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Abstract

This paper provides a thorough analysis of oligopolistic markets with positive demand-side

network externalities and perfect compatibility. The minimal structure imposed on the model

primitives is such that industry output increases in a �rm�s rivals�total output as well as in the

expected network size. This leads to a generalized equilibrium existence treatment that includes

guarantees for a nontrivial equilibrium, and some insight into possible multiplicity of equilibria.

We formalize the concept of industry viability and show that it is always enhanced by having

more �rms in the market and/or by technological improvements. We also characterize the e¤ects

of market structure on industry performance, with an emphasis on departures from standard

markets. As per-�rm pro�ts need not be monotonic in the number of competitors, we revisit

the concept of free entry equilibrium for network industries. The approach relies on lattice-

theoretic methods, which allow for a uni�ed treatment of various general results in the literature

on network goods. Several illustrative examples with closed-form solutions are also provided.
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1 Introduction

It has often been observed that the nature of competition is qualitatively di¤erent in network

industries. The presence of interdependencies in consumers�purchasing decisions induces demand-

side economies of scale that highly a¤ect market behavior and performance. When such e¤ects

prevail, be they of the snob or bandwagon type, purchase decisions are strongly in�uenced by buyers�

expectations, leading to behavior not encompassed by traditional demand theory (Veblen, 1899, and

Leibenstein, 1950). From an industrial organization perspective, these distinctive features raise new

questions and impose some methodological challenges. In their pioneering work on markets with

network e¤ects, Katz and Shapiro (1985) developed the concept of ful�lled expectations Cournot

equilibrium, which was widely adopted. The resulting literature on the topic has established a

number of results that distinguish network markets from the ordinary ones.1

The purpose of the present paper is to provide a thorough theoretical investigation of markets

with homogeneous goods and network externalities, which uni�es and extends the existing studies

and tackles a number of new issues of interest that were either not previously addressed or only

partially studied. We consider oligopolistic competition amongst �rms in a market characterized by

positive (direct) network e¤ects when the products of the �rms are perfectly compatible with each

other, so that the relevant network is industry-wide. While the current literature is more concerned

with the case of �rm-speci�c networks, three arguments justify our choice. First, several important

industries �t the perfect compatibility framework, in particular those in the telecommunications

sector, such as fax machines and phones, but also many classical industries such as fashion, au-

tomobiles, entertainment, etc.2 Second, there are still several outstanding issues, which, although

addressed in the growing literature on network externalities, have not been fully articulated from

a modeling perspective, and thus remain less than fully understood from a theoretical standpoint.

Third, a good understanding of the single network case can shed quite some light on the incentives

for compatibility faced by �rms in the case of �rm-speci�c networks.

In its unifying scope, with an emphasis on minimal and economically meaningful assumptions

on the market primitives, the paper provides a general existence result for non-trivial equilibria (i.e.

1See Economides and Himmelberg (1995), Economides (1996), Shy (2001) and Kwon (2007), among others.
2For some of these industries, each customer may have in mind his own social network only, as opposed to the overall

industry network, when making a purchase decision, but we follow much of the literature in industrial organization

in ignoring this distinction.
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those with positive production), a uniqueness argument, and an extensive inquiry into the e¤ects

of market structure (or exogenous entry) on market performance. In terms of novel questions, the

paper o¤ers a general treatment of the critical issue of industry start-up, including the role of the

number of �rms in the market and technological improvements. It also provides some insight into the

notion that the presence of expectations can substantially broaden the scope of possible outcomes

relative to standard Cournot oligopoly, and a new look at the notion of free entry equilibrium into

network industries. Throughout, the paper takes a comparative perspective in that new �ndings are

contrasted with their standard Cournot counterparts, in an attempt to shed light on the distinctive

features of network industries.

The underlying approach is to impart minimal monotonicity structure to the oligopoly model

at hand, which achieves the twin goals of ensuring the existence of a ful�lled expectations Cournot

equilibrium while at the same time allowing clear-cut predictions on the comparative statics of

market performance with respect to the number of �rms. The critical structure is imposed on the

model in the form of two economically meaningful complementarity conditions on the primitives

that guarantee the key properties that, along a given �rm�s best response, industry output increases

in rivals�total output as well as in the expected network size. The overall analysis relies on lattice-

theoretic methods.3 A key bene�t of the approach is to allow for more transparent economic

intuition behind the cause-e¤ect relationships we analyze.

We next provide a more detailed overview of our �ndings, coupled with a literature review. The

problem of existence of ful�lled expectations Cournot equilibrium proceeds in two distinct steps.

To establish abstract existence via Tarski�s �xed point theorem, we adopt the arguments of Amir

and Lambson (2000) and Kwon (2007) who directly exploit the monotonicity structure discussed

above. However, as expectations about the size of the network is a key determinant of consumers�

willingness to pay in these industries, the trivial, no production, equilibrium is often part of the

equilibrium set. When this is the case, our previous proof of existence is not of much interest; it

uses powerful methods to establish existence, but the underlying equilibrium may a priori be the

trivial one, the presence of which can be characterized in a more direct fashion. As a consequence

we complete the analysis by o¤ering a second set of (stronger) conditions that ensure the existence

of (at least) one non-trivial equilibrium, i.e. one with strictly positive sales.

Although the model is static in nature, we construct an explicit dynamics, mapping consumers�

3See Topkis (1978), Vives (1990), Milgrom and Roberts (1990) and Milgrom and Shannon (1994).
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expectation of the network size to the corresponding Cournot industry output to analyze the viability

of the industry. This tatonnement-type dynamics is quite natural and has tacitly been the basis of

many discussions of the viability issue in the literature. Studies of telecommunications markets, such

as Rohlfs (1974) and Economides and Himmelberg (1995), often suggest that network industries

typically have three equilibria. Under this natural dynamics, the two extreme equilibria are stable

in expectations and the middle equilibrium (usually called critical mass) is unstable. The argument

behind this structure is quite simple for pure network goods: If consumers expect that few buyers

will acquire the good, then the good will be of little value to consumers and few of them will

end up buying it. These low sales in turn further depress consumers� expectations through the

above dynamics, and the market unravels towards the trivial (or no-trade) equilibrium. However,

if expectations are higher to start with, other, non-trivial, equilibria will also be possible. This

argument is often used to explain the start-up problem in network industries, or the di¢ culties

faced by the incumbent �rms in attempting to generate enough expectations to achieve critical

mass.

An important aim of the present paper is to shed light on the role of market structure as a

determinant of the viability of a network industry, a novel issue that, somewhat surprisingly, has

not yet been addressed in the literature. We �nd that the presence of more �rms in the market always

enhances industry viability. The same conclusion holds for exogenous technological improvements,

a plausible explanation e.g. of the history of the fax machine industry.

Regarding market performance, the extremal equilibria (i.e. maximal and minimal) lead to an

industry output that increases in the number of �rms, n, as in standard Cournot competition. On

the other hand, as this also implies an increase in the equilibrium network size or expectations,

the output result does not imply that market price decreases in n. Thus, the so-called property

of quasi-competitiveness, which under similar assumptions holds in standard Cournot competition,

does not hold here.4 In addition, when n increases per-�rm equilibrium output increases if the

demand is not too log-concave in output and decreases otherwise.

The most drastic departure from standard oligopoly lies in the e¤ects of entry on per-�rm pro�ts.

Whenever per-�rm outputs and the market price increase (decrease) with n; per-�rm pro�ts increase

4A Cournot market is said to be quasi-competitive if the equilibrium market price decreases with the number of

�rms in the industry.
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(decrease) in n as well.5 The conclusion that competition may increase each �rm�s pro�t is quite

provocative and leads to several important implications, both from theoretical and policy-oriented

perspectives. We explore in some detail the consequences of this �nding on the concept of free

entry equilibrium, showing it is quite indeterminate in industries with network externalities. We

propose the concept of strong free entry equilibrium as a re�nement that leads to the free entry

equilibrium with the largest number of �rms as unique outcome. Our re�nement requires some

pre-play communication amongst �rms without the possibility of making binding agreements. Such

coordination, though pro-competitive in that it increases competition, may well engender antitrust

action.6

As a consequence of our last two results, a number of policy issues may need a fresh look and

some revisiting. There may be more scope for pro-competitive cooperation or coordination by �rms

in network markets. One might observe a higher propensity for licensing, possibly coupled with

lower royalty rates; less patenting or a permissive attitude towards patent infringement; as well as

more product standardization in industries where each �rm might possess its own separate network

of consumers. These likely policy consequences are similar to those one might expect to see as a

result of the fact that having more �rms alleviates the start-up problem for the industry. In short,

when more competition can be necessary to get the industry started up, or to enhance each �rm�s

pro�t in an ongoing industry, the usual trade-o¤s between consumer surplus and producer surplus

are no longer the norm, and it is not surprising that many pillars of conventional wisdom about

market behavior might need re-examining. Proper reaction to these new incentives for coordinated

action by market competitors might well require a substantial overhaul of existing antitrust policy

(Shapiro, 1996). This in turn ought to rely on extensive theoretical analysis focusing on the special

nature of industries with network externalities, and this is a primary motivation of the present work.

