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Abstract: 

This paper is motivated by the success of You Tube, which is attractive to content creators and media 

companies for the potential to rapidly disseminate digital content. The tremendous variation in the success 

of videos posted online and the networked structure of interactions on You Tube lend itself to an inquiry 

about the role of social influence on content diffusion. Using a unique data set of video information and 

user information collected from You Tube, we find that evidence for a number of mechanisms by which 

social influence is transmitted, such as a preference for conformity, social learning and the role of 

innovators or opinion-makers. Such mechanisms of social interactions can play a huge role not only in the 

success of user-generated content, but also on the magnitude of that impact. Our results are in sharp 

contrast to earlier models of diffusion such as the Bass model that do not distinguish between different 

social processes that are responsible for the process of diffusion of content. Econometrically, the problem 

in identifying social influence is that individuals’ choices depend in great part on the choices of other 

individuals, referred to as the ‘reflection problem’. Another problem in identification is to distinguish 

between social contagion and user heterogeneity in the diffusion process. Our results are robust to 

potential self-selection according to user tastes, temporal heterogeneity and the reflection problem. 

Implications for researchers and managers are discussed.  
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1. Introduction 
 
Enabled by Web 2.0 technologies, social computing models that allow companies to tap into the “wisdom 

of the crowds” (e.g., Suroweicki 2004), are proliferating in a number of consumer markets. Social 

computing has increased consumers’ access to information and greatly expanded the available set of 

choices to consumers. At the same time, user-generated content creation is shifting power to the edge of 

the network, allowing users to participate in innovation in a way that would have been unthinkable even a 

decade ago. This paper is motivated by the success of YouTube, which is a venue for content creators to 

interact with networked communities of users. You Tube provides a particularly attractive context to 

explore social influence. Unlike earlier online communities that only had a few contributing content while 

most people were consumers of content, the usability and functionality, well as the ease with which 

videos can be shared on You Tube has made it tremendously popular. The networked patterns of 

interaction in You Tube also differ from other phenomenon of user-generated content such as online 

reviews, since the very nature of participation on You Tube becomes a method of social interaction.  

You Tube provides a wealth of opportunity for content creators to express themselves and promises 

to be a conduit for socially engaged individuals to share their preferences with others, ultimately 

promising to transform how consumers engage with popular culture. The You Tube model therefore has 

the potential to fundamentally alter the structure of industries that deal with digital products such as media 

and entertainment. While this model is attractive to content creators and media companies alike for the 

potential to disseminate product-related information and digital content effectively in a short period of 

time, evidence suggests, however, that all content created on YouTube is not equal. A handful of clips 

acquire Internet superstar status while most videos languish in obscurity. The unpredictability of success 

in cultural markets has been attributed to the role of social influence (Salganick et al. 2006), prompting us 

to question whether social influence has a similar role to play in the diffusion of content on You Tube. 

Indeed, the well-publicized failure of media companies’ web initiatives, such as the Innertube 

entertainment portal of CBS (Barnes 2007), to attract users is the considerable uncertainty in predicting 

the success of web content. The uncertainty in predicting user interest suggests the potential for social 

interaction effects, where an individual’s preferences or actions depend on the decisions on others.  
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Social contagion refers to a phenomenon whereby an actor’s decision on the adoption of a new 

product is dependent on other actors’ attitudes, knowledge, or adoption of the new product (Van den Bulte 

and Lilien 2001). Dodds and Watts (2004) argue that individuals most susceptible to social contagion are 

enormously influential in the dynamics of diffusion. Prior research has highlighted a number of 

mechanisms by which social influence occurs. Given that individuals value conformity with others 

(Bernheim 1994), “peer group” effects, or social influence proximate others can substantially influence 

individual behavior (e.g., Sacerdote 2001). Another mechanism by which individual choices are impacted 

by others is through social learning. When faced with substantial uncertainty in sampling of new products, 

social learning occurs through observing choices of neighbors (Ellison and Fudenburg 1993). This paper 

is intended to be a step forward in understanding the characteristics of digital content diffusion within a 

social network structure. Using a unique data set of video information and user information collected 

from You Tube, we find that mechanisms through which social interactions are structured plays an 

important role not only in the success of user-generated content, but also on the magnitude of that impact. 

The questions we seek to answer are: 

1. What are the effects of a user’s social network structure on the diffusion of You Tube content? 

2. Among several embedded social network structures, which has the most influence on diffusion? 

Identifying social influence effects poses a number of statistical and econometric challenges. First, 

individual user preferences may be subject to popularity surges that create a serial correlation. Second, 

identifying social influence is complicated by the fact that an individual’s choices reflect the choices of a 

social group of which an individual belongs to. The difficulty in estimating social influence effects is that 

individual behavior is not fixed but varies with the prevailing norms or tastes of the social group. 

Econometrically, this is referred to as the reflection problem in the literature on social influence in 

economics (Manski 1993). A third problem is that of unobserved user heterogeneity that reflects the 

unobserved social preferences of users or demographic characteristics such as age. In other words if the 

distribution of user tastes results in a greater propensity to be loyal to a particular channel on You Tube, 

then the self-selection into groups may dictate the popularity of content on YouTube. We therefore need to 

consider potential user self-selection depending on unobserved social preferences.  
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Prior research has suggested that the growth of Internet has had tremendous impact on consumer-

facing activities and industries. File-sharing technologies have shifted consumer demand for albums, as 

documented by the survival of albums on the Billboard charts (Bhattacharjee et al. 2007). The Internet has 

been instrumental in promoting online dissemination of product reviews and buyer feedback, with 

tremendous implications for customer-facing activities such as customer acquisition and retention (e.g., 

Dellarocas 2003). There has been a considerable amount of research that has examined the impact of 

online word of mouth on Internet commerce (e.g., Chavalier and Mayzlin 2006, Dellarocas 2003). The 

growth of online social communities poses new challenges to researchers in explicating the role of social 

structures driving the success of user-generated content.   

This paper can make the following contributions to literature. We integrate perspectives from prior 

research on diffusion, social networks and the research on user-generated content. Fichman (2000) notes 

that a considerable amount of literature in IS has considered the impact of diffusion on individuals’ 

adoption decisions rather than on aggregate dynamics. By contrast, we explicitly consider the role of the 

social network structure as a mechanism for the transmission of information and for the dynamics of 

contagion. Since we are interested in the context of a market for experience goods such as music and 

entertainment, there is considerable amount of uncertainty regarding the actual experience that is likely to 

result, which makes the mechanism of information transmission especially relevant. Further, most models 

of diffusion, such as the Bass model (Bass 1969), do not identify the mechanism by which social 

influence occurs. Another contribution of this paper is to highlight the role of various mechanisms 

through which social influence spreads. For instance, the S-shaped diffusion curves could result from user 

heterogeneity in the propensity to adopt (Van den Bulte and Stremersch 2004). By contrast, we can 

disentangle the impact of social contagion from that of user heterogeneity, which is considered to be a 

limitation of a significant amount of prior literature on diffusion (e.g., Van den Bulte and Stremersch 

2004). Further, in line with prior literature on diffusion suggests that the diffusion process before a critical 

mass is reached may be subject to different influences from that after a critical mass, we can distinguish 

between influencers in the different stages of diffusion.  

The structure of the paper is as follows. We review the prior theory and present the hypotheses and 
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research model in Section 2. In Section 3, we discuss the data collection process and operationalization of 

measures. Section 4 presents the empirical approach, Section 5 presents a discussion of the results and 

Section 6 provides concluding remarks.  

2. Theory and Hypotheses 

2.1 Prior Literature 

The Bass model (Bass 1969) has been extensively used to model the diffusion process in the marketing 

literature (e.g., Mahajan et al. 1990). Researchers have also examined the impact of word-of-mouth 

effects on the diffusion of a new product, such as Dodson and Muller (1978) who develop a diffusion 

process model to incorporate the communication effect between customers and the advertising effect. In 

sociology, social network methods have provided an important framework to study the diffusion of 

innovations (e.g., Wejnert 2002). A classic study in this steam is that of Coleman et al (1966) that 

analyzes the social contagion effects on physicians’ adoption of new drugs. Burt (1987) emphasizes the 

importance of structural equivalence to the process of contagion. Strang and Tuma (1993) find that 

network centrality does not affect the intrinsic propensity of physicians to adopt an innovation, but does 

have social contagion effects via increased susceptibility to others’ adoptions.  

