definitive answers to the question of whether analysts’ forecasts are 

biased and inefficient.” (page 2).   

Finally, while strictly true that the percentage of positive forecast errors exceeds the 

percentage of negative forecast errors, A&L’s evidence shows that a large fraction of the 

positive forecast errors are very small and are not likely to be of economic significance.  

In contrast, the negative forecast errors are large (hence, the negative average forecast 

error).  Therefore, the main economic impact (as opposed to a frequency count without 

regards to the magnitudes) is one of pessimism.  

 

4. Efficiency of Analysts’ Forecasts 

Prior research concludes that analysts’ forecasts are inefficient.  For example, Brown, 

Foster and Noreen (1985), Klein (1990), Lys and Sohn (1990), Elgers and Murray 

(1992), Abarbanell and Bernard (1992), and Chan, Jegadeesh, and Lakonishok (1996) 

document that analysts’ forecast errors are correlated with prior stock returns.  Similarly, 

Brown and Rozeff (1979), Mendenhall (1990), Abarbanell and Bernard (1992), Jacob and 

Lys (1992), Ali, Klein, and Rosenfeld (1993), Shane and Brous (2001), and Alford and 

Berger (1999) document that analysts’ forecast errors are serially correlated.  Finally, 

Jacob and Lys (1992) show that large absolute values of serial correlation in forecast 
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errors are associated with larger forecast errors – ignoring pertinent information leads to 

less precise forecasts.  

A&L first focus on whether analysts over- or under-react to prior information (prior 

abnormal returns and prior earnings changes).  They document that analysts under-react 

to both types of information.  This result is robust with respect to parametric and non-

parametric tests of the association between forecast errors and prior bad news.  However, 

A&L detect an under-reaction to prior good news only when using non parametric tests.  

This result is consistent with their main conclusion that forecast errors are not normally 

distributed and, hence, the use of parametric tests that explicitly or implicitly rely on the 

normal distribution of the dependent variable may not be appropriate.  However, in the 

end, their results are consistent with the tenor of prior literature: analysts under react to 

both prior good news and prior bad news and are, thus, inefficient.  

A&L critique the literature documenting a serial correlation in analysts’ forecast 

errors because the test procedures are unduly influenced by the left-tail asymmetry.  

Specifically, A&L document in their Table 5 that the Pearson and Spearman correlations 

between consecutive forecast errors for the overall sample of 0.15 and 0.22 (significant at 

the 1 percent level) respectively are entirely driven by “observations in the extreme left 

tail associated with the tail asymmetry.”  A&L derive their results by sorting the data on 

current forecast errors and computing the correlation between consecutive forecasts 

within each decile.10  However, sorting on the dependent variable is likely to lead to 

erroneous inferences. 

A&L obtain these results by creating a matrix of forecast errors pairs; that is, each 

row of the matrix consists of CFEj,q and CFEj,q-1, where j represents the firm and q 

                                                 
10 In previous drafts, A&L sorted on the preceding forecast error.  Because the correlation of x and y is 
identical to the correlation of y and x, the discussion that follows applies equally to those previous results. 
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represents the quarter.  Next, they sort this matrix by the current forecast (the first 

column) and divide it into deciles.  Then, they compute the correlation between the two 

columns for the overall forecast errors and by decile ranking of current forecast errors.   

These results are reported in their Table 5.  Once the observations are sorted, only the 

decile with the most negative forecast errors has both Pearson and Spearman correlations 

that are positive and highly significant (0.17 and 0.19, respectively).  Of the other 9 

deciles, only 3 deciles have both the Pearson and Spearman correlations significant at 

conventional levels.  Of the remaining six deciles, none have a significant Pearson 

correlation (and some are even negative), while all the Spearman correlations are 

significantly positive at conventional levels. 

Interpreting these results is difficult for two reasons.  First, the Spearman correlation 

in the unsorted sample is 0.22 and statistically significant at the 1 percent level.  

However, one typically would compute the Spearman (rank correlation) when there is 

concern that the distribution of the data makes the Pearson correlation undesirable or 

misleading (e.g., because of large influential observations).  Note that converting forecast 

errors to ranks eliminates both the magnitude and the frequency aspect of the left-tail 

asymmetry.  Thus, neither the magnitude nor the frequency aspects of the left-tail 

asymmetry can affect the Spearman correlation.  Second, sorting on the dependent 

variable is likely to bias the tests, rendering interpretation of the results difficult.   