The e¤ects of entry on industry performance as re�ected in social welfare, consumer surplus and

industry pro�ts also display some distinctive features compared to standard Cournot competition.

The demand-side economies of scale weaken the conditions under which social welfare increases with

more entry. In addition, if the cross-e¤ect on the inverse demand function is positive, it is possible

5This result already appears in the context of a model with an inverse demand function that is linear in output

and no costs of production in Economides (1996), who in turn formalizes a remark made by Katz and Shapiro (1985).
6Nocke, Stahl and Peitz (2007) and Hagiu (2009) consider some related issues in the context of two-sided markets

with product di¤erentiation.
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that consumer surplus decreases with n: Katz and Shapiro (1985) explain the intuition behind this

result: If the network externality is strong for the marginal consumer, then the increase in the

expected network caused by the change in the number of �rms will raise his/her willingness to pay

for the good by more than that of the average consumer. As a consequence, the �rms will be able to

raise price by more than the increase in the average consumer�s willingness to pay for the product

and consumer surplus will fall.

Another noteworthy aspect of this paper is that we provide several explicit examples with easy

closed-form solutions to illustrate in a simple way some of the conclusions we derive. In particular,

Example 1 captures most of the relevant features often associated with the telecommunications

industry in the literature.7

The paper is organized as follows. Section 2 presents the model, introduces the equilibrium

concept and the main assumptions. Section 3 proves existence of trivial and non-trivial equilibria,

and provides conditions for the equilibrium to be unique. Section 4 discusses the scope for network

e¤ects to broaden the set of possible outcomes. Section 5 studies industry viability. Section 6

analyzes output, price and per-�rm pro�ts as a function of the number of �rms in the market.

Section 7 deals with free entry equilibrium in markets with network e¤ects. Section 8 looks at

market performance as re�ected in social welfare, consumer surplus and aggregate pro�ts, again,

as a function of n. Section 9 contains all the proofs of this paper. Finally, an elementary and

self-contained review of the lattice-theoretic notions and results needed here forms the Appendix.

2 The analytical framework

This section presents the standard oligopoly model with network e¤ects along with the commonly

used equilibrium concept due to Katz and Shapiro (1985). In view of the more general nature of our

treatment, we �rst enumerate all the needed assumptions we shall use later and their justi�cation.

We consider a static model to analyze oligopolistic competition in industries with positive net-

work e¤ects, re�ected in consumers�willingness to pay being increasing in the number of other

agents acquiring the same good. The �rms�products are homogeneous and perfectly compatible

7Some of the examples we construct below do not satisfy all the assumptions in this paper. Since the violations

are not critical in any way and analytical examples (with nice closed-form solutions that capture the features we want

to highlight) are hard to come by, we are not concerned by this issue.
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with each other, so there is a single network comprising the outputs of all �rms in the industry.

The market is fully described by the inverse demand function P (Z; S) and the number of

identical �rms n, each having cost function C (x), where x denotes the �rm�s output, Z is the

aggregate output in the market and S represents the expected size of the network. The cost of

producing no output is zero: Considering that each consumer buys at most one unit of the good,

S also stands for the expected number of people buying the good. Sometimes, it will be useful to

express the production side in terms of average cost A (x) ; de�ned as C (x) =x with A (0) = C 0(0):

For a given S; each �rm�s reaction correspondence is obtained by maximizing the pro�t function

� (x; y; S) = xP (x+ y; S)� C (x)

ex (y; S) = argmax f� (x; y; S) : 0 � x � Kg (1)

where x is the �rm�s level of output, y the output of the other (n� 1) �rms in the market and

K > 0 the production capacity of each �rm.

At equilibrium, all relevant quantities x; y; Z and � will be indexed by the underlying number

of �rms n, e.g., we shall denote Zn the equilibrium industry output corresponding to n �rms in the

market, and xin the equilibrium output of �rm i. When clear from the context, we will avoid the

subindex i in the latter variable.

Each �rm chooses its output level to maximize its pro�ts under the assumptions that (i) con-

sumers�expectations about the size of the network, S; is given; and (ii) the output level of the other

�rms, y, is �xed. Alternatively, we may think of the �rm as choosing total output Z = x+ y, given

the other �rm�s cumulative output, y; and the expected size of the network, S, in which case, withe� (Z; y; S) = (Z � y)P (Z; S)� C (Z � y)
eZ (y; S) = argmax fe� (Z; y; S) : y � Z � y +Kg : (2)

Consistency requires eZ (y; S) = ex (y; S) + y:
An equilibrium in this game is a vector (x1n; x2n; :::; xnn) that satis�es the following conditions

1. xin 2 argmax
n
xP

�
x+

P
j 6=i xjn; S

�
� C (x) : 0 � x � K

o
; and

2. S =
P
i xin.

Since the seminal paper by Katz and Shapiro (1985), this notion of equilibrium, known as

"Ful�lled Expectations Cournot Equilibrium (FECE)," has become standard for oligopolies with
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network e¤ects. It requires that both consumers and �rms correctly predict the market outcome,

so that their beliefs are con�rmed in equilibrium. While strategic in their choice of outputs in the

usual Cournot sense, �rms are "network-size taking" in their perceived inability to directly in�uence

customers�expectations of market size. One plausible justi�cation for this is that �rms are unable

to credibly commit to output levels that customers could observe and reliably use in formulating

expectations about network size (Katz and Shapiro, 1985).8

Viewing S as an inverse demand shift variable, condition 1 just describes the equilibrium in

standard Cournot competition with exogenous S. Let zn (S) denote the corresponding industry

output equilibrium correspondence. Adding condition 2, an aggregate output Zn 2 zn (S) consti-

tutes a FECE industry output if it satis�es Zn = S as well. As a consequence, if we graph zn (S)

as a function of S, the FECE industry outputs are all the points where this correspondence crosses

the 45� line. This idea will play a key role in both the proof of existence and the viability analysis.

Another, fully game-theoretic, interpretation of this equilibrium notion is in the context of a

two-stage game, wherein a market maker (or a regulator) announces an expected network size S

in the �rst stage, and �rms compete in Cournot fashion facing inverse demand P (Z; S) in the

second stage. If the market maker�s objective function is to minimize jS � zn (S)j, then to any

subgame-perfect equilibrium of this game corresponds a FECE of the Cournot market with network

externalities, and vice-versa.

Whenever well-de�ned, we denote the maximal and minimal points of a set by an upper and

a lower bar, respectively. Thus, for instance, Zn and Zn are the highest and lowest industry

equilibrium outputs when there are n �rms in the market.

Denote by W (Z; S) ,
R Z
0 P (t; S) dt� ZA (Z=n) the Marshallian social welfare when aggregate

output is Z; all �rms produce the same quantity and the expected size of the network is S. Similarly,

consumer surplus is CS (Z; S) ,
R Z
0 P (t; S) dt� ZP (Z; S).

We now list the assumptions used in this paper, starting with a set of standard ones, followed

by more substantive conditions.

The standard assumptions are

(A1) P (:; :) is twice continuously di¤erentiable, P1 (Z; S) < 0 and P2 (Z; S) > 0.

8Were such commitment credible for �rms, standard Cournot equilibrium with inverse demand P (Z;Z) would be

a more appropriate concept. A direct comparison between these two concepts appears in Katz and Shapiro (1985).
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(A2) C (:) is twice continuously di¤erentiable and increasing.

(A3) xi � K; for all �rm i.

These are all commonly used assumptions, including P2 (Z; S) > 0, which re�ects positive net-

work e¤ects, or the property that consumers�willingness to pay increases in the expected number

of people who will buy the good. Assumption A3 imposes capacity constraints on the production

process of each �rm, a convenient condition to force compact output sets in a setting where �rms

may otherwise wish to produce unbounded output levels. Our results do not rely in any way on K

taking on any particular set of values, as in Amir and Lambson (2000).

The second set of assumptions are placed on two functions that play a key role in the overall

analysis. Let �1 (Z; y) denote the cross-partial derivative of e� (Z; y; S) with respect to Z and y, and
�2 (Z; S) the cross-partial derivative of logP (Z; S) with respect to Z and S, scaled by [P (Z; S)]

2 ;

�1 (Z; y) = �P1 (Z; S) + C 00 (Z � y) and

�2 (Z; S) = P (Z; S)P12 (Z; S)� P1 (Z; S)P2 (Z; S) :

The domains of �1 and �2 are '1 � f(Z; y) : y � 0; Z � yg and '2 � f(Z; S) : Z � y; S � 0g

respectively, both of which are lattices (in the product order).

The second set of assumptions is

(A4) �1 (Z; y) = �P1 (Z; S) + C 00 (Z � y) > 0 on '1.

(A5) �2 (Z; S) = P (Z; S)P12 (Z; S)� P1 (Z; S)P2 (Z; S) > 0 on '2.