Researchers across several fields such as marketing, economics and sociology have been interested 

in the analyses of social interactions where individuals’ actions or behavior depends upon the actions or 

choices of other actors (e.g., Banerjee 1992, Bala and Goyal 1998, Ellison and Fudenburg 1993, 

Granovetter 1973, Manski 1993, Van den Bulte and Lilien 2001). Social interactions underlying 

individual behavior have been extensively analyzed in economics in the economics literature on “peer 

effects” (e.g. Bandiera and Rasul 2006, Sacerdote 2001). Increasingly, marketing researchers have 

incorporated an analysis of social interactions into the diffusion of innovations. Van den Bulte and Lilien 

(2001) find that when marketing efforts are controlled for, contagion effects disappear. With the explosion 

of online communities, researchers in a variety of fields are interested in the phenomenon of information 

diffusion over the Internet and the role of social interactions underlying such processes of information 

transmission (e.g., Dodds et al. 2003). 
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2.2 The Context 

As a YouTube user, one can establish a relationship with other users either as a friend or a subscriber. A 

friend relationship is initiated by an invitation from one person to another, and for the relationship to be 

confirmed, it requires an agreement from the other person. Thus, it is more likely that a friend relationship 

on YouTube represents the pre-existing social ties between individuals, either from friendship based on 

real life, or friendship developed online. Since the friend network we observe is the result of such mutual 

agreements, we characterize friendship networks on YouTube as an undirected network (e.g., Newman 

2003). The friend network is a community of peers and the set of friends act as proximate actors driving 

content adoption on You Tube.  

A subscriber network, by contrast, results from the network of users who subscribe to a channel (a 

user). Subscriber relationships do not require mutual agreements. A user can freely add another user into 

their list of subscriptions, and the action of subscription indicates the willingness to visit and watch the 

contents of a channel, which is how interested they are in the videos uploaded on the channels, i.e., based 

on the likes and dislikes of a user rather than social ties. Since the decision on whether to add a channel to 

a subscription or not is based on each user’s taste preferences, subscriber network structure can be 

considered to be representative of user tastes. When a new video is posted, all the subscribers of a channel 

are alerted through email or RSS feeds. While friend relationship is based on mutual social agreement, a 

subscriber relationship is a one-way, or directional, relationship based on tastes of users.  

We therefore identify three distinct channels of social influence on You Tube. First, we observe that 

there are networks of friends within the community of interest, which we use to build a friend network. 

Second, we observe friendship ties between users across different communities. Third, we observe that 

there are networks of subscribers within the community of interest, denoting social networks based on 

instrumental ties, i.e., a similar purpose in exploring content. The friend networks on YouTube denote 

links between individuals who identify themselves as friends, as distinct from the social networks of 

subscriber relationships, which have a different pattern of affiliation based on shared interests in viewing 

videos. Subscribers and friends can also rate and comment on videos in addition to adding videos to a list 
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of favorites, and these choices can also serve as signals to other users, driving the popularity of content. 

The You Tube setting thus naturally lends itself to a study of social influence in that the social network 

structure dictates the diffusion of content.  

It has been suggested that friendship ties are characterized by greater frequency in interaction 

compared to other types of ties (Granovetter 1973); therefore, we expect that influence from friends 

within a network, that we characterize as a local network of friends (e.g., Watts et al. 2002)2, as well as 

influence from friends outside the community, or non-local friends, is qualitatively different from 

instrumental ties characterizing subscriber networks. We do not observe substantial overlap in 

membership between these networks, which bolsters our argument about the difference between these 

networks. The greater interaction and interpersonal influence characterizing these networks increases the 

opportunity for the transmission of social cues through the network structure (Salancik and Pfeffer 1978). 

Further, we expect that friendship ties between individuals who are also linked through shared tastes, i.e., 

the network of friends within a community, exert substantially different type of social pressures compared 

to patterns of friendship alone. Friendship between individuals within a community of interest on You 

Tube may arise from similarity in personal characteristics and denotes that individuals may have 

consistent interests and tastes, which in turn promotes homophily (e.g., Newman 2003), also known as 

assortative mixing. The strong sense of identification resulting from such patterns of interaction provides 

greater potential for friendship networks in persuading or influencing the perceptions of actors connected 

through network ties (Rogers and Kincaid 1981). 

2.3 Hypotheses 

We consider the impact of social influence in the diffusion of user generated content. The social influence 

models that we anchor upon consider a rich set of explanations for social influence, such as the desire for 

social conformity, learning from neighbors (Bala and Goyal 1999) and peer effects (Sacerdote 2001) that 

dictate preferences. In addition to the diversity of factors driving content diffusion, we also consider the 

temporal heterogeneity in the diffusion process, which refers to the time-varying influence of factors that 

                                            
2Watts et al. (2002) argue that group membership is a primary basis for social interaction, and possess local 
information about a network, i.e., knowledge about the immediate circle of acquaintances.  

 7



drive diffusion (Strang and Tuma 1993). In particular, we consider the potential for the dissipation as well 

as magnification of social influence over time. 

While the question of social influence has been explored in earlier literature (e.g., Armstrong and 

Sambamurthy 1999, Kraut et al. 1998), there are some crucial distinctions between prior diffusion 

literature and this study. First, we differ in the role played by early adopters. The literature on product 

diffusion distinguishes between well-informed early adopters and the late adopters who observe others’ 

actions, wherein early adopters learn by doing while late adopters learn from others, also referred to as 

social learning (e.g., Bandiera and Rasul 2006 who explicitly distinguish between the two models of 

learning). By contrast, we posit that the influence of early adopters is derived from their relative position 

in the social network. Specifically, our focus is on the network structure in that it enables information 

transmission. Second, we consider diffusion in an online community context where interactions are 

structured through a social network. Third, a substantial stream of product diffusion models does not 

distinguish between social influence and the differences in tastes of the users. Fourth, we consider the role 

of the structural position of actors in promoting content; it has been suggested, for instance, that 

marketing efforts can confound the role of social contagion in the diffusion process (Van de Bulte and 

Lilien 2001). Finally, unlike the models of diffusion, we attempt to distinguish between different 

explanations for contagion, such as social learning, conformity preference and communication. 

2.3.1 Conformity or Normative Preferences  

It has been suggested that peers exert considerable social pressure that influences individual behavior 

(Sacerdote 2001). Individuals care deeply about the opinions of others they interact with, creating a 

pressure to conform to choices of others (Bernheim 1994) and face dissonance when they do not adopt the 

choices of individuals whose approval they seek (Coleman et al. 1966). Since an actor may influence 

proximate actors’ opinions on a new product, we consider the centrality of a user in the friend network in 

determining social contagion due to conformity. Central actors act as conduits of information (Wasserman 

and Faust 1994) and occupy opinion-making role that influence the perceptions and decisions of others 

who value their judgment (Ibarra and Andrews 1993). Actors who are connected to a greater number of 

actors also have greater awareness of the choices of their peers, and signal their preferences to other 

 8



actors through their choices, inducing the latter to view the same video; thus central actors influence 

proximate actors’ decisions due to conformity pressures. Individuals who occupy a key position in a 

network defined by friendship ties therefore may have more power of influencing perception and 

persuading others to follow their choices. Thus, we hypothesize that: 

Hypothesis 1: Social influence as a result of conformity preferences significantly affects the diffusion 

of content.  

Paradoxically, while central actors can be influential in persuading others, their central network 

position can also constrain the forms of influence. The close interactions characterizing friendship ties 

also create a reputation cost that deters individuals from expressing inappropriate opinions or behavior 

(Granovetter 1985). In linking to a new video, central actors in a friend network risk losing their social 

capital in recommending un-tested or un-proven content. Once a video acquires a critical mass of views, 

centrally connected actors in a network do not have to jeopardize their reputation by promoting content 

that may risk alienating them from others. The choices of central actors are then reiterated by other actors 

who value conformity, and the result is a social multiplier effect, which strengthens the social influence of 

central actors, enhancing the effect of conformity preferences. Thus,  

Hypothesis 2: Social influence from centrally connected actors has a positive impact on the 

diffusion of content in the later stages of the process of diffusion. 

2.3.2 Social Learning 

A video posted on You Tube is an experience good, and not a search good; thus, it is characterized by 

substantial uncertainty in terms of whether viewers will favorably react to it or not. The value of such a 

product is revealed only after direct experience (Nelson 1970). The uncertainty in predicting user 

experiences coupled with the range and the depth of offerings in each category and the growth of titles in 

You Tube create a cognitive overload for a potential viewer. Such assumptions are consistent with 

empirical findings that consumers in online settings face considerable information overload (Brynjolfsson 

and Smith 2000). Social information processing or social learning is particularly important in shaping 

perceptions under conditions of uncertainty or ambiguity (Bala and Goyal 1998). As the uncertainty in 

product quality increases, boundedly rational consumers can learn from neighbors’ actions (Bala and 
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Goyal 1998, Banerjee 1992). Information transmission occurs through a network structure whereby 

agents who observe their neighbors' choices use simple rules of thumb, such as popularity weighting, in 

deciding whether to adopt a product or not (Ellison and Fudenburg 1993). Figure 1 depicts the network 

relationships within and outside the group boundary. 

