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Abstract

Sponsored search advertising is ascendant� Jupiter Research reports expenditures rose 28% in

2007 to $8.9B and will continue to rise at a 15% CAGR, making it one of the major trends to

a¤ect the marketing landscape. Yet little, if any empirical research focuses upon search engine

marketing strategy by integrating the behavior of various agents in sponsored search advertising

(i.e., searchers, advertisers, and the search engine platform). The dynamic structural model we

propose serves as a foundation to explore these and other sponsored search advertising phenomena.

Fitting the model to a proprietary data set provided by an anonymous search engine, we conduct

several policy simulations to illustrate the bene�ts of our approach. First, we explore how infor-

mation asymmetries between search engines and advertisers can be exploited to enhance platform

revenues. This has consequences for the pricing of market intelligence. Second, we assess the e¤ect

of allowing advertisers to bid not only on key words, but also by consumers searching histories and

demographics thereby creating a more targeted model of advertising. Third, we explore several

di¤erent auction pricing mechanisms and assess the role of each on engine and advertiser pro�ts

and revenues. Finally, we consider the role of consumer search tools such as sorting on consumer

and advertiser behavior and engine revenues.

One key �nding is that the estimated advertiser value for a click on its sponsored link averages

about 24 cents. Given the typical $22 retail price of the software products advertised on the

considered search engine, this implies a conversion rate (sales per click) of about 1.1%, well within

common estimates of 1-2% (gamedaily.com). Hence our approach appears to yield valid estimates

of advertiser click valuations. Another �nding is that customers appear to be segmented by their

clicking frequency, with frequent clickers placing a greater emphasis on the position of the sponsored

advertising link. Estimation of the policy simulations is in progress.

Keywords: Sponsored Search Advertising, Two-sided Market, Dynamic Game, Structural Models,
Empirical IO, Customization, Auctions



1 Introduction

1.1 Sponsored Search Marketing

1.1.1 Growth in Sponsored Search

Sponsored search on sites such as Google, Yahoo, Sidestep, Kayak, Bookfinder, MSN, etc. is one

of the largest and fastest growing advertising channels. In the United States alone, 2007 annual

expenditures on sponsored search advertising increased 28% to $8.9B and the number of �rms

using sponsored search advertising rose from 29% to 41%.1 Hence, the tactic is becoming a central

component of the promotional mix in many organizations. By contrast, overall 2007 advertising

spending across all channels in the United States is estimated to be $283.8B, an increase of only

0.7%.2

The growth of this new medium arise in part due to the increasing popularity of search engine

sites relative to other media among consumers. In April of 2008, American Internet users conducted

10.6B searches on the 5 leading search engines.3 By comparison, a top rated TV show such as

�Desperate Housewives� only has about 25M viewers (IRI, 2007); and the growing popularity of

DVR services o¤ered by TiVo and cable companies have and will further decrease the audience base

of traditional TV advertising. Moreover, Qiu et al. (2005) estimate that more than 13.6% of the

web tra¢ c is a¤ected by search engines. Since more and more consumers use the Internet for their

transactions (Ansari et al. (2008)), Internet search is an especially e¢ cient way to promote online

channels. Not only does search advertising have expanding reach, but it often targets consumers

who are actively seeking information related to the advertisers�products. For example, a search of

�sedan�and �automotive dealer�might signal an active purchase state. As a result of these various

factors, Jupiter Research reports that 82% of advertisers were satis�ed or extremely satis�ed with

search marketing ROI and 65% planned to increase search spending in 2007.4

Given the increasing ubiquity of sponsored search advertising, the topic has seen increased at-

tention in marketing as of late (Ghose and Yang (2007); Rutz (2007); Rutz and Bucklin (2007);

Goldfarb and Tucker (2007)). Yet most empirical work on the topic remains focused on the ad-

vertiser. To date, empirical research on key word search has largely ignored the perspective of

the search engine. Given that the search engine interacts with advertisers to determine the price

of the advertising (and hence its e¢ cacy), our objective is to broaden this stream of research to

incorporate the role of the search engine and its users. This exercise enables us to determine the

role of search engine marketing strategy on the behavior of advertisers and consumers as well as

the attendant implications for search engine revenues.

1�US Paid Search Forecast, 2007 to 2012�, Jupiter Research, 2007.
2�Insider�s Report�, 2007, McCann WorldGroup, Inc..
3�April 2008 U.S. Search Engine Rankings,� comScore, Inc. (http://www.comscore.com/press/release.asp?

press=2230).
4�US Paid Search Forecast, 2007 to 2012�, Jupiter Research, 2007.
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Our key contributions are as follows. From a theoretical perspective, we conceptualize and

develop an integrated model of web searcher, advertiser and search engine behavior. To our knowl-

edge, this is the �rst empirical paper focusing on the marketing strategy of the search engine. From

a substantive point of view, our contribution is to o¤er concrete marketing policy recommendations

to the search engine including its i) pricing (for both the key words and the clickstream data it

collects), ii) key word auction design (such as the pricing mechanism and whether advertiser bid-

ding should be targeted by segment as well as key word), and iii) web page design (e.g., should

features like sort or �lter be added or dropped). From a methodological view, we develop a dynamic

structural model of key word advertising. The dynamic aspect of the problem requires the use of

some recent innovations pertaining to the estimation of dynamic games in economics (e.g., Bajari

et al. (2007), Pesendorfer and Schmidt-Dengler (2008)). We extend this work to be Bayesian in

implementation and apply it to wholly new context.

One notable �nding is that advertisers in our application have an average value per click of $0.24.

Given the average price of software products advertised on this site is about $22, this implies these

advertisers expect about 1.1% (i.e., $0.24/$22) of clicks will lead to a purchase. This is consistent

with the industry average of 1-2% reported by GameDaily.com, suggesting good face validity for our

model. In addition, we �nd considerable heterogeneity in consumer response to sponsored search

advertising. Frequent link clickers, who represent 10% of the population but 90% of the clicks tend

to be more sensitive to slot order �in part because slot position can signal product quality. These

insights represent central inputs into our yet to be completed policy simulations alluded to above.

1.1.2 Sponsored Search Advertising

The Internet contains an estimated 155 million sites and Internet search engines wade through this

information to return relevant results in response to users�search queries.5 These �organic�search

results are often displayed as a list of links sorted by their relevance to the search query (Bradlow and

Schmittlein (2000)). Search engines range from the quite general type (e.g., Google.com searches

encompass most of the Internet) to the more focused ones (DealTime.com searches Internet stores,

hotels.com searches travel products, www.addall.com searches books, etc..). Sponsored search

involves advertisements placed above or along side the organic search results (See Figure 1 and

Figure 2). Given that users are inclined to view the topmost slots in the page (Ansari and Mela

(2003)), advertisers are willing to pay a premium for these more prominent slots (Goldfarb and

Tucker (2007)).

To capitalize on this premium, advertising slots are auctioned o¤ by search engines. Advertis-

ers specify bids on a per-click basis for a respective search term. Advertisers consider potential

competition, the cost of bidding, and the expected revenue accruing from the advertisement when

5�January 2008 Web Server Survey,� Netcraft Company (http://news.netcraft.com/archives/2008/01/28/
january_2008_web_server_survey.html).

2



Figure 1: Searching �chocolate phone�Using A Generic Search Engine
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Figure 2: Searching �chocolate phone�Using A Specialized Search Engine
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deciding how to bid. Though most search engines use auctions to price advertisements, there is

considerable variation in the nature of the auctions they use. For example Overture.com (who pio-

neered Internet search auctions and is now a part of Yahoo!) adopted a �rst price auction wherein

the advertiser bidding the highest amount per click received the most prominent placement at the

cost of its own bid for each click.6 First price auctions are still used by Shopping.com and a number

of other Internet properties. However, because bids are priced on a per click basis, search engines

should be not only concerned with the magnitude of bid but also the likely number of clicks that an

advertisement will generate. For example, a high per-click bid with few or no clicks may generate

less revenue for a search engine than a low per-click bid advertisement with a high click-through

rate. Hence Google has developed an algorithm which factors in not only the level of the bid, but

the expected click-through rate of the advertiser. Another distinction of the Google practice is

that advertisers pay the next bidder�s bid (adjusted for click-through rates) as opposed to their

own bids.7 Moreover, Google and MSN recently enabled advertisers to bid by demographics or the

browsing history of the users, thus enabling even more precise targeting.

In light of the increased use of search engines by consumers, the attendant rise in search engine

advertising, and the resulting interest in pricing mechanisms on the part of the search engine, we

model the behavior of consumers and advertisers in order to obtain insights into the policy of the

search engine platform. Much like Yao and Mela (2007), we construct an empirical model of a two-

sided network in an auction context. One side of the network includes the searchers who generate

revenue for the advertiser. On the other side of the two-sided network are advertisers whose bidding

behavior determines the revenue of the search engine. In the middle lies the search engine. The

goal of the search engine is to price consumer information, set auction mechanisms, design web

page to elucidate product information so as to maximize its pro�ts. By integrating these agents in

a single model, it becomes possible to explore the e¤ect of search engine strategy on the demand

and pricing for search engine advertising as well as the revenues of the search engine. In particular,

we consider the following policy simulations:

� Mechanism Design. The wide array of search pricing mechanisms raises the question of which
auction mechanism is the best in the sense of incenting advertisers to bid more aggressively

thereby yielding maximum returns for the search engine. We contrast the two most common

designs and their attendant revenue implications.

6 In the economics literature, such an auction with multiple items (slots) where bidders pay what they bid is
sometimes termed as discriminatory auction (Krishna (2002)).

7With a simpli�ed setting, Edelman et al. (2007) show that the Google practice may result in an equilibrium with
bidders�payo¤s equivalent to the Vickrey-Clarke-Groves (VCG) auction, whereas VCG auction has been proved to
be maximizing total payo¤s to bidders (Groves (1979)). Iyengar and Kumar (2006) further show that under some
conditions the Google practice induces VCG auction�s dominant �truth-telling� bidding strategy, i.e., bidders will
bid their own valuations.
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� Market Intelligence. Advertisers�knowledge about consumers changes if search engines sell
consumer demographic and behavioral information to advertisers. The bidding strategy of

advertisers is likely altered by the change of their information state. This raises the question

of how information asymmetries between the engine and advertisers a¤ect bidding behavior

and how the consumer information should be priced.

� Customization and Targeting. Most search engines auction key words across all market seg-
ments. However, it is possible to auction key words by segment. We assess the potential

revenue implications of this strategy.

� Search Tools. Many search engines, especially specialized ones such as Shopping.com, provide
options to sort/�lter search results using certain criteria such as product prices. On one hand,

sort/�lter may intensify competition among advertisers by mitigating the perceived di¤erence

across goods (Diehl et al. (2003)). On the other hand, these tools can induce consumers

to focus on quality di¤erentiation thereby attenuating the competition (Lynch and Ariely

(2000)). This leads to the question of how such an easy access to products information

impacts consumer searching behavior and hence �rms�advertising decisions.

Though we cast our model in the context of sponsored search, we note that the problem,

and hence the conceptualization is even more general. Any interactive, addressable media format

(e.g., DVR, satellite digital radio) can be utilized to implement similar auctions for advertising.

For example, with the convergence in media between computers and television in DVRs, simple

channel or show queries can be accompanied by sponsored search and this medium may help to

o¤set advertising losses arising from ads skipping by DVR users. In such a notion, the research

literature on sponsored search auctions generalizes to a much broader context and our model serves

as a basis for exploring search based advertising.

1.2 Recent Literature

Research on sponsored search, commensurate with the topic it seeks to address, is nascent and

growing. This literature can be characterized along two distinct dimensions: theoretical and empir-

ical. The theoretical literature details how agents are likely to react to di¤erent pricing mechanisms.

One major conclusion of this literature is that the optimal pricing mechanism is incumbent upon

the behavior of the various agents. However, there is little attention directed to the issue of asym-

metries in information states between the advertiser and the platform. Moreover, the theoretical

literature does not measure how agents actually behave in a given market so it can not speak

to how changes in platform marketing strategy will manifest in a given market. In contrast, the

empirical literature measures the e¤ect of advertising on consumer response in a given market but

not the reaction of these agents to changes in the platform environment (e.g., advertising pricing,
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information state or the webpage design of the platform). Further, the empirical literature typically

focuses on the behavior of the advertiser but not that of the searchers or the marketing actions

of the search platform. Next, empirical work to date is largely silent on competitive interactions

between various advertisers. In sum, by integrating the theoretical and empirical research streams

we seek to develop a more complete representation of the role of pricing and information in the

context of key word search. To elaborate on these points, we begin by surveying theoretical work

on sponsored search and then proceed to discuss some recent empirical research.

Foundational theoretical analyses of sponsored search include Edelman et al. (2007) and Var-

ian (2006) who examine the bidding behaviors of advertisers in this auction game. The authors

assume the auction game as a complete information and simultaneous-move static game, in which

exogenous advertising click through rates increase with better placements. In equilibrium adver-

tiser bidding behavior has the same payo¤ structure as a Vickrey-Clarke-Groves auction, where a

winner�s payment to the seller equals to those losing bidders�potential payo¤s (opportunity costs)

were the winner absent (Groves (1979)). Extending this work, Chen and He (2006) incorporate

clicking behavior into their model and show that, under the Google bidding mechanism, consumers

clicking behavior is a¤ected by the easy access to product information. In particular, they make

inference about product quality based on the ranking presented by the platform and search se-

quentially according to the ranking. As an equilibrium response advertisers submit bids equal to

their true values for the advertising. Katona (2007) further extends the analysis by relaxing several

key assumptions such as the competition for tra¢ c between sponsored links and organic links, the

heterogeneity of advertisers in term of their inherent attractiveness to consumers. The author shows

multiple equilibria in this auction which do not have closed form solutions. Additional work by

Iyengar and Kumar (2006), Feng (2008), and Garg et al. (2006) explicitly consider the e¤ect of

the various auction mechanisms on search engine pro�ts. In particular, Iyengar and Kumar (2006)

show that the Google pricing mechanism maximizes neither the search engine�s revenue nor the

e¢ ciency of the auction suggesting the potential to improve on this mechanism as we seek to do.

Further, they show that the optimal mechanism is incumbent upon the characteristics of the market

thereby making it imperative to estimate market response as we intend to do in order to improve

on pricing mechanisms.