To elaborate on the second point, we perform the following experiment.  We first 

generate two vectors x and ε of random variables each representing 35,000 observations 

drawn from a standard normal distribution.  This corresponds approximately to the 

number of forecast errors in A&L’s sample.   Next, we define a new variable yq as: 

 qqq xy ε+×= 15.0  (2) 
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One can interpret equation (2) as the relation between the current forecast error (yq) and 

the previous forecast error (xq).   It follows from (2) that since x and ε are normally 

distributed so is y.  In other words, the distribution of our ‘forecast errors’ follow a 

normal distribution by construction. 

We now compute the Pearson and Spearman correlations between y and x, both for 

the overall sample and for the ten deciles sorted on y.  The results for 100 repetitions of 

the above simulation are reported in Panel A of Table 3 which has been formatted to 

resemble Table 5 in A&L.   

  

INSERT TABLE 3 PANEL A and PANEL B AROUND HERE 

 

As indicated in the last row of Panel A, the overall Pearson and Spearman 

correlations are 0.148 and 0.140, consistent with the seeded correlation of 0.15 in 

equation (2).  However, once the data are sorted on the dependent variable y and grouped 

into deciles, the correlations within each decile become very small in magnitude.  For the 

lowest and highest deciles, we find average Pearson (Spearman) correlations of 0.060 and 

0.062 (0.055 and 0.056), and average p-values of 0.009 and 0.008 (0.013 and 0.013).  

However, for the middle eight deciles the correlations range from 0.009 to 0.020 and the 

average p-values range from 0.331 to 0.451.  In addition, we report in Panel B of Table 3 

the empirical 5th and 95th percentiles of estimated correlations using 100 simulations of 

35,000 observations each.  As indicated in Panel B, a zero correlation is within the 90 

percent range for all but one of middle deciles (2 through 9; row 7 column 3 is the sole 

exception).  However, for those middle deciles, the 95th percentiles ranges from 0.034 to 
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0.050, making it likely that for single draws, at least some of those middle correlations 

will be significantly larger than zero.   

What this experiment demonstrates, is that even absent any asymmetries, one would 

conclude that the extreme deciles contribute to the overall correlation.  In summary, 

Table 3 suggests that sorting on the variable of interest has biased the estimated 

correlation coefficients within each decile toward zero.11  More importantly, this 

procedure rejects the null hypothesis that all observations equally contribute to the overall 

serial correlation, even when we know this hypothesis to be true by construction.  It is 

important to note that the purpose of our simulation is not to recreate the results of 

A&L’s Table 5;12 rather, the purpose of this simulation is to question the reliability of the 

results created by the same procedure that A&L use.  Thus, what our simulation suggests 

is that the question whether the tail asymmetry drives the overall correlation cannot be 

answered using their sorting procedure.13   

Providing evidence whether extreme observations are responsible for the overall 

serial correlation is very difficult because such tests necessarily pre-select the data based 

on ex-post realizations.  We attempt to answer this question by first identifying influential 

observations with commonly used econometric procedures.  While we are not aware of 

such procedures to identify influential (or suspicious) observations for correlations, such 

procedures are commonly used in a regression context.  For example, observations whose 

studentized residual have an absolute value greater than two are considered “suspicious.”  

                                                 
11 The way to visualize this effect is to imagine a regression with a slope of 0.15.  Now, partition the data 
horizontally into ten subgroups.  Within each group, the number of observations that lie on each side of the 
regression line is the same.  This is true for all subgroups, except the lowest and highest groups.  For those 
two extreme groups, there are somewhat more observations above the original regression line than below 
that line.  As a result, for each subgroup, the estimated regression will have a zero slope, while the two 
extreme groups will have a positive slope. 
12 To recreate their Table 5 we would have to choose a skewed, rather than a symmetric distribution. 
13 For a related discussion of the effect introduced by sorting see Berk (2000). 
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Note that as long as the data are stationary, the probability limit of the slope coefficient in 

an auto-regression (regressing forecast errors on preceding forecast errors) equals the 

Pearson correlation among consecutive forecast errors.   

