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Text is ubiquitous and, not surprisingly, many important applications rely on textual data for

a variety of tasks. As a notable example, information extraction applications derive structured

relations from unstructured text; as another example, focused crawlers explore the Web to locate

pages about specific topics. Execution plans for text-centric tasks follow two general paradigms for

processing a text database: either we can scan, or “crawl,” the text database or, alternatively, we can

exploit search engine indexes and retrieve the documents of interest via carefully crafted queries

constructed in task-specific ways. The choice between crawl- and query-based execution plans can

have a substantial impact on both execution time and output “completeness” (e.g., in terms of

recall). Nevertheless, this choice is typically ad hoc and based on heuristics or plain intuition.

In this article, we present fundamental building blocks to make the choice of execution plans

for text-centric tasks in an informed, cost-based way. Towards this goal, we show how to analyze

query- and crawl-based plans in terms of both execution time and output completeness. We adapt

results from random-graph theory and statistics to develop a rigorous cost model for the execution

plans. Our cost model reflects the fact that the performance of the plans depends on fundamental

task-specific properties of the underlying text databases. We identify these properties and present
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efficient techniques for estimating the associated parameters of the cost model. We also present two

optimization approaches for text-centric tasks that rely on the cost-model parameters and select

efficient execution plans. Overall, our optimization approaches help build efficient execution plans

for a task, resulting in significant efficiency and output completeness benefits. We complement our

results with a large-scale experimental evaluation for three important text-centric tasks and over

multiple real-life data sets.
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1. INTRODUCTION

Text is ubiquitous and, not surprisingly, many applications rely on textual data
for a variety of tasks. For example, information extraction applications retrieve
documents and extract structured relations from the unstructured text in the
documents. Reputation management systems download Web pages to track the
“buzz” around companies and products. Comparative shopping agents locate
e-commerce Web sites and add the products offered in the pages to their own
index.

To process a text-centric task over a text database (or the Web), we can
retrieve the relevant database documents in different ways. One approach is
to scan or crawl the database to retrieve its documents and process them as
required by the task. While such an approach guarantees that we cover all
documents that are potentially relevant for the task, this method might be
unnecessarily expensive in terms of execution time. For example, consider the
task of extracting information on disease outbreaks (e.g., the name of the dis-
ease, the location and date of the outbreak, and the number of affected peo-
ple) as reported in news articles. This task does not require that we scan and
process, say, the articles about sports in a newspaper archive. In fact, only
a small fraction of the archive is of relevance to the task. For tasks such as
this one, a natural alternative to crawling is to exploit a search engine in-
dex on the database to retrieve—via careful querying—the useful documents.
In our example, we can use keywords that are strongly associated with dis-
ease outbreaks (e.g., World Health Organization, case fatality rate) and turn
these keywords into queries to find news articles that are appropriate for the
task.

The choice between a crawl- and a query-based execution strategy for a text-
centric task is analogous to the choice between a scan- and an index-based
execution plan for a selection query over a relation. Just as in the relational
model, the choice of execution strategy can substantially affect the execution
time of the task. In contrast to the relational world, however, this choice might
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also affect the quality of the output that is produced: while a crawl-based
execution of a text-centric task guarantees that all documents are pro-
cessed, a query-based execution might miss some relevant documents, hence
producing potentially incomplete output, with less-than-perfect recall. The
choice between crawl- and query-based execution plans can then have a
substantial impact on both execution time and output recall. Neverthe-
less, this important choice is typically left to simplistic heuristics or plain
intuition.

In this article, we introduce fundamental building blocks for the optimization
of text-centric tasks. Towards this goal, we show how to rigorously analyze
query- and crawl-based plans for a task in terms of both execution time and
output recall. To analyze crawl-based plans, we apply techniques from statistics
to model crawling as a document sampling process; to analyze query-based
plans, we first abstract the querying process as a random walk on a querying
graph, and then apply results from the theory of random graphs to discover
relevant properties of the querying process. Our cost model reflects the fact that
the performance of the execution plans depends on fundamental task-specific
properties of the underlying text databases. We identify these properties and
present efficient techniques for estimating the associated parameters of the
cost model.

In brief, the contributions and content of the article are as follows:

—A novel framework for analyzing crawl- and query-based execution plans for
text-centric tasks in terms of execution time and output recall (Section 3).

—A description of four crawl- and query-based execution plans, which underlie
the implementation of many existing text-centric tasks (Section 4).

—A rigorous analysis of each execution plan alternative in terms of execution
time and recall; this analysis relies on fundamental task-specific properties
of the underlying databases (Section 5).

—Two optimization approaches that estimate “on-the-fly” the database proper-
ties that affect the execution time and recall of each plan. The first alternative
follows a “global” optimization approach, to identify a single execution plan
that is capable of reaching the target recall for the task. The second alter-
native partitions the optimization task into “local” chunks; this approach
potentially switches between execution strategies by picking the best strat-
egy for retrieving the “next-k” tokens at each execution stage (Section 6).

—An extensive experimental evaluation showing that our optimization strat-
egy is accurate and results in significant performance gains. Our experiments
include three important text-centric tasks and multiple real-life data sets
(Sections 7 and 8).

Finally, Section 9 discusses related work, while Sections 10 and 11 provide
further discussion and conclude the article, respectively. This article expands
on earlier work by the same authors [Ipeirotis et al. 2006; Agichtein et al. 2003],
as discussed in Section 9.
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Fig. 1. Extracting DiseaseOutbreaks tuples.

2. EXAMPLES OF TEXT-CENTRIC TASKS

In this section, we briefly review three important text-centric tasks that we will
use throughout the article as running examples, to illustrate our framework and
techniques.

2.1 Task 1: Information Extraction

Unstructured text (e.g., in newspaper articles) often embeds structured infor-
mation that can be used for answering relational queries or for data mining.
The first task that we consider is the extraction of structured information from
text databases. An example of an information extraction task is the construction
of a table DiseaseOutbreaks(DiseaseName, Date, Country) of reported disease
outbreaks from a newspaper archive (see Figure 1). A tuple 〈yellow fever, 2005,
Mali〉 might then be extracted from the news articles in Figure 1.

Information extraction systems typically rely on patterns—either manu-
ally created or learned from training examples—to extract the structured in-
formation from the documents in a database. The extraction process is usu-
ally time consuming, since information extraction systems might rely on a
range of expensive text analysis functions, such as parsing or named-entity
tagging (e.g., to identify all person names in a document). See Grishman [1997],
McCallum [2005], and Cunningham [2006] for introductory surveys on infor-
mation extraction.

A straightforward execution strategy for an information extraction task is
to retrieve and process every document in a database exhaustively. As a refine-
ment, an alternative strategy might use filters and do the expensive processing
of only “promising” documents; for example, the Proteus system [Grishman
et al. 2002] ignores database documents that do not include words such as
virus and vaccine when extracting the DiseaseOutbreaks relation. As an
alternative, query-based approaches such as QXtract [Agichtein and Gravano
2003] have been proposed to avoid retrieving all documents in a database;
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Fig. 2. Content summary of Forbes.com.

instead, these approaches retrieve appropriate documents via carefully crafted
queries.

2.2 Task 2: Content Summary Construction

Many text databases have valuable contents “hidden” behind search interfaces
and are hence ignored by search engines such as Google. Metasearchers are
helpful tools for searching over many databases at once through a unified query
interface. A critical step for a metasearcher to process a query efficiently and
effectively is the selection of the most promising databases for the query. This
step typically relies on statistical summaries of the database contents [Callan
et al. 1995; Gravano et al. 1999]. The second task that we consider is the
construction of a content summary of a text database. The content summary
of a database generally lists each word that appears in the database, together
with its frequency. For example, Figure 2 shows that the word “xbox” appears
in 124 documents in the Forbes.com database. If we have access to the full
contents of a database (e.g., via crawling), it is straightforward to derive these
simple content summaries. If, in contrast, we only have access to the database
contents via a limited search interface (e.g., as is the case for “hidden-Web”
databases [Bergman 2001]), then we need to resort to query-based approaches
for content summary construction [Callan and Connell 2001; Ipeirotis and
Gravano 2002].

2.3 Task 3: Focused Resource Discovery

Text databases often contain documents on a variety of topics. Over the years,
a number of specialized search engines (as well as directories) that focus on
a specific topic of interest have been proposed (e.g., FindLaw). The third task
that we consider is the identification of the database documents that are about
the topic of a specialized search engine, or focused resource discovery.

As an example of focused resource discovery, consider building a search
engine that specializes in documents on botany from the Web at large (see
Figure 3). For this, an expensive strategy would crawl all documents on the
Web and apply a document classifier [Sebastiani 2002] to each crawled page to
decide whether it is about botany (and hence should be indexed) or not (and
hence should be ignored). As an alternative execution strategy, focused crawlers
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Fig. 3. Focused resource discovery for Botany pages.

(e.g., Chakrabarti et al. [1999, 2002], Menczer et al. [2004]) concentrate their
effort on documents and hyperlinks that are on-topic, or likely to lead to on-
topic documents, as determined by a number of heuristics. Focused crawlers
can then address the focused resource discovery task efficiently at the expense
of potentially missing relevant documents. As yet another alternative, Cohen
and Singer [1996] propose a query-based approach for this task, where they ex-
ploit search engine indexes and use queries derived from a document classifier
to quickly identify pages that are relevant to a given topic.

3. DESCRIBING TEXT-CENTRIC TASKS

While the text-centric examples of Section 2 might appear substantially differ-
ent on the surface, they all operate over a database of text documents and also
share other important underlying similarities.

Each task in Section 2 can be regarded as deriving “tokens” from a database,
where a token is a unit of information that we define in a task-specific way. For
Task 1, the tokens are the relation tuples that are extracted from the documents.
For Task 2, the tokens are the words in the database (accompanied by the
associated word frequencies). For Task 3, the tokens are the documents (or Web
pages) in the database that are about the topic of focus.

The execution strategies for the tasks in Section 2 rely on task-specific doc-
ument processors to derive the tokens associated with the task. For Task 1,
the document processor is the information extraction system of choice (e.g.,
Proteus [Grishman et al. 2002], DIPRE [Brin 1998], Snowball [Agichtein and
Gravano 2000], GATE/ANNIE,1 MinorThird2): given a document, the informa-
tion extraction system extracts the tokens (i.e., the tuples) that are present
in the document. For Task 2, the document processor extracts the tokens (i.e.,
the words) that are present in a given document, and the associated docu-
ment frequencies are updated accordingly in the content summary. For Task 3,
the document processor decides (e.g., via a document classifier such as Naive
Bayes [Duda et al. 2000] or Support Vector Machines [Vapnik 1998]) whether
a given URL is a page about the topic of focus; if the classifier deems the doc-
ument relevant, the URL is added as a token to the output and is discarded
otherwise. Table I summarizes these abstractions.