(A6) P (Z; S)P11 (Z; S)� [P1 (Z; S)]2 < 0 on '2:

Assumptions A4 and A5 guarantee that the pro�t function e� (Z; y; S) has strictly increasing
di¤erences on '1 and the strict single-crossing property in (Z;S), respectively. A4 allows for limited

scale economies in production, and has been justi�ed in detail by Amir and Lambson (2000). A5 has

the precise economic interpretation that the elasticity of demand increases in the expected network

size S:9 In his pioneering study of the elementary microeconomic foundations of interdependent

demands, Leibenstein (1950) suggested that demand is more elastic in network markets because

9The price elasticity of demand is �
�
@P (Z;S)

@Z
Z

P (Z;S)

��1
= �

�
Z @ logP (Z;S)

@Z

��1
; which is increasing in S if and

only if logP (Z; S) has increasing di¤erences in (Z; S) (Topkis, 1998, p. 66).
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individual reactions to price changes are followed by additional reactions, in the same direction,

to each other�s change in consumption.10 A5 essentially captures the cumulative e¤ect of these

mutually reinforcing e¤ects on aggregate demand. Another plausible interpretation of A5 is that it

formalizes the concept of demand-side scale economies that is often postulated as a characteristic of

network e¤ects in the literature, though not in a precise manner. In terms of the model structure,

the direct e¤ects of A4 and A5 in the upcoming analysis are that eZ (y; S) increases in y and S,
respectively.

A6 assurances that P (Z; S) is log-concave in Z. This is a generalized concavity condition that

guarantees that eZ (y; S) is a single-valued function. While most results in this paper do not require
the latter assumption, A6 is crucially needed for the uniqueness property in Theorem 7.

3 Existence and uniqueness of equilibrium

In this section we provide a general abstract equilibrium existence result, exploiting the minimal

monotonic structure of the model re�ected in A4-A5. Then we derive additional su¢ cient conditions

that guarantee the existence of a non-trivial equilibrium, i.e. one with strictly positive industry

output. We �nally provide conditions for the equilibrium to be unique.

3.1 Existence of FECE

We begin with the central monotonicity result, which is a direct consequence of A4 and A5.

Lemma 1 Assume A1-A5 are satis�ed. Then, every selection of the best-response correspondenceeZ (y; S) is increasing in both y and S.
This lemma leads to an abstract existence result for symmetric equilibrium, along with the fact

that the same assumptions preclude the possibility of asymmetric equilibria.

Theorem 2 Assume A1-A5 are satis�ed. Then, for each n 2 N , the Cournot oligopoly with

network e¤ects has (at least) one symmetric equilibrium and no asymmetric equilibria.

10Although Leibenstein referred to the concept of positively interdependent demands as "bandwagon e¤ect," it is

essentially identical to the network e¤ect we analyze in this paper.
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Theorem 2 extends the existence results in the literature of network goods to a very general

setting. Speci�cally, it dispenses with two assumptions often observed: no cross-e¤ects on the

demand side and constant marginal costs of production (see Katz and Shapiro, 1985, Economides

and Himmelberg, 1995, and Economides, 1996, among others).

Comparing the conditions we impose here with those in standard Cournot competition, the only

new requirement is that the price elasticity of demand increases with the network size (A5), taking

P2 (Z; S) > 0 as a natural property of network markets. Analogs of all other assumptions are also

needed for proving existence in the standard Cournot model, as re�ected in Theorem 2.1, Amir and

Lambson (2000), reproduced in the next Lemma.

Lemma 3 Assume A1-A4 are satis�ed. Then, for each n 2 N ,

(i) the standard Cournot oligopoly (with exogenous S) has a symmetric equilibrium and no asym-

metric equilibria;

(ii) if in addition A5 holds, the maximal and minimal selections of zn (S), zn (S) and zn (S),

increase in S; and

(iii) if in addition A5-A6 hold, zn (:) is a single-valued and continuous function.

In Section 2 we noted that a �xed point of zn (S) constitutes a FECE industry output. As a

consequence, statements (i) and (ii) in the last lemma could be used to show equilibrium existence

through Tarski�s Theorem. Although less direct than the approach behind Theorem 2, this idea

plays a key role in the proof of existence of a non-trivial equilibrium.

In network markets, the trivial (zero-production) outcome is often an equilibrium. This phe-

nomenon intensi�es when the network good has little stand-alone value (i.e. P (Z; 0) is small): given

any such good, if end users believe no one else will acquire it, the good will have no value, and the

trivial outcome will necessarily be part of the equilibrium set. Telecommunications industries, such

as faxes, phones and e-mails, typically exhibit this characteristic.

In such markets, Theorem 2 is not of much interest since the underlying equilibrium may a

priori be the trivial one, the presence of which can be characterized in more direct fashion. To

complete the analysis, we �rst provide necessary and su¢ cient conditions for the trivial equilibrium

to arise. We then add some extra assumptions to ensure the existence of (at least) one non-trivial

equilibrium.
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Lemma 4 The trivial outcome is an equilibrium if and only if xP (x; 0) � C (x) for all x 2 [0;K] :

This lemma simply says that the trivial outcome is part of the equilibrium set if and only if

when the common expectation (amongst �rms and consumers) about the size of the network is zero,

and a �rm believes the other �rms will produce no output, the best it can do under the required

condition is to produce zero as well. The proof follows directly from the de�nition of FECE. Since

this condition is independent of n, the existence of the trivial outcome is a¤ected neither by entry

nor by exit of �rms in the market.

The next result provides alternative su¢ cient conditions to ensure the existence of a non-trivial

equilibrium, i.e. one with strictly positive industry output.

Theorem 5 Assume A1-A5 are satis�ed. Then, there exists a non-trivial equilibrium if at least

one of the following conditions is also ful�lled

(i) zero is not an equilibrium output (i.e. the condition of Lemma 4 does not hold);

(ii) zero is an equilibrium output, P (0; 0) = C 0(0), n > [�P1 (0; 0) + C 00 (0)] = [P1 (0; 0) + P2 (0; 0)]

and P1 (0; 0) + P2 (0; 0) > 0; or

(iii) zero is an equilibrium output, C 00 (:) � 0 and the next condition is satis�ed

(n� 1)
Z bZ
Z
P (t; S) dt+

h bZP � bZ; S�� ZP (Z; S)i� n2 hC � bZ=n�� C (Z=n)i � 0 (3)

for some S 2 (0; nK], some bZ � S and all Z � S.
Theorem 2 ensures equilibrium existence. Therefore, if the trivial outcome is not part of the

equilibrium set, there must be an equilibrium with a strictly positive industry output, and the �rst

statement in Theorem 5 follows. This applies only to network goods with positive stand-alone value.

The extra requirements in (ii) guarantee that, although zn (0) = 0, zn (S) starts above the

45� line near 0: The existence of a non-trivial equilibrium follows now in view of Lemma 3 (ii).

Formally, this derives from applying Tarski�s Theorem to zn (S) for S 2 [�; nK], given some � > 0

small enough. As expected, the stronger the network e¤ect around the origin is, as captured by

P2 (0; 0) ; the less stringent the existence condition for the non-trivial equilibrium gets (i.e. the lower

the threshold value of n is).
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Condition (3) ensures that, although zn (0) = 0, zn (S) is above the 45� line at some S 2 (0; nK],

so a non-trivial equilibrium exists by Tarski�s Theorem applied to zn (:) mapping [S; nK] to itself.

An interpretation of (3), involving the evaluation of a weighted combination of welfare and pro�ts

(see Bergstrom and Varian, 1985), is given in Section 9 (see Lemma 25).

The proof of Theorem 5 uses the following intermediate result, which also plays a key role in

the viability analysis (Section 4).

Lemma 6 Assume A1-A5 are satis�ed. If 0 2 zn (0), then zn (0) = 0; i.e. zn (0) is single-valued.

If in addition P (0; 0) = C 0(0), the slope of zn (:) is also single-valued and right-continuous at 0, and

z0n (0) =
nP2(0; 0)

� (n+ 1)P1(0; 0) + C 00 (0)
: (4)

If the trivial equilibrium is not interior, i.e. P (0; 0) < C 0(0), then z0n (0) = 0:

This lemma shows the trivial equilibrium has interesting properties. Although zn (:) might a

priori be multi-valued, i.e. a correspondence, when zero is part of the equilibrium set, it is single-

valued at the origin. If in addition the trivial equilibrium is interior, the slope of this function is

given by (4) and depends on n.

3.2 Uniqueness of FECE

The possibility of multiple equilibria in markets with network e¤ects is more a norm than an

exception. Multiple equilibria are due to the positive feedback that derives from expectations: If

consumers believe the good will not succeed, it will usually fail. On the contrary, if they expect it

to succeed, it will usually succeed.