To establish a base line of the differences between estimates using regression vs. 

correlation techniques, we first computed the lag one serial correlation using Pearson, 

Spearman and auto-regression using the sample described in Table 1.  For the entire 

sample, those results are 0.242, 0.235, and 0.265, all statistically significant at the one 

percent level.  Then, we performed an analysis of influential observations using 

studentized residuals.  We marked all observations with an absolute studentized residual 

in excess of 2.0 as suspicious.  The procedure netted 1,322 (4.57 percent) influential 

observations.  This is slightly more than the 4.224 percent of the observation falling 

outside the two standard deviations of the sample identified in Table 1 

(2.107+0.492+0.775+0.444+0.355+0.051=4.224).  Consistent with A&L’s conjecture, 

904 (68.4 percent) of those influential observations are in the lowest decile, while 350 

(26.5 percent) are in the most positive decile.  The remaining 68 (5.1 percent) influential 

observations are scattered across the middle eight deciles (with 7, 2, 8, 2, 4, 5 

observations for deciles two through nine, respectively).   Note, that given the nature of 

the data (forecast errors and lag forecast errors) it is not surprising that most of the 

observations with an absolute value of the studentized range in excess of 2.0 fall in the 

extreme deciles.   

To investigate whether those influential observations unduly affect the correlation 

results, we re-estimate the serial correlation using Pearson, Spearman, and regression, 

after excluding those 1,322 observations.  (It is important to note, however, that we are 

not advocating excluding observations.  Rather, we only perform this analysis to 
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investigate the sensitivity of the overall correlations to the inclusion/exclusion of those 

suspicious observations.)  The resulting correlations are 0.307, 0.248, and 0.195, 

respectively, all statistically significant at the one percent level.  Note that, as suggested 

by our discussion above, the Spearman (rank) correlation did not change substantially by 

excluding the influential observations.     

Based on these analyses, we find no evidence to suggest that influential observations 

drive the overall serial correlation between consecutive analysts’ earnings forecasts.   

Indeed we hypothesize that the serial correlation of forecast errors is a real phenomenon 

that both characterizes analysts’ behaviors and has real economic consequences.  To 

demonstrate this, we perform the following analysis using the sample described in our 

Table 1.  We first rank the firms into deciles using the firm-specific serial correlation and 

plot the associated analysts’ forecast errors.  The results are plotted in Figure 1.   

 

INSERT FIGURE 1 AROUND HERE 

 

For comparison purposes, we also plot A&L’s forecast errors as reported in column 

four of Table 5.   In contrast to A&L’s S-shaped relation (denoted as FE A&L in Figure 

1), we obtain an inverse U-shaped relation between ranking of serial correlation and 

average forecast errors (denoted as AVG_FE in Figure 1).   

To provide an economic interpretation of the results using a more formal test and, we 

compute the average absolute forecast error for each company.  We then estimate a 

quadratic equation  

 jjjj CorcCorbaFE ε+×+×+= 2  (3) 
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where for firm j, FE  is the average analysts’ forecast error, and Cor is the serial 

correlation in analysts’ forecast errors.  The analysis is performed on the entire sample of 

2,740 companies.  To facilitate visual representation, we also form fifty groups based on 

the serial correlations (plotting the entire sample results in a very dense cloud of points 

that does not allow visualization.14   

 

INSERT TABLE 4 AROUND HERE 

 

The  results reported in Table 4 indicate that both b and c are significant at the 1 

percent level.  We plot the actual group means and the fitted values in Figure 2.  Figure 2 

shows a U-shaped relation between the average absolute forecast errors and the serial 

correlation decile.  For a similar approach see Jacob and Lys (1992).  That paper 

demonstrates that the serial correlation of forecast errors is indeed a quadratic (U-shaped) 

function with the minimum forecast error occurring near zero correlation (as one would 

expect).15  This relation has a clear economic interpretation – analysts who ignore the 

serial correlation have larger forecast errors.  In other words, the U-shaped relation is an 

indication of inefficiency by analysts’ whose forecasts are serially correlated.  (For a 

more detailed analysis of this relation, see Jacob Lys, 1992.) 

 

INSERT FIGURE 2 AROUND HERE 

 

In summary, in this section, we demonstrate that A&L’s sorting procedure can lead to 

biased results.  We then show that using standard econometric techniques to identify 
                                                 
14 The results are not sensitive to whether we form 20, 50, and 100 groups. 
15 In our Figure 2, the minimum forecast error occurs at correlation = 0.19. 
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influential observation does not lead one to conclude that the serial correlation in 

analysts’ forecast errors is related to the tail asymmetry.  Finally, we show, that as one 

would expect, the serial correlation of analysts’ forecast errors results in less accurate 

forecasts.  