1http://gate.ac.uk/ie/annie.html.
2http://minorthird.sourceforge.net/.
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Table I. The Three Example Tasks Within Our Framework

Task Document Doc. Processor Token

Information News Information Relation

Extraction article extraction system tuple

Content Summary Text Word Word

Construction document tokenizer

Focused Resource Web Web page URL of page on

Discovery page classifier topic of focus

The alternate execution strategies for the Section 2 tasks differ in how they
retrieve the input documents for the document processors, as we will discuss in
Section 4. Some execution strategies fully process every available database doc-
ument, thus guaranteeing the extraction of all the tokens that the underlying
document processor can derive from the database. In contrast, other execution
strategies focus, for efficiency, on a strict subset of the database documents,
hence potentially missing tokens that would have been derived from unexplored
documents. One subcategory applies a filter (e.g., derived in a training stage)
to each document to decide whether to fully process it or not. Other strategies
retrieve via querying the documents to be processed, where the queries can be
derived in a number of ways that we will discuss. All these alternate execution
strategies thus exhibit different tradeoffs between execution time and output
recall.

Definition 3.1 (Execution Time). Consider a text-centric task, a database
of text documents D, and an execution strategy S for the task, with an under-
lying document processor P . Then, we define the execution time of S over D,
Time(S, D), as

Time(S, D) = tT (S) +
∑

q∈Qsent

tQ (q) +
∑

d∈Dretr

(tR(d ) + tF (d )) +
∑

d∈Dproc

tP (d ), (1)

where

— Qsent is the set of queries sent by S,

— Dretr is the set of documents retrieved by S (Dretr ⊆ D),

— Dproc is the set of documents that S processes with document processor P
(Dproc ⊆ D),

—tT (S) is the time for training the execution strategy S,

—tQ (q) is the time for evaluating a query q,

—tR(d ) is the time for retrieving a document d ,

—tF (d ) is the time for filtering a retrieved document d , and

—tP (d ) is the time for processing a document d with P .

Assuming that the time to evaluate a query is constant across queries3 (i.e.,
tQ = tQ (q), for every q ∈ Qsent) and that the time to retrieve, filter, or process

3This is a simplifying assumption, and does not hold for all queries. However, the tasks that we

examine in this article typically involve keyword queries of only moderate length and result size,

which, in turn, is reflected in little variance in the execution time of the queries.
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a single document is constant across documents (i.e., tR = tR(d ), tF = tF (d ),
tP = tP (d ), for every d ∈ D), we have:

Time(S, D) = tT (S) + tQ · |Qsent| + (
tR + tF

) · |Dretr| + tP · |Dproc| (2)

Definition 3.2 (Recall). Consider a text-centric task, a database of text doc-
uments D, and an execution strategy S for the task, with an underlying docu-
ment processor P . Let Dproc be the set of documents from D that S processes
with P . Then, we define the recall of S over D, Recall(S, D), as

Recall(S, D) = |Tokens(P, Dproc)|
|Tokens(P, D)| , (3)

where Tokens(P, D) is the set of tokens that the document processor P extracts
from the set of documents D.

Based on the definitions of Execution Time and Recall, we now define our
problem formally:

PROBLEM 3.1. Consider a text-centric task, a database of text documents D,
a document processor P for the task, and a set of alternative execution strategies
S1, . . . , Sn for the task. Given a target recall value τ , the goal is to identify an
execution strategy S among S1, . . . , Sn such that

—Recall(S, D) ≥ τ and
—Time(S, D) ≤ Time(S j , D) if Recall(S j , D) ≥ τ .

In other words, the goal is to identify an execution strategy S that is the fastest
across the alternative strategies that reach the recall target τ for the task.

In a dual formulation of the problem, the goal is to identify the execution strat-
egy S that can reach the maximum recall within a prespecified time threshold
τtime. In this article, we focus on the problem formulation stated in Problem 3.1.
However, it is easy to adapt our techniques to work for the dual problem
definition.

Our problem formulation implicitly assumes that we process documents se-
quentially. Our model could be easily expanded, however, to include parallel
execution strategies as long as we consider only a relatively low degree of par-
allelism (i.e., a small number of parallel processors relative to the number of
documents). In this case, the execution times are (roughly) divided by the de-
gree of parallelism. If, in contrast, we assume a high degree of parallelism,
then we could trivially process the complete database in a short time but at
the expense of a significant waste of resources (many useless documents are
processed).

Our problem is close, conceptually, to the evaluation of a selection predicate
in an RDBMS. In relational databases, the query optimizer selects an access
path (i.e., a sequential scan or a set of indexes) that is expected to lead to
an efficient execution. We follow a similar structure in our work. In the next
section, we describe the alternate evaluation methods that are at the core of
the execution strategies for text-centric tasks that have been discussed in the
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Fig. 4. The Scan strategy.

literature.4 Then, in subsequent sections, we analyze these strategies to see
how their performance depends on the task and database characteristics.

4. EXECUTION STRATEGIES

In this section, we review the alternate execution plans that can be used for
the text-centric tasks described above, and discuss how we can “instantiate”
each generic plan for each task of Section 2. Our discussion assumes that each
task has a target recall value τ , 0 < τ ≤ 1, that needs to be achieved (see
Definition 3.2), and that the execution can stop as soon as the target recall is
reached. Also, we define Tokens as the set of tokens that the document processor
at hand can extract from all the database documents collectively.

4.1 Scan

The Scan (SC) strategy is a crawl-based strategy that processes each document
in a database D exhaustively until the number of tokens extracted satisfies the
target recall τ (see Figure 4).

The Scan execution strategy does not need training and does not send any
queries to the database. Hence, tT (SC) = 0 and |Qsent| = 0. Furthermore, Scan
does not apply any filtering, hence tF = 0 and |Dproc| = |Dretr|. Therefore, the
execution time of Scan is:

Time(SC, D) = |Dretr| · (tR + tP ). (4)

The Scan strategy is the basic evaluation strategy that many text-centric
algorithms use when there are no efficiency issues, or when recall, which is
guaranteed to be perfect according to Definition 3.2, is important. We should
stress, though, that |Dretr| for Scan is not necessarily equal to |D|: when the
target recall τ is low, or when tokens appear redundantly in multiple documents,
Scan may reach the target recall without processing all the documents in D. In
Section 5, we show how to estimate the value of |Dretr| that is needed by Scan
to reach a target recall τ .

A basic version of Scan accesses documents in random order. Variations of
Scan might impose a specific processing order and prioritize, say, “promising”
documents that are estimated to contribute many new tokens. Another natural

4While it is impossible to analyze all existing techniques within a single article, we believe that we

offer valuable insight on how to formally analyze many query- and crawl-based strategies, hence

offering the ability to predict a priori the expected performance of an algorithm.
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Fig. 5. The Filtered Scan strategy.

improvement of Scan is to avoid processing altogether documents expected not
to contribute any tokens; this is the basic idea behind Filtered Scan, which we
discuss next.

4.2 Filtered Scan

The Filtered Scan (FS) strategy is a variation of the basic Scan strategy. While
Scan indistinguishably processes all documents retrieved, Filtered Scan first
uses a classifier C to decide whether a document d is useful, that is, whether
d contributes at least one token (see Figure 5). Given the potentially high cost
of processing a document with the document processor P , a quick rejection of
useless documents can speed up the overall execution considerably.

The training time tT (FS) for Filtered Scan is equal to the time required to
build the classifier C for a specific task. Training represents a one-time cost for
a task, so in a repeated execution of the task (i.e., over a new database) the clas-
sifier will be available with tT (FS) = 0. This is the case that we assume in the
rest of the analysis. Since Filtered Scan does not send any queries, |Qsent| = 0.
While Filtered Scan retrieves and classifies |Dretr| documents, it actually pro-
cesses only Cσ · |Dretr| documents, where Cσ is the “selectivity” of the classifier
C, defined as the fraction of database documents that C judges as useful. There-
fore, according to Definition 2, the execution time of Filtered Scan is:

Time(FS, D) = |Dretr| · (tR + tF + Cσ · tP ). (5)

In Section 5, we show how to estimate the value of |Dretr| that is needed for
Filtered Scan to reach the target recall τ .

Filtered Scan is used when tP is high and there are many database documents
that do not contribute any tokens to the task at hand. For Task 1, Filtered Scan is
used by Proteus [Grishman et al. 2002], which uses a hand-built set of inexpen-
sive rules to discard useless documents. For Task 2, the Filtered Scan strategy
is typically not applicable, since all the documents are useful. For Task 3, the
Filtered Scan strategy corresponds to a “hard” focused crawler [Chakrabarti
et al. 1999] that prunes the search space by only considering documents that
are pointed to by useful documents.

Both Scan and Filtered Scan are crawl-based strategies. Next, we de-
scribe two query-based strategies, Iterative Set Expansion, which emulates
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Fig. 6. The Iterative Set Expansion strategy.

query-based strategies that rely on “bootstrapping” techniques, and Automatic
Query Generation, which generates queries automatically, without using the
database results.

4.3 Iterative Set Expansion

Iterative Set Expansion (ISE) is a query-based strategy that queries a data-
base with tokens as they are discovered, starting with a typically small set of
user-provided seed tokens Tokensseed. The intuition behind this strategy is that
known tokens might lead to unseen tokens via documents that have both seen
and unseen tokens (see Figure 6). Queries are derived from the tokens in a
task-specific way. For example, a Task 1 tuple 〈Cholera, 1999, Nigeria〉 for Dis-
easeOutbreaks might be turned into query [Cholera AND Nigeria]; this query,
in turn, might help retrieve documents that report other disease outbreaks,
such as 〈Cholera, 2005, Senegal〉 and 〈Measles, 2004, Nigeria〉.

Iterative Set Expansion has no training phase; hence tT (ISE) = 0. We assume
that Iterative Set Expansion has to send |Qsent| queries to reach the target
recall. In Section 5, we show how to estimate this value of |Qsent|. Also, since
Iterative Set Expansion processes all the documents that it retrieves, tF = 0
and |Dproc| = |Dretr|. Then, according to Definition 3.1:

Time(ISE , D) = |Qsent| · tQ + |Dretr| · (tR + tP ). (6)

Informally, we expect Iterative Set Expansion to be efficient when tokens tend to
co-occur in the database documents. In this case, we can start from a few tokens
and “reach” the remaining ones. (We define reachability formally in Section 5.4.)
In contrast, this strategy might “stall” and lead to poor recall for scenarios when
tokens occur in isolation, as was analyzed by Agichtein et al. [2003].
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Fig. 7. The Automatic Query Generation strategy.

Iterative Set Expansion has been successfully applied in many tasks. For
Task 1, Iterative Set Expansion corresponds to the Tuples algorithm for
information extraction [Agichtein and Gravano 2003], which was shown to out-
perform crawl-based strategies when |Duseful| 	 |D|, where Duseful is the set of
documents in D that “contribute” at least one token for the task. For Task 2,
Iterative Set Expansion corresponds to the query-based sampling algorithm by
Callan et al. [1999], which creates a content summary of a database from a
document sample obtained via query words derived (randomly) from the al-
ready retrieved documents. For Task 3, Iterative Set Expansion is not directly
applicable, since there is no notion of “co-occurrence.” Instead, strategies that
start with a set of topic-specific queries are preferable. Next, we describe such
a query-based strategy.

4.4 Automatic Query Generation

Automatic Query Generation (AQG) is a query-based strategy for retrieving
useful documents for a task. Automatic Query Generation works in two stages:
query generation and execution. In the first stage, Automatic Query Generation
trains a classifier to categorize documents as useful or not for the task; then,
rule-extraction algorithms derive queries from the classifier. In the execution
stage, Automatic Query Generation searches a database using queries that are
expected to retrieve useful documents. For example, for Task 3 with botany as
the topic, Automatic Query Generation generates queries such as [plant AND
phylogeny] and [phycology]. (See Figure 7.)