Figure 1. Friend Relationships Inside and Outside a Group Boundary 

2

A community (network
boundary) 

User 1, 2, and 3 are friends, user
1 and 4 are friends, and they all
also have memberships to the
same group. 

4

1

5
3

User 1 and 5 are friends but user 5 does
not have the membership to the group 1
belongs to. Thus, user 5 is a friend of 1
outside of the group. 

 

We consider the impact of non-local friendship ties in facilitating social information transfer between 

proximate actors. Burt (1992) classifies a network contact is characterized as non-redundant if an 

individual does not share ties with other contacts in a person's immediate social network. The role of non-

local friendship ties in disseminating information is then similar to that of word of mouth effects (e.g., 

Chevalier and Mayzlin 2006). While there is a potential for learning from friendship ties within the local 

network, i.e., within the community, the strength of identification and conformity preferences 

characterizing such groups may also increase the redundancy of information within the local network (e.g., 

Burt 1992). The cognitive overload involved in choosing between different videos, the time required to 

sample a variety of videos coupled with the substantial uncertainty in the resultant experience from a 

video strengthen the importance of information transfer or social learning from non-local networks of 

friends.  

Hypothesis 3: Social learning from individuals outside the local network of peers has a significant 

impact on the diffusion of content.  

The novel information from non-local ties increases the diversity and richness of informational cues 

(Burt 1992) within the local network, providing an avenue for social learning. Actors that are more 

connected to individuals outside the local network have access to new and non-redundant content, which 
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is then disseminated into a cohesive network of peers. Given the potential for conformity preferences 

within the local network, we hypothesize that the impact of non-local ties is greatest when the local 

network structure can play an important role. Thus, we hypothesize: 

Hypothesis 4: Social influence from individuals outside the local network of peers has a significant 

impact on the later phase of content diffusion. 

2.3.3 Social Influence from Innovators and User Tastes 

On You Tube users can create their own page or channel and subscriber to or accept subscriptions from 

other channels. In other words, subscribing to a channel is the same as subscribing to a user.3 A channel is 

personalized to each user and allows for users to display content that they uploaded, videos from other 

members, videos favorited by them and channels that they have subscribed to, and channels that subscribe 

to their content. There can be several motives for content creation and posting content such as peer 

recognition (Resnick et al. 2000), self-expression (Raymond 2001) and identity affirmation (Forman et al. 

2008). The shared interest in sampling music characterizing social networks of subscriber groups provides 

an opinion-making role to subscribers that occupy key roles in the social network. In particular, we 

consider the degree centrality of individuals in a subscriber network, which denotes the extent to which 

individuals are extensively involved with or adjacent to many other actors in the social network 

(Wasserman and Faust 1994). We also distinguish between the in- and out-degree centrality of actors. 

Subscribers with several in-degree connections may be more popular, and may be more likely to 

disseminate preferences among a wider group of actors, increasing the rate of content diffusion. 

Subscribers with several out-degree connections may be more gregarious, with the result that they can 

promote awareness to a greater number of actors in the network, increasing the rate of content diffusion. 

Subscribers that are more connected are (a) characterized by greater openness to new content and 

thus likely to be exposed to a variety of content, (b) are more likely to be on the cutting edge (Rogers 

1995) and therefore informed about newer types of content and (c) broadcast their preferences to a group 

of networked peers, thus disseminating their preferences among the social network. Centrally connected 

users in a subscriber network are therefore influential in transmitting information about new videos, 

                                            
3 We use the terms channel and user interchangeably in the paper. 
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acting as opinion leaders who influence the spread of information about an innovation (Bass 1969, Rogers 

1995, Mahajan et al. 1990), which in our context refers to new videos that have not acquired recognition 

from the overall You Tube audience. While the literature on online word of mouth and the impact of user 

reviews has investigated how opinions of peers affect the popularity of content, we are interested in the 

mechanism by which communication links influence the spread of information in a network structure. 

Figure 2 depicts a representative subset of nodes in a subscriber network. 

Figure 2. Subscribers’ Relationship 

 

Hypothesis 5: Subscribers who are more connected are likely to have a greater impact on the 

diffusion of content. 

Opinion leaders are more likely to adopt newer ideas or products compared to others, which gives 

them a pivotal role in influencing others and promoting new ideas or products in the early stages of 

diffusion (e.g. Rogers 1995). Actors who occupy a central position in the subscriber group have early 

access to a wide variety of new content, which increases their likelihood of viewing a new video. Thus the 

long-term success of content depends critically on the choices of initial adopters that are centrally 

connected. 

Hypothesis 6: Subscribers who are more connected are likely to have a greater impact on the initial 

phase of content diffusion. 
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2.3.4 Heterogeneity in User Tastes and Group Formation 

Prior literature suggests that diffusion curves may also result from differences in user propensities to 

adopt a new product, rather than social contagion (Bemmaor and Lee 2002), which poses an identification 

challenge to the empirical estimation. In the terminology of the literature on diffusion, heterogeneity in 

user tastes reflects the unobserved social preferences (e.g., Van den Bulte and Stremersch 2004). Such 

heterogeneity in tastes may create a self-selection of users into different channels or interest groups. 

While we do not hypothesize the impact of user tastes on group formation, we control for this possibility 

in the empirical estimation.  

3. The Data 

3.1 Defining the Network Boundary 

Many prior studies of social networks have relied on snowball sampling methods, where referral data is 

collected starting from an initial target. While this method is efficient to locate hidden populations 

(Salganick and Heckathorn 2004), it poses challenges in sampling such as selecting the right initial target. 

Delimiting the sample size and demarcating the network boundary also becomes problematic. Because we 

cannot exhaustively cover the whole network, one of the problems in snowball sampling is to consider the 

right approach in demarcating the boundaries of the sample. Artificially limiting the sample size also 

creates the problem that some of the observable population characteristics may be omitted. Another 

problem with snowball sampling is that it fails to identify isolated incidences. 

We select our sample by focusing on a set where the network boundary is predefined by focusing on 

a community in YouTube, which is an interest group. A community in YouTube is defined as a group with 

specific video categories (there are total thirteen categories4 in YouTube). For example, a community 

listed under the ‘music’ category is a group of people who share the same interest, which is ‘music’, and 

upload videos related to ‘music’ within the group. Any person interested in ‘music’, and wants to share 

their videos with other members in the group can join the community. Therefore the interest group itself 

                                            
4 The existing thirteen categories are Autos & Vehicles, Comedy, Education, Entertainment, Film & Animation, 

Howto & Style, Music, News & Politics, People & Blogs, Pets & Animals, Science & Technology, Sports, and 
Travel & Events.  
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forms the network boundary. Our sample community (or group5) is drawn from the ‘music’ and ‘people & 

blog’ categories, which not only is representative of the characteristics of YouTube as a medium of 

sharing video clips but also truly representative of the social interactions at work within YouTube. The 

group of individuals belonging to ‘people & blogs’ is characterized by greater interpersonal interactions 

and the ‘music’ category is one of the most popular channels for sharing videos, guaranteeing high 

activity level. As described in Table 1, the group is 2 years old, and has 1558 group members, and 4106 

videos. There are 15 new videos on average uploaded every day in this group, and on average 5 new 

members join the group every day.  

 

 

 

 

3.2 Data Collection and Description 

Table 1. Data Set Descriptions 
Age of the Group 2 years 
Number of Group Members 1558 
Average growth of the number of videos per day 15 
Average growth of the number of members per day 5 
Number of videos 4106 
Number of users (Channels that posted videos) 913 
Data collection duration 2 months 
Number of observation points in time 11 

We use a panel data consisting of video information and user information collected from YouTube.com, 

over a period of 2 months. Our sample only focuses the videos uploaded within the group of our interest, 

and the members of that specific group. We have total 4,106 videos posted by 913 users. The data was 

collected with 11 observation points in time, five days apart. At each observation point, the information 

on each video and each user within the group was collected in a screen shot manner, and was tracked 

repeatedly over time every five days. Table 1 summarizes these descriptive measures of the data set. For 

each user, the complete list of friends, subscribers, and subscriptions has been collected. These lists of 

friends, subscribers, and subscriptions are also tracked repeatedly over time as multiple events. Since this 

data collection was repeated for each data point, we get the snapshots of the network structure over time.  