 

5. Biased Forecasts or Biased Earnings? 

In trying to establish an empirical link between the two documented asymmetries and 

discretionary accrual choices, A&L focus on the association between unexpected accruals 

and the distribution of forecast errors.  Regarding the negative tail asymmetry, A&L 

suggest that: “If analysts’ forecasts do not account for the fact that some firms will 

recognize accruals placing them in the extreme negative tails of the distribution of 

unexpected accruals, then there will be a correspondence between the negative tail of this 

distribution and the extreme negative tail of the forecast error distribution” (page 25). 

However, A&L do not provide a model or an economic basis for establishing the link 

between discretionary managerial choices and analysts’ forecast errors.  

Note that if the left-tail asymmetry were caused by managers’ accrual choices, it 

should be no less pronounced in the earnings distribution than in the forecast errors 

distribution.  One indication that other forces are likely to be at work is provided in our 

Table 2.   In particular, our results indicate that the left-tail asymmetry is twice as 

frequent in the distribution of analysts’ forecast errors as compared to the distribution of 

actual (deflated) earnings (2.107 percent versus 0.992 percent).  Thus, this evidence 

suggests that other factors may influence the left-tail asymmetry and, as a consequence, 

affect the conclusion of whether “extreme negative unexpected accruals included in 
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reported earnings go hand in hand with observations in the cross-section that generate the 

tail asymmetry” (A&L, page 5). 

Is the forecast error distribution caused by analysts’ issuing their forecasts in reaction 

to managers’ choices?  Economic intuition would suggest that if analysts’ objectives were 

to issue accurate earnings forecasts, then analysts would anticipate and incorporate future 

managerial discretionary accrual behavior in their forecasts.  Liu (2003) studies the 

properties of analysts’ earnings forecasts by hypothesizing that analysts are aware of 

earnings management practices of firms, and incorporate such discretionary behavior into 

their forecasts.  She finds that analysts’ earnings forecasts are systematically below the 

median of the earnings distribution (assuming that analysts’ objective is to minimize 

mean absolute forecast errors) for firms with high accounting reserves, negative 

forecasted earnings, and negatively skewed unmanaged earnings.  Her results suggest that 

analysts choose to forecast earnings below the median earnings to avoid large optimistic 

forecast errors caused by downward earnings management by firms.  

A&L’s conclusion is reached by their visual inspection of Figure 6.  Therefore, while 

suggestive, their evidence is not based on formal tests that control for other factors that 

might affect forecast errors and unexpected accruals.   For example, when we add back 

the unexpected accruals (computed following the method outlined in A&L) we find that 

approximately 35 percent of the forecast errors in the tail asymmetry would be positive.  

The question then becomes, why did those managers take such extreme discretionary 

accruals, given that they could have beaten the forecast if they had not done so?  One 

possible reason is that those accruals are not, in fact, discretionary – possibly resulting 

from the reversal of previous discretionary accruals or a strategic write-off to manage 

subsequent earnings.  If this were the case, then analysts are indeed very unsophisticated 
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not to anticipate those reversals and or earnings management.  Alternatively, those 

discretionary accruals may not be related to earnings management but result from other 

corporate activities, for example restructuring charges following mergers or the like.  

Again, depending on the circumstances, sophisticated analysts may have been able to 

anticipate those accruals as well.  Finally, our own replication of the analysis underlying 

A&L’s Figure 6 suggests that negative forecast errors are in general associated with 

negative accruals, while positive forecast errors, with positive accruals.   

In summary, the relation between unexpected accruals and analysts’ forecast errors is 

an interesting question which requires more formal analysis.  At this stage, the reader is 

left with an unanswered question – is the distribution of unexpected accruals due to 

managerial discretion, the estimation technique undertaken by A&L, or due to a third 

factor that is omitted from the analysis?  Addressing these questions and discussing the 

strategic interactions between management and financial analysts is necessary to 

conclude whether unexpected accruals are related to extreme analysts’ forecast errors. 

 

6. Conclusions 

As stated in the introduction, A&L’s major contribution is that analysts’ forecast 

errors are not normally distributed.  This is an important insight because research often 

relies on techniques that are sensitive to the distributional assumptions of analysts’ 

forecast errors.  Second, A&L document that the forecast error distribution is 

characterized by two asymmetries, the left-tail asymmetry and the middle asymmetry.   