In this subsection, we assume A6 is satis�ed, in addition to A1-A5. The added bene�t of A6 is

to ensure that zn (:) is single-valued and continuous, as shown in Lemma 3 (iii). Although A6 is

su¢ cient for uniqueness in standard Cournot competition (see Amir and Lambson, 2000), the same

result here requires an additional condition related to the function

f (Z; n) , n f[P (Z;Z)� C 0(Z=n)]P12(Z;Z)� P1(Z;Z)P2(Z;Z)g
(n+ 1) [P1(Z;Z)]

2 � n [P (Z;Z)� C 0(Z=n)]P11(Z;Z)� P1(Z;Z)C 00(Z=n)
: (5)

The function f (Z; n) describes the slope of zn (S) with respect to S along the diagonal path, i.e.

at S = Z: The next theorem shows uniqueness of FECE.
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Theorem 7 In addition to A1-A6, assume f (Z; n) < 1 for all Z in [0; nK]. Then, the Cournot

game with network e¤ects has a unique and symmetric FECE, which coincides with the trivial

equilibrium if and only if the condition of Lemma 4 holds.

The proof of this theorem is simple. Assuming A1-A6 are satis�ed, zn (:) is single-valued and

continuous. If in addition f (Z; n) is everywhere lower than one, then the slope of zn (:) along the

diagonal is lower than one as well. The uniqueness result now follows directly from this observation,

since any two adjacent �xed points of zn (:) must include one for which f (Z; n) is equal or larger

than one.

It is readily veri�ed that f (Z; n) increases in P2(Z;Z), suggesting that network e¤ects increase

the possibility of multiple equilibria. This �nding reinforces our earlier comment.

The assumptions of Theorem 7 are su¢ cient, but not necessary, to ensure uniqueness, in the

tradition of methods based on degree theory (Dierker, 1972). Although our condition is not globally

satis�ed in the less general model of Katz and Shapiro (1985), their equilibrium is unique anyway.

4 On the theoretical scope of network e¤ects

In view of the need for an expectations-based equilibrium concept instead of one of the standard

concepts of oligopolistic behavior centered on Nash equilibrium, it is natural to investigate the

extent to which the presence of these expectations enlarges the scope of possible outcomes in network

industries. One meaningful way to frame such a question is to characterize the class of functions that

could emerge as possible equilibrium industry outputs given network size S, i.e., as possible selections

of the Cournot equilibrium correspondence zn (S).11 Some simple insights into this question can

be derived by considering an industry with n �rms, no costs of production and the speci�c inverse

demand function

P (Z; S) = exp[�nZ=h(S)] (6)

11This is reminiscent of the question of what constitutes a valid aggregate excess demand function in general

equilibrium theory, which led to the well-known Debreu-Mantel-Sonnenschein theorem (Mas-Colell, Whinson and

Green, 1995). It is also in the same vein as the issue of what constitutes a valid optimal policy in Ramsey-type

dynamic optimization models (Boldrin and Montrucchio, 1986). The answers provided in these two di¤erent settings

were similarly broad, in that any function with minimal regularity conditions is a valid outcome function. Hence, the

conclusions were that the two underlying theories impose very little structure on their respective outcome functions.
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with h0(:) � 0 (see Amir and Lambson, 2000):

For regular Cournot oligopoly (with demand function (6) and exogenous S), there is a unique

Cournot equilibrium and it is in dominant strategies: x� = h(S)=n, so zn (S) = h(S): Hence

�rms have constant reactions curves, and may thus be viewed as essentially non-strategic and fully

predictable in their behavior.

The FECE solve the �xed-point relation Z = h(S) = S. Since f is so far an arbitrary function,

h(S) = S may have no solutions at all (if h (:) does not intersect the 45� line), or as many solutions

(or FECE points) as h (:) has �xed points. In particular, if h (:) is taken to be the identity function,

anything at all is a FECE, and the model has no predictive power whatsoever!

This argument shows rather strikingly the scope of possible new outcomes that expectations

or network e¤ects can generate, which have no counterparts in the corresponding regular Cournot

oligopoly. Indeed, this illustration has an "anything goes" �avor of a rather extreme kind. This

construction also illustrates the potential for multiple equilibria in the presence of network e¤ects,

along with new issues to face for testing such models (Echenique and Komunjer, 2009).

This speci�cation will be invoked repeatedly below to design nice closed-form examples that

illustrate particular results.

5 Industry viability

In this section, we provide an extensive treatment of industry viability, via a formalization of ex-

pectations dynamics, and a key result on the e¤ects of market structure and exogenous technological

improvements on this issue.

Many studies suggest that the left panel of Figure 1 re�ects the structure of the telecommuni-

cations industries. The underlying game there displays three possible equilibria, the trivial equilib-

rium, a middle unstable equilibrium, usually called critical mass, and a high stable equilibrium.12

The justi�cation of this con�guration is quite simple: If all the consumers expect that no one will

acquire the good, then the good has no value and no one will end up buying it, resulting in the

12There are several de�nitions of the notion of critical mass in the literature, some in dynamic settings and others in

static settings. In the present paper, we wish to adapt the most common de�nition, which is as the smallest non-zero

(Cournot-) unstable FECE, to our framework taking into account the multi-valuedness of zn(S): The formal de�nition

is given below.
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Figure 1: Viability and Basin of Attraction of the Trivial Equilibrium

trivial equilibrium for the industry. However, if expectations are higher to start with, another,

non-trivial, equilibria will prevail.

Whenever the trivial equilibrium is locally stable in expectations (as in Figure 1), one possibility

is that the market never emerges as a result of an expected size of the network that is too low to

start with. In view of the equilibrium concept adopted here, the incumbent �rms are simply unable

to in�uence these expectations to get them past the critical mass. Under such conditions, even if the

industry does get going, Cournot equilibrium on the basis of small expectations cannot lead �rms to

produce enough output to generate prospects beyond the critical mass, and the industry will unravel

through a natural process towards the trivial equilibrium. This argument is commonly invoked to

capture the start-up problem that frequently a¤ects these markets, and is often referred to as the

"chicken and egg" paradox. Oren and Smith (1981) o¤er an early discussion of this phenomenon in

electronic communication markets.

The tacit dynamic process underlying this analysis can be formalized through the following

expectations/network size recursion, starting from any initial S0 � 0,

Sk = bzn (Sk�1) ; k � 1 (7)

where bzn will denote either the maximal or minimal selection of zn, as will be speci�ed.
This process thus begins with a historically given initial expectation S0, then postulates that

�rms react by engaging in Cournot competition with demand P (Z; S0), leading to an industry

output bzn (S0). The latter will in turn determine consumers expectation S1 = bzn (S0), and the
process repeats inde�nitely. This yields a sequential adjustment process in which consumers and
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�rms behave myopically with respect to the size of the network. Taking a single-valued selection of

zn(S) amounts to selecting one particular Cournot equilibrium for each given S.

For each increasing selection of zn(S), denoted by bzn (S), we can formally de�ne the correspond-
ing critical mass as the smallest initial expectation bS0 such that for all S0 > bS0, the orbit given by
(7) converges to a nonzero FECE. This de�nition captures the notion of critical mass irrespective

of whether the selection at hand is continuous, or continuous from one side only (i.e. right or left),

or neither, at that speci�c point. In the right panel of Figure 1, there is a whole interval of critical

masses, each corresponding to a di¤erent monotonic selection of zn(S).

Since we will consider explicitly the dynamics in (7) as given by the two extremal selections,

re�ected in the right panel of Figure 1, the usual notions of stability need to be adapted accord-

ingly.13

De�nition 8 The trivial equilibrium is best-case (worst-case) stable if there is a right neighborhood

V of 0 such that for all S0 in V; the orbit Sk = zn (Sk�1)! 0 (Sk = zn (Sk�1)! 0), as k !1:

Here, the quali�cation of best-case and worst-case refers to the type of Cournot equilibrium

selection given network size S. Indeed, as is intuitive, the maximal (minimal) selection is most

(least) favorable for the viability of the industry. Note that in the right panel of Figure 1, CM2 and

CM3 are the best-case and worst-case critical masses, respectively.

Let V bn (V
w
n ) denote the largest set of values of S0 for which the trivial equilibrium is best-case

(worst-case) stable. We shall refer to V bn and V
w
n as the best and worst-case basins of attraction of

the trivial equilibrium, respectively.

In view of Lemma 6, when zero is a FECE aggregate output, both zn and zn are continuously

di¤erentiable at 0 with z0n (0) = z0n (0). Assuming henceforth that this derivative is (generically)

not equal to 1, 0 is an isolated equilibrium (for a formal proof, see e.g., Granas and Dugundji, 2003,

pp. 326-327). Since in addition, zn and zn are increasing in S, both V
b
n and V

w
n are intervals.14 In

the left panel of Figure 1, where zn (:) is single-valued, these two intervals coincide and are equal

to (0; CM1); in the right panel of that �gure zn and zn induce V
b
n = (0; CM2) and V wn = (0; CM3],

respectively.15

13Related issues are addressed in some detail in Echenique (2002).
14Since zn is u.h.c., zn = min zn is l.s.c. and left-continuous, and zn = max zn is u.s.c. and right-continuous. Hence,

V b
n is open at its upper bound while V

w
n may or may not be.

15The fact that V b
n is open and V

w
n is right-closed follows from both Figure 1 and Footnote 14.
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Each industry can be classi�ed into one of three possible categories in terms of best-case or

worst�case viability.