The average age of a video, which is the number of days a video has been online since it was posted, 

is 212 days, and the average number of times a video is watched is 14,180 with a standard deviation 

                                            
5 In YouTube, the terms group and community are synonyms.  
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247,455. This indicates a high dispersion of the popularity of video clips varying from minimum 4 clicks 

to maximum 13,449,210 clicks. To control the skewness, we used a log-transformed number of views, 

and normality tests confirm that the distribution of the number of views is normal after log-transformation. 

Although we cannot observe how many times a specific viewer watches a certain video repeatedly, we 

can assume that there is a reasonable limit to how many times each individual watches a video. Since we 

take logs, any bias that is caused by repeated viewings is only going to be a slight downward revision of 

the estimates. We also gather data on the number of links to a video, which are the external links leading 

to a video clip and which listed by the user posting the video content. With the number of clicks coming 

from each link, the number of outer links provides partial control over the traffic coming from outside 

YouTube. Table 2 shows the data summary.  

Table 2. Data Summary 
Variables Mean  St. Dev. Min Max 
Age of video (days) 212 144.26 0 731 
Number of times a video is watched  14180.80 247455 4 13449210 
Log Number of times a video is watched 6.77 1.77 1.39 16.41 
Number of external links to a posted video 3.66 1.93 0 5 
Age of Channel (days) 379.96 171.29 2 846 

 

3.3 Social Network Structures on You Tube 

An individual user represents a ‘node’ in a social network. As described earlier, a friendship network is an 

undirected network, while a subscriber network is a directed network that is indicative of user tastes. The 

network boundary serves another purpose in addition to defining the sample limit. It also provides a 

boundary to distinguish close within-group social influence from outside-group influence. Friends interact 

more if they also share common interests, and their influence on a specific subject of interest will differ 

from the influence of friends who do not share that specific subject. In other words, the role of social 

influence will be different depending on the type of network ties. Since we have the total number of 

friends and subscribers (subscriptions), by constructing the network map within the interest group, we not 

only know the social influences and users’ preferences coming from within the local network, but also 

know the direct ties coming from outside the local network. Figure 3 shows a subset of the users forming 
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this friend network and Figure 4 shows a subset of the subscriber network.  

 
Figure 3. Friend Network, Group Boundary, and Outside Network 

 
Figure 4.1. Subscriber Network (Node size based 

on in-degree centrality) 

 
Figure 4.2. Subscriber Network (Node size based 

on out-degree centrality) 
 
3.4 Dependent Variable 

The standard Bass model estimates the growth of aggregate demand or diffusion rate as a function of the 

aggregate demand of prior time period as well as the time elapsed form the initial launch of a new product. 

Following the standard the diffusion model, we set the dependent variable as the diffusion rate of each 

video. The diffusion rate is measured by the growth in views (e.g., Bass 1969), which is the difference of 
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the number of clicks to the video between time t and time t− 1, 1ijt ijt ijtv v v −∆ ≡ − . Our measure of 

aggregate demand is the popularity of each video, which is represented by  (Bass 1969). Here,  is 

the aggregate number of times a video has been watched, in other words, the aggregate number of times a 

video has been clicked. The subscripts i, j, t are for video i, user j, and observation time t. Thus, the 

dependent variable measures the popularity growth of video j posted by user i from time t− 1 to time t.   

ijtv ijtv

3.5 Independent Variables 

3.5.1 Social Network Measures 

We calculate social network measures using UCINET 6 (Borgatti et al. 2002). The degree centrality 

(Wasserman and Faust 1994), which is calculated from the number of direct ties, measures the size of the 

proximate network of an actor. We present the graph theoretic interpretation of this measure in the 

appendix. The degree centrality of a certain node in a network (user channel, in this case) is the node 

(channel) characteristic that captures the ability and the opportunity of a node6 (a user in the social 

network) to diffuse information (videos, in this case). Wasserman and Faust (1994) argue that the more 

central the network position of the actor, the more the actor is a channel of relational information to others. 

An actor with a high degree centrality denotes where “the action is” in the network (Wasserman and Faust 

1994:179). The actors with higher degree centralities have greater opportunities to disseminate 

information because they have more ties and more choices. Having more ties also makes them less 

dependent on any specific other node. Thus, central actors occupy a position of social influence and the 

centrality measures denote the social capital of an actor, consistent with Burt (1987).  

For the friend network, we calculate two measures to denote the social influence of an actor. First, 

we calculate the degree centrality measure (Wasserman and Faust 1994), which indicate the importance of 

a node (channel) in the social network, as discussed above. We also calculate the Bonacich power 

(Bonacich 1987), which is based on the insight that (i) an individual’s status is a function of the status of 

other actors who the actor is connected to, and (ii) connections to many prominent (powerful) others 
                                            
6 Consistent with social networks literature, a user is an ‘actor’ or ‘node’ while the relationship between users is a 

‘link’ or a ‘tie.’  
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reduces the power of a node. For instance, a channel A and channel B have n connections but B’s 

connections are well connected with others in the network while A’ connections are more isolated. While 

B is clearly more central, she may have less influence over her proximate connections that are less 

dependent on B for access to information. The Bonacich power captures the insight that power can be 

increased as well as reduced depending on the structure of the network by connections to powerful others. 

The Bonacich power measure is a modified version of closeness centrality (Freeman 1979) and calculated 

iteratively by assigning each actor an estimated centrality equal to their own degree, plus a weighted 

function of the degrees of the actors to whom they were connected. Since the subscriber network is a 

directional network, we calculate the in- and out- degree centralities of users (Wasserman and Faust 1994). 

The social network measures therefore are _ jtFrn NrmDeg as the degree centrality of user j in the 

friend network at time t, _ jtSubs NrmOutDeg as the out-degree centrality of user j in the friend network at 

time t, and _ jtSubs NrmInDeg as the in-degree centrality of user j in the friend network at time t and 

1_ jtfrn NrmBP − as the Bonacich power. A user’s social network reaches may reach beyond the boundary 

of the interest group, with the result that a user’s friends or subscribers outside the group also get notified 

when a new video is posted; therefore, we also consider the number of friends and subscribers outside the 

group boundary as factors influencing the diffusion of a video. Since we have the complete list of friends 

and subscribers, by constructing the friendship and subscription networks within the group, we can also 

distinguish the number of ties – either friends or subscribers – established outside of the group. To capture 

the social influence coming from outside of the group boundary, we measure log _ jtNumFrn outside , 

which is the log-transformed number of friends of user j at time t, which corresponds to the degree 

centrality of user j outside of the group boundary, as it is a measure of the number of proximate ties. The 

overall Friend Network Centralization is 35.13% and the descriptive statistics on this social network in 

our consideration are shown in Table 3. While the minimum number of degree centrality is 0, the 

maximum degree centrality is 521, indicating that some users are highly connected in their networks, 

while others are not as connected.  
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Table 3. Friend Network Description 
 Degree Centrality Normalized Degree Centrality 
Mean 3.852 0.261 
St. Dev. 20.557 1.395 
Sum 5682.000 385.482 
Min 0.000 0.000 
Max 521.000 35.346 
Network Centralization = 35.13% 

The descriptive statistics on the subscriber social network are shown in Table 4. To capture a user j’s 

taste preferences going outward of the group, we measure log _ jtNumOutSubs outside , which is the 

number of subscriptions (outward directional ties) user j forms outside of the group at time t. To measure 

the traffic due to user preference coming from outside of the group, we measure 

log _ jtNumInSubs outside , which is the number of incoming subscribers (receiving ties) of user j at time t 

from outside of the group. Since subscriber relationship is not by mutual agreement, this network is 

directional, and the in- and out- degree centralities are calculated.  

Table 4. Subscriber Network Description 
 OutDegree 

Centrality 
InDegree 
Centrality 

Nrm OutDegree 
Centrality 

Nrm InDegree 
Centrality 

Mean 1.352 1.352 0.092 0.092 
St. Dev. 12.415 3.960 0.842 0.269 
Sum 1994.000 1994.000 135.278 135.278 
Min 0.000 0.000 0.000 0.000 
Max 429.000 71.000 29.104 4.817 
Network Centralization (Outdegree) = 29.032% 
Network Centralization (Indegree) = 4.728% 

 
3.5.2 Video Characteristics 

Similar to the standard Bass model, we estimate the diffusion rate of a video as a function of time and the 

cumulative demand for a video. The cumulative demand, , for video i, posted by user j, at a certain time 

t is the cumulative number of clicks to video i at time t. As the Bass model estimates the diffusion process 

as a function of time elapsed from the launch of a new product, we capture the time elapsed as the age of 

video i, represented by VAge, i.e., the number of days since a video has first been posted online.  

ijtv

3.5.3 Control Variables 
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Since the characteristics of a video affect its popularity, we control for the number of external links, 

NumOfLinks, which enable accesses to the videos from blogs, MySpace, Facebook, or other online 

communities and forums outside YouTube. This variable provides information of the traffic coming from 

external outlets other than accesses from within YouTube. We also control for another factor that may 

influence a video’s popularity, the average rating (e.g., Chevalier and Mayzlin 2006) of each video, 

Rating, which are posted by registered YouTube users.  