Beyond this insight, A&L provide some detailed and provocative results.  However, 

our analysis raises the question of the reliability of these results.  In the end, the interplay 
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between A&L’s results and our discussion provide some clear avenues for future 

research.  
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Figure 1 
The relation between forecast errors and serial correlation rank deciles
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This figure compares the relation between the serial correlation in 
consecutive analysts’ forecast errors and the magnitude of those forecast 
errors.  FE A&L reports the relation as documented in Table 5 of 
Abarbanell and Lehavy, obtained by sorting on the dependent variable 
(current forecast errors).  In contrast we first compute the firm specific 
serial correlation.  We then sort those correlations into deciles and compute 
for each decile the average forecast error (AVG_FE).  In contrast to the 
sharp S shape of the relation between serial correlation decile and average 
forecast errors, we obtain a very “mild” inverted U-shaped relation. 
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Figure 2
The Relation between Forecast Errors and Serail Correaltion Ranks
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This figure compares the relation between the serial correlation in consecutive analysts’ forecast 
errors and the average absolute forecast errors.  We first compute the firm specific serial correlation. 
We then sort those correlations into 50 groups and compute for each group the average absolute 
forecast error.  The fitted quadratic function is jjjj CorcCorbaFE ε+×+×+= 2 .  The 
regression coefficients are reported in Table 4.  The figure documents that analysts that have either a 
low (negative) or high (positive) correlation of their forecast errors are less accurate in forecasting 
earnings.   
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Table 1 

Distribution of Analysts’ Forecast Errors, Actual Earnings and 
Analysts’ Consensus Forecasts 1987-1999 

Sample Size = 29,285 

Forecast Errors Normal Distribution  Mean                       -0.0875 
Median                       0.0052 
Standard Deviation    0.7429 Frequency Mean Expected 

frequency 
5th and 95th 
percentiles 

σ0.3−≤ FEFE   2.107+ -4.016  0.135 [0.093, 0.177] 
σσ 5.20.3 −≤<− FEFEFE   0.492 -2.127  0.486 [0.406, 0.566] 
σσ 0.25.2 −≤<− FEFEFE   0.775- -1.746  1.654 [1.507, 1.801] 
σσ 5.10.2 −≤<− FEFEFE   1.014- -1.372  4.406 [4.169, 4.642] 
σσ 0.15.1 −≤<− FEFEFE   1.800- -0.993  9.185 [8.852, 9.518] 
σσ 5.00.1 −≤<− FEFEFE   3.722- -0.617  14.988 [14.577, 15.400] 

FEFEFE ≤<− σ5.0   12.313- -0.221  19.146 [18.693, 19.600] 
σ5.0+≤< FEFEFE   67.041+ 0.046  19.146 [18.693, 19.600] 

σσ 0.15.0 +≤<+ FEFEFE   6.905- 0.421  14.988 [14.577, 15.400] 
σσ 5.10.1 +≤<+ FEFEFE   2.059- 0.183  9.185 [8.852, 9.518] 
σσ 0.25.1 +≤<+ FEFEFE   0.922- 1.204  4.406 [4.169, 4.642] 
σσ 5.20.2 +≤<+ FEFEFE   0.444- 1.564  1.654 [1.507, 1.801] 
σσ 0.35.2 +≤<+ FEFEFE   0.355- 1.943  0.486 [0.406, 0.566] 

FEFE <+ σ0.3   0.051- 2.195  0.135 [0.093, 0.177] 
The sample was collected using the same criteria as Abarbanell and Lehavy (this issue).  Forecast errors 
(FE) are defined as the actual earnings per share as reported by Zacks Investment Research (ZIR), minus 
the ZIR consensus forecast outstanding just prior to the disclosure of the quarterly earnings.  Actual 
earnings are as reported by ZIR.  Forecast errors, actual earnings and consensus forecasts are deflated by 
the stock price at the beginning of the quarter and multiplied by 100 (see equation (1)).  The last column 
reports the expected frequency and the 5th and 95th percentiles of the expected frequency for a normal 
distribution. 
+ indicates a frequency above the expected 95th percentile of the frequency interval. 
- indicates a frequency below the expected 5th percentile of the frequency interval. 
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Table 2 

Distribution of Analysts’ Forecast Errors, Actual Earnings and 
Analysts’ Consensus Forecasts 1987-1999 

Sample Size = 29,285 Forecast 
Errors 

Actual 
Earnings

Analysts’ 
Consensus 
Forecasts 

Normal Distribution 

Mean                            ( X ) -0.0875 0.7764 0.8575 

Standard Deviation      ( Xσ )  0. 7429  2.881  2.706 

Expected frequency 
[5th and 95th 
percentiles] 