In sum, the key insights from this stream of work are that i) there are three key sets of agents

interacting in the sponsored search context, persons that engage in key word search, advertisers

that bid for key words, and the search platform, ii) one can characterize how advertisers and

searchers will react to changes in the auction mechanisms employed by the search engine, iii)

searchers will react to the search engine�s web page design, which in turn will a¤ect advertisers

bidding behavior and iv) changes in advertiser behavior are incumbent upon the parameters of

the system; given these are not estimated it is hard to characterize precisely how these agents

will behave. Additionally, we note that the oft invoked assumption of a static advertiser game
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over bidding periods is inconsistent with the pricing practices used by search engines. Search

engines typically use the preceding period�s click throughs together with current bids to determine

advertising placement, making this an inherently dynamic game. Finally, this research typically

assumes no asymmetry in information states between the advertiser and the search engine even

though the search engine knows individual level clicking behaviors and the advertiser does not. We

redress these issues in this paper.

Empirical research on sponsored search advertising is also proliferating. Notable among these

papers, Rutz and Bucklin (2007) investigate the e¢ cacy of di¤erent keyword choices by measuring

the conversion rate from users�clicks on ads to actual sales for the advertiser. In a related paper,

Rutz (2007) considers how advertiser revenue is a¤ected by click throughs and exposures. This

work is important because it demonstrates that advertiser valuations di¤er for various placements

and key words and that the bids are likely to be related to placements. Ghose and Yang (2007)

further investigate the relationships among di¤erent metrics such as click-through rate, conversion

rate, bid price and advertisement rank.

Overall, the empirical research on sponsored search establishes a �rm link between advertising,

slot position and revenues � and indicates that these e¤ects can di¤er across advertisers. Yet

some limitations of this stream of work include its emphasis on a single agent (the advertiser) and

the lack of information on competing bidders, which make it di¢ cult to predict how advertisers

might react to a change in the auction mechanism, webpage design or information state regarding

consumers. Yet these interactions are material to understanding the role of each agent in the

context of sponsored search. For example, an advertiser�s value to the search engine pertains not

only to its payment to the search engine as is often assumed in past empirical work, but also the

e¤ect that advertiser has on the intensity of competition during bidding. The increased intensity

of competition may serve to drive bids upward and hence increase search engine revenues. Related,

advertisers�actions a¤ect internet users. For example, with alternative advertisers being placed at

premium slots on a search result page, it is likely that users�browsing behaviors will be di¤erent.

Further, since advertisers make decisions with the consideration of users�reactions, any variations

of users�behaviors have feedbacks on advertisers�actions and thus will ultimately a¤ect the search

engine�s revenue. Hence when making policy prescriptions for the search engine, we believe that it

would be more reasonable to incorporate the theoretical work on strategic interaction in the context

of key word search into an empirical analysis of advertiser bidding behavior.

This suggests it is desirable to model and estimate the equilibrium behavior of all the agents in

a network setting. In this regard, sponsored search advertising can be characterized as a two-sided

market wherein searchers and advertisers interact on the platform of the search engine (Rochet

and Tirole (2006); Tucker (2005)). This enables us to generalize a structural modeling approach

advanced by Yao and Mela (2007) to study two-sided markets. These authors model bidder and

seller behavior in the context of electronic auctions to explore the e¤ect of auction house pricing on
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the equilibrium number of listings and closing prices. However, additional complexities exist in the

key word search setting including i) the aforementioned information asymmetry between advertisers

and the search engine and ii) the substantially more complex auction pricing mechanism used by

search engines relative to the �xed fee auction house pricing considered in Yao and Mela (2007).

Moreover, unlike the pricing problem addressed in Yao and Mela (2007), sponsored search bidding

is inherently dynamic owing to the use of lagged advertising click rates to determine current period

advertising placements. Hence we incorporate the growing literature of two-step dynamic game

estimation (e.g., Hotz and Miller (1993); Bajari et al. (2007); Bajari and Hong (2006)). Instead of

explicitly solving for the equilibrium dynamic bidding strategies, the two-step estimation approach

assumes that observed bids are generated by equilibrium play and then use the distribution of

bids to infer underlying primitive variables of bidders (e.g., the advertiser�s expectation about the

return from advertising). Similar method is also used in an auction context in Jofre-Bonet and

Pesendorfer (2003). However, our approach is unique inasmuch as it is Bayesian instantiation

of these estimators, which leads to desirable small sample properties and enables considerable

�exibility in modeling choices. Equipped with these advertiser primitives, we solve the dynamic

game played by the advertiser to ascertain how changes in search engine policy a¤ect equilibrium

bidding behavior.

In sum, our goal is to develop an integrated model of key word search that incorporates the

behavior of both searchers and advertisers. This approach enables us to investigate how the policies

of the search engine a¤ect its revenues. Such policies include the marketing of information, targeted

bidding, pricing mechanisms and webpage design among others. This goal mandates the use of a

dynamic structural model of key word search and, to our knowledge, this paper is the �rst to

integrate empirical and theoretical work on key word search to develop such an approach and to

provide some explicit prescriptions for the marketing policies of search engines.

The remainder of this paper proceeds as follows. Given the relatively novel research context,

we begin by describing the data to help make the problem more concrete. We then outline the

details of our model beginning with the clicking behavior of consumers and concluding with the

advertiser bidding behavior. Next, we turn to estimation and present our results. We then explore

the role of information asymmetry, targeted bidding, advertising pricing and webpage design by

developing policy simulations which alter the search engine marketing strategies. We conclude with

some future directions.

2 Empirical Context

The data underpinning our analysis is drawn from a major search engine for high technology

consumer products. Within this broad search domain, we consider search for music management

software because the category is relatively isolated in the sense that searches for this product do
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not compete with others on the site. The category is a sizable one as well for this search engine.

Along with the increasing popularity of MP3 players, the use of music management PC software is

increasing exponentially making this an important source of revenue. The goal of the search engine

is to enable consumers to identify and then download trial versions of these software before their

�nal purchase.8 It should be noted that the search engine de�nes the music management broadly

enough that an array of di¤erent search terms (e.g., MP3, iTunes, iPod, lyric, etc.) yield the same

search results for the software products in this category. Hence we consider the consumer decision

of whether to search for music software on the site and whether to download given a search.

Because consumers are far more likely to click on links near the top of the search results

page, advertisers compete for these slots by attending the auction.9 More successful bids lead to

appearances closer to the top of the list. Winning bids are denoted as sponsored search results and

the site �ags these as sponsored links. The site a¤ords up to �ve premium slots which is far less

than the 400 or so products that would appear at the search engine. Losing bidders and non-bidders

are listed beneath the top slots on the page and like previous literature we denote these listings as

organic search results. We seek to model this bidding behavior.

The search engine captures data on advertisers (products attributes, products download history

and bids from active bidders), consumers (their visitation log �les and demographics), and relevant

site characteristics from the search engine platform (such as page characteristics and link order).

We detail these data next.

2.1 Data Description

The data are comprised of 3 �les, including:

� Bidding �le. Bidding is logged into a �le containing the bidding history of all active bidders
from January 2005 till August 2007. It records the exact bids submitted, the time of each

bid submission and the resulting monthly allocation of slots. Hence, the unit of analysis is

vendor-bid event. These data form the cornerstone of our bidding model.

� Products �le. Product attributes are kept in a �le that records, for each software �rm in each
month, the characteristics of the software they purvey. This �le also indicates the download

history of each product in each month.

� Consumers �le. Consumer log �les record each visit to the site and is used to infer whether
downloads occur as well as browsing histories. A separate but related �le includes registration

8A �click�and a �download�are essentially the same from the perspectives of the advertiser, the consumer as well
as the search engine. In the �click�case, a consumers makes several clicks to investigate and compare products o¤ered
by di¤erent vendors and then make a �nal purchase. In the �download�case, a consumer downloads several products
and makes the comparison before a �nal purchase. Hence there is no di¤erence for a �click�and a �download�in the
current context. We use �click�and �download� interchangeably throughout the paper.

9We detail the speci�c rules of the bidding process when describing the bidder model in section 3.2.
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information and detailed demographics for those site visitors that are registered. These data

are central to the bidding model in the context of complete information.

We detail each of these �les in turn.

2.1.1 Bidding File

Table 1 reports summary statistics for the bidding �les. At this search engine, bids were submitted

on a monthly basis. Over the 32 months from January 2005 to August 2007, 322 bids (including

zeros) were submitted by 21 software companies.10 As indicated in Table 1, bidders on average

submitted about 22 positive bids in this interval (slightly less than once per month). The average

bid amount (conditioned on bidding) was $0.20 with a large variance across bidders and time.

Table 1: Bids Summary Statistics

Mean Std. Dev. Minimum Maximum
Non-zero Bids (c/) 19.55 8.32 15 55
Non-zero Bids/Bidder 21.78 10.46 1 30
All Bids (c/) 8.14 11.04 0 55
Bids/Bidder 23.13 9.68 1 32

2.1.2 Product File

Searching for a key word results in a list of relevant software products and their respective attributes

(which may vary over time). Attribute information is stored in a product �le along with the

download history of all products that appeared in this category from January 2005 to August

2007. In total, these data cover 394 products over 32 months. The attributes include the price of

the non-trial version of a product, backward compatibility with preceding operating systems (e.g.,

Windows 98 and Windows Server 2003), expert ratings provided by the site and consumer ratings

of the product.11 Trial versions typically come with a 30-day license to use the product for free,

after which consumers are expected to pay for its use. Expert ratings at the site are collected from

several industrial experts of these products. The consumer rating is based on the average feedback

score about the product from consumers. Tables 2 and 3 give summary statistics for all products

as well as active bidders�products. Based on the compatibility information, we sum each product�s

compatibility dummies and de�ne this summation as a measure for that product�s compatibility

with old and unpopular OS. This variable is later used in our estimation.

Overall, active bidders�products have higher prices, better ratings and more frequent updates.
10Since some products were launched after January 2005, they were not observed in all periods.
11We further considered �le size but found many missing values. Moreover, in light of increased Internet speed, �le

size has become somewhat inconsequential in the download decision and is omitted from our analysis.
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Table 2: Product Compatibility

Percentage
All Products
Windows NT 4.0 54
Windows 98 64
Windows Me 66
Windows 2000 91
Windows Server 2003 43

Bidders�Products
Windows NT 4.0 67
Windows 98 67
Windows Me 71
Windows 2000 85
Windows Server 2003 57

Table 3: Product Attributes and Downloads

Mean Std. Dev. Minimum Maximum
All Products
Non-trial Version Price $ 16.65 20.43 0 150
Expert Rating (if rated) 3.87 0.81 2 5
Average Consumer Rating (if rated) 3.89 1.31 1 5
Months Lapse Since Last Update 15.31 9.88 1 31
Compatibility Index 3.29 1.47 0 5
Number of Downloads/(Product�Month) 1367.29 9257.16 0 184442

Bidders�Products
Non-trial Version Price $ 21.97 15.87 0 39.95
Expert Rating (if rated) 4 0.50 3 5
Average Consumer Rating (if rated) 4.06 0.91 2.5 5
Months Lapse Since Last Update 2.38 0.66 1 3
Compatibility Index 3.51 1.51 0 5
Number of Downloads/(Product�Month) 1992.12 6557.43 0 103454
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2.1.3 Consumer File

This �le contains the log �le of consumers from May 2007 till August 2007. The consumers �le

contains each consumer�s browsing log when they visit the search engine. It also has the registration

information if a consumer has registered with the search engine before.

The browsing log of a consumer records the entry time, browsing path and duration of the

visit. It also indicates whether the consumer made downloads and, if yes, which products she

downloaded. Upon viewing the search results of software products, the search engine allowed the

consumer to sort the results based on some attributes such as the ratings; consumers can also �lter

products based on some criteria such as whether a product�s non-trial version is free. The browsing

log records the sorting and �ltering actions of each consumer.

Since the demographic information upon the registration is only optional, the dataset provides

little if any reliable demographics of consumers. So we only focus on whether a consumer is a

registered user of the search engine.

3 Model

The model must capture the behaviors of the two key agents interacting on the search engine

platform: i) advertisers who bid to maximize their respective pro�ts and ii) utility maximizing

consumers who decide whether to click on the advertiser�s link. For any given policy applied by

the search engine, this integrated model enables us to predict equilibrium revenues for the search

engine. Recognizing that the behavior of the bidder (advertiser) is conditional on the behavior of

the consumer, we begin with the consumer model and then solve the bidder problem conditional

on the consumer behavior.

3.1 Consumer Model

Advertiser pro�t (and therefore bidding strategy) is incumbent upon their forecast of consumer

downloads for their products d(k;Xt
j ; 
c), where k denotes the position of the advertisement on

the search engine results page, Xt
j indicate the attributes of the advertiser j�s product at time t

and 
c are parameters to be estimated. Thus, we seek to develop a forecast for d(k;Xt
j ; 
c) and

the attendant consequences for bidding. To be consistent with the advertisers information set, we

begin by basing these forecasts of consumer behavior solely on statistics observed by the advertiser:

the aggregate download data and the distribution of consumers characteristics. Later, in the policy

section of the paper, we assess what happens to bidding behavior and platform revenues when

disaggregate information is revealed to advertisers by the platform. We begin by describing the

consumer�s download decision process and how it a¤ects the overall number of downloads.
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Figure 3: Consumer Decisions

3.1.1 The Consumer Decision Process

Figure 3 overviews the decisions made by consumers. In any given period t, the consumer�s problem

is whether and which software to select in order to maximize their utility. The resolution of this

problem is addressed by a series of conditional decisions.

First, the consumer decides whether she should use search on the category considered in this

analysis (C1). We presume that the consumer will search if it maximizes her expected utility to do

so.

Conditioned upon engaging a search, the consumer next decides whether to sort and/or �lter

the results (C2). Sorting re-orders the search results by a speci�ed criterion such as the rating of

a software. Filtering excludes various products from consideration based on the product attributes

(e.g., the price of the software). The two search options lead to the following 4 options for viewing

the results: � ={0 �neither, 1 �sorting but not �ltering, 2 �not sorting but �ltering, 3 �sorting
and �ltering}. For each option, the set of products returned by the search engine di¤ers in terms

of the number and the order of products. Consumers choose the sorting/�ltering option that

maximizes their expected utility.

Third, the consumer then chooses which, if any products to download (C3). We presume that

consumers choose to download software if it maximizes their expected utility. We discuss the

modeling details for this process in a backward induction manner (C3�C1).