4. Empirical Approach 

4.1 Baseline Model and Variable Descriptions 

Figure 5 represents the distribution of views of a video by the percentage of viewers. To capture the 

diffusion characteristics of the popularity of a video, we estimate the growth rate  as the dependent 

variable. The popularity of a video i, posted by user j at time t, is measured by the total number of times a 

video was watched, , and the growth rate 

ijtv∆

ijtv ijtv∆  is the difference of the number of views at time t and 

time t−1 ( ). This definition is also consistent with Bass model (Bass 1969) and the prior 

literature on new product diffusion (e.g., Talukdar et al. 2002).  

1ijt ijt ijtv v v −∆ ≡ −

Figure 5. Distribution of log-Number of Views 

 
The Bass model estimates the growth in aggregate demand or the rate of diffusion as depending on the 

ratio of number of innovators and imitators, and the time elapsed since a new product is launched. There 

are several assumptions underlying the standard Bass model. First, it assumes that diffusion process to be 
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binary, where the individuals only have a choice of whether to adopt or not, and that the population is 

homogeneous. Second, in the basic diffusion model, the size of the total population is fixed and known. 

Third, it assumes that the parameters of external and internal influence do not change over time. In our 

context, since a video is an experience good, a viewer watching a video on You Tube is equivalent to a 

consumer adopting a new product and the choice facing a viewer is whether to sample a video or not. We 

consider the issues of heterogeneity in our structural estimation.  

Our independent variables are the network measures of friend networks 

( 1_ jtFrn NrmDeg − , 1_ jtFrn NrmBP − , 1log _ jtNumFrn outside − ) and subscriber network 

( 1_ jtSubs NrmOutDeg − , 1_ jtSubs NrmInDeg − ). For both friend networks and subscriber networks, we 

distinguish between the influence from within the group ( 1_ jtFrn NrmDeg − , 1_ jtSubs NrmOutDeg − , 

1_ jtSubs NrmInDeg − ) and that from outside of the group ( 1log _ jtNumFrn outside − ). Our baseline model 

is the standard Bass model that takes into account the social network structure. Subscript i denotes the ith 

video, subscript j denotes the jth user, and t is the time. Y is a set of covariates that represent the video 

characteristics, the age of video i at time t uploaded by user j, VAge, the number of outer links, 

NumOfLinks, and the ratings ijtRating . The ratings are posted by registered YouTube users, and may 

change over time. The number of external links is the log-transformed number of links outside YouTube, 

which enable accesses to the videos from blogs, MySpace, Facebook, or other kinds of online forums and 

communities. The diffusion equation is stated in the following equation 1, and Figure 5 depicts the 

distribution of the log-transformed total number of views of the videos. The normal degree centrality of 

user j within the friend network, and the In- and Out- degree centrality of user j within the subscriber 

network are all user specific. Social ties and user preferences outside of the network are also user specific 

at time t. Table 5 summarizes the description of variables and the correlations are presented in Table 6. 

 2
0 1 1 2 1 3 1 1log( )ijt ijt ijt ijt ijt jt ijtv v v VAge Y Xβ β β β α γ− − − −∆ = + + + + ⋅ + ⋅ + ε

1−

 (1) 

1 1 1 1 1_  _  log _  _  _jt jt jt jt jt jtX Frn NrmDeg Frn NrmBP NumFrn outside Subs NrmOutDeg Subs NrmInDeg− − − − −⎡ ⎤= ⎣ ⎦

1 1 1 logijt ijt ijtY Rating NumOfLinks− − −⎡ ⎤= ⎣ ⎦  
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Table 5. Description of Variables 
 Variable No. Variable Name Description of Variables 

1 logNumOfViews Log number of times a video is watched ( ) ijtv

2 (logNumOfViews)2
The square term of the log number of views 
( ).  2

ijtv

3 logVAge 
(log-transformed) Time elapsed since a video has 
been posted ( ) log( )ijtVAge

4 Rating Video Rating (0 to 5) ( ijtRating ) 

Video 
Characteristics 

5 logNumOfLinks Number of links, which lead to the video, placed 
outside YouTube 

6 Frn_NrmDegree Degree centrality of a user in the friend network 
within the group 

7 Frn_NrmBP Normalized Bonacich’ Power in the friend 
network within the group 

Social Network 
Measures 

8 Subs_NrmOutDegree 
Out-degree centrality of a user in the subscriber 
network within the group. Connection initiated by 
the user.  

9 Subs_NrmInDegree 
In-degree centrality of a user in the subscriber 
network within the group. Connection initiated by 
others.  

10 logNumFrn_Outside Number of friends outside the group 

11 logNumOutSubs_Outside Number of outgoing subscriptions outside the 
group 

External Social 
Network 
Measures 

12 logNumInSubs_Outside Number of incoming subscribers from the outside 
of the group 

 
Table 6. Correlation Matrix 

Variable 
Number 1 2 3 4 5 6 7 8 9 10 11 12 

1 1.0000     
2 0.4041 1.0000    
3 0.3435 0.0268 1.0000   
4 0.2559 -0.1113 0.0723 1.0000   
5 0.5610 -0.0288 0.3009 0.2036 1.0000   
6 0.1197 0.0266 0.0105 0.0435 0.0828 1.0000   
7 -0.0468 0.0130 -0.1227 -0.0120 -0.0460 -0.1169 1.0000   
8 0.0030 -0.0393 0.0017 0.0684 -0.0737 0.1347 -0.1200 1.0000   
9 0.2513 0.1200 0.0424 0.1305 0.0837 0.4554 -0.0880 0.4434 1.0000   

10 0.2374 0.0503 0.0264 0.1809 0.1486 0.3495 -0.1865 0.2866 0.4269 1.0000  
11 0.0614 -0.0364 -0.0529 0.1473 -0.0240 0.1835 -0.0759 0.4646 0.4201 0.6086 1.0000 
12 0.4032 0.1566 0.1347 0.2431 0.1918 0.2832 -0.1002 0.2144 0.6029 0.5573 0.4669 1.0000

* Variables 1 and 2 are mean-centered 

4.2 Problems with the Bass model 

Identifying social contagion effects poses a number of statistical and econometric challenges that are not 

taken into account in the standard Bass model. First, individual user preferences, such as watching a video 

on YouTube, are influenced by the aggregate preferences of all users in YouTube. In other words, there 
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could be a potential bias due to contemporaneous shocks that affect tastes, which creates a serial 

correlation in estimating the popularity of videos due to unobservable social factors. This serial 

correlation needs to be explicitly taken into account in the econometric model.  

Second, identifying social influence is complicated by the fact that an individual’s choices reflect the 

choices of a social group of which an individual belongs to. The difficulty in estimating social contagion 

effects is that individual behavior is not fixed but varies with the prevailing norms or tastes of the social 

group. Econometrically, this is referred to as the reflection problem in the literature on peer effects in 

economics. We address the reflection problem by assuming that the effect of social contagion is based on 

network composition up to the previous period. Further, social influence in the You Tube context occurs 

not only through membership in social networks but also from actors outside the social network. For 

instance, users communicate not only with networks of friends but also through individuals outside the 

social network. When an individual interacts with others outside her friend network as well as individuals 

within the friend network, individual decisions are indicative not only of the social influence of the group 

an individual belongs to (i.e., the friend network) but also the social influence of others from outside the 

friend network. 

A third problem is that of unobserved heterogeneity in user tastes, which may result from an 

unobserved demographic characteristic such as age that reflects the unobserved preferences of users. For 

instance, some users are likely to be experimenters while others wait to sample content only after it 

becomes popular. The patterns of diffusion on diffusion and the popularity of content may then result 

from heterogeneity rather than contagion due to social influence (e.g., Bemmaor and Lee 2002). The 

structure of network formation in You Tube allows us to address this problem since we can distinguish 

between a user’s memberships in a group of social influence (the friend network) from membership in 

groups dictated by user tastes. However, we face an additional challenge in that such user heterogeneity in 

taste could likely affect the composition of social networks. In that case, users with a high degree of 

incoming subscriptions may be the ones with a finger on the pulse, i.e., arbiters of what is likely to 

become popular, while those users with a greater degree of outgoing subscriptions are most interested in 

seeking out a variety of content. The measured impact of a user’s connectedness in the subscriber 
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networks then reflects a systematic pattern of self-selection rather than the result of opinion making or 

information transmission roles of users that occupy a central role in subscriber networks. In order to rule 

out self-selection of social network composition driven by heterogeneity in user preferences, we need to 

understand the factors that dictate the composition of social networks. Given the multiplicity of factors 

influencing an individual, we distinguish between factors that affect membership in a social network from 

other types of social influence by conducting exclusion restrictions on the group composition. 