De�nition 9 An industry is said to be

(i) best-case (worst-case) uniformly viable if every orbit in (7) with bzn = zn(zn) converges to

some non-zero equilibrium starting from any S0 > 0;

(ii) best-case (worst-case) conditionally viable if, for zn(zn); the same convergence as in (i) takes

place only from su¢ ciently high S0; and

(iii) best-case (worst-case) nonviable if every orbit in (7) with bzn = zn(zn) converges to 0 from any

S0 � 0.

This de�nition extends in the obvious way to any increasing selection of zn(S), in which case

one simply removes the quali�ers "best-case" and "worst-case." Thus, for any increasing selectionbzn (S), the critical mass is 0 if the industry is uniformly viable, 1 if it is nonviable, and satis�es

the next conditions bS0 > 0; lim
S"bS0 bzn (S) � bS0 � lim

S#bS0 bzn (S)
if the industry is conditionally viable.16

The next result provides su¢ cient conditions for each viability outcome by linking them to our

previous results on the existence of a non-trivial equilibrium.

Proposition 10 Assume A1-A5 are satis�ed. An industry is

(i) worst-case uniformly viable if and only if either condition (i) or (ii) of Theorem 5 holds;

(ii) best-case conditionally viable if condition (iii) of Theorem 5 holds; and

(iii) best-case nonviable if the conditions of Lemma 4 and Theorem 7 hold.

To provide a basis for comparing two di¤erent situations that might prevail for the same industry,

we need to formalize a partial order for increasing viability.

16 In other words, there will always exist a unique critical mass for a given increasing selection. A formal proof can

be easily given, relying only on the well-known properties of monotonic functions, in particular that all discontinuities

are of the �rst kind.
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De�nition 11 The best-case (worse-case) viability of an industry is said to increase if either

(i) the industry goes from best-case (worst-case) nonviable to best-case (worst-case) conditionally

viable, or from the latter to best-case (worst-case) uniformly viable; or

(ii) the industry is best-case (worst-case) conditionally viable and V bn (V
w
n ) contracts.

The next result, a key �nding of this paper, shows that additional �rms in the market and/or a

technological improvement always enhance the viability of a network industry.17 Examples 1 and 2

below illustrate these important e¤ects. We capture exogenous technological change by a decrease

in � for the cost function �C(:).

Theorem 12 Assume A1-A5 are satis�ed. Then,

(i) both zn(:) and zn(:) shift up as n increases and/or � decreases. Hence, more �rms in the

market and/or technological improvements always increase the best-case and worst-case viability of

the industry; and

(ii) if the trivial outcome is an equilibrium (i.e. the condition of Lemma 4 holds) and P1 (0; 0)+

P2 (0; 0) � 0, an industry cannot be uniformly viable for any n (even in best-case).

Theorem 12 captures the key role of market structure on industry viability: having more �rms

around implies that a lower critical mass would be needed to launch a given industry. The underlying

intuition is intimately connected to the FECE concept, as discussed next. Consider the natural

question: In case S0 happens to be below the critical mass, why can�t the existing �rms attempt

to act as if there were more of them by producing a higher output level in an e¤ort to in�uence

consumers�expectations of the network size upwards? In a context where the appropriate solution

concept is FECE, �rms presumably cannot commit to their desired output levels in a credible way,

and, likewise, attempting to in�ate their number by committing to a higher output would also not

be credible, and would thus not constitute behavior compatible with the FECE concept.

In industries with multiple �rms having their own versions of the same general good, this result

might explain why �rms often settle for full compatibility between their products, instead of in-

compatibility. Their objective is to generate a single industry network that would be viable, when

17Economides and Himmelberg (1995) show that, under some conditions, market structure has no e¤ect on the

critical mass. Our results do not coincide because we de�ne critical mass in a di¤erent way.
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separate networks with one �rm each would not be. This implies that some form of cooperation

amongst direct rivals could be needed for their products to succeed. One example is the case of

Sony and Philips, who jointly created industry standards for compact disc in the mid 80�s (Shapiro,

1996). Such forms of cooperation have no counterparts in non-network markets.

The last theorem also captures the fundamental e¤ect of an exogenous technological change on

industry viability. A technological improvement also lowers the critical mass that would be needed

to start the market up. This result is consistent with observed market behavior. The fax market

took decades beyond the discovery of the initial technology to get started (Shapiro and Varian,

1998). Now and then, an attempt at launching a new product with network e¤ects is seen to fail.

One plausible diagnosis according to the present analysis is that the product might be too costly at

the early stages of the emerging industry.18

Example 1. Consider the symmetric Cournot oligopoly with no production costs, and inverse

demand function given by

P (Z; S) = exp

�
� 2Z

exp(1� 1=S)

�
with Z; S 2 [0; nK] :

The reaction function of a �rm is ex (y; S) = (1=2) exp(1� 1=S): Since each �rm has a dominant

strategy, ex (y; S) does not depend on y, and we can add the reaction functions to obtain
zn (S) = (n=2) exp(1� 1=S):

An equilibrium industry output solves zn (Z) = Z in Z. Then we have: Z1 = f0g, Z2 = f0; 1g,

Z3 = f0; 0:457; 2:882g and Z4 = f0; 0:373; 4:311g, as shown in Figure 2.

As can be easily seen, the trivial equilibrium is always stable. With only one �rm in the market,

this is the only equilibrium, so the industry is nonviable. With one extra �rm, a larger equilibrium

emerges and the industry becomes conditionally viable (barely, since zn (:) is tangent to the 45�

line). For a larger number of �rms, the equilibrium con�guration encompasses three equilibria; the

two extreme ones are stable and the intermediate one is unstable. The unstable equilibrium, often

called critical mass, decreases in n. This is an exact closed-form example of the three-equilibrium

constellation that is often portrayed as typical in many network industries.

18The quality of the production technology can also be a key factor in determining start-up success, but in the

present context this can only be captured partly via the cost function.
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Figure 2: Viability and Market Structure

Here, zn (:) shifts up as n increases (cf. Theorem 12). The industry goes from nonviable to

conditionally viable as n goes from 1 to 2 �rms. As n further increases, viability increases since the

basin of attraction of 0 shrinks, but uniform viability is never attained since P1(0; 0) + P2(0; 0) = 0

(cf. Theorem 12). �

In our �rst example, initial expectations must be high enough to start the market up (when

n � 2). Although the critical mass shrinks as the number of �rms increases, the start-up problem

always exists. The next example shows an extreme case where this problem disappears with a

technological improvement.

Example 2. Consider the cost function C(x) = �cx, c > 0, and the inverse demand function

P (Z; S) = exp

�
� Z
bS

�
with Z; S 2 [0; nK] and b > 0:

Here � captures technological improvements. The pro�t function is

� (x; y; S) =

�
exp

�
�x+ y
bS

��
x� �cx:
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Figure 3: Viability and Technological Improvements

The reaction function of any given �rm is implicitly de�ned by�
exp

�
�ex (y; S) + y

bS

���
1� ex (y; S) + y

nbS

�
� �c = 0 (8)

when ex (y; S) is interior. When the left hand side of (8) is negative for all ex 2 [0;K] then ex (y; S) = 0,
and it takes the value K when the left hand side of (8) is positive for all ex 2 [0;K] :

The aggregate equilibrium output with exogenous S, zn (S), is implicitly de�ned by�
exp

�
�zn (S)

bS

���
1� zn (S)

nbS

�
� �c = 0 (9)

when zn (S) is interior. Otherwise, zn (S) is either 0 or nK.

Figure 3 illustrates the FECE for n = 10 and b = 2, given three possible values of �c: 1=4, 1=2

and 1. When the technology is costly, �c = 1; zn (S) is 0 for all S. Then the trivial equilibrium is

the unique FECE, and the industry is nonviable. After technological improvements, �c = 1=2 and

�c = 1=4, every orbit in (7) converges to nK starting from any S0 > 0, so the industry becomes

uniformly viable. �

The �rst example illustrates an interesting situation where the presence of network e¤ects might

have unusual implications on �rms�attitudes towards intellectual property rights and entry deter-

rence. Indeed, �rms will not be tempted to engage in entry deterrence activities if their number is
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insu¢ cient to start the market up. In such a case, those in possession of patents will have a much

higher than usual incentive to engage in licensing, and will even �nd it in their interest to give their

patents away to their competitors. Naturally, such generosity will prevail only until the industry is

started up, or until pro�ts cease to increase with the number of competitors, as we shall see below.

The second example shows the key e¤ect of technological improvements on the viability of the

industry. Even with a large number of potential competitors, the market might not start up until

the industry manages to lower production costs su¢ ciently.

6 Equilibrium price, outputs and pro�ts

This section studies the e¤ects of market structure on the equilibrium industry output, per-�rm

output, market price and per-�rm pro�ts. Amir and Lambson (2000) address similar questions

regarding the standard Cournot competition, we show next that network e¤ects introduce new

interesting features.