XXX σ0.3−≤   2.107+  0.992+  0.882+  0.135 
[0.093, 0.177] 

XX XXX σσ 5.20.3 −≤<−   0.492  0.398-  0.315-  0.486 
[0.406, 0.566] 

XX XXX σσ 0.25.2 −≤<−   0.775-  0.698-  0.519-  1.654 
[1.507, 1.801] 

XX XXX σσ 5.10.2 −≤<−   1.014-  1.179-  0.999-  4.406 
[4.169, 4.642] 

XX XXX σσ 0.15.1 −≤<−   1.800-  2.157-  1.787-  9.185 
[8.852, 9.518] 

XX XXX σσ 5.00.1 −≤<−   3.722-  4.124-  4.231-  14.988 
[14.577, 15.400] 

XXX X ≤<− σ5.0   12.313-  30.646+  34.591+  19.146 
[18.693, 19.600] 

XXXX σ5.0+≤<   67.041+  48.266+  45.442+  19.146 
[18.693, 19.600] 

XX XXX σσ 0.15.0 +≤<+   6.905-  8.992-  8.753-  14.988 
[14.577, 15.400] 

XX XXX σσ 5.10.1 +≤<+   2.059-  1.646-  1.504-  9.185 
[8.852, 9.518] 

XX XXX σσ 0.25.1 +≤<+   0.922-  0.456-  0.456-  4.406 
[4.169, 4.642] 

XX XXX σσ 5.20.2 +≤<+   0.444-  0.183-  0.204-  1.654 
[1.507, 1.801] 

XX XXX σσ 0.35.2 +≤<+   0.355-  0.111-  0.104-  0.486 
[0.406, 0.566] 

XX X <+ σ0.3   0.051-  0.152  0.214+  0.135 
[0.093, 0.177] 

The sample was collected using the same criteria as Abarbanell and Lehavy (this issue).  X represents 
forecast errors in column 2, actual earnings in column 3, and consensus forecasts in column 4. Forecast 
errors are defined as the actual earnings per share as reported by Zacks Investment Research (ZIR), minus 
the ZIR consensus forecast outstanding just prior to the disclosure of the quarterly earnings.  Actual earnings 
are as reported by ZIR.  Forecast errors, actual earnings and consensus forecasts are deflated by the stock 
price at the beginning of the quarter and multiplied by 100 (see equation (1)).  The last column reports the 
expected frequency and the 5th and 95th percentiles of the expected frequency for a normal distribution. 
+ indicates a frequency above the expected 95th percentile of the frequency interval. 
- indicates a frequency below the expected 5th percentile of the frequency interval. 
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Table 3 
Panel A 

Correlations using Simulated Data 
Decile 

ranking of 
forecast 
errors 

Average Pearson 
correlation (2a) and 

average p-values (2b) 
across 100 simulations 

Average Spearman 
correlation (3a) and 

average p-values across 
100 simulations 

Current 
quarter 
forecast 
errors 

Prior 
quarter 
forecast 
errors 

 (2a) (2b) (3a) (3b) (4) (5) 
Lowest 0.060 0.009 0.055 0.013 -1.7748 -0.2586 

2 0.020 0.331 0.018 0.170 -1.0559 -0.1509 
3 0.012 0.451 0.011 0.216 -0.6850 -0.1002 
4 0.010 0.446 0.013 0.209 -0.3906 -0.0572 
5 0.013 0.405 0.010 0.229 -0.1273 -0.0171 
6 0.009 0.448 0.012 0.216 0.1277 0.0195 
7 0.013 0.394 0.009 0.231 0.3916 0.0535 
8 0.016 0.326 0.012 0.214 0.6858 0.1024 
9 0.019 0.331 0.019 0.161 1.0562 0.1555 

Highest 0.062 0.008 0.056 0.013 1.7734 0.2554 
Overall 0.148 0.000 0.140 0.000 0.0001 0.0002 