Download We assume that consumers exhibit heterogeneous preferences for the products and

these consumers choose products to download to maximize their expected payo¤s. Consumer i

of preference segment g (g = 1; 2; :::; G) has some underlying latent utility ug�ijt for downloading

software j in period t, conditional on her sorting/�ltering choice �. A product will be downloaded

if and only if ug�ijt � 0. Let a index product attributes

ug�ijt = e�gj +Xa
x�jat

e�ga + e"g�ijt (1)
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where

� x�jat is the observed attribute a of product j; product attributes also includes product j�s
slot k on the search page that may vary conditional on sorting/�ltering choice � (hence the

superscript �);

� e�ga is consumer i�s �taste�regarding product attribute a, which is segment speci�c;
� e"g�ijt�s are individual idiosyncratic preference shocks, realized after the sorting/�ltering de-
cision. They are independently and identically distributed over individuals, products and

periods as zero mean normal random variables.

To allow the variance of the download (e"g�ijt) and sorting/�ltering errors (�g�it , which will be
detailed below) to di¤er, both must be properly scaled (cf., Train (2003), Chapter 2). Hence we

invoke the following assumption.

Assumption 1: e"g�ijt�s are independently and identically distributed normal random variables with

mean 0 and variance normalized to (�g)2 � �2=6. �g�it �s are independently and identically distributed
Type I extreme value random variables with variance normalized to �2=6.

Under assumption 1, we may re-de�ne the utility in equation 1 as

ug�ijt = �g�=
p
6(�gj +

X
a
x�jat�

g
a| {z }

ug�ijt

+ "g�ijt) (2)

where f�gj ; �ga; "
g�
ijtg = fe�gj ; e�ga;e"g�ijtg=(�g�=p6); ug�ijt is the scaled �mean�utility and "g�ijt � N(0; 1).

The resulting choice process is a multivariate probit choice model.12 Let dijt = 1 stand for down-

loading and dijt = 0 stand for not downloading. We have

dijt =

(
1

0

if ug�ijt � 0
otherwise

(3)

and the probability of downloading conditional on parameters f�gj ; �gag is

Pr(dijt = 1) = Pr(ug�ijt � 0) (4)

= Pr(�g�=
p
6(ug�ijt + "

g�
ijt) � 0)

= Pr(�"g�ijt � ug�ijt)

= �(ug�ijt)

where �(�) is the standard normal distribution CDF.
12 It can be shown that, under very weak assumptions, download decisions across multiple products with the purpose

of maximizing total expected utility can be represented by a multivariate binary choice probit model.
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Sorting and Filtering Prior to making a download decision, consumers face several �ltering

and sorting options which we index as � = 0; 1; 2; 3. We expect consumers to choose the option

that maximizes their expected download utility. Although consumers know the distribution of

the product utility error terms (e"g�ijt), these error terms do not realize before the sorting/�ltering.
Hence consumers can only form an expectation about the total utilities of all products under a

given sorting/�ltering option � before choosing that option. Let Ug�it denote the total expected

utility from products under option �, which can be calculated based on equation 1:

Ug�it =
X
j

E"(u
g�
ijtju

g�
ijt � 0)Pr(u

g�
ijt � 0) (5)

This de�nition re�ects that a product�s utility is realized only when it is downloaded. Hence,

the expected utility E"(u
g�
ijtju

g�
ijt � 0) is weighted by the download likelihood, Pr(ug�ijt � 0). The

expectation, E"(�), is taken over the random preference shocks "g�ijt.

In addition to Ug�it , individuals may accrue additional bene�ts or costs for using sorting/�ltering

option �. These bene�ts or costs may arise from individual di¤erences of e¢ ciency or experience

in terms of engaging the various options for ordering products. We denote such bene�ts or costs

by random terms �g�it �s. As indicated in assumption 1, �
g�
it �s are i.i.d. Type I extreme value. �

g�
it is

not observed by researchers but known to individual i. Note that these sorting/�ltering bene�ts or

costs do not materialize during the consumption of the products. Therefore they do not enter the

latent utility in equation (1). The total utility of search option � is thus given by

zg�it = Ug�it + �
g�
it (6)

Consumers choose the option of sorting/�ltering that leads to the highest total utility zg�it .

With �g�it following a Type I extreme value distribution, the choice of sorting/�ltering becomes

a logit model such that

Pr(�)git =
exp(Ug�it )
3P

�0=0
exp(Ug�

0

it )

(7)
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To better appreciate the properties of this model, note that Ug�it in equation 5 can be written

in a closed form.13

Ug�it =
X
j

E"(u
g�
ijtju

g�
ijt � 0) � Pr(u

g�
ijt � 0) (8)

= �g�=
p
6
X
j

 
ug�ijt +

�(ug�ijt)

�(ug�ijt)

!
� �(ug�ijt)

With such a formulation, the factors driving the person�s choice of �ltering or sorting become

more apparent:

� Filtering eliminates options with negative utility, such as highly priced products (because
consumer price sensitivity is negative). As a result, the summation in 8 for the �lter option

will increase as the negative ug�ijt are removed. This raises the value of the �lter option

suggesting that price sensitive people are more likely to �lter on price.

� Sorting re-orders products by their attribute levels. Products that appear low on a page will
typically have lower utility regardless of their product content (because consumer slot rank

sensitivity is negative). For example, suppose a consumer relies more on product ratings. By

moving more desirable items that have high ratings up the list, sorting can increase the ug�ijt
for these items, thereby increasing the resulting summation in 8 and the value of this sorting

option.14

Keyword Search The conditional probability of keyword search takes the form

Pr(searchgi ) =
exp(�g0 + �

g
1IV

g
it )

1 + exp(�g0 + �
g
1IV

g
it )

(9)

13For a normal random variable x with mean �, standard deviation � and left truncated at a (Greene (2003)),

E(xjx � a) = �+ ��(a��
�
), where �(a��

�
) is the hazard function such that �(a��

�
) =

�( a��
�

)

1��( a��
�

)
.

Hence with ug�ijt � N(�g�=
p
6ug�ijt; (�

g)2�2=6), we have

E(ug�ijtju
g�
ijt � 0)

= (�g�=
p
6 � ug�ijt + �g�=

p
6 �

�(� �g�=
p
6�ug�ijt

�g�=
p
6
)

1� �(� �g�=
p
6�ug�ijt

�g�=
p
6
)
)

= �g�=
p
6(ug�ij +

�(ug�ij )

�(ug�ij )
)

14 In particular, in the data over 80% consumers who used sorting option chose ratings to re-order products. Thus,
we suspect consumers who rely on ratings are more likely to use the sorting option to see which items are the most
popular ones.

17



where IV g
i is the inclusive value for searching conditional on the segment membership. IV g

it is

de�ned as

IV g
it = log[

X
�
exp(Ug�it )] (10)

This speci�cation can be interpreted as the consumer making decision to use a key word search

based on the rational behavior of utility maximization (cf. McFadden (1977); Ben-Akiva and

Lerman (1985)).15 A search term is more likely to be invoked if it yields higher expected utility. In

our data, we focus on a single search term.

3.1.2 Segment Membership

Recognizing that consumers are heterogeneous in their behaviors described above, we apply a latent

class model in the spirit of Kamakura and Russell (1989) to capture heterogeneity in consumer

preferences. Heterogeneity in preference can arise, for example, when some consumers prefer some

features more than others. We assume G exogenously determined segments. Consumer decisions

vary across segments. Consumers are homogeneous within the same segment. Segment-speci�c

heterogeneity is stable across time.16

The prior probability for user i being a member of segment g is de�ned as

pggit = exp
�

g0 +Demo

0
it


g
�
=�Gg0=1 exp

�

g

0

0 +Demo
0
it


g0
�

(11)

where Demo0it is a vector of attributes of user i such as demographics and past browsing his-

tory; vector f
g0; 
gg8g contains parameters to be estimated. For the purpose of identi�cation, one
segment�s parameters are normalized to zero.

In light of the foregoing model, the probability of user i downloading product j in period t is

Pijt (12)

=

Z
Demoit

X
g

X
�
[�(ug�ijt)

exp(Ug�it )
3P

�0=0
exp(Ug�

0

it )

] Pr(searchgit)pg
g
itdD(Demoit)

where the �rst term in the brackets captures the download likelihood, the second term captures the

search strategy likelihood, and the �rst term outside the brackets captures the likelihood of search.

D(Demoit) is the distribution of demographics. Since advertisers only know the distribution of

demographics, the resulting probability must integrate over the demographics.

15This speci�cation is consistent with the consumer information structure such that �g�i is not observed by re-
searchers but known to consumer i.
16 It is possible to allow for continous mixtures of heterogeneity as well. In our application, many consumers enter

only once making it di¢ cult to identify a consumer speci�c term for them.
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Figure 4: Advertiser Decisions

Correspondingly, the advertiser has an expected number of downloads for appearing in slot k,

d(k;Xt
j ; 
c), which can be computed as follows

d(k;Xt
j ; 
c) =MtPijt (13)

where 
c is the set of consumer preference parameters; Mt is the market size in period t.

3.2 Advertiser Model

Figure 4 overviews the dynamic game played by the advertiser. Advertiser j�s problem is to

decide the optimal bid amount btj with the objective of maximizing discounted present value of

payo¤s. Higher bids lead to greater revenues because they yield more favorable positions on the

search engine, thereby yielding more click-throughs for the advertiser. However, higher bids also

increase costs (payments) leading to a trade-o¤ between costs and revenues. The optimal decision

of whether and how much to bid is incumbent upon the bidding mechanism, the characteristics of

the advertiser, the information available at the time of bidding (including the state variables), and

the nature of competitive interactions.

An advertiser�s period pro�t for a download is the value it receives from the download less

the costs (payments) of the download. Though we do not observe the value of a download, we

infer this value by noting the observed bid can be rationalized only for a particular value accrued

by the advertiser. We presume this value is drawn from a distribution known to all �rms. The

total period revenue for the advertiser is then the value per download times the expected number
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of downloads.17 The total period payment upon winning is the number of downloads times the

advertiser�s bid. Hence, the total expected period pro�t is the number of downloads times the pro�t

per download (i.e., the value per downloads less the payment per download).

Of course, the bid levels and expected download rates are a¤ected by rules of the auction.

Though we elaborate in further details on the speci�c rules of bidding below, at this point we

simply note that the rules of the auction favor advertisers whose products were downloaded more

frequently in the past since such products are more likely to lead to higher revenues for the plat-

form.18 Current period downloads are, in turn, a¤ected by the position of the advertisement on

the search engine. Because past downloads a¤ect current placement, and thus current downloads,

the advertiser problem is inherently dynamic; and past downloads are treated as a state variable.

Finally, given the rules of the auction, we note that all advertisers move simultaneously. While

we presume a �rm knows its own value, we assume competing �rms know only the distribution of

this value.

The process is depicted in Figure 4. We describe the process with more details as follows:

Section 3.2.1 details the rules of the auction that a¤ect the seller costs (A2), section 3.2.2 details

the advertisers� value distribution (A1) and section 3.2.3 indicates how period values and costs

translate to discounted pro�ts and the resulting optimal bidding strategy (A3).

3.2.1 Seller Costs and the Bidding Mechanism

We begin by discussing how slot positions are allocated with respect to bids and the e¤ect of these

slot positions on consumer downloads (and thus advertiser revenue).

Upon a consumer completing a query, the search engine returns k = 1; 2; :::K; :::; N slots covering

the products of all �rms. Only the top K = 5 slots are considered as premium slots. Auctions for

these K premium slots are held every period (t = 1; 2; :::). An advertiser seeks to appear in a more

prominent slot because this may increase demand for the advertiser�s product. Slots K + 1 to N

are non-premium slots which compose a section called organic search section.

In order to procure a more favorable placement, advertiser j submits bid btj in period t. These

bids, submitted simultaneously, are summarized by the vector bt = fbt1; bt2; :::; btNg.19 Should an

advertiser win slot k, the realized number of downloads dtj is a random draw from the distribution

with the expectation d(k;Xt
j ; 
c). The placement of advertisers into the K premium slots is deter-

mined by the ranking of their fbtjdt�1j g8j , i.e. the product of current bid and last period realized
downloads; the topmost bidder gets the best premium slot; the second bidder gets the second best

17The expected number of downloads is inferred form the consumer model and we have derived this expression in
section 3.1.2.
18This is because the payment made to the search engine by an advertiser is the advertiser�s bid times its total

downloads.
19For the purpose of a clear exposition, we sometimes use boldface notations or pairs of braces to indicate vectors

whose elements are variables across all bidders. For example, dt = fdtjg8j is a vector whose elements are dtj ;8j.
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premium slot and so on. A winner of one premium slot pays its own bid btj for each download in

current period. Hence the total payment for winning the auction is btjd
t
j .

If an advertiser is not placed at one of the K premium slots, it will appear in the organic

section; advertisers placed in the organic section do not pay for downloads from consumers. The

ranking in the organic search section is determined by product update recency at period t, which is

a component of the attribute vector of each product, Xt
j . Other attributes include price, consumer

ratings and so on. For our purpose, we assume Xt
j is exogenously determined. These attributes are

posted on the search engine and are common knowledge.

Given that the winners are determined in part by the previous period�s downloads, the auction

game is inherently dynamic. Before submitting a bid, the commonly observed state variables at

time t are the realized past downloads of all bidders from period t� 1.20

st = dt�1 = fdt�11 ; dt�12 ; :::; dt�1N g (14)

3.2.2 Seller Value

The advertiser�s bid determines the cost of advertising and must be weighed against the potential

return when deciding how much to bid. We denote advertiser j�s valuation regarding one download

of its product in period t as vtj . We assume that this valuation is private information but drawn

from a normal distribution that is commonly known to all advertisers. Speci�cally,

vtj = v(Xt
j ; �) +R

t
j (15)

= v(Xt
j ; �) + rj + r

t
j

= Xt
j� + rj + r

t
j

where � are parameters to be estimated and re�ect the e¤ect of product attributes on valuation;

and Rtj = rj + r
t
j . rj and r

t
j are independent random terms. rj � N(0;  21) is a random e¤ect term

assumed to be identically and independently distributed across advertisers. This random term

captures heterogeneity in valuations that may arise from unobserved �rm speci�c e¤ects such as

more e¢ cient operations. rtj � N(0;  22) is a private shock to an advertiser�s valuation in period

t, assumed to be identically and independently distributed across advertisers and periods. The

sources of this private shock may include: (1) temporary increases in the advertiser�s valuation due

to some events such as a promotion campaign; (2) unexpected shocks to the advertiser�s budget for

�nancing the payments of the auction; (3) temporary production capacity constraint for delivering

20Though state variables can be categorized as endogeneous (past downloads) and exogenous (product attributes),
our exposition characterizes only downloads as state variables because these are the only states whose evolution is
subject to a dynamic constraint.
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the product to users and so on. Given the distributions of rj and rtj , the distribution of R
t
j is

N(0;  21 +  
2
2).