The training time for Automatic Query Generation involves downloading a
training set Dtrain of documents and processing them with P , incurring a cost of
|Dtrain| · (tR + tP ). Training time also includes the time for the actual training of
the classifier. This time depends on the learning algorithm and is, typically, at
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least linear in the size of Dtrain. Training represents a one-time cost for a task, so
in a repeated execution of the task (i.e., over a new database) the classifier will
be available with tT (AQG) = 0. This is the case that we assume in the rest of
the analysis. During execution, the Automatic Query Generation strategy sends
|Qsent| queries and retrieves |Dretr| documents, which are then all processed by
P , without any filtering5 (i.e., |Dproc| = |Dretr|). In Section 5, we show how to
estimate the values of |Qsent| and |Dretr| that are needed for Automatic Query
Generation to reach a target recall τ . Then, according to Definition 3.1:

Time(AQG, D)=|Qsent| · tQ + |Dretr| · (tR + tP ). (7)

The Automatic Query Generation strategy was proposed under the name
QXtract for Task 1 [Agichtein and Gravano 2003]; it was also used for Task 2
by Ipeirotis and Gravano [2002] and for Task 3 by Cohen and Singer [1996].

The description of the execution time has so far relied on parameters (e.g.,
|Dretr|) that are not known before executing the strategies. In the next section,
we focus on the central issue of estimating these parameters. In the process,
we show that the performance of each strategy depends heavily on task-specific
properties of the underlying database; then, in Section 6 we show how to char-
acterize the required database properties and select the best execution strategy
for a task.

5. ESTIMATING EXECUTION PLAN COSTS

In the previous section, we presented four alternative execution plans and de-
scribed the execution cost for each plan. Our description focused on describing
the main factors of the actual execution time of each plan and did not provide
any insight on how to estimate these costs: many of the parameters that ap-
pear in the cost equations are outcomes of the execution and cannot be used to
estimate or predict the execution cost. In this section, we show that the cost
equations described in Section 4 depend on a few fundamental task-specific
properties of the underlying databases, such as the distribution of tokens across
documents. Our analysis reveals the strengths and weaknesses of the execution
plans and (most importantly) provides an easy way to estimate the cost of each
technique for reaching a target recall τ . The rest of the section is structured as
follows. First, Section 5.1 describes the notation and gives the necessary back-
ground. Then, Sections 5.2 and 5.3 analyze the two crawl-based techniques,
Scan and Filtered Scan, respectively. Finally, Sections 5.4 and 5.5 analyze the
two query-based techniques, Iterative Set Expansion and Automatic Query Gen-
eration, respectively.

5.1 Preliminaries

In our analysis, we use some task-specific properties of the underlying data-
bases, such as the distribution of tokens across documents. We use g (d ) to

5Note that we could also consider “filtered” versions of Iterative Set Expansion and Automatic
Query Generation, just as we do for Scan. For brevity, we do not study such variations: filtering

is less critical for the query-based strategies than for Scan, because queries generally retrieve a

reasonably small fraction of the database documents.
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represent the “degree” of a document d for a document processor P , which is
defined as the number of distinct tokens extracted from d using P . Using the
document degree, we also separate the database documents into two sets: the
set of useful documents Duseful, which contains documents with g (d ) ≥ 1, and
the set of useless documents Duseless, which contains documents with g (d ) = 0.
Analogously to the document case, we use g (t) to represent the “degree” of a
token t in a database D, which is defined as the number of distinct documents
in D from which processor P can extract t. Finally, we use g (q) to represent
the “degree” of a query q in a database D, which is defined as the number of
documents from D retrieved by query q.

In general, we do not know a priori the exact distribution of the token, docu-
ment, and query degrees for a given task and database. However, we typically
know the distribution family for these degrees, and we just need to estimate a
few parameters to identify the actual distribution for the task and database.
For Task 1, the document and token degrees tend to follow a power-law distri-
bution [Agichtein et al. 2003], as we will see in Section 7. For Task 2, token
degrees follow a power-law distribution [Zipf 1949; Baayen 2006] and docu-
ment degrees follow roughly a lognormal distribution [Mitzenmacher 2004];
we provide further evidence in Section 7. For Task 3, the document and token
distributions are, by definition, uniform over Duseful with g (t) = g (d ) = 1, and
we have g (d ) = 0 for all documents in Duseless. In Section 6, we describe how to
estimate the parameters of each distribution.

5.2 Cost of Scan

According to Equation (4), the cost of Scan is determined by the size of the set
Dretr, which is the number of documents retrieved to achieve a target recall τ .6

To compute |Dretr|, we base our analysis on the fact that Scan retrieves docu-
ments in no particular order and does not retrieve the same document twice.
This process is equivalent to sampling from a finite population [Ross 2002].
Conceptually, Scan samples for multiple tokens during execution. Therefore,
we treat Scan as performing multiple “sampling from a finite population” pro-
cesses, running in parallel over D (see Figure 8). Each sampling process cor-
responds to a token t ∈ Tokens. According to probability theory [Ross 2002,
page 56], the probability of observing a token t k times in a sample of size S
follows the hypergeometric distribution. For k = 0, we get the probability that
t does not appear in the sample, which is ( |D|−g (t)

S )/( |D|
S ). The complement of this

value is the probability that t appears in at least one document in the set of S
retrieved documents. So, after processing S documents, the expected number
of retrieved tokens for Scan is:

E[|Tokensretr|] =
∑

t∈Tokens

1 − (|D| − g (t))!(|D| − S)!

(|D| − g (t) − S)!|D|! . (8)

Typically, we do not know the exact g (t) for each token t ∈ Tokens. However, as
discussed in Section 5.1, we have some knowledge about the form of the degree

6We assume that the values of tR and tP are known or that we can easily estimate them by

repeatedly retrieving and processing a few sample documents.
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Fig. 8. Modeling Scan as multiple sampling processes, one per token, running in parallel over D.

distribution. Therefore, we can estimate E[|Tokensretr|] without knowing the
g (t) values but rather using estimates for the probabilities Pr{g (t) = i}, which
are common across all tokens. In this case we have:

E[|Tokensretr|] = |Tokens| ·
∞∑

k=1

Pr{g (t) = k} ·
(

1 − (|D| − k)! (|D| − S)!

(|D| − k − S)!|D|!
)

. (9)

Hence, we estimate7 the number of documents that Scan should retrieve to
achieve a target recall τ as:̂|Dretr| = min{S : E[|Tokensretr|] ≥ τ |Tokens|}. (10)

The number of documents |Dretr| retrieved by Scan depends on the token degree
distribution. In Figure 9, we show the expected recall of Scan as a function of
the number of retrieved documents, when g (t) is uniform for all tokens. For
many databases, the distribution of g (t) is highly skewed and follows a power-
law distribution: a few tokens appear in many documents, while the majority
of tokens can only be extracted from only a few documents. For example, the
Task 1 tuple 〈SARS, 2003, China〉 can be extracted from hundreds of documents
in The New York Times archive, while the tuple 〈Diphtheria, 2003, Afghanistan〉
appears only in a handful of documents. The recall of Scan for a given sample
size S is lower over a database with a power-law token degree distribution
compared to the recall over a database with uniform token degree distribution,
when the token degree distributions have the same mean value (see Figure 10).

7To avoid numeric overflows during the computation of the factorials, we first take the logarithm

of the ratio (|D|−k)!(|D|−S)!
(|D|−k−S)!|D|! and then use the Stirling approximation ln x! ≈ x ln x − x + ln x

2
+ 1

2
ln 2π

to efficiently compute the logarithm of each factorial. After computing the value of the logarithm

of the ratio, we simply compute the exponential of the logarithm to estimate the original value of

the ratio.
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Fig. 9. Recall of the Scan strategy as a function of the fraction of retrieved documents, for g (t) = 1,

g (t) = 2, and g (t) = 4.4.
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Fig. 10. Recall of the Scan strategy as a function of the fraction of retrieved documents, comparing

the cases when g (t) is constant for each token t and when g (t) follows a power-law distribution

(the mean value of g (t) is the same in both cases, E[g (t)] = 4.4).

This is expected: while it is easy to discover the few very frequent tokens, it is
hard to discover the majority of tokens, with low frequency. By estimating the
parameters of the power-law distribution, we can then compute the expected
values of g (t) for the (unknown) tokens in D and use Equations (9) and (10) to
derive the expected cost of Scan. In Section 6, we show how to perform such
estimations on-the-fly.

The analysis above assumes a random retrieval of documents. If the docu-
ments are retrieved in a special order, which is unlikely for the task scenarios
that we consider, then we should model Scan as “stratified” sampling with-
out replacement: instead of assuming a single sampling pass, we decompose
the analysis into multiple “strata” (i.e., into multiple sampling phases), each
one with its own g (·) distribution. A simple instance of such technique is Fil-
tered Scan, which (conceptually) samples useful documents first, as discussed
next.
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5.3 Cost of Filtered Scan

Filtered Scan is a variation of the basic Scan strategy; therefore the analysis of
both strategies is similar. The key difference between these strategies is that
Filtered Scan uses a classifier to filter documents, which Scan does not. The
Filtered Scan classifier thus limits the number of documents processed by the
document processor P . Two properties of the classifier C are of interest for our
analysis:

—The classifier’s selectivity Cσ : if Dproc is the set of documents in D deemed

useful by the classifier (and then processed by P ), then Cσ = |Dproc|
|D| .

—The classifier’s recall Cr : this is the fraction of useful documents in D that are
also classified as useful by the classifier. The value of Cr affects the effective
token degree for each token t: now each token appears, on average, Cr · g (t)
times8 in Dproc, the set of documents actually processed by P .

Using these observations and following the methodology that we used for Scan,
we have:

E[|Tokensretr|] =
∑

t∈Tokens

1 − (Cσ · |D| − Cr · g (t))!(Cσ · |D| − S)!

(Cσ · |D| − Cr · g (t) − S)!(Cσ · |D|)! . (11)

As in the case of Scan, we use the probabilities Pr{g (t) = k} instead of the
individual g (t) values:

E[|Tokensretr|] =

|Tokens| ·
∞∑

k=1

Pr{g (t) = k} ·
(

1 − (Cσ · |D| − Cr · k)! (Cσ · |D| − S)!

(Cσ · |D| − Cr · k − S)! (Cσ · |D|)!
)

. (12)

Again, similar to Scan,

̂|Dretr| =
̂|Dproc|
Cσ

= min{S : E[|Tokensretr|] ≥ τ |Tokens|}
Cσ

. (13)

Equations (11) and (13) show the dependence of Filtered Scan on the per-
formance of the classifier. When Cσ is high, almost all documents in D are
processed by P , and the savings compared to Scan are minimal, if any. When
a classifier has low recall Cr , then many useful documents are rejected and
the effective token degree decreases, in turn increasing |Dretr|. We should also
emphasize that if the recall of the classifier is low, then Filtered Scan is not
guaranteed to reach the target recall τ . In this case, the maximum achievable
recall might be less than one and |Dretr| = |D|.