This table reports the average Pearson and Spearman correlations estimated from 100 random samples.  
Each sample is constructed by drawing 35,000 random variables x and ε independently from a standard 
normal distribution.  We then construct a new random variable y using qqq xy ε+×= 15.0 , thus 
inducing a correlation of 0.15 between y and x.   We label y as the ‘current quarter forecast error’ and x as 
the ‘prior quarter forecast error.’  Each sample is first sorted on current forecast errors (y) and assigned to 
10 deciles of 3,500 observations each.  The first ten rows, from “Lowest” to “Highest” represent the 
average correlations for the ten decile sub-samples obtained after sorting the entire sample on y.  The last 
row “Overall” reports the correlation before sorting the samples.   
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Table 3 
Panel B 

Distribution of Correlation And Associated p-Values of Simulated Data 
Estimated correlations across 100 random samples 

 Average 
correlation 5th percentile 95th percentile 

average p-value 
of correlations 
across 100 
random samples 

Pearson 0.060 0.036 0.085 0.009 Lowest 
Spearman 0.055 0.026 0.083 0.013 
Pearson 0.020 -0.005 0.050 0.331 2 Spearman 0.018 -0.013 0.046 0.170 
Pearson 0.012 -0.011 0.038 0.451 3 Spearman 0.011 -0.018 0.044 0.216 
Pearson 0.010 -0.018 0.036 0.445 4 Spearman 0.013 -0.015 0.040 0.209 
Pearson 0.013 -0.016 0.041 0.405 5 Spearman 0.010 -0.017 0.034 0.229 
Pearson 0.009 -0.018 0.037 0.448 6 Spearman 0.012 -0.019 0.037 0.216 
Pearson 0.013 -0.015 0.037 0.395 7 Spearman 0.009 0.019 0.037 0.231 
Pearson 0.016 -0.014 0.038 0.326 8 Spearman 0.012 -0.013 0.041 0.214 
Pearson 0.019 -0.013 0.048 0.331 9 Spearman 0.019 -0.070 0.044 0.161 
Pearson 0.062 0.033 0.092 0.008 Highest Spearman 0.056 0.031 0.084 0.013 
Pearson 0.148 0.132 0.152 0.000 Overall Spearman 0.140 0.131 0.149 0.000 

This table reports the 5th and 95th percentiles of the Pearson and Spearman correlations 
and the associated average p-values for testing the null hypothesis of zero serial 
correlation estimated from 100 random samples.  Each sample is constructed by drawing 
35,000 random variables x and ε independently from a standard normal distribution.  We 
then construct a new random variable y using qqq xy ε+×= 15.0 , thus inducing a 
correlation of 0.15 between y and x.   We label y as the ‘current quarter forecast error’ 
and x as the ‘prior quarter forecast error.’  Each sample is first sorted on current forecast 
errors (y) and assigned to 10 deciles of 3,500 observations each.  The first ten rows, from 
“Lowest” to “Highest” represent the average correlations for the ten decile sub-samples 
obtained after sorting the entire sample on y.  The last row “Overall” reports the 
correlation before sorting the samples.   
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Table 4 
The Association Between Analysts’ Forecast Errors and the Serial 

Correlation of Consecutive Analysts’ Forecast Errors 
jjjj CorcCorbaFE ε+×+×+= 2  

 Individual Company Level 50 Groups based on Correlation 
N 2,740 50 
Intercept 
t-statistic 

0.3208 
26.92 

0.2647 
27.29 

Cor 
t-statistic 

-0.0875 
-3.69 

-0.0808 
-4.21 

Cor2 
t-statistic 

0.2325 
4.88 

0.2104 
5.42 

R-squared 
F 

0.0129 
17.94 

0.4892 
22.51 

This table reports the association between analysts’ earnings forecast errors and the serial 
correlation between consecutive forecast errors.  jFE  is the average consensus analysts’ 
forecast error.  Corj represents the serial correlation in consecutive consensus forecasts.  
Column 2 reports the regression results for the entire sample.  Column 3 reports the 
regression results after grouping the sample into 50 groups based on Cor.  The actual 
observations and the fitted values of the results in Column 3 are plotted in Figure 2. 
 

 

 

 

 

 

 

 

 

 

 

 



 29

References 

Abarbanell, J. and R. Lehavy, 2003, “Biased Forecasts or Biased Earnings? The Role of  
Reported Earnings in Explaining Apparent Bias and Over/Underreaction in Analysts’ 
Earnings Forecasts,” Journal of Accounting and Economics, this issue 

 
Abarbanell, J., and V. Bernard, 1992, “Tests of analysts’ overreaction/underreaction to  

earnings information as an explanation for anomalous stock price behavior,” Journal 
of Finance 47, 1181–1207. 