4.3 Structural Model Specification 

As mentioned earlier, the Bass model does not consider heterogeneity in the susceptibility to diffusion. 

Further, the presence of serial correlation and endogeneity need to be addressed in the econometric 

approach. We also need to consider is that of unobserved user and video level heterogeneity. The 

estimation proceeds in three stages. First, following the techniques used by Boulding and Christen (2003), 

we use ρ -differencing to remove serial correlation. Second, we conduct exclusion restrictions on the 

group composition characterizing subscriber networks. Third, we conduct Hausman-Taylor estimation 

(Wooldridge 2002: 225-228) to address potential self-selection into social groups and unobserved 

relationships between users and videos. We now explain the different stages in detail. 

4.3.1 Addressing Temporal Heterogeneity 

Strang and Tuma (1993) note that the population-level diffusion models assume that each individual is 

equally susceptible to external factors. However, in reality, each individual has different tendencies to 

react toward contagious factors. Strang and Tuma (1993) introduced a class of individual-level models of 

diffusion that allow heterogeneity within population and over time by decomposing the diffusion process 

into two components - the number of individuals at risk of adoption and the hazard rate of adoption for 

each individual. We similarly address the heterogeneity of each user’s susceptibility to contagious factors. 

We approximate the individual level of hazard rate by considering the diffusion probability to depend on 

the degree centrality of the channel posting each individual video. We also follow Strang and Tuma 

(1993) and Wejnert (2002) to incorporate temporal effects. 

4.3.2 Rho-Differencing to Remove Serial Correlation 

We now discuss the structural model specification. First, we remove first-order autoregressive effects 
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from the error term. In the Bass model, when there is a serial correlation, ρ , in the error term: 

2
0 1 1 2 1 3 log( )ijt ijt ijt ijt ijtv v v VAgeβ β β β− −∆ = + + + + ε ,  

where, 1ijt ijt ijtε η ρε −= + . Through a serial correlation adjustment, the autocorrelation effect, 1ijtε − , is 

removed, only leaving random shock, ijtη  as the error term.  

  (2) 
2 2

1 0 1 1 1 2 2 1 2 2

3 3 1

(1 )

log( ) log( )
ijt ijt ijt ijt ijt ijt

ijt ijt ijt

v v v v v v

VAge VAge

ρ β ρ β β ρ β β ρ

β β ρ η
− − − −

−

∆ = ∆ + − + − + −

+ − +
−

Now, after estimating ρ  from the equation above, we remove the serial correlation by taking the 

first-order difference, which is the ρ -differencing procedure. This leaves us with the variables corrected 

for serial correlation, which are 1'ijt ijt ijtν ν ρ ν −∆ = ∆ − ∆ , 1 1 2'ijt ijt ijtν ν ρν− − −= − 2 2 2
1 1 2( ) 'ijt ijt ijtν ν ρν− − −= −, , 

and 1log( ) ' log( ) log( )ijt ijt ijtVAge VAge VAgeρ −= − .  

4.3.3 Hausman-Taylor Estimation with Exclusion Restrictions 

One possible estimation problem we need to consider is that users could self-select into different 

subscriber networks based on their tastes. We address this issue using exclusion restrictions. There could 

also be unobserved relationships between users and videos that are correlated with the error term. We 

address these issues using Hausman Taylor estimation (Hausman and Taylor 1981) rather than a fixed 

effects estimation. In contrast with either fixed effects or random effects estimation, the HT approach 

assumes that some and not all of the regressors are correlated with individual effects (Hausman and 

Taylor 1981). This is because, in our case, the exploratory variables we consider are all time-varying. 

Fixed effects estimation, by contrast, removes all sources of time-invariant variation in the exploratory 

variables. The exclusion restrictions are part of the Hausman-Taylor (hereafter, HT) approach.  

As recommended by Manski (1993), to identify social effects, we need to understand the factors that 

dictate the composition of social groups. To control for the potential of self-selection according to user 

taste preferences, we therefore conduct exclusion restrictions using _ jtSubs NrmOutDeg  and 

_ jtSubs NrmInDeg  as instruments for out-degree and in-degree centralities of the subscriber network. 

The exclusion restrictions therefore can remove the endogeneity in systematic matching across users and 
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social networks depending on unobserved taste preferences. As a robustness check we also performed a 

Wald F-test (Angrist and Krueger 1991) for the joint significance of the parameters by including 

instrumental variables along with the other independent variables in the diffusion estimation. The test 

rejected the joint significance of the variables. We estimate the following second-stage models: 

 _ (log _ )jt jSubs NrmOutDeg f NumOutSubs outside t=   (3) 

 _ (log _ )jtSubs NrmInDeg f NumInSubs outside jt=      (4) 

We use the symbols X, Y and Z to represent: 

1 1 1_ _ log _jt jt jt jtX frn NrmDeg frn NrmBP NumFrn outside− − −⎡ ⎤= ⎣ ⎦1−

1−

 

1 1 logijt ijt ijtY Rating NumOfLinks− −⎡ ⎤= ⎣ ⎦  

1 1= _ _jt jt jtZ Subs NrmOutDeg Subs NrmInDeg− −⎡ ⎤⎣ ⎦1−  

In the third stage, we apply a HT estimation procedure. This procedure works as follows: we 

estimate a random effects model using (i) exogenous time-varying variables as instruments for the 

endogenous time-varying variables (the exclusion restrictions in the second stage) and (ii) the means of 

the exogenous time varying variables as instruments for the endogenous time-invariant variables (from 

the estimation procedure detailed in Wooldridge 2002, pp. 225-228). In other words, the Hausman-Taylor 

estimation procedure allows us to remove the unobserved heterogeneity of the pairs of video×user 

relations that may be correlated with the error term, i.e., a user’s time invariant propensity to enjoy a 

particular type of music that is likely to be correlated with a particular type of channel. We now estimate 

the diffusion equation with estimated values from the second stage: 

ˆ [ _ , _ ]jt jtZ Subs NrmOutDeg Subs NrmInDeg= ,  

' 2
1 10 1 1 2 1 3 1 1' ( ) ' log( ) ' logjt jtijt ijt ijt ijt ijt jt t ijtv v v VAge Y X W VAge Zβ β β β α γ δ ξ− −− − − −∆ = + + + + ⋅ + ⋅ + ⋅ + ⋅ ⋅ +η

1  −

(5) 

1 1 1_ _ log _jt jt jt jtX frn NrmDeg frn NrmBP NumFrn outside− − −⎡ ⎤= ⎣ ⎦  

5. Results 

5.1 Parameter Estimates of the Baseline Model 
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Parameter estimates for the baseline model are summarized in Table 6. The baseline model finds that local 

friendship networks (Frn_NrmDegree) and non-local friendship networks (logNumFrn_Outside) have a 

significant but negative impact on diffusion. The influence from subscriber networks is mixed. The degree 

to which connections are initiated into a channel (Subs_NrmInDegree) is positive but insignificant, while 

the connections initiated by a channel (Subs_NrmOutDegree) are significantly negative. The rating of a 

video and the number of external links has a strong positive impact on the diffusion process. The adjusted 

R-Squared values are not very high, which is unsurprising, given the diversity of factors that can 

influence the diffusion of digital content in online settings. We have therefore reported coefficients as 

significant only if they are significant at the 5% level or better.  

The baseline model does not account for a number of econometric challenges. First, the baseline 

model does not examine serial correlation, since we assume that the difference in the number of views 

between time periods is a function of the total popularity of a video. However, it is possible that there are 

unobservable exogenous events that trigger a surge of popularity, which also becomes the driving force of 

the diffusion, i.e.,  is influenced by ijtv∆ 1ijtv −∆ . Second, the baseline model does not take into account 

the interaction between variables that may impact the diffusion process (e.g., Wejnert 2002) and the 

nature of group formation due to user preferences. We therefore consider a structural model with 

interaction terms, which we discuss next.   