5.4 Cost of Iterative Set Expansion

So far, we have analyzed two crawling-based strategies. Before moving to the
analysis of the Iterative Set Expansion query-based strategy, we define queries

8We assume uniform recall across tokens, that is, that the classifier’s errors are not biased towards

a specific set of tokens. This is a reasonable assumption for most classifiers. Nevertheless, we can

easily extend the analysis and model any classifier bias by using a different classifier recall Cr (t)

for each token t.
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Fig. 11. Portion of the querying and reachability graphs of a database.

more formally as well as a graph-based representation of the querying process,
originally introduced by Agichtein et al. [2003].

Definition 5.1 (Querying Graph). Consider a database D and a document
processor P . We define the querying graph QG(D, P ) of D with respect to P
as a bipartite graph containing the elements of Tokens and D as nodes, where
Tokens, as usual, is the set of tokens that P derives from D. A directed edge
from a document node d to a token node t means that P extracts t from d . An
edge from a token node t to a document node d means that d is returned from
D as a result to a query derived from the token t.

For example, in Figure 11, token t1, after being suitably converted into a
query, retrieves a document d1 and, in turn, processor P extracts the token t2

from d1. Then, we insert an edge into QG from t1 to d1, and also an edge from
d1 to t2. We consider an edge d → t, originating from a document node d and
pointing to a token node t, as a “contains” edge, and an edge t → d , originat-
ing from a token node t and pointing to a document node d , as a “retrieves”
edge.

Using the querying graph, we analyze the cost and recall of Iterative Set
Expansion. As a simple example, consider the case where the initial Tokensseed

set contains a single token, tseed. We start by querying the database using the
query derived by tseed. The cost at this stage is a function of the number of
documents retrieved by tseed: this is the number of neighbors at distance one
from tseed in the querying graph QG. The recall of Iterative Set Expansion, at
this stage, is determined by the number of tokens derived from the retrieved
documents, which is equal to the number of neighbors at distance two from tseed.
Following the same principle, the cost in the next stage (after querying with the
tokens at distance two) depends on the number of neighbors at distance three
and recall is determined by the number of neighbors at distance four, and so
on.

The previous example illustrates that the recall of Iterative Set Expansion
is bounded by the number of tokens “reachable” from the Tokensseed tokens;
the execution time is also bounded by the number of documents and tokens
that are “reachable” from the Tokensseed tokens. The structure of the querying
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graph thus defines the performance of Iterative Set Expansion. To compute the
interesting properties of the querying graph, we resort to the theory of random
graphs: our approach is based on the methodology suggested by Newman et al.
[2001] and uses generating functions to describe the properties of the querying
graph QG. We define the generating functions Gd0(x) and Gt0(x) to describe the
degree distribution9 of a randomly chosen document and token, respectively:

Gd0(x) =
∞∑

k=0

pdk · xk , Gt0(x) =
∞∑

k=0

ptk · xk , (14)

where pdk is the probability that a randomly chosen document d contains k
tokens (i.e., pdk = Pr{g (d ) = k}) and ptk is the probability that a randomly
chosen token t retrieves k documents (i.e., ptk = Pr{g (t) = k}) when used as a
query.

In our setting, we are also interested in the degree distribution for a doc-
ument (or token, respectively) chosen by following a random edge. Using the
methodology of Newman et al. [2001], we define the functions Gd1(x) and Gt1(x)
that describe the degree distribution for a document and token, respectively,
chosen by following a random edge:

Gd1(x) = x
Gd ′

0(x)

Gd ′
0(1)

, Gt1(x) = x
Gt ′

0(x)

Gt ′
0(1)

, (15)

where Gd ′
0(x) is the first derivative of Gd0(x) and Gt ′

0(x) is the first derivative
of Gt0(x), respectively. (See Newman et al. [2001] for the proof.)

For the rest of the analysis, we use the following useful properties of gener-
ating functions [Wilf 1990]:

—Moments: The ith factorial moment of the probability distribution generated
by a function G(x) is given by the ith derivative of the generating function
G(x), evaluated at x = 1. We mainly use this property to compute efficiently
the mean of the distribution described by G(x).

—Power: If X 1, . . . , X m are independent, identically distributed random vari-
ables generated by the generating function G(x), then the sum of these vari-
ables, Sm = ∑m

i=1 X i, has generating function [G(x)]m.

—Composition: If X 1, . . . , X m are independent, identically distributed random
variables generated by the generating function G(x), and m is also an in-
dependent random variable generated by the function F (x), then the sum
Sm = ∑m

i=1 X i has generating function F (G(x)).

Using these properties and Equations (14) and (15), we can proceed to ana-
lyze the cost of Iterative Set Expansion. Assume that we are in the stage where
Iterative Set Expansion has sent a set Q of tokens as queries. These tokens

9We use undirected graph theory despite the fact that our querying graph is directed. Using directed

graph results would of course be preferable, but it would require knowledge of the joint distribution

of incoming and outgoing degrees for all nodes of the querying graph, which would be challenging to

estimate. So we rely on undirected graph theory, which requires only knowledge of the two marginal

degree distributions, namely, the token and document degree distributions.
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were discovered by following random edges on the graph; therefore, the degree
distribution of these tokens is described by Gt1(x) (Equation (15)). Then, by
the Power property, the distribution of the total number of retrieved documents
(which are pointed to by these tokens) is given by the generating function10:

Gd2(x) = [Gt1(x)]|Q |. (16)

Now, we know that |Dretr| in Equation (6) is a random variable and its dis-
tribution is given by Gd2(x). We also know that we retrieve documents by fol-
lowing random edges on the graph; therefore, the degree distribution of these
documents is described by Gd1(x) (Equation (15)). Then, by the Composition
property,11 the distribution of the total number of tokens |Tokensretr| retrieved
by the Dretr documents is given by the generating function12:

Gt2(x) = Gd2(Gd1(x)) = [Gt1(Gd1(x))]|Q |. (17)

Finally, we use the Moments property to compute the expected values for
|Dretr| and |Tokensretr|, after Iterative Set Expansion sends Q queries:

E[|Dretr|] =
[

d
d x

[Gt1(x)]|Q |
]

x=1

, (18)

E[|Tokensretr|] =
[

d
d x

[Gt1(Gd1(x))]|Q |
]

x=1

. (19)

Hence, the number of queries |Qsent| sent by Iterative Set Expansion to reach
the target recall τ is:̂|Qsent| = min{Q : E[|Tokensretr|] ≥ τ |Tokens|}. (20)

Our analysis, so far, did not account for the fact that the tokens in a database
are not always “reachable” in the querying graph from the tokens in Tokensseed.
As we have briefly discussed, though, the ability to reach all the tokens is
necessary for Iterative Set Expansion to achieve good recall. Before elaborating
further on the subject, we describe the concept of the reachability graph, which
we originally introduced in Agichtein et al. [2003] and is fundamental for our
analysis.

Definition 5.2 (Reachability Graph). Consider a database D, and an exe-
cution strategy S for a task with an underlying document processor P and
querying strategy R. We define the reachability graph RG(D, S) of D with re-
spect to S as a graph whose nodes are the tokens that P derives from D, and
whose edge set E is such that a directed edge ti → t j means that P derives t j

from a document that R retrieves using ti.

Figure 11 shows the reachability graph derived from an underlying querying
graph, illustrating how edges are added to the reachability graph. Since token t2

10This is the number of nondistinct documents. To compute the number of distinct documents, we

use the sieve method. For details, see Wilf [1990], page 110.
11We use the Composition property and not the Power property because |Dretr| is a random variable.
12Again, this is the number of nondistinct tokens. To compute the number of distinct tokens, we

use the sieve method. For details, see Wilf [1990], page 110.
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retrieves document d3 and d3 contains token t3, the reachability graph contains
the edge t2 → t3. Intuitively, a path in the reachability graph from a token ti

to a token t j means that there is a set of queries that start with ti and lead
to the retrieval of a document that contains the token t j . In the example in
Figure 11, there is a path from t2 to t4, through t3. This means that query t2

can help discover token t3, which in turn helps discover token t4. The absence
of a path from a token ti to a token t j in the reachability graph means that we
cannot discover t j starting from ti. This is the case for the tokens t2 and t5 in
Figure 11.

The reachability graph is a directed graph and its connectivity defines the
maximum achievable recall of Iterative Set Expansion: the upper limit for the
recall of Iterative Set Expansion is equal to the total size of the connected com-
ponents that include tokens in Tokensseed. In random graphs, typically we ob-
serve two scenarios: either the graph is disconnected and has a large num-
ber of disconnected components, or we observe a giant component and a set
of small connected components. Chung and Lu [2002] proved this for graphs
with a power-law degree distribution, and also provided the formulas for the
composition of the size of the components. Newman et al. [2001] provide sim-
ilar results for graphs with arbitrary degree distributions. Interestingly for
our problem, the size distribution of the connected components can be esti-
mated for many degree distributions using only a small number of parame-
ters [Newman et al. 2001]. For example, for power-law graphs, which is the
type of the reachability graphs for Task 1 and Task 2, we only need an esti-
mate of the average node out-degree [Chung and Lu 2002] to discover if there
is a giant connected component and to compute the size distribution for the
connected components. By estimating only a small number of parameters,
we can thus characterize the performance limits of the Iterative Set Expan-
sion strategy, which depends of the size distribution of the connected compo-
nents of the reachability graph. In Section 6 we explain how we obtain such
estimates.

As discussed, Iterative Set Expansion relies on the discovery of new tokens
to derive new queries. Therefore, in sparse and “disconnected” databases, Iter-
ative Set Expansion can exhaust the available queries and still miss a signifi-
cant part of the database, leading to low recall. In such cases, if high recall is a
requirement, different strategies are preferable. The alternative query-based
strategy that we examine next, Automatic Query Generation, showcases a dif-
ferent querying approach: instead of deriving new queries during execution,
Automatic Query Generation generates a set of queries offline and then queries
the database without using query results as feedback.

5.5 Cost of Automatic Query Generation

Section 4.4 showed that the cost of Automatic Query Generation consists of two
main components: the training cost and the querying cost. Training represents
a one-time cost for a task, as discussed in Section 4.4, so we ignore it in our
analysis. Therefore, the main component that remains to be analyzed is the
querying cost.
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To estimate the querying cost of Automatic Query Generation, we need to
estimate recall after sending a set Q of queries and the number of retrieved
documents |Dretr| at that point. Each query q retrieves g (q) documents, and
a fraction p(q) of these documents is useful for the task at hand. Assuming
that the queries are biased only towards retrieving useful documents and not
towards any other particular set of documents, the queries are conditionally
independent13 within the set of documents Duseful and within the rest of the
documents, Duseless. Therefore, the probability that a useful document is re-
trieved by a query q is p(q)·g (q)

|Duseful|
. Hence, the probability that a useful document

d is retrieved by at least one query is:

1 − Pr{d not retrieved by any query} = 1 −
|Q |∏
i=1

(
1 − p(qi) · g (qi)

|Duseful|
)

.