 
Alford, A., and P. Berger, 1999, "A simultaneous equations analysis of forecast  
 accuracy, analyst following, and trading volume," Journal of Accounting,  
 Auditing & Finance, 14, 219–240. 
 
Ali, A., A. Klein, and J. Rosenfeld, 1992, "Analysts' use of information about  
 permanent and transitory earnings components in forecasting annual EPS,"  
 Accounting Review, 67, 183–198. 
 
Basu, S. and S. Markov, 2003, “Loss function assumptions in rational  
 expectations tests on financial analysts’ earnings forecasts,” working paper 
 Goizueta Business School, Emory University. 
 
Beaver, W. H., M. F. McNichols, and K. K. Nelson, 2003, “An alternative interpretation 

of the discontinuity in earnings distributions,” Working paper, Graduate School of 
Business, Stanford University. 

 
Berk, J. B., 2000, “Sorting Out Sorts,” The Journal of Finance, Vol. LV, No. 1, 407-428. 
 
Brown L., G. Foster, and E. Noreen, 1985, “Security analysts’ multi-year earnings 

forecasts and the capital markets,” Studies in Accounting Research, no. 21, Sarasota, 
Florida, American Accounting Association. 

 
Brown, L., and M. Rozeff, 1979, “University time series models of quarterly accounting 

earnings per share: a proposed model,” Journal of Accounting Research 17, 179– 
 189. 
 
Burgstahler, D., Dichev, I., 1997, “Earnings management to avoid earnings decreases and 

losses,” Journal of Accounting and Economics 24, 99-126.  
 
Chan, L., N. Jegadeesh, and J. Lakonishok, 1996, “Momentum strategies,” Journal of  
 Finance 51, 1681–1713. 
 
Christie, A. A., 1987, “On cross-sectional analysis in accounting research,” Journal of 

Accounting and Economics 9, 231-258. 
 
Collins, D. W., and P. Hribar, 2002, “Errors in estimating accruals: Implications for 

empirical research,” Journal of Accounting Research 40, 105-134. 
 



 30

Dechow, P. M., Richardson, S. A., Tuna, I. A., 2003, “Why are earnings kinky? An 
examination of the earnings management explanation,” Review of Accounting Studies, 
8, 355-384. 

 
Elgers, P., and D. Murray, 1992, “The relative and complementary performance of 

analyst and security-price-based measures of expected earnings,” Journal of  
 Accounting and Economics 15, 303–316. 
 
Financial Accounting Standard Boar (FASB), 1987, “Statement of Cash Flows,” 

Statement of Financial Accounting Standards No. 95, Norwalk, CT: FASB  
 
Gu, Z and S. Wu, 2003, “Earnings skewness and analysts’ forecasts bias,” Journal of 

Accounting and Economics 35, 5-29. 
 
Jacob, J. and T. Lys, 1992, “Determinants and implications of the serial- 
 correlation in analysts’ earnings forecast errors,” working paper, Kellogg School of  
 Management, Northwestern University. 
 
Klein, A., 1990, “A direct test of the cognitive bias theory of share price reversals,”  
 Journal of Accounting and Economics 13, 155–166. 
 
Kothari, S.P., J. Sabino, and T. Zach, 2003, “Implications of survival and data restrictions 

on tests of market efficiency,” working paper, Massachusetts Institute of Technology. 
 
Liu, X., 2003, “Analysts’ response to earnings management,” working paper,  
 Kellogg School of Management, Northwestern University. 
 
Lys, T. and S. Sohn, 1990, “The association between revisions of financial  
 analysts’ earnings forecasts and security price changes,” Journal of Accounting 
 and Economics 13 (December), 341-364. 
 
Marais, L. 1984, “An Application of the Bootstrap Method to the Analysis of Squared, 

Standardized Market Model Prediction Errors,” Journal of Accounting Research, Vol. 
22, Studies on Current Econometric Issues in Accounting Research, pp. 34-54. 

 
Mendenhall, R., 1991, “Evidence on the possible underweighting of earnings-related  
 information,” Journal of Accounting Research, 29 (1):170–179. 
 
Shane, P., and P. Brous, 2001, “Investor and (Value Line) analyst underreaction to  
 information about future earnings: the corrective role of non-earnings- surprise 

information,” Journal of Accounting Research, Sept. 2001, 387–415. 
 
Zach, T., 2003, “Inside the accrual anomaly,” unpublished dissertation, The University of 

Rochester. 
 