21

3.2.3 Seller Pro�ts: A Markov Perfect Equilibrium (MPE)

Given state variable st, vtj , predicted downloads and search engine�s auction rules, bidder j decides

the optimal bid amount btj with the objective of maximizing discounted present value of payo¤s. In

light of this, every advertiser has an expected period payo¤, which is a function of st, Xt, Rtj and

all advertisers�bids bt

E�j
�
bt; st;Xt; Rtj ; �

�
(16)

=
XK

k=1
Pr
�
kjbtj ;bt�j ; st;Xt

�
� (vtj � btj) � d(k;Xt

j ; 
c)

+
XN

k=K+1
Pr
�
kjbtj ;bt�j ; st;Xt

�
� vtj � d(k;Xt

j ; 
c)

=
XK

k=1
Pr
�
kjbtj ;bt�j ; st;Xt

�
� (Xt

j� + rj + r
t
j � btj) � d(k;Xt

j ; 
c)

+
XN

k=K+1
Pr
�
kjbtj ;bt�j ; st;Xt

�
� (Xt

j� + rj + r
t
j) � d(k;Xt

j ; 
c)

where the expectation for pro�ts is taken over other advertisers�bids bt�j . Pr (kj�) is the conditional
probability of advertiser j getting slot k, k = 1; 2; :::; N . Pr (kj�) depends on not only bids, but
also states st (the previous period�s downloads) and product attributes Xt.22 This is because: i)

the premium slot allocation is determined by the ranking of fbtjdt�1j g8j , where dt�1 are the state
variables and ii) the organic slot allocation is determined by product update recency, an element

of Xt.

In addition to the current period pro�t, an advertiser also takes its expected future payo¤s into

account when making decisions. In period t, given the state vector st, advertiser j�s discounted

expected future payo¤s evaluated prior to the realization of the private shock Rtj is given by

E
hX1

�=t
���t�j

�
b� ; s� ;X� ; R�j ; 
a

�
jst
i

(17)

where 
a = f�;  0g and  0 = f 1;  2g. � is a common discount factor. The expectation is taken
over the random term Rtj , bids in period t as well as all future realization of X

t, shocks, bids and

state variables. The state variables st+1 in period t + 1 is drawn from a probability distribution

P
�
st+1jbt; st;Xt

�
.

21The random shock rtj is realized at the beginning of period t. Although r
t
j is private knowledge, the distribution

of rtj � N(0;  22) is common knowledge among bidders. Further, the random e¤ect rj of bidder j are known to all
bidders but not to researchers. Given bidders may observe opponents�actions for many periods, the random e¤ect
can be perfectly inferred (Greene (2003)).
22Note that st and Xt are observed by all bidders before bidding.
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We use the concept of a pure strategy Markov perfect equilibrium (MPE) to model the bidder�s

problem of whether and how much to bid in order to maximize the discounted expected future

pro�ts (Bajari et al. (2007); Ryan and Tucker (2007); Dubé et al. (2008); and others). The

MPE implies that each bidder�s bidding strategy only depends on the then-current pro�t-related

information, including state, Xt and its private shock Rtj . Hence we can describe the equilibrium

bidding strategy of bidder j as a function �j
�
st;Xt; Rtj

�
= btj . Given a state vector s and product

attributes X and prior to the realization of current Rj (with the time index t suppressed), bidder

j�s expected payo¤ under the equilibrium strategy pro�le � = f�1; �2; :::; �Ng can be expressed
recursively as:

Vj (s;X;�) = E

�
�j (�; s;X; Rj ; 
a) + �

Z
s0
Vj
�
s0;X0;�

�
dP
�
s0jb; s;X

�
js
�

(18)

where the expectation is taken over current and future realizations of random terms R and X.

The advertiser model can then be used in conjunction with the consumer model to forecast

advertiser behavior as we shall discuss in the policy simulation section. In a nutshell, we presume

advertiser will choose bids to maximize their expected pro�ts. A change in information states,

bidding mechanisms or webpage design will lead to an attendant change in bids conditioned on the

advertisers value function which we estimate as described next.

4 Estimation

4.1 An Overview

Though it is standard to estimate dynamic MPE models via a dynamic programming approach

such as a nested �xed point estimator (Rust (1994)), this requires one to repetitively evaluate the

value function (18) through dynamic programming for each instance in which the parameters of

the value function are updated. Even when feasible, it is computationally demanding to implement

this approach. Instead, we consider the class of two-step estimators. The two-step estimators

are predicated upon the notion that the dynamic program can be estimated in two steps that

dramatically simplify the estimation process by facilitating the computation of the value function.

Speci�cally, in this application we implement the two-step estimator proposed by Bajari et al.

(2007) (BBL henceforth).

As can be seen in equation 18, the value function is parameterized by the primitives of the value

distribution 
a = f�;  0g. Under the assumption that advertisers are behaving rationally, these
advertiser private values for clicks should be consistent with observed bidding strategies. Therefore,

in the second step estimation, values of 
a = f�;  0g are chosen so as to make the observed bidding
strategies to be congruent with rational behavior. We detail this step in Section 4.3 below.
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However, as can be observed in equations 18 and 16, computation of the value function is also

incumbent upon i) the bidding policy function that maps bids to the states (downloads), product

attributes, and private shocks �j
�
st;Xt; Rtj

�
= btj ; ii) the expected downloads d(k;X

t
j ; 
c); and

iii) a function that maps the likelihood of future states as a function of current states and actions

P
�
st+1jbt; st;Xt

�
. These are estimated in the �rst step as detailed in Section 4.2 below and then

substituted into the value function used in the second step estimation.

4.2 First Step Estimation

In the �rst step of the estimation we seek to obtain:

1. A �partial�policy function e�j (s;X) describing the equilibrium bidding strategies as a function
of the observed state variables and product attributes, X. We estimate the policy function

by noting that players adopt equilibrium strategies (or decision rules) and that behaviors

generated from these decision rules lead to correlations between i) the observed states (i.e.,

past period downloads) and product characteristics and ii) advertiser decisions (i.e., bids).

The partial policy function captures this correlation. In our case, we use a random e¤ects

Tobit model to link bids to states and product characteristics as described in Section A.1.1

of the Appendix. Subsequently, the full policy function �j (s;X; Rj) can be inferred based one�j (s;X) and the distribution of private random shocks Rj . The partial policy function can

be thought of as the marginal distribution of the full policy function. Inferences regarding

the parameters of the full policy function can be made by �nding the distribution of Rj that,

when �integrated out,� leads to the best rationalization for the observed bids. We discuss

our approach to infer the full policy functions from the partial policy function in Appendix

A.1.1.

2. The expected downloads for a given �rm at a given slot, d(k;Xj ; 
c). The d(k;Xj ; 
c) follows

directly from the consumer model. Hence, the �rst step estimation involves i) estimating the

parameters of the consumer model and then ii) using these estimates to compute the expected

number of downloads. The expected total number of downloads as a function of slot position

and product attributes is obtained by using the results of the consumer model to forecast

the likelihood of each person downloading the software and then summing these probabilities

across persons.23 We discuss our approach for determining the expected downloads in Section

A.1.2 of the Appendix.

23As an aside we note that advertisers have limited information from which to form expectations about total
downloads because they observe only the aggregate information of downloads but not the individual speci�c download
decisions. Hence advertisers must infer the distribution of consumer preferences from these aggregate statistics. In
a subsequent policy simulation we allow the search engine to provide individual level information to advertisers in
order to assess how it a¤ects advertiser behavior and therefore search engine revenues.
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3. The state transition probability P (s0jb; s;X) which describes the distribution of future states
(current period downloads) given observations of the current state (past downloads), product

attributes and actions (current period bids). These state transitions can be derived by i)

using the policy function to predict bids as a function of past downloads, ii) determining the

slot ranking as a function of these bids, past downloads and product attributes, and then iii)

using the consumer model to predict the number of current downloads as a function of slot

position. Details regarding our approach to determining the state transition probabilities is

outlined in Section A.1.3 of the Appendix.

With the �rst step estimates of �j (s;X; Rj) ; d(k;Xj ; 
c) and P (s0jb; s;X), we can compute
the value function in 18 as a function with only 
a = f�;  0g unknown. In the second step we
estimate these parameters.

4.3 Second Step Estimation

The goal of the second step estimation is to recover the primitives of the bidder value function,


a = f�;  0g: The intuition behind how the second-stage estimation works is that true parameters
should rationalize the observed data. For bidders�data to be generated by rational plays, we need

Vj (s;X;�j ;��j ; 
a) � Vj
�
s;X;�0j ;��j ; 
a

�
;8�0j 6= �j (19)

where �j is the equilibrium policy function; �0j is some deviations from �j . This equation means

that any deviations from the observed equilibrium bidding strategy will not result in more pro�ts.

Otherwise, the strategy would not be optimal. Hence, we �rst simulate the value functions under

the equilibrium policy �j and the deviated policy �0j (i.e., the left hand side and the right hand

side of equation 19). Then we try to choose 
a = f�;  0g to maximize the likelihood that equation
19 holds. We describe the details of this second step estimation in Appendix A.2.

4.4 Sampling Chain

With the posterior distributions for the advertiser and consumer models established, we estimate

the models using MCMC approach as detailed in Appendix B. This is a notable deviation from

prior research that uses a gradient based technique. The advantage of using a Bayesian approach,

as long as suitable parametric assumptions can be invoked, is that it facilitates model convergence,

has desirable small sample properties, increases statistical e¢ ciency, and enables the estimation of

a wide array of functional forms (Rossi et al. (2005)). Hence we seek to make a methodological

contribution to the burgeoning literature on two-step estimators for dynamic games.
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5 Results

5.1 First Step Estimation Results

Recall, the goal of the �rst step estimation is to determine the policy function, �j
�
st;Xt; Rtj

�
, the

expected downloads d(k;Xt
j ; 
c); and the state transition probabilities P

�
st+1jbt; st;Xt

�
: To deter-

mine �j
�
st;Xt; Rtj

�
, we �rst estimate the partial policy function e�j �st;Xt

�
and then compute the

full policy function. To determine d(k;Xt
j ; 
c); we �rst estimate the consumer model and then com-

pute the expected downloads. Last P
�
st+1jbt; st;Xt

�
is derived from the consumer model and the

partial policy function. Thus, in the �rst stage we need only to estimate the partial policy function

and the consumer model. With these estimates in hand we compute �j
�
st;Xt; Rtj

�
; d(k;Xt

j ; 
c);

and P
�
st+1jbt; st;Xt

�
for use in the second step. Thus, below, we report the estimates for the

partial policy function and the consumer model on which these functions are all based.

5.1.1 Partial Policy Function e�j(s;X)
The vector of independent variables (s;X) for the partial policy function (i.e., the Tobit model

of advertiser behavior that captures their bidding policy as outlined in Appendix section A.1.1)

contains the following variables:

� Product j�s state variable, last period download dt�1j . We reason that high past downloads

increase the likelihood of a favorable placement and therefore a¤ect bids.

� Two market level variables, the sum of last period downloads from all bidders and the number
of bidders in last period. Since we only have 322 observations of bids, it is infeasible to estimate

a parameter to re�ect the e¤ect of each opponent�s state (i.e., competition) on the optimal bid.

Moreover, it is unlikely a bidder can monitor every opponent�s state in each period before

bidding because such a strategy carries high cognitive and time costs. Hence, summary

measures provide a reasonable approximation of competing states in a limited information

context. Others in the literature who have invoked a similar approach include Jofre-Bonet

and Pesendorfer (2003) and Ryan (2006). Like them, we �nd this provides a fair model �t.

Another measure of competitive intensity is the number of opponents. Given bidders cannot

directly observe the number of competitors in the current period, we used a lagged measure

of the number of bidders.

� Product j�s attributes in period t (Xt
j); including its non-trial version price, expert rating,

consumer rating, update recency and compatibility with old/unpopular OS. We expect that

a higher quality product will yield greater downloads thereby a¤ecting the bidding strategy.
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� To control the possible e¤ect of the growth of ownership of MP3 players, we also collect
the average lagged price of all new MP3 players in the market from a major online retailing

platform (www.pricegrabber.com).

Table 4 reports the estimation results for the Tobit model. As a measure of �t of the model,

we simulated 10,000 bids from the estimated distribution. The probability of observing a positive

simulated bid is 41:0%; the probability of observing a positive bid in the real data is 41:6%.

Conditional on observing a positive simulated bid, those bids have a mean of $0:20 with a standard

deviation of $0:07. In the data the mean of observed positive bids is $0:20 and the standard

deviation is $0:08. We also estimate the same model only using 70% (227=322) of the observations

and use the left 30% as a holdout sample. The estimates have minimal changes. We then use the

holdout to simulate 10,000 bids. The probability of observing a positive bid is 40:2% while there

are 41:1% positive bids in the holdout sample. Among the positive simulated bids, the mean is

$0:22 and the standard deviation is $0:09. The corresponding statistics in the holdout is $0:21 and

$0:11. Overall, the �t is good.

Table 4: Bidding Function Estimates

Median 95% Interval
'
Constant �10:55� (�15:23;�6:78)
Lagged Downloadsjt/103 �0:12� (�0:16;�0:08)
Total Lagged Downloadst/103 0:04� (0:01; 0:08)
Lagged Number of Bidderst 0:04 (�0:55; 0:26)
Lapse Since Last Updatejt �0:41� (�0:85;�0:05)
Non-trial Version Pricejt 0:37� (0:31; 0:39)
Expert Ratingsjt 0:44 (�6:30; 2:77)
Consumer Ratingsjt 0:92� (0:09; 1:66)
Compatibility Indexjt �1:73� (�2:79;�0:75)
Lagged MP3 Player Pricet 0:03� (0:02; 0:03)

� 7:51� (7:02; 7:99)
� re 14:75� (14:55; 14:94)
Log Marginal Likelihood �1148:05

The estimates yield several insights into the observed bidding strategy. First, the bidder�s state

variable (dt�1j ) is negatively correlated with its bid amount btj because the ranking of the auction

is determined by the product of btj and d
t�1
j . All else equal, a higher number of lagged downloads

means a bidder can bid less to obtain the same slot. Second, the total number of lagged downloads

in the previous period (
P

j0 d
t�1
j0 ) and the lagged number of bidders both have positive impact on

a bidder�s bid. We take this to mean increased competition leads to higher bids. Third, bids are

increasing in the product price. One possible explanation is that a high priced product yields more

value to the �rm for each download and hence the �rm competes more aggressively for a top slot.
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Similarly and fourth, a high price for MP3 players re�ects greater value for the downloads also

leading to a positive e¤ect on bids. Fifth, �Lapse Since Last Update�has a negative e¤ect on bids.