So, given the values of p(qi) and g (qi), the expected number of useful documents
that are retrieved is:

E
[∣∣Duseful

retr

∣∣] = |Duseful| ·
(

1 −
|Q |∏
i=1

(
1 − p(qi) · g (qi)

|Duseful|
))

(21)

and the number of useless documents retrieved is:

E
[∣∣Duseless

retr

∣∣] = |Duseless| ·
(

1 −
|Q |∏
i=1

(
1 − (1 − p(qi)) · g (qi)

|Duseless|
))

. (22)

Assuming that the “precision” of a query q is independent of the number of
documents that q retrieves,14 we get simpler expressions:

E
[∣∣Duseful

retr

∣∣] = |Duseful| ·
(

1 −
(

1 − E[p(q)] · E[g (q)]

|Duseful|
)|Q |)

, (23)

E
[∣∣Duseless

retr

∣∣] = |Duseless| ·
(

1 −
(

1 − (1 − E[p(q)]) · E[g (q)]

|Duseless|
)|Q |)

, (24)

where E[p(q)] is the average precision of the queries and E[g (q)] is the average
number of retrieved documents per query. The expected number of retrieved
documents is then:

E[|Dretr|] = E
[∣∣Duseful

retr

∣∣] + E
[∣∣Duseless

retr

∣∣]. (25)

To compute the recall of Automatic Query Generation after issuing Q que-
ries, we use the same methodology that we used for Filtered Scan. Specifically,
Equation (23) reveals the total number of useful documents retrieved, and these
are the documents that contribute to recall. These documents belong to Duseful.
Hence, similarly to Scan and Filtered Scan, we model Automatic Query Gen-
eration as sampling without replacement; the essential difference now is that

13The conditional independence assumption implies that the queries are only biased towards re-

trieving useful documents, and not towards any subset of useful documents.
14We observed this assumption to be true in practice.
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the sampling is over the Duseful set. Therefore, we have an effective database

size |Duseful| and a sample size equal to |Duseful
retr |.15 By modifying Equation (8)

appropriately, we have:

E[|Tokensretr|] =
∑

t∈Tokens

1 − (|Duseful| − g (t))!
(|Duseful| − ∣∣Duseful

retr

∣∣)!(|Duseful| − g (t) − ∣∣Duseful
retr

∣∣)!|Duseful|!
. (26)

Again, similarly to Scan and Filtered Scan, we use the probabilities Pr{g (t) =
k} instead of the individual g (t) values:

E [|Tokensretr|] =

|Tokens| ·
∞∑

k=1

Pr{g (t) = k} ·
⎛⎝1 −

(|Duseful| − k)!
(
|Duseful| − ∣∣Duseful

retr

∣∣)!(
|Duseful| − k − ∣∣Duseful

retr

∣∣)!|Duseful|!

⎞⎠ . (27)

A good approximation of the average value of |Tokensretr| can be derived by

setting |Duseful
retr | to be the mean value E[|Duseful

retr |] (Equation (23)). Similarly to
the analysis for Iterative Set Expansion, we have:̂|Qsent| = min{Q : E[|Tokensretr|] ≥ τ |Tokens|}. (28)

In this section, we analyzed four alternate execution plans and we showed
how their execution time and recall depend on fundamental task-specific prop-
erties of the underlying text databases. Next, we show how to exploit the pa-
rameter estimation and our cost model to significantly speed up the execution
of text-centric tasks.

6. PUTTING IT ALL TOGETHER

In Section 5, we examined how we can estimate the execution time and the
recall of each execution plan by using the values of a few parameters, including
the target recall τ and the token, document, and query degree distributions. In
this section, we present two different optimization schemes. In Section 6.1, we
present a “global” optimizer, which tries to pick the best execution strategy for
reaching the target recall. Then, in Section 6.2 we present a “local” optimizer,
which partitions the execution in multiple stages, and selects the best execution
strategy for each stage. As we will show in our experimental evaluation in
Section 8, our optimization approaches lead to efficient executions of the text-
centric tasks.

6.1 Global Optimization Approach

The goal of our global optimizer is to select an execution plan that will reach
the target recall in minimum amount of time. The optimizer starts by choosing
one of the execution plans described in Section 4, using the cost model that we
presented in Section 5.

15The documents Duseless
retr increase the execution time but do not contribute towards recall and we

ignore them for recall computation.
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Our cost model relies on a number of parameters, which are generally un-
known before executing a task. Some of these parameters, such as classifier
selectivity and recall (Section 5.3), can be estimated efficiently before the exe-
cution of the task. For example, the classifier characteristics for Filtered Scan
and query degree and precision for Automatic Query Generation can be easily
estimated during classifier training using cross-validation [Chaudhuri et al.
1998].

Other parameters of our cost model, namely the token and document dis-
tributions, are challenging to estimate. Rather than attempting to estimate
these distributions without prior information, we rely on the fact that for many
text-centric tasks we know the general family of these distributions, as we dis-
cussed in Section 5.1. Hence, our estimation task reduces to estimating a few
parameters of well-known distribution families,16 which we discuss below.

To estimate the parameters of a distribution family for a concrete text-centric
task and database, we could resort to a “preprocessing” estimation phase before
we start executing the actual task. For this, we could follow—once again—
Chaudhuri et al. [1998], and continue to sample database documents until
cross-validation indicates that the estimates are accurate enough. An inter-
esting observation is that having a separate preprocessing estimation phase is
not necessary in our scenario, since we can piggyback such estimation phase
into the initial steps of an actual execution of the task. In other words, instead
of having a preprocessing estimation phase, we can start processing the task
and exploit the retrieved documents for “on-the-fly” parameter estimation. The
basic challenge in this scenario is to guarantee that the parameter estimates
that we obtain during execution are accurate. Below, we discuss how to perform
the parameter estimation for each of the execution strategies of Section 4.

6.1.1 Scan. Our analysis in Section 5.2 relies on the characteristics of the
token and document degree distributions. After retrieving and processing a few
documents, we can estimate the distribution parameters based on the frequency
of the initially extracted tokens and documents. Specifically, we can use a maxi-
mum likelihood fit to estimate the parameters of the document degree distribu-
tion. For example, the document degrees for Task 1 tend to follow a power-law
distribution, with a probability mass function Pr{g (d ) = x} = x−β/ζ (β), where
ζ (β) is the Riemann zeta function ζ (β) = ∑+∞

n=1 n−β that serves as a normalizing
factor. Our goal is to estimate the most likely value of β, for a given sam-
ple of document degrees g (d1), . . . , g (ds). Using a maximum likelihood estima-
tion (MLE) approach, we identify the value of β that maximizes the likelihood
function:

l (β|g (d1), . . . , g (ds)) =
s∏

i=1

g (di)
−β

ζ (β)
.

16Our current optimization framework follows a parametric approach, by assuming that we know

the form of the document and token degree distributions but not their exact parameters. Our frame-

work can also be used in a completely nonparametric setting, in which we make no assumptions on

the degree distributions; however, the estimation phase would be more expensive in such a setting.

The development of an efficient, completely nonparametric framework is a topic for interesting

future research. (See also Section 10.)
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Taking the logarithm, we have the log-likelihood function:

L(β|g (d1), . . . , g (ds)) = log l (β|g (d1), . . . , g (ds))

=
s∑

i=1

(−β log g (di) − log ζ (β))

= −s · log ζ (β) − β

s∑
i=1

log g (di). (29)

To find the maximum of the log-likelihood function, we identify the value of β

that makes the first derivative of L be equal to zero:

d
dβ

L(β|g (d1), . . . , g (ds)) = 0,

−s · ζ ′(β)

ζ (β)
−

s∑
i=1

log g (di) = 0,

ζ ′(β)

ζ (β)
= −1

s

s∑
i=1

log g (di), (30)

where ζ ′(β) is the first derivative of the Riemann zeta function. Then, we can
estimate the value of β using numeric approximation. Similar approaches can
be used for other distribution families.

The estimation of the token degree distribution is typically more challenging
than the estimation of the document degree distribution. While we can observe
the degree g (d ) of each document d retrieved in a document sample, we cannot
directly determine the actual degree g (t) of each token t extracted from sample
documents. In general, the degree g (t) of a token t in a database is larger than
the degree of t in a document sample extracted from the database. Hence, before
using the maximum likelihood approach described above, we should estimate,
for each extracted token t, the token degree g (t) in the database.

We denote the sample degree of a token t as s(t), defined over a given docu-
ment sample. Using, again, a maximum likelihood approach, we find the most
likely token frequency g (t) that maximizes the probability of observing the
token frequency s(t) in the sample:

Pr{g (t)|s(t)} = Pr{s(t)|g (t)} · Pr{g (t)}
Pr{s(t)} . (31)

Since Pr{s(t)} is constant across all possible values of g (t), we can ignore this
factor for this maximization problem. From Section 5.2, we know that the proba-
bility of retrieving s(t) times a token t when it appears g (t) times in the database
follows a hypergeometric distribution, and then:

Pr{s(t)|g (t)} =
(

g (t)

s(t)

)
·
( |D| − g (t)

S − s(t)

)/( |D|
S

)
.

To estimate Pr{g (t)}, we rely on our knowledge of the distribution family of the
token degrees. For example, the token degrees for Task 1 follow a power-law
distribution, with Pr{g (t)} = g (t)−β/ζ (β). Then, for Task 1, we find the value
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of g (t) that maximizes the following:

Pr{s(t)|g (t)} · Pr{g (t)} =
((

g (t)

s(t)

)
·
( |D| − g (t)

S − s(t)

)/( |D|
S

))
· g (t)−β

ζ (β)
. (32)

For this, we take the logarithm of the expression above and use the Stirling
approximation to eliminate the factorials. We then find the value of g (t) for
which the derivative of the logarithm of the expression above with respect
to g (t) is equal to zero. Given the database size |D|, the sample size S, and
the sample degree s(t) of the token, we can estimate efficiently the maximum
likelihood estimate of g (t), for different values of the parameter(s) of the token
degree distribution. Then, using these estimates of the database token degrees,
we can proceed as in the document distribution case and estimate the token
distribution parameters.

The final step in the token distribution estimation is the estimation of the
value of |Tokens|, which we need to evaluate Equation (9). Unfortunately, the
Tokens set is, of course, unknown. But during execution, we know the number
of tokens that we extract from the documents that we retrieve, and this ac-
tual number of extracted tokens should match the E[|Tokensretr|] prediction of
Equation (9) for the corresponding values of the sample size S. Furthermore,
we know the values of |D|, S, and the probabilities Pr{g (t) = k}. Therefore,
the only unknown value in Equation (9) is the value of |Tokens|. We can then
estimate |Tokens| as the value of |Tokens| that solves Equation (9) for the given
sample size S. Since the value of |Tokens| also determines whether the exe-
cution strategy reached the target recall τ , we also compute the confidence
intervals for the estimate of |Tokens|, using the variance of E[|Tokensretr|]; to
avoid false early terminations, we terminate the execution only when we have
95% confidence that |Tokensretr|/|Tokens| ≥ τ .

6.1.2 Filtered Scan. The analysis for Filtered Scan is analogous to the
analysis of Scan. Assuming that the only classifier bias is towards useful doc-
uments (see Section 5.3), we use the document degree distribution in the re-
trieved sample to estimate the database degree distribution. To estimate the
token distribution, the only difference with the analysis for Scan is that the
probability of retrieving a token s(t) times when it appears g (t) times in the
database is now:

Pr{s(t)|g (t)} =
(

Cr · g (t)

s(t)

)
·
(

Cσ · |D| − Cr · g (t)

S − s(t)

)/(
Cσ · |D|

S

)
, (33)

where Cr is the classifier’s recall and Cσ is the classifier’s selectivity (see
Section 5.3).