The analysis that follows makes all the statements on the largest equilibrium, i.e. the one with

the largest equilibrium outputs, namely, Zn and xn. When the trivial outcome is an equilibrium, it

is also the smallest equilibrium. Since it is invariant in the number of �rms, the comparative statics

questions below are of no interest for that equilibrium. When the trivial outcome is not part of the

equilibrium set, then our conclusions also apply to the minimal selections, Zn and xn.

Let us de�ne the interval In = [Zn; Zn+1]: Our �rst theorem relates new entry to equilibrium

industry output and market price.

Theorem 13 Assume conditions A1-A5 are satis�ed. Then, we have

(i) the extremal equilibrium industry outputs, Zn and Zn, increase in n; and

(ii) if P1 (Z;Z) + P2 (Z;Z) � (�) 0 on In, then P
�
Zn+1; Zn+1

�
� (�)P

�
Zn; Zn

�
:

Theorem 13 (i) is also true in standard Cournot competition, as shown by Amir and Lambson

(2000), Theorem 2.2 (b). In the latter, the usual law of demand su¢ ces for the market price

to decrease after new entry. As Theorem 13 (ii) indicates, the e¤ect of entry on market price is

ambiguous when network e¤ects prevail. The reason is that when industry output increases the �rms

must set the price low enough to attract the marginal consumer, but when more buyers join the
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network consumers�willingness to pay increases. Thus the overall e¤ect of entry on the market price

depends on how relevant the output e¤ect is compared to the network e¤ect. As a consequence, the

so-called property of quasi-competitiveness, which under similar assumptions holds in the standard

Cournot game, is not satis�ed here.

To make inferences about the e¤ects of entry on equilibrium per-�rm outputs and pro�ts, we

need to introduce a new function

g (Z) =
�
P (Z;Z)� C 0 (Z=n)

�
[P11 (Z;Z) + P12 (Z;Z)]� P1 (Z;Z) [P1 (Z;Z) + P2 (Z;Z)] : (10)

A detailed description of the determinants of function g (:) is o¤ered later, assuming no costs of

production.

Theorem 14 In addition to A1-A5, assume Zn and Zn+1 are interior equilibria. Then, we have

(i) if g (Z) � 0 on In, the largest per-�rm equilibrium output increases in n, i.e. xn+1 � xn; and

(ii) if g (Z) � 0 on In, the largest per-�rm equilibrium output decreases in n, i.e. xn+1 � xn:

In short, this result means that the scope for the business-stealing e¤ect, which is nearly universal

in standard Cournot oligopoly (at least in a global sense), is quite a bit narrower in the presence of

network externalities. On the other hand, the scope for the opposite, or business-enhancing, e¤ect

is much broader in the present setting, as we see next.

Corollary 15 In addition to the conditions of Theorem 14, assume no costs of production. If the

next condition holds on In, for which log-convexity of P (Z; S) in Z is a su¢ cient condition,

[P (Z;Z)P12 (Z;Z)� P1 (Z;Z)P2 (Z;Z)] +
�
P (Z;Z)P11 (Z;Z)� P 21 (Z;Z)

�
� 0 (11)

then xn+1 � xn.

The left-hand side of (11) is the same as g (Z) when the �rms face no production costs. Its

�rst term is positive by A5, and log-convexity of P (Z; S) in Z ensures the second one is positive

as well. Therefore log-convexity is a su¢ cient, but not necessary, condition for the highest per-�rm

equilibrium output to increase after new entry whenever marginal costs are zero. Amir and Lambson

(2000), Theorem 2.3, require log-convexity to globally ensure the same result for standard Cournot

competition. Hence network e¤ects facilitate this unusual outcome.
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Based on Theorems 13 and 14, the following result deals with the e¤ects of entry on per-�rm

equilibrium pro�ts. Recall that in standard Cournot oligopoly, the only part of the conventional

wisdom about the e¤ects of competition that is universally valid is that per-�rm pro�ts decline with

the number of competitors (Amir and Lambson, 2000, and Amir, 2003). We now show that in the

presence of network e¤ects, this result can be easily reversed.

Theorem 16 In addition to A1-A5, assume Zn and Zn+1 are interior equilibria. Then, we have

(i) if P1 (Z;Z) + P2 (Z;Z) � 0 and g (Z) � 0 on In, at the largest equilibrium, �n+1 � �n; and

(ii) if P1 (Z;Z) + P2 (Z;Z) � 0 and g (Z) � 0 on In, at the largest equilibrium, �n+1 � �n:

The �rst result provides su¢ cient conditions for the �rms in the market to prefer further entry

by new �rms. It generalizes a result in Economides (1996), based on a more speci�c formulation,

which in turn formalizes a remark made by Katz and Shapiro (1985).

Although surprising, the intuition for this outcome is simple. New entry increases the equilibrium

industry output, as shown in Theorem 13, and a direct e¤ect is that market price goes down by the

usual law of demand. But via the e¤ect on the size of the network, this output increase also shifts

the inverse demand function up, thus pushing for a price increase. Then, if the overall e¤ect on the

market price is positive and each �rm increases own output, the existing �rms in the market are

better-o¤ after new entry. As Economides (1996) states, if the externalities are strong, the network

e¤ect dominates the usual competitive e¤ect of entry.

A natural question arises when pro�ts increase in n. Why can�t the existing �rms attempt to

act as if there were more of them in order to each get higher pro�ts at equilibrium? Since they

would do so by producing a higher output level in an e¤ort to in�uence consumers�expectations

of the network size upward, the answer is the same as for the start-up problem: the tacit lack of

commitment power on the part of the �rms, which is at the heart of the FECE concept.

The next result follows as a simple corollary of our last theorem. Its extra requirement captures

(as a special case) one of the conditions often imposed in the network models: no second order

e¤ects on the inverse demand function.

Corollary 17 In addition to the conditions of Theorems 14 and 16, assume P11 (Z;Z)+P12 (Z;Z) =

0, for all Z. If P1 (Z;Z) + P2 (Z;Z) � (�) 0 on In, then, at the largest equilibrium,
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(i) per-�rm equilibrium output increases (decreases) in n, i.e. xn+1 � (�)xn; and

(ii) per-�rm equilibrium pro�ts increase (decrease) in n, i.e. �n+1 � (�)�n.

The new condition in Corollary 17, P11 (Z;Z) + P12 (Z;Z) = 0; is satis�ed if, for example,

P (Z; S) = h (S)�kZ with h(:) an increasing function, or P (Z; S) = f (S � Z) with f (:) increasing

on the reals.

We end this section with an example that highlights the implications of Theorem 16. The next

section will explain how these results a¤ect the standard characterization of the free entry number

of �rms.

Example 3. Consider the symmetric Cournot oligopoly with no production costs, and inverse

demand function given by

P (Z; S) = max fa+ bS� � Z; 0g with Z; S 2 [0; nK] ; a � 0; b > 0 and � 2 (0; 1) :

Assuming K is large enough, the reaction function of any given �rm is

ex (y; S) = max f(a+ bS� � y) =2; 0g :
After a simple computation, the symmetric equilibrium industry output is implicitly de�ned by

�Zn (1 + n) + na+ nbZ�n = 0:

Let a = 10; b = 5 and � = 4=5: Using a numerical approach, per-�rm equilibrium pro�ts for

di¤erent values of n are

�1 � 14; 561 < �2 � 49; 255 < �3 � 67; 316 < �4 � 70; 676

�5 � 67; 288 > �6 � 61; 520 > �7 � 55; 301 > �8 � 49; 404 > ::: > �21 � 14; 444:

We observe that when the number of �rms is small, n = 1; 2 or 3; incumbent �rms are better

o¤ if an extra �rm enters the market. When n � 4, �rms are worse-o¤ after new entry. Consider

for instance a situation where entry costs are 14; 440. Then a single �rm in the market would

barely make a positive pro�t, and potential entrants might decide to stay out if they based their

assessment on standard oligopoly settings (due to pro�ts just covering entry costs). Yet, the market

could actually accommodate a full 21 �rms at the unique free entry equilibrium! �

The next section explores some other consequences of the presence of network e¤ects on the

well-known concept of free entry equilibrium.
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7 Free entry and FECE

Consider the standard problem of free entry as a two-stage game (e.g. Mankiw and Whinston,

1986). In the �rst stage, each of an in�nite number of �rms decides whether to enter the industry or

not, knowing the entry cost EC. In the second stage, upon observing the number of entrants, �rms

engage in standard Cournot competition. The free entry (subgame-perfect) equilibrium number of

�rms ne is then de�ned by

�ne � EC; �ne+1 < EC: (12)

These conditions simply state that the ne �rms that entered and those that did not do not re-

gret their decisions. Assuming a unique Cournot equilibrium in the second stage, the free entry

equilibrium number of �rms is uniquely de�ned (ignoring the integer constraint) by the zero-pro�t

condition �ne = EC since �n is always decreasing in n.

In the present setting with network e¤ects, we can also de�ne free entry equilibrium as a

subgame-perfect equilibrium of the two-stage game, upon replacing the Cournot equilibrium in

the second stage by a FECE selection, assumed to be a non-trivial one (as we do in this section).19

We now investigate the consequences of keeping the standard de�nition of free entry equilibrium as

given in (12).