Older products are more likely obsolete, thereby generating lower value for consumers. If this is

the case, �rms can reasonably expect fewer �nal purchases after downloads and bid less for these

products. Likewise and sixth, higher compatibility with prior software versions re�ects product age

leading to a negative estimate for this variable. Finally, ratings from consumers and experts (albeit

not signi�cant for experts) have a positive correlation with bid amounts �these again imply greater

consumer value for the goods making it more pro�table to advertise them.

5.1.2 Consumer Model

The consumer model is estimated using MCMC approach based on the posterior distribution de-

scribed in Appendix A.1.2. We consider the download decisions for each of the 21 products who

entered auctions plus the top 3 products who did not. Together these �rms constitute over 80% of

all downloads. The remaining number of downloads are scattered across 370 other �rms, each of

whom has negligible share. Hence we exclude them from our analysis.

Table 5: Alternative Numbers of Latent Segments

Log Marginal Likelihood
1 Segment �12769:3
2 Segments� �12511:9
3 Segments �12571:1
4 Segments �12551:4

We calibrate the model by estimating an increasing number of latent segments until there is

no signi�cant improvement in model �t. We use log marginal likelihood as the measurement for

model �t. In Table 5 we report the comparison of the log marginal likelihoods for models with up

to 4 segments. The model with 2 segments gives the best result.

Table 6 presents the estimates of the model with 2 segments. Conditional on the estimated

segment parameters and demographic distribution, we calculate the segment sizes as 89:5% and

10:5%, respectively. Based on the parameter estimates in Table 6, Segment 1 is less likely to initiate

a search (low �g0). Moreover, upon engaging a search, this segment appears to be less sensitive to

slot ranking but more sensitive to consumer and expert ratings than Segment 2. Segment 2,

who searches more frequently, relies more heavily on the slot order when downloading. Overall,

we speculate that segment 1 are the occasional downloaders who base their download decisions

on others� ratings and tend not to exclude goods of high price. In contrast, segment 2 are the

�experts,�who tend to rely on their own assessments when downloading.
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Table 6: Consumer Model Estimates

Segment 1 (89:5%)
(Infrequent searcher)

Segment 2 (10:5%)
(Frequent searcher and slot sensitive)

Median
(95%Interval)

Median
(95%Interval)

�g (utility parameters)
Constant �0:09

(�0:11;0:001)
0:35

(0:31;0:38)

Slot Rank �0:08
(�0:06;�0:09)

�0:51
(�0:52;�0:50)

Non-trial Version Price 0:03
(0:03;0:04)

�0:04
(�0:04;�0:03)

Expert Ratings 0:16
(0:15;0:17)

0:06
(0:06;0:07)

Consumer Ratings 0:11
(0:11;0:12)

0:03
(0:03;0:05)

Compatibility Index �0:08
(�0:09;�0:07)

0:16
(0:16;0:17)

Total Download Percentage 0:01
(�0:02;0:05)

0:09
(0:08;0:10)

�g (sorting/�ltering scaling) 1:52
(1:48;1:55)

1:87
(1:78;1:99)

�g (search probability)
�g0 (base) �10:22

(�10:75;�9:60)
�0:78

(�1:21;�0:54)
�g1 (1-correlation) 0:02

(0:01;0:02)
0:03

(0:01;0:04)


g (segment parameters)
Constant � �4:01

(�4:74;�2:87)
Music Site Visited � 7:66

(5:77;10:18)

Registration Status � �0:24
(�1:91;0:86)

Product Downloaded
in Last Month

� �0:40
(�1:57;�0:02)

29



More insights on this contrast can be gleaned by determining the predicted probabilities of

searching and sorting/�ltering by computing Pr(searchgi ) =
exp(�g0+�

g
1IV

g
it)

1+exp(�g0+�
g
1IV

g
it)
and Pr(�)git =

exp(Ug�it )
3P

�0=0
exp(Ug�

0
it )

in equation 9 and 7, respectively. Table 7 reports these probabilities for both segments.

Table 7: Searching Behavior of Consumers

Segment 1 Segment 2
Searching 0:4% 60:8%
No sorting or �ltering 78:7% 86:1%
Sorting but no �ltering 21:3% 8:2%
No sorting but �ltering ! 0 5:5%
Sorting and �ltering ! 0 0:3%

Table 7 con�rms the tendency of Segment 2 to be more likely to initiate a search in the focal

category. Though comprising only 10:5% of all consumers, they represent 95% of all searches. The

increased searching frequency suggests that members of Segment 2 are ideal customers to target

because more searches lead to more downloads.

Moreover, Segment 2 is more likely to be in�uenced by sponsored advertising. To see this, note

that Segment 1 consumers put more weights on ratings of products (e.g., expert and consumer

ratings) than Segment 2 consumers do. As a consequence Segment 1 consumers engage in far more

sorting. Sorting eliminates the advantage conferred by sponsored advertising because winners of

the sponsored search auction may be sorted out of desirable slots on the page.

However, Table 7 indicates consumers in Segment 1 seldom �lter. Filtering occurs when con-

sumers seek to exclude negative utility options from the choice set. Given the high sensitivity to

rank order, Segment 2 is more prone to eliminate options. We suspect this segment, by virtue of

being a frequent visitor, searches for very speci�c products that conform to a particular need. This

also increases the chance a sponsored link will be �ltered. Overall, however, Segment 1 is more

likely to sort and/or �lter than Segment 2 (21:3% vs. 13:9%) suggesting that Segment 2 is more

valuable to advertisers. We will explore this conjecture in more detail in our policy analysis.

5.2 Second Step Estimation Results

Table 8 shows the results of second step estimation.24 We �nd that newer, more expensive and

better rated products yield greater values to the advertiser. This is consistent with our conjecture

in Section 5.1.1 that �rms bid more aggressively when having higher values for downloads. We

�nd that, after controlling for observed product characteristics, 95% of the variation in valuations

24We do not estimate the discount factor �. As shown in Rust (1994), the discount factor is usually unidenti�ed.
We �x � = 0:95 for our estimation. We also experiment � = 0:90 and see minimal di¤erence in the results.

30



Figure 5: Distribution of Values per Download

across �rms is on the order of $0:02. We attribute this variation in part due to di¤erences in the

operating e¢ ciency of the �rms.

Table 8: Value per Click Parameter Estimates

Median 95% Interval
�
Constant 5:55� (3:02; 6:34)
Lapse Since Last Updatejt �0:74� (�0:84;�0:59)
Non-trial Version Pricejt 0:24� (0:15; 0:39)
Expert Ratingsjt 0:50� (0:27; 0:59)
Consumer Ratingsjt 1:23� (1:10; 1:41)
Compatibility Indexjt �0:31� (�0:43;�0:21)
Lagged MP3 Player Pricet 0:03� (0:02; 0:04)

 1, random e¤ect std. dev. 0:75� (0:04; 1:89)
 2, random shock std. dev. 0:45� (0:03; 0:99)

Log Marginal Likelihood �1683:41

Given the second step results, we can further estimate the value of a download to a �rm. We

estimate the advertiser�s value for a download in each period. The distribution of these estimates

across time and advertisers is depicted in Figure 5. As indicated in the �gure there is substantial

variation in the valuation of downloads. Table 8 explains some of this variation as a function of the

characteristics of the software and �rm speci�c e¤ects. Overall, the mean value of a download to

these advertisers is $0:24. This compares to an average bid of $0:20 as indicated in Table 1. Hence,
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on average, each click implies an expected return to a �rm of about $0:04: To our knowledge, this is

the �rst paper to impute the advertiser�s return from a click in a key word search context. One way

to interpret these results is to consider the �rm�s expected sales per download to rationalize the bid.

The �rm�s pro�t per click is roughly CRtj �P tj�btj ; where CRtj indicates the download-sale conversion
rate (or sales per download) and P tj is the non-trial version price. Ignoring dynamic e¤ects and

setting this pro�t per click equal to vtj � btj yields a rough approximation of the conversion rate as
CRtj = vtj=P

t
j . Viewed in this light, the e¤ect of higher quality software, which raises v

t
j , leads to a

higher implied conversion rate.25 Noting that the average price of the software is $22, this average

per-click valuation implies that 1.1% of all clicks lead to a purchase (that is, the conversion rate is

0:24=22 = 1:1%). This estimate lies within the industry average conversion rate of 1� 2% reported

by Gamedaily.com, suggesting our �ndings have high face validity.26

6 Policy Simulations

We describe four policy simulations: i) the value of disaggregate consumer data, ii) the value of

targeting (i.e., not only allowing advertisers to bid on keywords but also on market segments.) iii)

the e¤ect of alternative pricing mechanisms on search engine revenue and iv) the e¤ect of alternative

webpage designs on search engine revenues.27 Details regarding the implementation of the policy

simulations are presented in Appendix C. Hence,we limit our discussion to the objectives and

insights from these simulations.

6.1 Policy Simulation I: Incorporating Disaggregate-level Data

Advertisers and search engines are endowed with di¤erent levels of information. The search engine

know all of the clicks made by visitors to its site. The advertiser knows only the total number

of downloads all the advertisers received. Hence, there is an information asymmetry arising from

the di¤erent level of market intelligence accruing to each respective agent. Given this disaggregate

consumer information is owned by the search engine but not observed by advertisers, it is relevant to

ask how the information revelation from the platform to advertisers will a¤ect advertiser behavior

and hence platform revenues. In practice, this means that the platform is interested in whether

to sell or give this information to advertisers and how it should be priced. More generally, this

25Note we do not model the equilibrium pricing strategy of the �rms. We conjecture that this pricing game is
played across multiple markets and media as well as over a longer time horizon. The characteristics of the key word
advertising problem likely have only a small e¤ect on prices set by �rms. Our treatment of prices as exogenous is
consistent with all the prior research in key word search.
26�Casual Free to Pay Conversion Rate Too Low.� Gamedaily.com (http://www.gamedaily.com/articles/

features/magid-casual-free-to-pay-conversion-rate-too-low/70943/?biz=1).
27These policy simulations may involve explicitly solving the dynamic programming problem for advertisers. This

is because the environment variables such as auction rules have been changed, which makes the estimated bidding
policy function become inapplicable. The advance in research on approximate dynamic programming makes solving
high-dimension DP problems become possible (Powell (2007)).
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counterfactual exempli�ed the value of market intelligence and how it can be computed in the

context of a structural model.

Accordingly, we implement a counterfactual scenario under which advertisers have access to the

click histories of consumers. We then assess i) how bidding behavior and returns to advertisers

change under this counterfactual information structure and ii) how the resulting revenues change

at the search engine. By comparing these returns with those in the observed case of information

asymmetry, we can obtain a measure for the value of the information. This value leads to managerial

prescriptions for the search engine regarding the pricing strategy of such information.

6.2 Policy Simulation II: Segmentation and Targeting

It can be pro�table for advertisers to target speci�c consumers. In this instance, instead of a single

bid on a key word, an advertiser can vary its bids across market segments. For example, consider

two segments A and B wherein segment B is more sensitive to product price and segment A is more

sensitive to product quality. Consider further, two �rms X and Y where �rm X purveys a lower

price, but lower quality, product. Intuitively, �rm X should bid more aggressively for segment B

because quality sensitive segment A will not likely buy the low quality good X. This should lead to

higher revenues for the search engine. On the other hand, there is less bidding competition for �rm

X within segment B because Y �nds this segment unattractive �this dearth of competition can

drive the bid of X down for segment B. This would place a downward pressure on search engine

pro�ts. Hence, the optimal revenue outcome for the search engine is likely to be incumbent upon

the distribution of consumer preferences and the characteristics of the goods being advertised. Our

approach can assess these e¤ects of segmentation and targeting strategy on the search engine�s

revenue.

6.3 Policy Simulation III: Alternative Auction Mechanisms

Auction mechanism design has established a rich literature body since the study by Vickrey (1961).

With the purpose of revenue maximization,28 the optimal design involves several aspects such as

the determination of payments and winners as well as the choice of reserve price. We will focus on

the payment rule in this investigation.

While the focal search engine currently charges winning advertisers their own bids, many major

search engines such as Google and Yahoo! are applying a �generalized second-price auction� as

termed in Edelman et al. (2007). Under the generalized second-price auction rules, winners are

still determined by the ranking of fbtj0d
t�1
j0 g8j0 . However, instead of paying its own bid amount,

28Sometimes e¢ ciency of allocation is also an objective of the auction design. An e¢ cient auction mechanism
enables the bidder with the highest value to win the best slot, the second value bidder to get the second best slot and
so on. While most search engines are pro�t-seeking �rms, we will only focus on the revenue maximization objective.
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the winner of a slot pays the highest losing bidder�s bid adjusted by their last period downloads.29

For example, suppose bidder j wins a slot with the bid of btj and last period download d
t�1
j ; its

payment for each download will be btj0d
t�1
j0 =dt�1j , where j0 is the highest losing bidders for the slot

bidder j wins.

In the context of sponsored search auctions, although �generalized second-price auction� is

widely adopted by major search engines, the optimality of such a mechanism is not con�rmed

(Iyengar and Kumar (2006); Katona (2007)). With the estimates from the model, we are able to

implement a policy simulation by altering the payment rule of the game and compare the revenues of

the search engine under the two di¤erent mechanisms. We intend to gain some empirical knowledge

about the auction mechanism design in sponsored search auctions, which will also shed insights into

future theoretical investigations.

6.4 Policy Simulation IV: Alternative Webpage Design

The goal of the search engine�s sorting/�ltering options is to provide consumers with easier access

to price and rating information across di¤erent products. As shown in section 3.1 and evidenced

by our results, sorting and �ltering play a crucial role in consumer decision process. In light of this

outcome, it is possible to consider an alternative webpage design of the search engine �eliminating

the option of sorting and �ltering for consumers �and assessing the resulting impact on consumer

search, advertiser bidding, and the search engine�s revenues. As we note below, the sorting and

�ltering options can have con�icting outcomes on the nature of competition and therefore advertiser

bidding behavior.

One view is that sorting increases competition by making products more substitutable. Alba

et al. (1997) hence express the concern faced by many online retailers: since online shopping reduces

search costs, consumers increase their consideration sets which intensi�es competition. Diehl et al.