6.1.3 Iterative Set Expansion. The crucial observation in this case is that,
during querying, we actually sample from the distributions generated by the
Gt1(x) and Gd1(x) functions, rather than from the distributions generated by
Gt0(x) and Gd0(x) (see Section 5.4). Still, we can use our estimation proce-
dure that we applied for Scan to return the parameters for the distributions
generated by Gt1(x) and Gd1(x), based on the sample document and token de-
grees observed during querying. However, these estimates are not the actual
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parameters of the token and document degree distributions, which are gener-
ated by the Gt0(x) and Gd0(x) functions, respectively, not by Gt1(x) and Gd1(x).
Hence, our goal is to estimate the parameters for the distributions generated
by the Gt0(x) and Gd0(x) functions, given the parameter estimates for the dis-
tributions generated by the Gt1(x) and Gd1(x) functions.

For this, we can use Equations (14) and (15), together with the distri-
butions generated by Gt1(x) and Gd1(x), to estimate the Gt0(x) and Gd0(x)
distributions. Intuitively, Gt1(x) and Gd1(x) overestimate Pr{g (t) = k} and
Pr{g (d ) = k} by a factor of k, since tokens and documents with degree k are k
times more likely to be discovered during querying than during random sam-
pling. Therefore,

Pr{g (t) = k} = Kt · P̂rISE {g (t) = k}
k

,

Pr{g (d ) = k} = Kd · P̂rISE {g (d ) = k}
k

,

where P̂rISE {g (t) = k} and P̂rISE {g (d ) = k} are the probability estimates that
we get for the distributions generated by Gt1(x) and Gd1(x), and Kt and Kd are
normalizing constants that ensure that the sum across all probabilities is 1.

6.1.4 Automatic Query Generation. For the document degree distribution,
we can proceed analogously as for Scan. The crucial difference is that Automatic
Query Generation underestimates Pr{g (d ) = 0}, the probability that a docu-
ment d is useless (the document retrieval process is biased towards retrieving
useful documents), while it overestimates Pr{g (d ) = k}, for k ≥ 1. The correct
estimate for Pr{g (d ) = 0} is:

Pr{g (d ) = 0} = |Duseless|
|D| = |Duseless|

|Duseful| + |Duseless| . (34)

To estimate the correct values of |Duseful| and |Duseless|, we use Equations (21)
and (22). For each submitted query qi, we know its precision p(qi) and its de-

gree g (qi). We also know the number of useful documents retrieved |Duseful
retr |

and the number of useless documents retrieved |Duseless
retr |. Hence, the only un-

known variable in Equation (21) is |Duseful|, while the only unknown variable
in Equation (22) is |Duseless|. It is difficult to solve these equations analytically
for |Duseful| and |Duseless|. However, Equations (21) and (22) are monotonic with
respect to |Duseful| and |Duseless|, respectively, so it is easy to estimate numeri-
cally the values of |Duseful| and |Duseless| that solve the equations. Then, we can
estimate Pr{g (d ) = 0} using Equation (34). After correcting the estimate for
Pr{g (d ) = 0}, we proportionally adjust the estimates for the remaining values
Pr{g (d ) = k}, for k ≥ 1, to ensure that

∑+∞
i=0 Pr{g (d ) = i} = 1.

To estimate the parameters of the token distribution, we assume that, given
sufficiently many queries, Automatic Query Generation will have perfect recall.
In this case, we assume that Automatic Query Generation performs random
sampling over the Duseful documents, rather than over the complete database.
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We then set:

Pr{s(t)|g (t)} =
(

g (t)

s(t)

)( |Duseful| − g (t)

S − s(t)

)/( |Duseful|
S

)
, (35)

where S = |Duseful
retr |. Then, we proceed with the estimation analogously to Scan.

6.1.5 Choosing an Execution Strategy. Using the estimation techniques
from Sections 6.1.1 through 6.1.4, we can now describe our overall global opti-
mization approach. Initially, our optimizer is informed of the general token and
document degree distribution (e.g., the optimizer knows that the token and doc-
ument degrees follow a power-law distribution for Task 1). As discussed, the ac-
tual parameters of these distributions are unknown, so the optimizer assumes
some rough constant values for these parameters (e.g., β = 2 for power-law
distributions)—which will be later refined—to decide which of the execution
strategies from Section 4 is most promising.

Our optimizer’s initial choice of execution strategy for a task may of course
be far from optimal, since this choice is made without accurate parameter es-
timates for the token and document degree distributions. Therefore, as docu-
ments are retrieved and tokens are extracted using this initial execution strat-
egy, the optimizer updates the distribution parameters using the techniques of
Sections 6.1.1 through 6.1.4, checking the robustness of the new estimates us-
ing cross-validation. We consider an estimate robust if the standard deviation
of the estimated values is less than 10% of the corresponding mean.

At any point in time, if the estimated execution time for reaching the target
recall, Time(S, D), of a competing strategy S is smaller than that of the current
strategy, then the optimizer switches to executing the less expensive strategy,
continuing from the execution point reached by the current strategy. In prac-
tice, we refine the statistics and reoptimize only after the chosen strategy has
processed N documents.17 (In our experiments, we set N = 100.) Figure 12
summarizes this algorithm.

6.2 Local Optimization Approach

The global optimization approach (Section 6.1) attempts to pick an execution
plan to reach a target recall τ for a given task. The optimizer only revisits
its decisions as a result of changes in the token and document statistics on
which it relies, as we discussed. In fact, if the optimizer were provided with
perfect statistics, it would pick a single plan (out of Scan, Filtered Scan, Iterative
Set Expansion, and Automatic Query Generation) from the very beginning and
continue with this plan until reaching the target recall.

Interestingly, often the best execution plans for a text-centric task might
use different execution strategies at different stages of the token extraction
process. For example, consider Task 1 with a target recall τ = 0.6. For a given

17An interesting direction for future research is to use confidence bounds for the statistics estimates,

which dictate how often to reoptimize. Intuitively, the estimates become more accurate as we process

more documents. Hence, the need to reconsider the optimization choice decreases as the execution

progresses.
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Fig. 12. The “global” optimization approach, which chooses an execution strategy that is able to

reach a target recall τ .

text database, the Iterative Set Expansion strategy (Section 4.3) might stall
and not reach the target recall τ = 0.6, as discussed in Section 5.4. So our
global optimizer might not pick this strategy when following the algorithm in
Figure 12. However, Iterative Set Expansion might be the most efficient strategy
for retrieving, say, 50% of the tokens in the database. So a good execution plan
in this case might then start by running Iterative Set Expansion to reach a
recall value of 0.5, and then switch to another strategy, say Filtered Scan, to
finally achieve the target recall, namely, τ = 0.6. We now introduce a local
optimization approach that explicitly considers such combination executions
that might include a variety of execution strategies.

Rather than choosing the best strategy—according to the available
statistics—for reaching a target recall τ , our local optimization approach par-
titions the execution into “recall stages” and successively identifies the best
strategy for each stage. So initially, the local optimization approach chooses
the best execution strategy for extracting the first k tokens, for some prede-
fined value of k, then identifies the best execution strategy for extracting the
next k tokens, and so on, until the target recall τ is reached. Hence, the local
optimization approach can be regarded as invoking the global optimization ap-
proach repeatedly, each time to find the best strategy for extracting the next k
tokens (see Figure 13). As a result, the local optimization approach can generate
flexible combination executions, with different execution choices for different
recall stages.

At each optimization point for a task over a database, the local optimiza-
tion approach chooses the execution strategy for extracting the next batch of
k tokens. The new tokens will be extracted from the unseen documents in the
database, so the optimizer adjusts the statistics on which it relies accordingly,
to ignore the documents that have already been processed in the task execu-
tion. Typically, the most frequent tokens are extracted early in the execution;
the document and token degree distributions in the unseen portion of the da-
tabase are thus generally different from the corresponding distributions in the
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Fig. 13. The “local” optimization approach, which chooses a potentially different execution strategy

for each batch of k tokens.

complete database. To account for these differences, at each optimization point
the local optimization approach follows the estimation procedures of Sec-
tions 6.1.1 through 6.1.4 to characterize the distributions over the complete
database; then, the optimizer uses the distribution statistics for the complete
database—as well as the statistics for the retrieved documents and tokens—to
estimate the distribution statistics over the unseen portion of the database:
we can easily compute the degree distribution for the unseen tokens and doc-
uments by subtracting the distribution for the retrieved documents from the
distribution for the complete database.

Next, we report the results of our experimental evaluation of our optimization
approaches, to highlight their strengths and weaknesses for choosing execution
strategies that reach the target recall τ efficiently.

7. EXPERIMENTAL SETTING

We now describe the experimental setting for each text-centric task of Sec-
tion 2, including the real-world data sets for the experiments. We also present
interesting statistics about the task-specific distribution of tokens in the data
sets.

7.1 Information Extraction

7.1.1 Document Processor. For this task, we use the Snowball information
extraction system [Agichtein and Gravano 2000] as the document processor (see
Section 3). We use two instantiations of Snowball: one for extracting a Disease-
Outbreaks relation (Task 1a) and one for extracting a Headquarters relation
(Task 1b). For Task 1a, the goal is to extract all the tuples of the target relation
DiseaseOutbreaks (DiseaseName, Country), which we discussed throughout the
article. For Task 1b, the goal is to extract all the tuples of the target relation
Headquarters (Organization,Location), where a tuple 〈o, l 〉 in Headquarters in-
dicates that organization o has headquarters in location l . A token for these
tasks is a single tuple of the target relation, and a document is a news article
from The New York Times archive, which we describe next.
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Fig. 14. Token and document degree distribution for Task 1’s DiseaseOutbreaks.

7.1.2 Data Set. We use a collection of newspaper articles from The New
York Times, published in 1995 (NYT95) and 1996 (NYT96). We use the NYT95
documents for training and the NYT96 documents for evaluation of the alter-
native execution strategies. The NYT96 database contains 182,531 documents,
with 16,921 tokens for Task 1a and 605 tokens for Task 1b. Figure 14 shows
the token and document degree distribution (Section 5) for Task 1a: both distri-
butions follow a power-law, a common distribution for information extraction
tasks. The distributions are similar for Task 1b.

7.1.3 Execution Plan Instantiation. For Filtered Scan we use a rule-based
classifier, created using RIPPER [Cohen 1996]. We train RIPPER using a set
of 500 useful documents and 1500 not useful documents from the NYT95 data
set. We also use 2000 documents from the NYT95 data set as a training set to
create the queries required by Automatic Query Generation. For Iterative Set
Expansion, we construct the queries using the conjunction of the attributes of
each tuple (e.g., tuple 〈typhus, Belize〉 results in query [typhus AND Belize]).
Finally, for the query-based strategies, we use maxD = 100 as the upper limit
for the maximum number of returned documents for a query.

7.2 Content Summary Construction

7.2.1 Document Processor. For this task, the document processor is a sim-
ple tokenizer that extracts the words that appear in the eligible documents,
defined as a sequence of one or more alphanumeric characters and ignoring
capitalization.