In light of Theorem 16, the concept of free entry equilibrium may not be well-behaved for

network industries.20 The equilibrium number of �rms ne need not be uniquely de�ned as �n may

intersect the horizontal line at EC more than once, with the free entry equilibria being only those

for which this intersection is from above to below.21

To �x ideas, let us focus on the situation depicted in Figure 4. There are two free entry equilibria,

n1 and n3 according to the de�nition given above. We assume in what follows that �n3 > EC and

�n3+1 < EC, which holds generically (thus, in contrast to much of the literature, we are not ignoring

the integer constraint, and this will turn out to be crucial below). Clearly, with n1 �rms in the

market, no single �rm outside the market would wish to deviate and enter on its own. However, a

group of n3 � n1 �rms outside the market could form a coalitional deviation �all enter the market

19As an abuse of terminology, we ignore here the fact that FECE is not a fully game-theoretic concept.
20To begin with, FECE are often not unique, so to each FECE corresponds at least one free entry equilibrium. In

particular, the presence of the trivial equilibrium would lead to no entry always being a free entry equilibrium.
21 In Example 3, it is of interest to observe that, although �n is inverse U-shaped in n; the free entry number of

�rms is nevertheless uniquely de�ned for any level of EC.
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Figure 4: Free-entry and Network E¤ects

�that would be bene�cial to all coalition members. With n3 �rms in the market, no coalition has

a pro�table deviation (we are assuming that, consistent with Figure 4, �n < EC for all n > n3).22

Hence, there is a unique strong Nash equilibrium, which is also coalition-proof, in the one-shot game

with payo¤s written as functions of the two possible �rst-stage actions (enter and do not enter) for

each �rm, given a non-trivial FECE in the second stage. This induces what we might refer to as a

unique strong (and coalition-proof) free entry equilibrium with n3 �rms in. The latter is also the

Pareto-dominant free entry equilibrium if �n3 � �n1 , but not otherwise.23

Clearly, the underlying ideas behind this discussion are quite general. In case of multiple free

entry equilibria, only one is also coalition-proof and it is always the free entry equilibrium with

the highest number of �rms in the market. This equilibrium clearly has a lot of intuitive appeal

from an applied perspective, since the free entry number of �rms is often thought of as the largest

number of �rms that a market can sustain. It is thus reasonable to suggest coalition-proofness as a

re�nement to the notion of free entry equilibrium in markets with network e¤ects.24

On the other hand, for this equilibrium to arise, some pre-play communication without the

22Here again, we are using the assumption �n3 > EC, since without it, there would be a pro�table coalitonal

deviation to the n1 equilibrium in case �n1 > �n3 .
23A general remark about the common simplifying assumption of ignoring the integer constraint in the standard

oligopoly literature is in order. If �ne = EC holds, then each �rm is indi¤erent between entering and not entering.

So if one of the ne �rms went out of the market, we would still have a free entry equilibrium, which actually Pareto-

dominates the original ne-�rm equilibrium since �ne�1 > �ne . Thus ignoring the integer constraint is not as innocuous

as it seems. One way out is to assume the (rather arbitrary) tie-breaking rule that, when indi¤erent, a �rm always

chooses to enter.
24Delgado and Moreno (2004) use coalition-proofness as a re�nement to narrow down the set of supply function

equilibria in an oligopolistic setting.
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option of making binding agreements might well be needed, as is the case with coalition-based

equilibrium notions in general. Such coordination of entry decisions by �rms might well violate

existing antitrust legislation in practice.

In conclusion, the presence of network e¤ects creates quite some novel features as far as the

central problem of free entry is concerned, and some of these might call for some new antitrust

legislation allowing for entry coordination (i.e. pre-play communication) between competitors. The

latter will also introduce some new scope for useful coordinating activities by other actors, such as

business associations. These conclusions reinforce the earlier �ndings that the start-up phase of a

network industry might call for new forms of inter-�rm cooperation.

8 Social welfare, consumer surplus and industry pro�ts

This section studies the e¤ects of an exogenous change in the number of �rms on social welfare,

consumer surplus and industry pro�ts. As in the previous section, we continue to focus on the highest

equilibrium outputs, Zn and xn. Our aim is to give su¢ cient conditions that validate, for the highest

equilibrium, the conventional wisdom that social welfare and consumer surplus increase with more

competition, while industry pro�ts decrease. Amir (2003) answers similar questions for standard

Cournot competition, thus facilitating the corresponding comparisons. As in network industries the

latter e¤ects might sometimes be reversed, we will also provide either su¢ cient conditions for these

reversals when appropriate or otherwise at least closed-form examples illustrating these possibilities.

We begin providing su¢ cient conditions for social welfare to increase with entry. Our initial

assumptions, A1-A5, are consistent with xn being increasing or decreasing in n, as re�ected in

Theorem 14. The next theorem shows that the implications of these two possibilities on social

welfare are quite di¤erent.

Theorem 18 Assume A1-A5 are satis�ed. Then, at the highest equilibrium, Wn+1 �Wn if one of

the following conditions holds

(i)
Z Zn

0

�
P
�
t; Zn+1

�
� P

�
t; Zn

��
dt � Zn [A (xn+1)�A (xn)]; or

(ii) xn+1 � xn:

Note that since P2 (Z; S) > 0, by A1, and Zn+1 � Zn, by Theorem 13 (i), the left hand side of

Condition (i) is always positive. So our theorem identi�es the next two su¢ cient conditions: welfare
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increases in the number of �rms in the presence of diseconomies of scale (A (:) is increasing) and

decreasing per-�rm output, or whenever per-�rm output increases in n.

The network e¤ects play a key role in these two conditions. As it is readily veri�ed, they facilitate

the �rst inequality by enlarging the left hand side of Condition (i). As seen earlier, they ease the

conditions under which per-�rm output increases in n, therefore facilitating Condition (ii).

The next result states that if marginal costs are constant, then social welfare, at the highest

equilibrium, always increases with entry. Although this outcome follows as a direct implication

of Theorem 18 (i), we include it as a separate result because it re�ects the case most commonly

analyzed in the existing literature.

Corollary 19 In addition to A1-A5, assume the cost of production is linear, i.e. C (x) = cx with

c � 0. Then, at the highest equilibrium, social welfare always increases in the number of �rms.

We next study consumer surplus, for which our results di¤er markedly from their counterparts

in the standard Cournot oligopoly.

Theorem 20 Assume A1-A5 are satis�ed. Then, at the highest equilibrium, CSn+1 � CSn if

either (i) P
�
Zn+1; Zn+1

�
� P

�
Zn; Zn

�
; or (ii) P12 (Z; S) � 0.

As a consequence of the so-called property of quasi-competitiveness, which under similar condi-

tions holds in the standard Cournot game, Condition (i) is always satis�ed without network e¤ects.

Example 4, at the end of the section, shows the opposite sometimes happens in network industries.

Katz and Shapiro (1985) clearly explain why this surprising result might occur here: If the mar-

ginal consumer has a strong network externality, then the increment in the expected network size

generated by the larger number of �rms in the market, will increase his/her willingness to pay for

the product above that of the average consumer. As a consequence, the �rms will be able to raise

the price by more than the increase in the average consumer�s willingness to pay for the product

and consumer�s surplus will fall.

Our last theorem deals with industry pro�ts. Like the previous two, it provides su¢ cient con-

ditions for aggregate pro�ts to increase after new entry. It also gives su¢ cient conditions for the

opposite, more common, result.

Theorem 21 Assume A1-A5 are satis�ed. Then, at the highest equilibrium,
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(i) (n+ 1)�n+1 � n�n if P
�
Zn+1; Zn+1

�
�P

�
Zn; Zn

�
� A (xn+1)�A (xn) and/or the conditions

of Theorem 16 (i) are satis�ed; and

(ii) (n+ 1)�n+1 � n�n if P
�
Zn+1; Zn+1

�
� P

�
Zn+1; Zn

�
� A (xn+1)�A

�
n+1
n xn+1

�
.

The proof of Theorem 21 (i) is quite simple. Relying on the fact that the highest selection of

the equilibrium industry output increases in n, the �rst su¢ cient condition simply says that, if the

overall e¤ect on the market price is larger than the change of the average cost of production, then

industry pro�ts increase. The second statement is a corollary of Theorem 16 (i). The justi�cation

of Theorem 21 (ii) is quite similar to the previous one.

The �nal result is a direct implication of the last one. It states that if �rms have linear costs and

the network e¤ect on the market price dominates the output e¤ect after new entry, then aggregate

equilibrium pro�ts increase with more competition.

Corollary 22 In addition to A1-A5, assume the cost of production is linear, i.e. C (x) = cx with

c � 0. Then, at the highest equilibrium, industry pro�ts increase in the number of �rms if market

price increases after new entry.

Example 4 ends this section. It illustrates how consumer surplus and industry pro�ts might

decrease and increase, respectively, after new entry.