(2003) show that, based on a consumer�s keyword query, search engines oversample products that

match the consumer�s interests; these sampled products are more likely to be close substitutes.

Thus, there will be less product di¤erentiation and more intensi�ed competition. An implication

for sponsored search advertising is that advertisers would bid more aggressively in the auctions to

secure premium slots in order to di¤erentiate their goods.

An alternative view, espoused by Lynch and Ariely (2000), proposes that sorting may actually

decrease competition. Search engines not only lead to lower search costs, but they can also make

quality information more salient. When making decisions, consumers place greater weight on

attributes that are more convenient to process (cf. Russo (1977); Häubl and Murray (2003)).

In our case, the consumer and expert ratings become more prominent to consumers. Thus, when

consumers have the easier access to rating information, the product quality becomes more important

to consumers and advertisers may have less incentive to bid.

29 In the paper by Edelman et al. (2007), the adjustment using last period downloads is not considered.
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Using our model, it can be tested which e¤ect may have a greater impact on consumer behavior

and therefore the advertisers�bidding incentives. Using our integrated approach to assessing ad-

vertiser and consumer behavior, we can further impute the consequences of a change in web page

design on search engine revenues.

7 Conclusion

Given the $9B �rms annually spend on key word advertising and its rapid growth, we contend that

the topic is of central concern to advertisers and platforms that host advertising alike. In light of

this growth, it is surprising that there is little extant empirical research pertaining to modeling

the demand and pricing for key word advertising. As a result, we develop a dynamic structural

model of advertiser bidding behavior coupled with an attendant model of search behavior. The

interplay of these two agents has a number of implications for the platform that hosts them. The

model is dynamic because past clicks on the advertisers� links a¤ect the search engine�s current

allocation of advertising slots. We adopt a structural approach in order to simulate the e¤ect

of various changes in the search engine�s policy. In particular, we consider i) how the platform

or search engine should price its advertising via alternative auction mechanisms, ii) whether the

platform should accommodate targeted bidding wherein advertisers bid not only on key words, but

also behavioral segments (e.g., those that purchase more often), iii) whether and how the search

engine should sell information on individual clicking histories and iv) how an alternative webpage

design of the search engine with less product information would a¤ect bidding behavior and the

engine�s revenues.

Our model of bidding behavior is predicated on the advertiser choosing its bids to maximize

the net present value of its discounted pro�ts. The period pro�ts contain two components � i)

the advertiser�s value for a given click times the number of clicks on the advertisement and ii) the

payment in form of the bid per click times the number of clicks on the advertisement. Whereas

the advertiser�s costs are determined by their bids, we infer the advertiser�s valuation for clicks.

Speci�cally, we estimate valuations by choosing them such that, for an observed set of bids, the

valuations rationalize the bidding strategy; that is, making pro�ts as high as possible. In this sense,

our structural model �backs out� the advertiser�s expectation for the pro�t per click. Given an

estimate of these valuations, it becomes possible to ascertain how advertiser pro�ts are a¤ected by

a change in the rules of the auction, a change in the webpage design, or a change in the information

state of the advertiser. As noted above, another central component to the calculation of advertiser

pro�ts is the expectation of the number of clicks on its advertisement received from consumers.

This expectation of clicks is imputed from our consumer model.

Our consumer choice model follows from the standard random utility theory (McFadden (1977))

and is computed using traditional MCMC methods adapted to our context. The advertiser model

35



is less straightforward because it is a dynamic program. We use recent advances in economics

wherein a two-step estimator is applied to the problem (BBL). The �rst step is used to infer the

bidding policy and consumer clicking behavior. The second step is used to infer the advertiser

valuations conditioned on the bidding strategy and the consumer clicking decisions. Our approach

departs from previous work on two-step estimators via our Bayesian instantiation. Like all MCMC

approaches, this innovation enables one to estimate a broader set of models and does not rely on

asymptotic for inference (Rossi et al. (2005)).

The estimates from our empirical model yield some insights into advertiser bidding behavior

and consumer searching behavior. The estimates from advertiser bidding function indicates that

bid amounts have positive correlations with product attributes that may enhance product quality.

One possible explanation is that a higher quality leads to the advertiser�s greater valuation about

sponsored search advertising and hence the more aggressive bidding. Our consumer model indicates

that consumers who engage in more search and clicking may also be more responsive to sponsored

advertising than others. If so, these consumers should be the focus of advertisers and search engines�

marketing campaigns.

Further policy insights will be drawn from the ongoing policy simulations.

Several extensions are possible. First, we use a two-step estimator to model the dynamic bidding

behavior of advertisers without explicitly solving for the equilibrium bidding strategy. Solving

explicitly for this strategy could provide more insights into bidder behavior in this new marketing

phenomenon. For example, following the extant literature we assume that a bidder�s return of

the advertising only comes from consumers clicks. It is possible that advertisers also accrue some

values from the exposures at the premium slots. A clear characterization of bidding strategy can

better facilitate our understanding about how advertisers value sponsored advertising in term of

clicks and exposures and hence present a better guideline for search engines to design their pricing

schedule. Second, our analysis focuses upon a single category. Bidding across multiple keywords

is an important direction for future research. In particular, the existence of multiple keywords

auctions may present opportunities for collusions among bidders. For example, advertisers may

collusively diverge their bids to di¤erent keywords. By doing so, they can �nd a more pro�table

trade-o¤between payments to the search engine and clicks across keywords. In a theoretical paper by

Stryszowska (2005) the author shows an equilibrium where bidders implicitly collude across multiple

auctions in the context of online auctions such as eBay.com. One managerial implication is how to

detect and discourage collusions and reduce its negative impact on search engine revenues. Third,

competition between search engines over advertisers is not modeled. Though our data provider has

a dominant role in this speci�c category, inter-engine competition is unattended in the literature.

To some extent, sponsored search advertising can be understood as advertisers purchasing products

(media) from search engines through auctions. An advertiser makes discrete choice about search

engines before entering auctions. Little research has been done on the advertiser�s choice problem,
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even though there is abundant discrete choice research that can be applied (cf. Palma et al. (1992)).

Accordingly, the inter-engine competition deserves future attention. Overall, we hope this study

will inspire further work to enrich our knowledge of this new marketplace.
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Appendix

A Two Step Estimator

A.1 First Step Estimation

A.1.1 Estimating the Advertiser�s Policy Function

The Partial Policy Function The partial policy function links states (s) and characteristics

(X) to decisions (b). Ideally this relation can be captured by a relatively �exible parametric form

and estimated via methods such as maximum likelihood or MCMC to obtain the partial policy

function parameter estimates. The exact functional form is typically determined by model �t

comparison among multiple speci�cations (e.g., Jofre-Bonet and Pesendorfer (2003)). We consid-

ered several di¤erent speci�cations for the distribution of bids and found the truncated normal

distribution gives the best �t in terms of marginal likelihoods.30 Speci�cally, we allow

btj =

(
yt�j
0

if yt�j � �

otherwise
(A1)

yt�j � N([st0;Xt0
j ] � '+ 'rej ; �2)

'rej � N(0; �2re)

where [st0;Xt0
j ] is the vector of independent variables; � is the standard deviation of y

�
jt; '

re
j is a

bidder speci�c random e¤ect whose distribution is N(0; �2re); � is the truncation point, which is set

at 15 to be consistent with the 15c/ minimum bid requirement of the search engine.

One possible concern when estimating the partial policy function e� (s;X) (and the full policy
function � (s;X; Rj) next) is that there may be multiple equilibrium strategies; and the observed

data are generated by multiple equilibria. If this were the case, the policy function would not lead

to a unique decision and would be of limited use in predicting advertiser behavior. It is therefore

necessary to invoke the following assumption (BBL).

Assumption 2 (Equilibrium Selection): The data are generated by a single Markov perfect
equilibrium pro�le �.

Assumption 2 is relatively unrestrictive since our data is generated by auctions of one keyword and

from one search engine. Given data are from a single market, the likelihood is diminished that

di¤erent equilibria from di¤erent markets are confounded. We note that this assumption is often

employed in such contexts (e.g., Dubé et al. (2008)).

30We experimented alternative speci�cations including a Beta distribution and a Weibull distribution whose scale,
shape and location parameters are functions of (s;X). The current speci�cation gives the best �t in terms of marginal
likelihoods.

38



This partial policy function is then used to impute the full policy function bj = �j (s;X; Rj) as

detailed below based on Rj�s distribution parameters  0 = ( 1;  2).

Full Policy Functions �tj
�
st;Xt;Rtj

�
To evaluate the value function of this dynamic game, we

need to calculate bids as a function of not only (st;Xt) but also the unobserved shocks Rtj = rj+r
t
j

(see section 3.2.3). To infer this full policy function �j
�
st;Xt;Rtj

�
from the estimated partial policy

function, e�j(st;Xt), we introduce two additional assumptions.

Assumption 3 (Monotone Choice): For each bidder j, its equilibrium strategy �j
�
st;Xt;Rtj

�
is

increasing in Rtj (BBL).

Assumption 3 implies that bidders who draw higher private valuation shocks Rtj will bid more

aggressively.

Assumption 4: The ratio of standard deviations of rj and rtj equals to the ratio of � re and � , the
standard deviations of random e¤ects and shocks in the partial policy function.

Assumption 4 implies that the bidder�s latent variable yt�j are a¤ected proportionally by rj and rtj
in terms of magnitude.

To explore these two assumptions, note that the partial policy function e� �st;Xt
�
presents dis-

tributions for bid btj and the latent y
t�
j , whose CDF�s we denote as Fb

�
btj jst;Xt

�
and F

�
yt�j jst;Xt

�
,

respectively.31 According to the model in equation A1, the population mean of yt�j across bidders

and periods is [st;Xt
j ] �'. Around this mean, the variation across bidders and periods can be decom-

posed into two parts: the one that varies across both bidders and periods and the one only varies

across bidders. The former is captured by the variance term �2 and the latter is represented by

the random e¤ect variance �2re. With the assumptions 3 and 4, we can attribute �
2 to the random

shocks rtj that vary across both bidders and periods and �
2
re to rj that only vary across bidders.

Given the normal distribution assumption of the random shock Rtj = rj + r
t
j � N

�
0;  21 +  

2
2

�
,

we may impute the yt�j (and hence btj) for each combination of
�
st;Xt;Rtj

�
, i.e., the full policy

function. To see this, note that since �j
�
st;Xt;Rtj

�
is increasing in Rtj ,

32

F
�
yt�j jst;Xt

�
= Pr

�
�j
�
st;Xt;Rtj

�
� yt�j jst;Xt

�
= �

�
��1j

�
yt�j ; s

t;Xt
�
=

q
 21 +  

2
2

�
31To be more speci�c, we estimate a continuous distribution F

�
yt�j jst;Xt

�
for yt�j from equation A1; then condi-

tional on the trunction point �, we can back out the (discontinuous) distribution Fb
�
btj jst;Xt

�
for btj .

32 In this Appendix, we are abusing the notation of �j
�
st;Xt;Rtj

�
. For the purpose of a clear exposition, we

de�ne �j
�
st;Xt;Rtj

�
= btj in the paper. To match the bidding function estimated in equation A1, the more accurate

de�nition should be

btj =

�
yt�j
0

if yt�j � �
otherwise

yt�j = �j
�
st;Xt;Rtj

�
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where ��1j
�
yt�j ; s

t;Xt
�
is the inverse function of �j

�
st;Xt;Rtj

�
with respect to Rtj and �(�) is

the CDF of standard normal distribution. In equilibrium, we have �j
�
st;Xt;Rtj

�
= yt�j . By

substitution and rearrangement we get

yt�j = �j
�
st;Xt;Rtj

�
(A2)

= F�1
�
�

�
��1j

�
yt�j ; s

t;Xt
�
=

q
 21 +  

2
2

�
jst;Xt

�
= F�1

�
�

�
Rtj=

q
 21 +  

2
2

�
jst;Xt

�
= F�1

�
�
� eRtj=p1 + �2=�2re� jst;Xt

�
where ��1j

�
yt�j ; s

t;Xt
�
= Rtj ; R

t
j=
q
 21 +  

2
2 has a standard normal distribution.

Therefore there is a unique mapping between the likelihood of observing a given valuation

shock Rtj and the y
t�
j . Each Rtj drawn by a �rm implies a corresponding quantile on the Rtj�s

distribution; this quantile in turn implies a yt�j from the distribution represented by that �rm�s

partial bidding function e�j(st; Xt). However, because we do not know  1 and  2 and thus the

distribution of Rtj , we have to make draws from an alternative distribution eRtj = erj + ertj that has
a one-one quantile mapping to Rtj . To do this, we �rst draw the random e¤ect erj from N(0; 1)

and keep it �xed for bidder j across periods. Next for period t, we draw a random shock ertj from
some scaled normal distribution. To construct a proper one-one mapping of quantiles between

the two distribution of Rtj and eRtj , we need to make sure that the distribution of ertj is properly
scaled so that var(ertj)=var(erj) = var(rtj)=var(rj) =  22= 

2
1. Because of assumption 4, we know

that  22= 
2
1 = �2=�2re. Hence we should draw ertj � N(0; �2=�2re). Note that now eRtj = erj + ertj is

following a distribution N(0; 1 + �2=�2re). Therefore eRtj=p1 + �2=�2re has the same distribution of
N (0; 1) as Rtj=

q
 21 +  

2
2. Further, eRtj is properly scaled such that the quantiles of eRtj and Rtj

are uniquely mapped. We then compute the likelihood of eRtj=p1 + �2=�2re as �( eRtj=p1 + �2=�2re):
Next, we determine F

�
yt�j jst;Xt

�
using results estimated in A1 and looking at the distribution

of its residuals to determine F . That is, for each value of yt�j we should be able to compute its

probability for a given st and Xt using F . Accordingly, F�1 links probabilities to yt�j (therefore

btj) for a given s
t and Xt. We then use F�1 to link the probability �( eRtj=p1 + �2=�2re) to btj for a

particular st and Xt. In this manner we ensure the bids and valuations in equation (A11) comport.

In Appendix A.2.1, when evaluating the value function for a set of given parameter values of  1
and  2 in equation A11 or evaluating base functions de�ned in A12, we integrate out over the

unobserved shocks Rtj by drawing many erj and ertj from N(0; 1) and N(0; �2=�2re), respectively.
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A.1.2 Consumer Model Estimation

We derive the consumer model conditioned on the information state of the advertiser as described

in section 3.1. Given advertisers do not observe what each person downloaded or the characteristics

of these persons, it must infer consumer behavior from aggregate instead of individual level data.