7.2.2 Data Set. We use the 20 Newsgroups data set from the UCI KDD
Archive [Blake and Merz 1998]. This data set contains 20,000 messages from
20 Usenet newsgroups. We also randomly retrieve additional Usenet articles to
create queries for Automatic Query Generation. Figure 15 shows the token and
document degree distribution (Section 5) for this task. The document degree
follows a lognormal distribution [Mitzenmacher 2004] and the token degree
follows, as expected [Zipf 1949], a power-law distribution.

7.2.3 Execution Plan Instantiation. For this task, Filtered Scan is not di-
rectly applicable, since all documents are “useful.” For Iterative Set Expansion,
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Fig. 15. Token and document degree distribution for Task 2.

the queries are constructed using words that appear in previously retrieved doc-
uments; this technique corresponds to the Learned Resource Description strat-
egy for vocabulary extraction presented by Callan et al. [1999]. For Automatic
Query Generation, we constructed the queries as follows: first, we separate the
documents into topics according to the high-level name of the newsgroup (e.g.,
“comp,” “sci,” and so on); then, we train a rule-based classifier using RIPPER,
which creates rules to assign documents into categories (e.g., cpu AND ram →
comp means that a document containing the words cpu and ram is assigned to
the “comp” category). The final queries for Automatic Query Generation contain
the antecedents of the rules, across all categories. This technique corresponds
to the Focused Probing strategy for vocabulary extraction presented by Ipeirotis
and Gravano [Ipeirotis and Gravano 2002]. Finally, for the query-based strat-
egies, we use maxD = 100 as the upper limit for the maximum number of
returned documents for a query.

7.3 Focused Resource Discovery

7.3.1 Document Processor. For this task, the document processor is a
multinomial Naive Bayes classifier, which detects the topic of a given Web
page [Chakrabarti et al. 1999]. The topic of choice for our experiments is
“Botany.”

7.3.2 Data Set. We retrieved 8000 Web pages listed in Open Directory18

under the category “Top → Science → Biology → Botany.” We selected 1000
out of the 8000 documents as training documents, and created a multinomial
Naive Bayes classifier that decides whether a Web page is about Botany. Then,
for each of the downloaded Botany pages, we used Google to retrieve all its
“backlinks” (i.e., all the Web pages that point to that page); again, we classified
the retrieved pages and for each page classified as “Botany” we repeated the
process of retrieving the backlinks, until none of the backlinks was classified
under Botany. This process results in a data set with approximately 12,000
pages about Botany, pointed to by approximately 32,000 useless documents
deemed irrelevant to the Botany topic. To augment the data set with additional

18http://www.dmoz.org.
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useless documents, we picked 10 more random topics from the third level of the
Open Directory hierarchy and we downloaded all the Web pages listed under
these topics, for a total of approximately 100,000 pages. After downloading
the backlinks for these pages, our data set contained a total of approximately
800,000 pages, out of which 12,000 are relevant to Botany.

7.3.3 Execution Plan Instantiation. For this task, the Scan plan corre-
sponds to an unfocused crawl, with a classifier deciding whether each of the
retrieved pages belongs to the category of choice. As an instantiation of Fil-
tered Scan, we used the “hard” version of the focused crawler described by
Chakrabarti et al. [1999]. The focused crawler starts from a few Botany Web
pages, and then visits a Web page only when at least one of the documents that
points to it is useful. Finally, to create queries for Automatic Query Generation,
we train a RIPPER classifier using the training set, and create a set of rules
that assign documents into the Botany category. We use these rules to query
the data set and retrieve documents, and we use maxD = 100 as the upper
limit for the maximum number of returned documents for a query.

8. EXPERIMENTAL EVALUATION

In this section, we present our experimental results. Our experiments focus
on the execution times of each alternate execution strategy (Section 4) for the
tasks and settings described in Section 7. We compute the actual execution
times and compare them against our estimates from Section 5. First, we com-
pute our estimates with exact values for the various parameters on which they
rely (e.g., token degree distribution). Then, we measure the execution time us-
ing our optimization strategies, which rely on approximate estimates of these
parameters, as described in Section 6.

8.1 Accuracy of Cost Model with Correct Information

The goal of the first set of experiments was to examine whether our cost model
of Section 5 captures the real behavior of the alternate execution strategies of
Section 4, when all the parameters of the cost model (e.g., token and document
degrees, classifier characteristics) are known a priori. For this, we first mea-
sure the actual execution time of the strategies, for varying values of the target
recall τ . The lines SC time, FS time, ISE time, AQG time in Figures 16, 17, 18,
and 19 show the actual execution time of the respective strategies for the tasks
described in Section 7. Then, to predict the execution time of each strategy,
we used our equations from Section 5. The lines SC pred, FS pred, ISE pred,
AQG pred in Figures 16, 17, 18, and 19 show our execution time estimates for
varying values of the target recall τ . The results were exceptionally accurate,
confirming the accuracy of our theoretical modeling. The prediction error is typ-
ically less than 10% for all values of target recall τ . Furthermore, our modeling
captures the characteristics and the limitations of each execution plan. For
example, Automatic Query Generation is the fastest execution plan for Task 1a
(Figure 16) when the target recall τ is under 0.15. However, due to the lim-
ited number of queries generated during the training phase, Automatic Query
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Fig. 16. Actual versus estimated execution times for Task 1a, as a function of the target recall τ .
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Fig. 17. Actual versus estimated execution times for Task 1b, as a function of the target recall τ .

Generation does not reach higher recall values in our scenario and implemen-
tation. (We generated 72 queries for this task.) Our analysis correctly captures
this limitation and shows that, for higher recall targets, other strategies are
preferable. This limitation also appears for the Iterative Set Expansion strat-
egy, confirming previously reported results [Agichtein et al. 2003]. The results
are similar for Task 2 and Task 3: our analysis correctly predicts the execution
time and the recall limitations of each strategy.

8.2 Quality of Choice of Execution Strategies

After confirming that our cost models accurately capture the actual execution
time of the alternate execution strategies, we examine whether our optimization
strategies lead to the choice of the fastest plan for each value of target recall τ .
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Fig. 18. Actual versus estimated execution times for Task 2, as a function of the target recall τ .
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Fig. 19. Actual versus estimated execution times for Task 3, as a function of the target recall τ .

We start executing each task by using the strategy that is deemed best for
the target recall and the available statistics. These statistics are the expected
distribution family of the token and document degrees for the task, with some
“default” parameters, such as β = 2 for power-law distributions (see Section 7).
As we retrieve documents and extract tokens during the actual execution, the
available statistics are refined and progressively lead to better estimates of
the document and token degree distributions for the complete database. The
“global” optimization approach reconsiders its choice of execution plan every N
documents (see Figure 12). For our experiments, we use N = 100, which allows
the statistics to change sufficiently between reoptimizations, but—at the same
time—without allowing a suboptimal algorithm to run for too long. The “local”
optimization approach defines “combination” executions by picking the best
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Fig. 20. Actual execution times for the four basic execution strategies, as well as for the “global”

optimization approach, for Task 1a and as a function of the target recall τ .
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Fig. 21. Actual execution times for the four basic execution strategies, as well as for the “global”

optimization approach, for Task 1b and as a function of the target recall τ .

strategy for selecting k tokens at a time (see Figure 13). For our experiments,
we set k = 0.05 · |Tokens|.

The “global” line in Figures 20, 21, 22, and 23 shows the actual execution
time, for different recall thresholds, using our global optimization approach.
Typically, our global optimizer finishes the task in the same time as the best
possible strategy, resulting in execution times that can be up to 10 times faster
than alternative plans that we might have picked based on plain intuition or
heuristics. For example, consider Task 1b with recall target τ = 0.35 (Figure 21):
without our cost modeling, we might select Iterative Set Expansion or Automatic
Query Generation, both reasonable choices given the relatively low target recall
τ = 0.35. However, Automatic Query Generation cannot achieve a recall of 0.35

ACM Transactions on Database Systems, Vol. 32, No. 4, Article 21, Publication date: November 2007.



Towards a Query Optimizer for Text-Centric Tasks • 21:37

0.1

1.0

10.0

100.0

1,000.0

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Recall

E
x
ec

u
ti

o
n
 T

im
e 

(s
ec

s)

SC_time ISE_time

AQG_time Global

Fig. 22. Actual execution times for the three basic execution strategies, as well as for the “global”

optimization approach, for Task 2 and as a function of the target recall τ .
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Fig. 23. Actual execution times for the three basic execution strategies, as well as for the “global”

optimization approach, for Task 3 and as a function of the target recall τ .

and Iterative Set Expansion is more expensive than Filtered Scan for that task.
Our optimizer, on the other hand, correctly predicts that Filtered Scan should be
the algorithm of choice. In this example, our optimizer initially picked Iterative
Set Expansion, but quickly revised its decision and switched to Filtered Scan
after gathering statistics from only 1–2% of the database.

We should note here that our optimizer’s actual time estimates are often
far from the actual execution times, especially at the beginning of the execu-
tion when parameter estimates are rough and usually inaccurate. Fortunately,
these time estimates are only used to pick the best available strategy; therefore
even coarse estimates are sufficient. We observed high time estimation errors
frequently in our experiments but, due to the large differences in execution
time between the strategies, our optimizer still managed to pick good execution
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Fig. 24. Actual execution times for the “global” and “local” optimization approaches, for Task 1a
and as a function of the target recall τ .

plans. As the execution progresses, the estimates become increasingly accurate
and the optimizer not only identifies the best execution plans but also provides
accurate time estimates as well.

As another interesting observation derived from our experiments, our pre-
diction algorithm sometimes overestimates the achievable recall of a strategy
(e.g., for Automatic Query Generation). In such cases, our (incorrectly picked)
strategy runs to completion; then, naturally, our technique picks the “next best”
strategy and continues the execution from the point reached by the (incorrectly
picked) strategy. In such cases, we sometimes observed a small performance
gain derived from this initial mistake, since the “incorrect” strategy outper-
forms the “correct” strategy for the first part of the execution. This result shows
that a multistrategy execution can often perform better than an optimization
strategy that attempts to pick a single execution plan, which is precisely the
rationale behind our “local” optimization approach.

The “local” line in Figures 24, 25, 26, and 27 shows the actual execution time,
for different recall thresholds, using our “local” optimization approach. Not sur-
prisingly, the “local” optimizer behaves similarly to the “global” optimizer for
low recall targets, where both optimization approaches proceed similarly. How-
ever, the “local” optimizer becomes noticeably preferable for higher target recall
values that are beyond the reach of the fastest execution strategies: the “global”
optimizer, by design, ignores an execution plan if this plan cannot reach the tar-
get recall. In contrast, the “local” optimizer can choose a fast execution strategy
for extracting the initial batches of tokens, even if such strategy could not reach
the overall target recall; then the “local” optimizer can pick a slower strategy to
continue from the point where the fastest plan has stopped. Interestingly, the
advantage of the “local” optimizer diminishes over time, and its execution times
slowly converge towards the execution times of the “global” optimizer: the “local”
optimizer targets the most promising parts of the database early on, through
fast early executions, and the associated speedups in the execution diminish
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Fig. 25. Actual execution times for the “global” and “local” optimization approaches, for Task 1b
and as a function of the target recall τ .
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Fig. 26. Actual execution times for the “global” and “local” optimization approaches, for Task 2
and as a function of the target recall τ .

as the distribution of tokens over the unseen documents becomes sparser and
sparser.