Table 6. Parameter Estimates – Baseline model  
(standard error in parenthesis) 

Parameter Estimates Variable 
Benchmark 

Intercept 0.2876 (0.003544)***

LogNumOfViews 0.001317 (0.000378)***

(LogNumOfViews)2 0.000625 (0.000094)***

Log(vAge) -0.05003 (0.000596)***

Rating 0.001981 (0.000295)***

logNumOfLinks 0.002463 (0.000861)***

Frn_NrmDegree -0.00080 (0.000203)***

Frn_NrmBP -0.00003 (9.959E-6)**

Subs_NrmOutDegree -0.00308 (0.000788)**

Subs_NrmInDegree 0.000182 (0.001749) 
logNumFrn_Outside -0.00063 (0.000261)**

Fit Statistics 
Adjusted R Squared 0.17 
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*** p = 0.01; ** p= 0.05

5.2 Structural Model Parameter Estimates 

The results from the structural model are shown in Table 6. In the early stages of the life of a video, the 

influence from the incoming subscribers is the most important factor while friend networks appear to play 

an important part in later adoption. In both the baseline model and the structural model the video rating 

and the number of external links have a significant impact on video diffusion, indicating that, although the 

peer group of friends’ network helps a video to reach a critical mass in the early stage, the perceived video 

quality and strategic linkages with other online channels of influence such as blogs positively influence 

diffusion. The R-Squared values are greater for the baseline model, probably due to serial correlation, 

which is removed in the structural model. 

Table 6. Parameter Estimates – Structural Model 
(standard error in parenthesis) 

*** p = 0.01; ** p= 0.05  

Parameter Estimates Variable 
Structural w/o Interaction Structural w/ Interaction 

Intercept 0.2317 (0.003536)*** 0.2525 (0.006278)***

LogNumOfViews 0.001963 (0.000348)*** 0.002068 (0.000350)***

(LogNumOfViews)2 -0.00014 (0.000085) -0.00015 (0.000085)*

Log(vAge) -0.03806 (0.000590)*** -0.04196 (0.001165)***

Rating 0.000766 (0.000274)*** 0.000773 (0.000274)***

logNumOfLinks 0.004641 (0.000791)*** 0.004759 (0.000791)***

Frn_NrmDegree -0.00069 (0.000174)*** -0.00439 (0.001651)***

Frn_NrmBP -0.00001 (9.107E-6) 0.000172 (0.000075)**

Subs_NrmOutDegree -0.00209 (0.001795) 0.09068 (0.01258)***

Subs_NrmInDegree 0.01514 (0.002672)*** 0.04580 (0.01971)**

logNumFrn_Outside -0.00158 (0.000293)*** -0.01317 (0.002174)***

logVAge*Frn_NrmDegree   0.000700 (0.000312)**

logVAge*Frn_NrmBP   -0.00004 (0.000014)**

logVAge *logNumFrn_Outside   0.002126 (0.000402)***

logVAge *logSubs_NrmOutDegree   -0.01751 (0.002380)***

logVAge *log Subs_NrmInDegree   -0.00532 (0.003719) 
Fit Statistics 

R Squared 0.072 0.074 

5.3 Discussion 

We find that friendship networks have a significant impact, indicating support for H1, and 

particularly in the later stages of a video diffusion. The interaction term between degree centrality of the 

friend network with time is positive, indicating support for H2, and indicating that conformity preferences 
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play a very important role in the later stages of the diffusion process. We also find that actors that are 

more connected to individuals outside the local network (i.e., have more friends from outside the group) 

have significant influence on the diffusion of content, validating H3. This is due to the fact that such 

individuals have access to new and non-redundant content. Central actors that can enrich the set of 

experiences and ideas through contact with non-local actors are more likely to disseminate new content 

within their peer group. The interaction term between the friends from outside the network with time also 

has a significant impact on diffusion, validating H4. The magnitude of the impact of non-local ties is three 

times stronger than that of local ties alone, suggesting that social learning may play an important role in 

content diffusion. Since we find that the number of friends from outside the network has a stronger impact 

than the degree centrality of the actor in a friend network, the local network affects appear to be less 

influential compared to the impact of access to non-redundant information from individuals outside a 

local network. We also find that the impact of non-local ties and within-group friendship networks affect 

different stages of the diffusion process. The centrality of users in subscriber networks is highly 

significant, and plays a dominant role in the earlier stages of diffusion, indicating support for H5 and H6. 

Early adopters, by virtue of their positions of influence in the subscribers network, are pivotal in 

persuading others in order that a video acquires a critical mass of viewers.  

Figure 6 depicts the process of diffusion with and without taking into account the social structure of 

interactions on You Tube. In the absence of social influence affects, diffusion would have been more rapid 

in the initial stages but would also have peaked with a lower number of aggregate views. Such diffusion 

dynamics could occur for two reasons. One, the dynamics whereby the number of adopters reaches a 

critical mass is likely to be different when we factor in the role of early adopters in persuading proximate 

actors in a social network. The initial diffusion rate is very sensitive to the number of incoming 

subscriptions of a channel, which implies that the rate at which a video diffuses through the population 

depends on actors’ willingness to sample new videos. A video acquires momentum and spreads through 

the population as a function of taste preferences of users in the initial stages. Second, since we find that 

the role of conformity preferences and social learning is greater in the later stages of the diffusion process, 
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diffusion through friendship networks occurs only after some proportion of the initial population of users 

is infected, or when a certain proportion has already viewed a video, i.e., when a social threshold level of 

adoption is reached. Interestingly, we find that the combined effect of friendship networks and subscriber 

networks reduces the time for the diffusion curve to reach the familiar S-shape. While the effects of social 

influence from friendship networks is not strong in the early stages of the life of a video, it is likely that 

adoption by a small number of highly influential nodes (e.g., Dodds and Watts 2007) in the subscriber 

networks sets off a trajectory of adoption amongst the friend networks, creating a social multiplier effect 

that magnifies the impact of user tastes through social preferences such as conformity. The contrasting 

effects of degree centrality and the Bonacich power measures in a friend network also suggest that 

conformity preferences and social influence from individuals that are perceived to be of a higher status 

may have subtle differences.  

Figure 6. Diffusion of Number of Views Without vs. With Social Network Effects 
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Figure 7 depicts the number of views of a video over time. Prior literature in marketing suggests it is 

difficult to distinguish between social contagion and the heterogeneity in users, which highlights the 

difficulty in identifying with precision the factors that influence the structure of consumer demand. Given 

the multiplicity of factors influencing an individual, we distinguish between factors that affect 

membership in a social network from other types of social influence and therefore address the reflection 

problem in inferring social influence. Some of the prior literature on diffusion suggests that what drives 

the diffusion process before a critical mass is reached may be very different from what drives the 
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diffusion process after a critical mass is reached. We similarly find differing impacts from the various 

types of social interactions. We observe that conformity preferences as well as the heterogeneity of users’ 

tastes influence the diffusion process, but affecting different stages in the diffusion of user-generated 

content. We also rule out the possibility that an individual’s viewing pattern either is solely influenced the 

social group that they belong to or that the viewing patterns are a result of heterogeneity of users. What 

makes the results interesting is that they demonstrate not only that social influence matters, but that we 

can identify the variety of social interactions that contribute to diffusion of new products.  

Figure 7. Video Popularity over Video Age 
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The results also offer a contrast between the different types of information transmission in different 

types of social interactions. We find that the influence from the subscriber network is markedly different 

from that of non-local friendship ties. So see why this is significant, consider that if users were to “learn” 

without regard to identity, we should observe that the impact of friend networks and subscriber networks 

is similar throughout the diffusion process. However, theory suggests that social learning by users is 

sensitive to identity, and users place different weights on information acquired from other users (e.g., Bala 

and Goyal 1998). The fact that we find that the impact of non-local ties is stronger in the process of 

diffusion than that of within-group ties also supports our interpretation of social learning. Social learning 

describes a richer motive for behavior than a simple taste for conformity with others. A pure preference 

for conformity implies frequent and sustained connections with others in a local network leading to a 

strong sense of identification, which also has the effect of limiting the amount of non-redundant 
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information that can be transmitted across the local network. By contrast, social learning plays a role 

when user faces a plethora of choices and needs to make decisions about adopting uncertain content. The 

social learning from non-local friends also supports Granovetter’s (1973) arguments about the “strength 

of weak ties”. Interaction with friends with similar tastes in the local network promotes homophily and 

furthers a sense of identification; however, while such sources of influence have a greater ability to 

persuade a user they also provide fewer sources of external information. Individuals in the non-local 

network facilitate observational or social learning as well as expose a node to a greater variety of content.   

The aggregate dynamics of the content diffusion model studied in this paper present substantial evidence 

for social learning effects. Thus, our results are in sharp contrast to earlier models of diffusion such as the 

Bass model that do not distinguish between different social processes that are responsible for the process 

of diffusion of content. 