Advertisers do observe the aggregate data in the form of download counts dt = fdt1; dt2; :::; dtNg
in period t. A single dtj follow a binomial distribution. Given the individual level download proba-

bilities Pijt in equation 12, a single dtj�s probability mass function is

 
Mt

dtj

!
[Pijt]

dtj [1�Pijt]Mt�dtj ;

where Mt is the consumer population size in period t. Hence the likelihood of observing dt is

L(dtj
c) =
Y

j

 
Mt

dtj

!
[Pijt]

dtj [1� Pijt]Mt�dtj

where 
c � f�g;�g; �g; 
g; �g0; �
g
1gg are parameters to be estimated.

Naturally, the full posterior distribution of the model will be the product of L(dtj
c) across
periods and p(
c), the prior distributions of parameters, i.e.,

p(
cjdata) /
Y
t

L(dtj
c) � p(
c) (A3)

An advertiser�s predicted downloads d(k;Xt
j ; 
c) can readily be constructed using the parameter

estimates as shown in equation 13

d(k;Xt
j ; b
c) =Mt

bPijt (A4)

This prediction is then used to forecast expectations of future downloads and slot positions in the

�rm�s value function in the second step estimation.

A.1.3 State Transition Function P
�
s
0 jbj ;b�j ; s;X

�
To compute the state transition, note that the marginal number of expected downloads is given by

the expected downloads given a slot position multiplied by the probability of appearing in that slot

position and then summed across all positions:

P
�
s
0 jbj ;b�j ; s;X

�
=
X

k
d(k;X; 
c) Pr (kjbj ;b�j ; s;X) (A5)
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The expected downloads given a slot position in A5 is de�ned in 13. We can decompose the

likelihood of appearing in slot k as follows

Pr(kjbj ;b�j ; s;X) (A6)

= Prfk�Kg (kjbj ;b�j ; s;X) Ifk � Kg+ Prfk>Kg(kjbj ;b�j ; s;X)Ifk > Kg

where Prfk�Kg (kjbj ;b�j ; s;X) is the probability of appearing in slot k of the sponsored search
section (i.e., k � K); and Prfk>Kg(kjbj ;b�j ; s;X) is the likelihood of appearing in slot k of the
organic search section (i.e., k > K). We discuss these two probabilities next.

Likelihood of Premium Slot k � K Let us �rst consider the likelihood of winning one of

the premium slots k (k � K), Prfk�Kg (kjbj ;b�j ; s;X) as an order statistic re�ecting the relative
quality of the advertiser�s bid, which is de�ned as bjd

(�1)
j . Higher quality bids are more likely to be

assigned to better slots. Denote 	bd(bj0d
(�1)
j0 js;X) as the distribution CDF of bj0d(�1)j0 ,8j0, where

d
(�1)
j0 is from the state vector and bj0 has a distribution depending on the strategy pro�le � (�).33

For bidder j to win a premium slot k by bidding bj , it implies that (1) among all of the other N �1
competing bidders, there are k�1 bidders have a higher ranking than j in terms of bj0d(�1)j0 and (2)

the other ones have a lower ranking than j. The probability of having a higher ranking than j is

[1�	bd(bjd(�1)j js;X)]. Thus the probability of bidder j winning slot k by bidding bj is simply an

order statistics as shown below; note that the combination

 
N � 1
k � 1

!
in the equation is because

any (k � 1) out of the (N � 1) competing bidders can have a higher ranking than j.34

Prfk�Kg (kjbj ;b�j ; s;X) (A7)

=

 
N � 1
k � 1

!
[1�	bd(bjd(�1)j js;X)]k�1[	bd(bjd(�1)j js;X)](N�1)�(k�1)

=

 
N � 1
k � 1

!
[1�	bd(bjd(�1)j js;X)]k�1[	bd(bjd(�1)j js;X)]N�k

Likelihood of Organic Slot k > K Next we consider what happens when an advertiser does

not win this auction and is placed in the organic search section. In this case, by the rules of the

auction, the bidder�s slot is determined by its update recency compared to all products in the

organic search section. For bidder j to be placed in organic slot k > K it implies that (1) there are

33 It is di¢ cult to write a closed form solution for 	bd but we may use the sample population distribution to
approximate 	bd.
34An alternative interpretation of equation A7 is the probability mass function (PMF) of a binomial distribution.

Among N � 1 competing bidders, there are k � 1 higher than bidder j and (N � 1)� (k � 1) lower than j; and the
probability of higher than j is [1�	bd(bjd(�1)j js;X)]. Hence we may consider the expression in A7 as the PMF of a
binomial distribution.
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K bidders have a higher ranking of bj0d
(�1)
j0 than bidder j (i.e., j loses the auction) and (2) among

the other N �K � 1 products (i.e., all products at the search engine less those who win premium
slots and j itself), there are k �K � 1 products have a higher update recency than j and (3) the
other ones have a lower ranking than j. Hence,

Prfk>Kg(kjbj ;b�j ; s;X)

= Pr(k > Kjbj ;b�j ; s;X) � Pr(kjbj ;b�j ; s;X; k > K) (A8)

where the �rst term is the probability of losing the auction (condition 1) and the second term

denotes the likelihood of appearing in position k > K (condition 2 and 3). Note that the main

reason for the di¤erence between A7 and A8 is the change of ranking mechanisms. The ranking

is based on bj0d
(�1)
j0 for k � K and update recency when k > K. The �rst term in A8 does not

appear as an order statistics (as shown below) since when k > K the order of bj0d
(�1)
j0 becomes

meaningless. Instead, the update recency is a¤ecting the ranking. The two terms in A8 can be

expressed as follows.

Losing the auction implies that among j�s N � 1 opponents, there are K bidders have a higher

ranking than j in terms of bj0d
(�1)
j0 . Hence,

Pr(k > Kjbj ;b�j ; s;X) =
 
N � 1
K

!
[1�	bd(bjd(�1)j js;X)]K (A9)

The conditional probability of being placed in an organic slot k > K (condition 2 and 3) is again

an order statistics.35 This distribution is incumbent upon the update recency of all N products

exclusive of the K winners in the sponsored search section. Denoting the distribution of update

recency of all products as 	up, which can be approximated from the sample population distribution

observed in the data, we obtain the following:

Pr(kjbj ;b�j ; s;X; k > K) (A10)

=

 
N �K � 1
k �K � 1

!
[1�	up]k�K�1[	up](N�K�1)�(k�K�1)

=

 
N �K � 1
k �K � 1

!
[1�	up]k�K�1[	up]N�k

Combining A10 and A9 into A8, and then A8 and A7 into A6 yields the state transition equation.

Given that we have detailed the estimation of the �rst step functions (�j (s;X; Rj), d(k;Xt
j ; 
c);

P (s0jb; s;X)), we now turn to the second step estimator, which is incumbent upon these �rst step
functions.
35This order statistics can again be interpreted as the PMF of a binomial distribution similar to A7.
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A.2 Second Step Estimation of Bidder Model

In this Appendix we detail how to estimate the parameters in the value function. This is done in

two phases; �rst we simulate the value function conditioned on 
a and second we construct the

likelihood using the simulated value function conditioned on 
a:

A.2.1 Phase 1: Simulation of Value Functions Given 
a

To construct the value function we �rst simplify its computation by linearization and, second, using

this simpli�cation we simulate the expected value function conditioned on 
a by integrating out

over draws for st, Xt, and (erj + ertj):
Linearize the Value Function We simplify the estimation procedure by relying on the fact

that equation 16 is linear in the parameters 
a. We can rewrite equation 16 by factoring out 
a.

E�j
�
bt; st;Xt; Rtj ; �

�
(A11)

=
XK

k=1
Pr
�
kjbtj ;bt�j ; st;Xt

�
� (v(Xt

j ; �) + rj + r
t
j � btj) � d(k;Xt

j ; 
c)

+
XN

k=K+1
Pr
�
kjbtj ;bt�j ; st;Xt

�
� (v(Xt

j ; �) + rj + r
t
j) � d(k;Xt

j ; 
c)

=

�XN

k=1
Pr
�
kjbtj ;bt�j ; st;Xt

�
� d(k;Xt

j ; 
c) �Xt
j

�
� �

+

�XN

k=1
Pr
�
kjbtj ;bt�j ; st;Xt

�
� d(k;Xt

j ; 
c) � erj� �  1
+

�XN

k=1
Pr
�
kjbtj ;bt�j ; st;Xt

�
� d(k;Xt

j ; 
c) � ertj� �  2
�btj

XK

k=1
Pr
�
kjbtj ;bt�j ; st;Xt

�
d(k;Xt

j ; 
c)

= Basetj1� +Base
t
j2 �Basetj3

where

Basetj1 �
�XN

k=1
Pr
�
kjbtj ;bt�j ; st;Xt

�
� d(k;Xt

j ; 
c) �Xt
j

�
(A12)

Basetj2 �

24 PN
k=1 Pr

�
kjbtj ;bt�j ; st;Xt

�
� d(k;Xt

j ; 
c) � erjPN
k=1 Pr

�
kjbtj ;bt�j ; st;Xt

�
� d(k;Xt

j ; 
c) � ertj
350

Basetj3 � btj
XK

k=1
Pr
�
kjbtj ;bt�j ; st;Xt

�
d(k;Xt

j ; 
c)erj � N(0; 1) ertj � N(0; �2=�2re)
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Note that the values of
n
Basetj1; Base

t
j2; Base

t
j3

o
8t
are conditionally independent of � and  .

This enables us to �rst evaluate
n
Basetj1; Base

t
j2; Base

t
j3

o
8t
and keep them constant when drawing

� and  from their posterior distributions. By doing so, we reduce the computational burden of

estimation as described next.

Simulate the Value Functions Given 
a After the linearization, given a set of advertiser

parameters 
a = f�;  1;  2g and equation A11, the value function depicted in equation 18 can also
be written as the following with period index t invoked:

Vj
�
s0;X0;�; 
a

�
= Es;X;R

" 1X
t=0

�t�j
�
�; st;Xt; Rtj ; 
a

�#
(A13)

= E[
1X
t=0

(�tBasetj1� +Base
t
j2 �Basetj3)]

= [E

1X
t=0

�tBasetj1]� + [E
1X
t=0

�tBasetj2] � [E
1X
t=0

�tBasetj3]

where the expectation is taken over current and future private shocks, future states st, future Xt

and Rt.

An estimated value function bVj �s0;X0;�; 
a� can then be obtained by the following steps:
1. Draw erj from N(0; 1) for all bidder j and keep erj �xed for all periods;
2. Draw private shocks ertj from N(0; �2=�2re) for all bidders j in period 0; draw initial choice of

s0 from the distribution of state variables derived from the observed data; draw X0 from the

observed distribution of product attributes.

3. Starting with the initial state s0, X0 and the (erj + er0j ) from step 1-2, calculate bb0j for all
bidders using the inversion (equation A2) described in Appendix A.1.1.

4. Use s0, X0 and bb0 to determine the slot ranking, whose distribution is Pr�kjbtj ;bt�j ; st;Xt
�

in equation A6 in Appendix A.1.3; using d(k;X0
j ; 
c) in equation (13), obtain a new state

vector s1, whose distribution is P (s1jbb0; s0;X0) in equation A5 in Appendix A.1.3; draw X1
from the observed distribution of product attributes.

5. Repeat step 2-4 for T periods for all bidders to compute all st, Xt, (erj + ertj)8j , and bt for all
periods; T is large enough so that the discount factor �T approaches 0.

6. Using st, Xt, (erj + ertj)8j , d(k;Xt
j ; 
c) and b

t, evaluate
n
Basetj1; Base

t
j2; Base

t
j3

o
t=0;:::;T

and�
[
TP
t=0

�tBasetj1]; [
TP
t=0

�tBasetj2]; [
TP
t=0

�tBasetj3]

�
:
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7. The resulting values of �
Basetj1; Base

t
j2; Base

t
j3

	
t=0;:::;T

and (
[

TX
t=0

�tBasetj1]; [

TX
t=0

�tBasetj2]; [

TX
t=0

�tBasetj3]

)
depend on the random draws of st;Xt; Rt. To compute(

[E

1X
t=0

�tBasetj1]; [E

1X
t=0

�tBasetj2]; [E

1X
t=0

�tBasetj3]

)
;

repeat step 1-6 for NR times so as to integrate out over the draws. Note that when T is large

enough [E
TP
t=0

�tBasetj�] is a good approximation of [E
1P
t=0

�tBasetj�] since �
T approaches 0.

8. Conditional on a set of parameters 
a = f�;  0g and(
[E

1X
t=0

�tBasetj1]; [E

1X
t=0

�tBasetj2]; [E

1X
t=0

�tBasetj3]

)
;

we may evaluate bVj �s0;X0;�; 
a� from (A13).

An estimated deviation value function bVj �s0;X0;�0j ;��j ; 
a� with an alternative strategy �0j
other than �j can be constructed by following the same procedure. We draw a deviated strategy

�0j by adding disturbance to the estimated policy function from Step 1. In particular, we add a

normally distributed random variable (mean = 0; s:d: = 0:3) to each parameter.

We implement this process by �rst drawingNS = 10 initial states for each bidder and fXtgt=0;1;:::;T
of all T = 200 periods. Then for each combination of bidder and initial state, we use this process

to compute the base value functions and ND = 100 perturbed base functions. In Step 6, we use

NR = 100. The discount factor � is �xed as 0:95.

The computational burden is reduced tremendously since we have linearized the value functions

and factored out the parameters 
a. We do not need to re-evaluate the value functions for each set

of parameters 
a. Instead, we only evaluate the base functions in equation A12 once using step 1-7

and keep them �xed. Then for each draw of 
a from the posterior distribution we may evaluate

the value functions (step 8) so as to recover 
a as described below.

A.2.2 Phase 2: Recover 
a

Recall our goal is to assess the likelihood that 19 holds. De�ne Pj
�
s0(ns);X

0;�; �0j ; 
a
�
as the

probability of the event
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nbVj(s0(ns);X0;�j ;��j ; 
a) � bVj(s0(ns);X0;�0j ;��j ; 
a)o ; (A14)

where s0(ns) stands for the ns-th initial state of bidder j. This event means that the estimated

value function for the given initial state s0(ns) with observed strategy �j is greater than the es-

timated value function with a deviation �0j . For observed data to be rational, we should have

Pj

�
s0(ns);X

0;�; �0j ; 
a
�
converging to 1 under the true parameters, in the sense that all ND draws

should result in the event of equation A14.