8.3 Conclusions

We demonstrated how our modeling approach can be used to create an opti-
mizer for text-centric tasks. The presented approach allows for a better under-
standing of the behavior of query- and crawl-based strategies, in terms of both
execution time and recall. Furthermore, our modeling works well even with
on-the-fly estimation of the required statistics, and results in close-to-optimal
execution times. Our work provides fundamental building blocks towards a full
query optimizer for text-centric tasks: given a specific target recall (e.g., “find
40% of all disease outbreaks mentioned in the news”), the query optimizer can
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Fig. 27. Actual execution times for the “global” and “local” optimization approaches, for Task 3
and as a function of the target recall τ .

automatically select the (combination of) best execution strategies to achieve
this recall.

9. RELATED WORK

In this article, we analyzed and estimated the computational costs of text-
centric tasks. We concentrated on three important tasks: information extraction
(Task 1), text database content summary construction (Task 2), and focused
resource discovery (Task 3).

Implementations of Task 1 (Section 2.1) traditionally use the Scan strategy
of Section 4.1, where every document is processed by the information extraction
system (e.g., Grishman [1997]; Yangarber and Grishman [1998]). Some systems
use the Filtered Scan strategy of Section 4.2, where only the documents that
match specific URL patterns (e.g., Brin [1998]) or regular expressions (e.g.,
Grishman et al. [2002]) are processed further. Agichtein and Gravano [2003]
presented query-based execution strategies for Task 1, corresponding to the It-
erative Set Expansion strategy of Section 4.3 and Automatic Query Generation
strategy of Section 4.4. (Different approaches to scaling up information extrac-
tion are surveyed by Agichtein [2005].) More recently, Etzioni et al. [2004] used
what could be viewed as an instance of Automatic Query Generation to query
generic search engines for extracting information from the Web. Cafarella and
Etzioni [2005] presented a complementary approach of constructing a special-
purpose index for efficiently retrieving promising text passages for information
extraction. Such document (and passage) retrieval improvements can be natu-
rally integrated into our framework.

For Task 2, the execution strategy by Callan et al. [1999] can be cast
as an instance of Iterative Set Expansion, as discussed in Section 4.3.
Another strategy for the same task [Ipeirotis and Gravano 2002] can be con-
sidered an instance of Automatic Query Generation (Section 4.4). Interestingly,
over large crawlable databases, where both query- and crawl-based strategies
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are possible, query-based strategies have been shown to outperform crawl-
based approaches for a related database classification task [Gravano et al.
2002], since small document samples can result in good categorization deci-
sions at a fraction of the processing time required by full database crawls.

For Task 3, focused resource discovery systems typically use a variation of
Filtered Scan [Chakrabarti et al. 1999, 2002; Diligenti et al. 2000; Menczer
et al. 2004], where a classifier determines which links to follow for subsequent
computationally expensive steps of retrieval and processing. Other strategies,
which we model as variants of Automatic Query Generation, may also be effec-
tive for some scenarios [Cohen and Singer 1996].

Other important text-centric tasks can be modeled in our framework. One
such task is text filtering (i.e., selecting documents in a text database on a par-
ticular topic) [Oard 1997], which can be executed following either Filtered Scan,
or, if appropriate, Automatic Query Generation. Another task is the construction
of comparative Web shopping agents [Doorenbos et al. 1997]. This task requires
identifying appropriate Web sites (e.g., by using an instance of Automatic Query
Generation) and subsequently extracting product information from a subset of
the retrieved pages (e.g., by using an implementation of Filtered Scan). For the
task of training named entity recognition systems, Jones [2005] showed that
named-entity co-occurrence graphs (e.g., involving person and location names)
follow a power-law degree distribution, which suggests that the execution of
this task might also be modeled in our framework. As another example, Web
question answering systems [Banko et al. 2002] usually translate a natural
language question into a set of Web search queries to retrieve documents for
a subsequent answer extraction step over a subset of the retrieved documents.
This process can thus be viewed as a combination of Automatic Query Genera-
tion and Filtered Scan. Recently, Ntoulas et al. [2005] presented query-based
strategies for exhaustively “crawling” a hidden Web database while issuing as
few queries as possible.

Estimating the cost of a query execution plan requires estimating parame-
ters of the cost model. We adapted effective database sampling techniques (e.g.,
Chaudhuri et al. [1998]; Ling and Sun [1995]) for our problem, as we discussed
in Section 6. Our work is similar in spirit to query optimization over struc-
tured relational databases, adapted to the intrinsic differences of executing
text-centric tasks; our work is also related to previous research on optimizing
query plans with user-defined predicates [Chaudhuri and Shim 1999], in that
we provide a robust way of estimating costs of complex text-centric “predicates.”
Our work can then be regarded as developing specialized, efficient techniques
for important special-purpose “operators” (e.g., as was done for fuzzy match-
ing [Chaudhuri et al. 2003]).

Our optimization approach is conceptually related to adaptive query execu-
tion techniques developed for relational data. In particular, Ives et al. [1999]
describe the Tukwila system for distributed processing of joins over au-
tonomous data sources, with no information about table cardinalities or value
distributions and with unpredictable network delays and data arrival rates.
Hence any initially chosen execution plan is expected to be adjusted during
query execution, as the availability of sources changes or better relevant
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statistics are obtained. Our optimization approach also revisits the choice of
execution strategies for a text-centric task, as documents are retrieved and
tokens extracted and, consequently, the statistics on document and token
distributions are refined. Our focus in this article is on processing text-centric
tasks over a single text “database,” and not on gracefully recovering from
unpredictable delays when executing a particular operator in a join pipeline.
Our optimization approach is also conceptually related to the eddies work,
where a query execution plan is continuously reevaluated after each output
tuple [Avnur and Hellerstein 2000]. The eddies work thus focuses on effective
join processing, allowing flexible reordering of the query operators.

Our optimization approach is also related to the reoptimization methods
presented by Kabra and DeWitt [1998]: the statistics are updated at key points
during query execution to reallocate memory resources for active operators and
to potentially adjust the plan for the rest of the execution. The general reopti-
mization approach of Kabra and DeWitt [1998] for relational data was extended
by Markl et al. [2004], where the cardinality estimation errors detected during
query execution may trigger a reoptimization step for the execution plan. Our
general optimization approach behaves similarly, albeit for text-centric tasks,
which require different parameter estimation techniques.

This article substantially extends our previous work in Agichtein et al. [2003]
and Ipeirotis et al. [2006]. Our earlier article [Agichtein et al. 2003] presented
preliminary results on modeling and estimating the achievable recall of Iter-
ative Set Expansion, for Task 1 (information extraction) and Task 2 (database
content summary construction). Later, in Ipeirotis et al. [2006], we developed
and evaluated rigorous cost models for Iterative Set Expansion, as well as for
three additional general execution strategies, namely Scan, Filtered Scan, and
Automatic Query Generation. In Ipeirotis et al. [2006], we also presented a prin-
cipled, cost-based “global” optimization approach for selecting the most efficient
execution strategy automatically. The current article substantially extends the
analysis and experimental evaluation by Ipeirotis et al. [2006]. In this article,
we present a detailed description of our methodology for estimating the param-
eter values required by our cost model (Sections 6.1.1 through 6.1.4), whereas
in Ipeirotis et al. [2006], due to space restrictions, we only gave a high-level
overview of our techniques. Another substantial new contribution with respect
to Ipeirotis et al. [2006] is that now our optimizers do not rely on knowledge of
the |Tokens| statistics, but instead estimate this parameter “on-the-fly” as well,
during execution of the task. Furthermore, in this article, we present a new, “lo-
cal” optimizer that potentially builds “multistrategy” executions by picking the
best strategy for each batch of k tokens (Section 6.2). In contrast, the “global”
optimization approach in Ipeirotis et al. [2006] only attempts to identify a single
execution plan that is capable of reaching the full target recall. We implemented
the new local optimization approach and compared it experimentally against
the global approach of Ipeirotis et al. [2006]; the results of the comparison are
presented in Figures 24, 25, 26, and 27, in Section 8. The results show the
superiority of the “local” optimizer over the “global” optimizer.

An alternative approach to processing SQL queries over unstructured text
was presented by Cafarella et al. [2007], which requires a single scan over the
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collection for all possible binary relations. Finally, Jain et al. [2007] have re-
cently presented a query optimization approach for simple SQL queries over
(structured data extracted from) text databases. This work heavily relies on in-
formation extraction systems and is thus closely related to our Task 1 scenario.
Jain et al. [2007] consider multiple document retrieval strategies to process
a SQL query, including Scan, Automatic Query Generation, and other query-
based strategies. Unlike our setting, however, Jain et al. [2007] focus on extrac-
tion scenarios that typically involve multiple information extraction systems,
whose output might then need to be integrated and joined to answer a given
SQL query. The SQL query optimization approach by Jain et al. [2007] accounts
for errors originating in the information extraction process, and characterizes
alternate query executions—which might differ in their choice of extraction
systems—based on their precision, as well as on their execution time and re-
call. An interesting research direction is to incorporate the time and recall
estimation models presented in this article into the model of Jain et al. [2007].

10. DISCUSSION: ASSUMPTIONS, LIMITATIONS, AND FUTURE WORK

We now further discuss some assumptions behind our work, as well as outline
opportunities for future work.

Our work assumes that the document processors are perfect, meaning that
they return only correct tokens and identify all the tokens that appear in a
document. Unfortunately, for many tasks (e.g., Tasks 1 and 3) the document
processors are inherently noisy. Relaxing the assumption that document pro-
cessors are perfect and, correspondingly, predicting the precision of the out-
put produced by different strategies are natural next steps for improving our
models.

Another interesting direction for future research is to examine how to mini-
mize the task-specific knowledge that is needed for our optimization techniques.
Even though the analysis presented in Section 5 is nonparametric (i.e., it does
not assume any particular distribution family for the token and document de-
grees), our optimizer of Section 6 uses a parametric setting to reduce the num-
ber of unknown values that need to be estimated. An interesting direction for
future work is to use techniques for efficient histogram construction from the
database literature to overcome this restriction.

Finally, our modeling of the crawl- and query-based strategies assumes that
only a simple inverted index is available over the text database, built on key-
words and only accessible via a query interface (i.e., we cannot access the con-
tents of the index directly). In contrast, execution strategies for some text-
centric tasks might sometimes benefit from other types of indexes (e.g., as is
the case in the work by Cafarella and Etzioni [2005] for Task 1). Analyzing such
strategies is another interesting direction for future work.

11. CONCLUSION

In this article, we introduced a rigorous cost model for several query- and
crawl-based execution strategies that underlie the implementation of many
text-centric tasks. We complement our model with a principled cost estimation
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approach. Our analysis helps predict the execution time and output complete-
ness of important query- and crawl-based algorithms, which until now were only
empirically evaluated, with limited theoretical justification. We demonstrated
that our modeling can be successfully used to create optimizers for text-centric
tasks, and showed that our optimizers help build efficient execution plans to
achieve a target recall, resulting in executions that can be orders of magnitude
faster than alternate choices.
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