Our study makes a number of theoretical and empirical contributions to the literature. The Internet 

has been instrumental in promoting online dissemination of product reviews and buyer feedback, with 

tremendous implications for customer-facing activities such as customer acquisition and retention. The 

research on online word of mouth (e.g., Chavalier and Mayzlin 2006, Dellarocas 2003) has examined the 

impact of user-generated social information on Internet commerce. Our study can add to this stream of 

literature by identifying the networked structure of social interactions and interpersonal influence. Forman 

et al. (2008) find that users in an online social community provide self-descriptive information that 

reveals their social identity, and such identity disclosure plays a significant role in product sales. In a 

similar manner, networks of interpersonal influence might promote users’ identification with a particular 

channel, influencing content diffusion (similar to users’ identification with brand of a company). The 

results in this study suggest that the transmission of online word of mouth effects should be analyzed 

taking into account the networked structure of interpersonal interactions. The social capital fostered 

through networked interactions may also mitigate the potential for information asymmetry in online 

markets, suggesting a social network based explanation for reputation systems on the Internet (e.g., 

Resnick et al. 2000).  

Prior research on the technology acceptance model (TAM) has posited that acceptance of 
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technological innovations is driven by the ease of use and usefulness of an innovation, and the TAM 

model has been extended to consider the role of social influence (Venkatesh and Davis 2000). A 

perspective based on social networks can enrich this stream of research by highlighting the process by 

which individuals turn to each other for social cues and the role of social networks in structuring 

interpersonal influence that shapes perception and behavior. Social multiplier effects arising from social 

contagion due to interpersonal influence within a social network can be instrumental in shaping 

perceptions of the usefulness of innovations (e.g., Bandiera and Rasul 2006). Our study suggests that the 

role of social influence strengthened through conformity preferences and social learning mechanisms play 

an important role in the diffusion process, including technology acceptance.  

5.4 Managerial Implications  

Parameswaran and Whinston (2007) posit that YouTube has “evolved into a pop culture medium that 

drives rapid dissemination of popular videos worldwide”. Similarly, the potential role of YouTube as a 

marketing tool is enormous. Several media companies are interested in YouTube as a channel to reach 

viewers. The question then becomes, should the company sponsor a set of content creators to post their 

content on YouTube or should they fund a set of video that has already acquired momentum? Companies 

need to consider how to strategically place videos in order to reach more users. Similarly, advertisers 

should consider the role of incorporating user-generated content as a channel of advertising. It may be 

especially valuable to use YouTube as a channel to incorporate user-generated content into an advertising 

campaign that can then be extended outside YouTube.  

The ease with which users can participate in online social networks and seek out digital content such 

as music and entertainment from a variety of social media is of tremendous interest to marketers and 

content creators. We find that the number of outgoing subscriptions has a channel has a different impact 

from that of the number of incoming subscriptions of a channel, indicating that who initiates the 

connections in a network matters to how the content is diffused. This has a number of implications for 

practitioners. A push model of content creation, where the subscriber tries to push content by initiating 

connections to several other users, may be less successful than a pull model where the subscriber is highly 

popular and receives several connections from others. Subscribers with high in-degree centrality can act 
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as fashion leaders or opinion makers in the diffusion of content. Therefore, another implication for 

practitioners is to consider the role of the prestige of a subscriber in the diffusion of content. The 

difference between different mechanisms of social influence, conformity preferences or social learning 

fostered through friendship ties as compared to networks defined by user tastes, is of immense importance 

to content creators and to media companies that are interested in You Tube as a channel to reach viewers.  

Fundamentally, from a longer-term perspective, the success of a single video posted by a user is not 

enough to ensure repeat viewing of the content of a channel. In other words, it is the brand recognition of 

the user’s channel that is important. Content creators on You Tube need to work towards loyalty towards 

the channel, suggesting that user recognition and brand building of channels in user-generated content 

communities such as YouTube works in a manner analogous to brand-building and marketing efforts by 

companies. Such brand recognition can be measured by the incoming subscribers, i.e., the incoming 

traffic to a channel based on channel recognition.  

5.5 Limitations 

While we capture the network structure changing over time, we do not model how this process occurs. 

The promotional effects by content creators such as major record labels, which may affect the actions of 

early adopters and thus trigger the process of diffusion, is unobservable in our estimation. We also do not 

consider the interaction between offline and online social networks, and in particular, whether social 

influence through offline interactions bolsters the impact of conformity pressures and status in networked 

interactions online. We also do not consider whether conformity preferences in groups are enhanced 

through cohesive social network structures that foster a sense of social identity.  

We also do not consider the interaction between network structure and decision-making in groups 

that is likely to affect a group’s susceptibility to diffusion. Bala and Goyal (1993) characterize learning 

from neighbors as a Bayesian updating process whereby an agent updates her beliefs based on the actions 

of other agents. Dodds and Watts (2007) model interpersonal influence as a function of not only network 

characteristics such as proximity but also the influencer’s expertise and characteristics of other 

individuals adjacent to the influencer. Agents’ decisions could depend upon not only on how many 

neighbors an agent has and the actions the agents’ neighbors choose but also by agent-specific factors. 
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While we consider individual heterogeneity in the process of diffusion and control for time-invariant 

heterogeneity, we do not investigate whether such heterogeneity results in different agents updating their 

beliefs differently. It may be necessary to conduct experimental studies or simulation to tease out the 

types of social learning and expertise of the influencers.  

6. Conclusions and Future research 

Our study captures the process by which different mechanisms of social influence affect the trajectory of 

diffusion in an online social network setting. Our estimation is robust to unobservable self-selection of 

users and unobserved heterogeneity in user preferences that allows us to identify social influence in a 

network structure. Our estimation is also robust to contemporaneous shocks that may result in serial 

correlation. Given the multiplicity of factors that influence the diffusion of content on online social 

networks, our study makes a first step in disentangling the different means by which social interactions 

are structured and identifying social influence.  

In an increasingly hyper-networked age, individuals have access to informational content from a 

wide variety of on-line sources such as blogs, consumer forums, podcasts and social media that influence 

their tastes and preferences. Individuals whose networks bridge across a variety of sources have access to 

a diversity of information and can translate information across groups. Agents who broker across 

structural holes in a network may have an informational advantage resulting from access to multiple 

sources of information. Future research can explore how information is transmitted across different 

networks and whether prominent users function as conduits of information linking networks across 

different forms of social media. Future work can also investigate whether pre-existing social linkages 

affect a user’s recognition of and the consequent influence from channels of subscribers. The interaction 

between interpersonal influence structured through social networks and communication efforts by 

influentials driving the diffusion process is another area of inquiry.  
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Appendix: Social network measures and definitions 

In a social network context, adjacency denotes that two agents, represented by nodes, are directly 

connected with one another (Robinson and Foulds 1980). An adjacency matrix is a representation of the 

adjacency relationships of the actors in a social network used to calculate the social network measures. 

 

A1. Degree Centrality Measures for Non-Directional Relations 

We consider a unipartite graph where 1ijx = denotes that a link exists between nodes i and j. By 

definition, a node does not link to itself.  

( ) is the degree of the node; ( ) ( )  is an actor-level degree centrality index.i D i i ij ji
j j

d n C n d n x x= = =∑ ∑
For a group of size g, the maximum value of the actor level centrality measure is . Standardizing 

for group size, the standardized measure of degree centrality is the proportion of nodes adjacent to
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jn : 
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A2. Degree Centrality Measures for Directed Relations 

As an illustrative example, consider the graph below 
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A node is connected when there is at least one arc or set of arcs that relate the actor with another actor 

(Wasserman and Faust 1994). Each arc from node i to node j is denoted by . when the directed 

path is present. The adjacency matrix (for graphs of one path length) for the above graph then is: 

kl 1ijx =

in n→ j
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We define out-degree centrality as the row sum for the node in a dichotomous matrix. Thus, out-degree of 

actor i is i j ijx x+ = ∑ . The column sum (for a node) in a dichotomous matrix is the in-degree centrality 

of the node. In-degree of actor j is j iji
x x+ = ∑ . We normalize the above measures by to remove 

scale effects.  

( 1)g −

 

A3. Bonacich Power 

For a matrix X of relationships, the Bonacich power is defined as ( )i j
c α β= + j ijc X∑  where α is a 

scale parameter defined so that ( )2,ii
c α β∑ equals the number of units in the network (Bonacich 1987). 

β can take both positive and negative values: positive values imply that a node is more powerful when it 

is connected to others that are more powerful, while a negative value implies that a node is more powerful 

as its connections become weaker.  

 

 

References for calculating measures: 

Bonacich, P. (1987), “Power and centrality: A family of measures,” American Journal of Sociology 92(5): 

1170-1182 

Freeman, L. C. (1978) Centrality in social networks conceptual clarification. Social Networks, 1, 215. 

Robinson, D. F. and Foulds, L.R. (1980) Digraphs: Theory and Techniques. Gordon and Breach 
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