Note that Pj
�
s0(ns);X

0;�; �0j ; 
a
�
is not observed but it can be approximated with the sample

analog from the simulated ND draws of bVj(s0(ns); X0;�0j ; ��j ; 
a) as the follows:

bPj �s0(ns);X0;�; �0j ; 
a� (A15)

=
1

ND

XND

nd=1
I
nbVj(s0(ns);X0;�j ;��j ; 
a) � bVj(s0(ns);X0;�0j ;��j ; 
a)(nd)o

where the subscript (nd) indices the nd-th simulated bVj(s0(ns); X0;�0j ; ��j ; 
a).

By pooling together all bPj �s0(ns);X0;�; �0j ; 
a��s across bidders and (ns), we are able to con-
struct the likelihood function as the following

L =
Y

j;(ns)
bPj �s0(ns);X0;�; �0j ; 
a� (A16)

Denote the prior of 
a as p(
a), the posterior can be written as

p(
ajdata) /
Y

j;(ns)
bPj �s0(ns);X0;�; �0j ; 
a� p(
a) (A17)

B Sampling Chain

B.1 Advertiser Model

B.1.1 Priors

The advertiser model is speci�ed as

btj =

(
yt�j
0

if yt�j � �

otherwise
(A18)

yt�j � N([st0;Xt0
j ] � '+ 'rej ; �2)

'rej � N(0; �2re)

We iterate the sampling chain for 20,000 and use the second half of the chain to make inference.

The priors use a di¤used variance of 100; examinations of the posteriors shows that the choice of
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the variance is the order of magnitude greater than posterior distributions, which assures a proper

but di¤used prior (Spiegelhalter et al. (1996), Gelman et al. (2004)).

Priors Selected Value

' ' � N
�
'0; Id�

2
'

�
'0: estimates of an classical Tobit model of

bid btj on [s
t0;Xt0

j ] with the truncation at 15.

�2' = 100

Id is an identity matrix with the dimension of

the number of covariates vector [st0;Xt0
j ].

� re � re � TN(0;+1)(��1; �
2
�1)

36 ��1 = 5; �
2
�1 = 100

� � � TN(0;+1)(��2; �
2
�2) ��2 = 5; �

2
�2 = 100

B.1.2 Conditional Posteriors

� To facilitate explication denote the vector [st0;Xt0
j ] � Ztj , the matrix [Z

t
j ]8j;t as Z and the vec-

tor [yt�j ]8j;t � y�. We also denote the number of bidders as N and the number of observations

for bidder j as Nj . So the total number of observations is
P

j Nj ; the dimension of Ztj is 1

by d (the dimension of [st0; Xt0
j ]); the dimension of Z is

P
j Nj by d; the dimension of y� isP

j Nj . The vector of bidder speci�c random e¤ects, 're; is a column vector with a length

of
P

j Nj . The 're is constructed as N stacked sub-vectors, where the j-th sub-vector has

bidder j�s 'rej as its elements and a dimension of Nj .

� yt�j
yt�j is determined by the following

yt�j = btj ; if b
t
j > 0

yt�j � TN(�1;15](Z
t
j'+ '

re
j ; �

2); if btj = 0

yt�j is right truncated at 15 when btj = 0; this is consistent with the 15c/ minimum bid

requirement of the search engine.

� 'rej
36We do not use Gamma distribution as the prior. Natarajan and McCulloch (1998) show a di¤used proper

prior such as Gamma distribution can sometimes lead to inaccurate inference due to the long tail of the Gamma
distribution. In our application, we �rst tried Gamma distribution as the prior and got poor quality mixing. There
were some unrealistic large draws for �re in the order greater than 100. So we instead adopted the truncated normal
prior.
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'rej �s are treated as latent variables. Bidder j has the same '
re
j across all Nj observations.

The conditional likelihood of latent 'rej is

L /
NjQ
exp(�

[yt�j � (Ztj'+ 'rej )]2

2�2
)

Hence in each iteration we draw 'rej from the following distribution

'rej � N(b�rej ; b�rej )b�rej = (Nj�
�2 + ��2re )

�1

b�rej = b�rej ��2P
t
(yt�j � Ztj')

� '

Prior ' � N
�
'0; Id�

2
'

�
(A19)

Likelihood L /
Q
j;t
exp(�

[yt�j � (Ztj'+ 'rej )]2

2�2
)

Posterior ('j�) � N(�';�')

�' = [Z 0Z��2 + ��2' ]
�1

�' = �' � f[y� � 're]0Z��2 + '0��2' g

� � re
Prior � re � TN(0;+1)(��1; �

2
�1)

A random walk proposal density is used in the (r)-th iteration, � (r)re � TN(0;+1)(�
(r�1)
re ; �2p1),

where � (r�1)re is the value from the (r � 1)-th iteration; �2p1 is the variance which is tuned so
that the acceptance rate is between 15%� 50%.

The acceptance probability pr� = min(1; pr) and

pr =
L(�

(r)
re j�)p(� (r)re j��1; �2�1)�(�

(r�1)
re j� (r)re ; �2p1)

L(�
(r�1)
re j�)p(� (r�1)re j��1; �2�1)�(�

(r)
re j� (r�1)re ; �2p1)

where p(� (�)re j��1; �2�1) is the density of �
(�)
re evaluated using the prior. L(�

(�)
re j�) is the likelihood

evaluated at � (�)re . In particular,

L(� (�)re j�) /
Q
j
�('rej ; 0; �

(�)
re )
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where �('rej ; 0; �
(�)
re ) is the normal density of the random e¤ect 'rej evaluated with mean 0 and

standard deviation � (�)re .
�(�

(r�1)
re j� (r)re ;�2p1)

�(�
(r)
re j� (r�1)re ;�2p1)

is used as a weight to correct the acceptance probability as the proposal density

is truncated at 0 and, hence, asymmetric.

� �
Prior � � TN(0;+1)(��2; �

2
�2)

A random walk proposal density is used in the (r)-th iteration, � (r) � TN(0;+1)(�
(r�1); �2p2),

where � (r�1) is the value from the (r � 1)-th iteration; �2p2 is the tuning variance.

The acceptance probability pr� = min(1; pr) and

pr =
L(� (r)j�)p(� (r)j��2; �2�2)�(� (r�1)j� (r); �2p2)

L(� (r�1)j�)p(� (r�1)j��2; �2�2)�(� (r)j� (r�1); �2p2)

where p(� (�)j��2; �2�2) is the density of � (�) evaluated using the prior. L(� (�)j�) is the likelihood
evaluated at � (�). To be speci�c

L(� (�)j�) /
Q
j;t
�(yt�j ;Z

t
j'+ '

re
j ; �

(�))

where �(yt�j ;Z
t
j'+ '

re
j ; �

(�)) is the normal density of yt�j evaluated with mean Ztj'+ '
re
j and

standard deviation � (�).

B.2 Consumer Model

[To be completed.]

B.3 Second Step Estimation

B.3.1 Priors

Priors Selected Value

� � � N
�
�0; IX�

2
�

�
�0: a vector of zeros with the length of the

number of product attributes.

�2� = 100

IX is an identity matrix with the dimension

of the number of product attributes.

  � TN(0;+1)(� ; I2�
2
 ), where  

0 = f 1;  2g
�0 = f1; 1g; �2 = 100, I2 is an identity
matrix with the dimension of 2.
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B.3.2 Conditional Posteriors

� �
Prior � � N

�
�0; IX�

2
�

�
A random walk proposal density is used in the (r)-th iteration, �(r) � N(�(r�1); IX�

2
p�), where

�(r�1) is the value from the (r � 1)-th iteration; �2p� is a scalar and functions as the tuning
variance.

The acceptance probability pr� = min(1; pr) and

pr =
L(�(r)j�)p(�(r)j�0; IX�2�)

L(�(r�1)j�)p(�(r�1)j�0; IX�2�)

where p(�(�)j�0; IX�2�) is the density of �
(�) evaluated using the prior. L(�(�)j�) is the likelihood

evaluated at �(�). The likelihood is de�ned in equation A16.

�  
 � TN(0;+1)(� ; I2�

2
 )

A random walk proposal density is used in the (r)-th iteration,  (r) � TN(0;+1)( 
(r�1); I2�2p ),

where  (r�1) is the value from the (r � 1)-th iteration; �2p is a scalar and functions as the
tuning variance.

The acceptance probability pr� = min(1; pr) and

pr =
L( (r)j�)p( (r)j� ; I2�2 )�( 

(r�1)j (r); �2p )
L( (r�1)j�)p( (r�1)j� ; I2�2 )�( 

(r)j (r�1); �2p )

where p( (�)j� ; I2�2 ) is the density of  
(�) evaluated using the prior. L( (�)j�) is the likelihood

evaluated at  (�). The likelihood is de�ned in equation A16. Since the proposal density is

asymmetric, the ratio
�( (r�1)j (r);�2p )
�( (r)j (r�1);�2p )

is used to adjust the acceptance probability.

C Policy Simulation Implementation

C.1 Policy Simulation I: Incorporating Disaggregate-level Data

The �rst step in our analysis is to consider how the model di¤ers in the presence of complete

information on the part of the advertiser and the second step is to assess how advertiser pro�ts

change in light of complete information.

The consumer model under full information is similar to the one developed under incomplete

information considered in Section 3.1. The main di¤erence is that, in addition to download counts

51



dt, advertisers further observe every consumer i�s download decision on every product j (denoted by

a binary variable yijt), all their sorting/�ltering choices �it and the individual level demographics,

Demoit. These are often observed across multiple periods.

Accordingly, we begin by amending the model described from Equation 1 to 11 by

�(yijtjug�ijt; �
g
it; git) = Ifug�ijt � 0gyijt + Ifu

g�
ijt < 0g(1� yijt) (A20)

�(�gitjz
g
it; git) =

X
n2N�

I f�git = ng Ifmaxfzgitg = zg�it g (A21)

where N� indexes the number of search options (in our case four). The �rst equation captures the

download decision and the second the search strategy decision. The new speci�cation of disaggre-

gate consumer model generates an augmented likelihood function of consumer i. Noting that within

each segment, Pr(downloadjsearch strategy; search) � Pr(search strategyjsearch) � Pr(search);
we write

Li(yijt; �itj
c) (A22)

=
X

g
f
Y

t

Y
j
[

Z
ug�ijt

Z
zgit

�(yijtjug�ijt; �
g
it; git)�(�

g
itjz

g
it; git)�(u

g�
ijtj�)�(z

g
itj�)du

g�
ijtdz

g
it]

�Pr(searchgit)gpg
g
it

where 
c � f�g; �ga; �g; 
g; �
g
0; �

g
1gg are parameters to be estimated. Note that although we include

the product operator over period t�s in the likelihood function, if we observe consumer i for only

once in our data, the product over periods becomes moot.

Naturally, the full posterior distribution of the model will be the product of Li across individuals

as well as the prior distributions of parameters, i.e.,

p(
cjdata) =
Y
i

Li(yijt; �itj
c) � p(
c) (A23)

With the established new posterior distribution, �rms can impute the consumer model using

disaggregate data and adjust their download expectations accordingly. In this manner a new

prediction of d(k;Xt
j ; 
c) can be constructed similar to equation 13 using these new estimates.

This prediction is then used in the advertisers bidding game to calculate new equilibrium advertiser

returns.

By comparing the predicted advertiser and platform pro�ts under complete and incomplete

information, we can impute the value of that information and help to determine how the search

engine should price this information.

Further, advertisers are heterogeneous in their valuations about the keyword auction. Through

the policy simulation, we will also be able to observe how the information revelation impacts
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di¤erently on these heterogeneous advertisers. In particular, the questions we may be able to

answer include:

� How does the information revelation change the auction market structure in terms whether
we still have only a few bidders dominate the auctions?

� How does the information revelation change the total returns among advertisers? The answer
to this question gives us insights about how information should be valued for the whole auction

market.

� How does the information revelation impact the revenue of the search engine?

C.2 Policy Simulation II: Segmentation and Targeting

Neither the search engine and advertisers actually observes the segment memberships of consumers

to help with targeting. However, it is possible for the advertiser to infer the posterior probability

of consumer i�s segment membership conditional on its choices. These estimates can then be used

to improve the accuracy and e¤ectiveness of targeting.

More speci�cally, suppose the search engine observes consumer i in several periods. Let us

consider consumer i�s binary choices over downloading, sorting/�ltering and searching in those

periods. Denote these observations as Hi(fyijtgj;t; f�itgt; fsearchitgt). The likelihood of observing
Hi(fyijtgj;t; f�itgt; fsearchitgt) is

L(Hi(fyijtgj;t; f�itgt; fsearchitgt)) (A24)

=
X

g

Y
t
L(Hi(fyijtgj ; f�itgt; fsearchitgt)jgit) � pggit

where

L(Hi(fyijtgj;t; f�itgt; fsearchitgt)jgit) (A25)

=
Y

j

Z
ug�ijt

Z
zgit

�(yijtjug�ijt; �
g
it; git)�(�

g
itjz

g
it; git)du

g�
ijtdz

g
it Pr(search

g
it)

Hence the posterior probability of segment membership for consumer i can be updated in a Bayesian

fashion,

Pr(i 2 gjHi(fyijtgj;t; f�itgt; fsearchitg)) (A26)

=

Q
t L(Hi(fyijtgj ; f�itgt; fsearchitg)jgit) � pggitP

g0
Q
t L(Hi(fyijtgj ; f�itgt; fsearchitg)jg0it) � pg

g0

it

When consumer i returns to the search engine, the engine will have a more accurate evaluation

about the segment membership of that consumer.
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On the other hand, suppose some consumers only visit the engine once. Before they make

the product choices, the search engine cannot obtain a posterior distribution outlined in Equation

A26 since their choices of products are still unavailable. Still, it is possible to establish a more

informative prediction about their memberships based on their �it�s before their product choices.

Similar to Equation A26, the posterior in this case is

Pr(i 2 gjHi(�it)) =
L(Hi(�it)jgit) � pggitP
g0 L(Hi(�it)jg0it) � pg

g0

it

(A27)

where

L(Hi(�it)jgit) =
Z
zg�it

�(�gitjz
g
it; git)dz

g�
it

We can construct an analysis to consider the bene�ts of targeting as follows. First, we compute

the return to advertisers when advertisers can only bid on key words for all segments. Second, we

compute the return accruing to advertisers when they can bid for key words at the segment level.

The di¤erence between the two returns can be considered as a measure for the bene�ts of targeting.
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