Example 4. Consider the symmetric Cournot oligopoly with no production costs and inverse

demand function given by

P (Z; S) = maxfa� Z=S3; 0g with Z; S 2 [0; nK] and a;K > 1:

The reaction function of any given �rm is

x (y; S) =

8<: max
��
aS3 � y

�
=2; 0

	
if
�
aS3 � y

�
=2 < K

K if
�
aS3 � y

�
=2 � K

:

Thus, we have three possible FECE aggregate outputs

Zn =
n
0;
p
(n+ 1) =(na); nK

o
:

From a simple computation, consumer surplus is zero at the smallest equilibrium and, assuming a �

1= (nK)2 ; it equals the following expression at the highest one

CSn = 1= (2nK) :
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Since this expression is decreasing in n, consumer surplus decreases after new entry for the highest

equilibrium. This result is possible because Conditions (i) and (ii) in Theorem 20 are not satis�ed,

i.e. the market price at the highest equilibrium increases in n and P12 (Z; S) = 3=S4 > 0 for all Z; S:

Note that the opposite is true for aggregate pro�ts. The following expression shows that they

increase in n at the highest equilibrium

n�n = nK
h
a� 1= (nK)2

i
:

As Corollary 19 states, next expression shows that social welfare, at the highest equilibrium, in-

creases in n

Wn = anK � 1= (2nK) :

These results point out some of the relevant di¤erences between Cournot competition with and

without network e¤ects in terms of industry performance. �

9 Proofs

This section provides the proofs for all the results of the paper, and also contains the statements

and proofs of some useful intermediate results not given in the body of the paper.

The proof of Lemma 1 calls for an intermediate result.

Lemma 23 Assume A1-A5 hold. Then e� (Z; y; S) has the strict single-crossing property in (Z;S) :
Proof of Lemma 23

To prove this result, �rst note that �2 (Z; S) > 0 if and only if @2 logP (Z; S) =@Z@S > 0: We

show that this condition implies that e� (Z; y; S) has the strict single-crossing property in (Z;S), i.e.
that for any Z > Z 0 and S > S0;

e� �Z; y; S0� � e� �Z 0; y; S0� =) e� (Z; y; S) > e� �Z 0; y; S� : (13)

Since @2 logP (Z; S) =@Z@S > 0 we have logP (Z; S)� logP (Z 0; S) > logP (Z; S0)� logP (Z 0; S0),

or
P (Z; S)

P (Z 0; S)
>
P (Z; S0)

P (Z 0; S0)
: (14)

The left hand side of (13) can be rewritten as

(Z � y)P
�
Z; S0

�
� C (Z � y) �

�
Z 0 � y

�
P
�
Z 0; S0

�
� C

�
Z 0 � y

�
: (15)
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Combining (14) and (15), we get

(Z � y)P (Z; S) P (Z
0; S0)

P (Z 0; S)
� C (Z � y) >

�
Z 0 � y

�
P
�
Z 0; S0

�
� C

�
Z 0 � y

�
: (16)

Multiplying both sides of (16) by P (Z 0; S) =P (Z 0; S0) we obtain

(Z � y)P (Z; S)� P (Z 0; S)

P (Z 0; S0)
C (Z � y) >

�
Z 0 � y

�
P
�
Z 0; S

�
� P (Z 0; S)

P (Z 0; S0)
C
�
Z 0 � y

�
: (17)

By A1, P (Z 0; S) =P (Z 0; S0) > 1 and, by A2, C (Z � y) � C (Z 0 � y) : Thus, (17) implies

(Z � y)P (Z; S)� C (Z � y) >
�
Z 0 � y

�
P
�
Z 0; S

�
� C

�
Z 0 � y

�
; (18)

which is just the right hand side of (13). Hence, (13) holds. �

Proof of Lemma 1

Since @2e� (Z; y; S) =@Z@y = �1(Z; y) > 0, by A4, the maximand in (2) has strictly increasing

di¤erences in (Z; y). Furthermore, the feasible correspondence (y; S) �! [y; y +K] is ascending

in y: Then, by Topkis�s theorem [Theorem A.1, Appendix], every selection from the argmax ofe� (Z; y; S), eZ (y; S), increases in y:
By Lemma 23, e� (Z; y; S) has the strict single-crossing property in (Z;S). In addition, the

feasible correspondence (y; S) �! [y; y +K] does not depend on S. Then, by [Theorem A.2,

Appendix] due to Milgrom and Shannon (1994), every selection from the argmax of e� (Z; y; S),eZ (y; S), is also increasing in S: �
Proof of Theorem 2

The following mapping, which can be thought of as a normalized cumulative best-response, is

the key element in dealing with symmetric equilibria for any n25

Bn : [0; (n� 1)K]� [0; nK] �! 2[0;(n�1)K]�[0;nK]

(y; S) �!
�
n� 1
n

�
x0 + y

�
; x0 + y

�
where x0 denotes a best-response output level by a �rm to a joint output y by the other (n�1) �rms,

given S. It is readily veri�ed that the (set-valued) range of Bn is as given, i.e. if x0 2 [0;K] and

y 2 [0; (n� 1)K], then ((n� 1)=n)(x0 + y) 2 [0; (n� 1)K] and x0 + y 2 [0; nK] : Also, a �xed point
25See Amir and Lambson (2000) and Kwon (2007).
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of Bn is easily seen as a symmetric equilibrium, for it must satisfy both by = ((n� 1) =n) (bx0 + by) ;
or bx0 = by= (n� 1) ; and bS = bx0 + by; which says that the responding �rm produces as much as each

of the other (n� 1) �rms and the expected size of the network is ful�lled at equilibrium.

By Lemma 1 we know that every selection of eZ (y; S) increases in y and S: Hence, for any
�xed n 2 N , every selection of Bn increases in (y; S), so that by Tarski�s �xed point theorem

[Theorem A.3, Appendix], it has a �xed point. As argued before, a �xed point of Bn is a symmetric

equilibrium. This proves the �rst statement of Theorem 2. We next show that no asymmetric

equilibria exists.

To this end, it su¢ ces to show that the correspondence eZ (y; S) is strictly increasing (in the
sense that all its selections are strictly increasing) in y, for each S. Thus, for all possible S, to each

Z 0 2 eZ (y; S) corresponds (at most) one y such that Z 0 = x0 + y with Z 0 being a best-response to
y and S. In other words, for each equilibrium output Z 0, each �rm must be producing the same

x0 = Z 0 � y, with y = (n� 1)x0.

A4 implies that @e� (Z; y; S) =@Z is strictly increasing in y, a property slightly stronger than

strictly increasing di¤erences in (Z; y): By Topkis (1998), Theorem 2.8.5 on p. 79, this property

implies that eZ (y; S) is strictly increasing in y for each S, whenever eZ (y; S) is interior.26 The

second statement in Theorem 2 follows because, as argued in the previous paragraph, this condition

guarantees no asymmetric equilibria exist. �

The next proof, from Amir and Lambson (2000), is included for completeness only.

Proof of Lemma 3

To show Part (i) consider the mapping

Tn : [0; (n� 1)K] �! 2[0;(n�1)K]

y �!
�
n� 1
n

�
x0 + y

��
: (19)

The proof of existence and the fact that no asymmetric equilibrium exists follow as a simply corollary

of the proof of Theorem 2, thus we omit it.

We next show that if A5 is also satis�ed, the extremal selections of zn (S), zn (S) and zn (S),

increase in S. We know, by Topkis�s theorem, that the maximal and minimal selections of Tn

denoted, respectively, Tn and Tn; exist. Furthermore, the largest value of zn (S), zn (S), constitutes

26This result was proved in Amir (1996) and Edlin and Shannon (1998).
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the largest �xed point of Tn. Under A5 we know, by Lemma 1, that every selection of eZ (y; S)
increases in S. Then the largest �xed point of Tn, zn (S) ; is also increasing in S [Theorem A.4,

Appendix]. A similar argument, using the selection Tn, establishes that zn (S) is increasing in S.

This ends the proof of Part (ii).

To prove Part (iii), we show that adding A6 leads to zn (:) being a single-valued and continuous

function. From Amir (1996a), Theorem 2.1, we know that the best-response correspondence ex (y; S),
as de�ned in (1), is nonincreasing given that P (Z; S) is log-concave in Z. In addition, since every

selection of eZ (y; S) increases in y (Lemma 1) and eZ (y; S) = ex (y; S) + y, it follows that every
selection of ex (y; S) has all its slopes bounded below by �1. Altogether then, all the slopes of every
selection of ex (y; S) lie in [�1; 0]. This leads to the uniqueness of Cournot equilibrium through a

well-known argument, a proof of which is given in Amir and Lambson (2000), Theorem 2.3. Hence,

zn (:) is single-valued. Since zn (:) is also u.h.c. as a correspondence, due to �rms�payo¤s being

continuous in S, the conclusion follows. �

Proof of Lemma 4

By de�nition, an industry output of 0 is a FECE if 0 2 ex (0; 0). This holds if and only if we
have

� (0; 0; 0) � � (x; 0; 0)

0 � xP (x; 0)� C (x)

C (x) � xP (x; 0)

for all x 2 [0;K] : This proves our �rst statement. The second one follows because all the steps are

independent of the number of �rms in the market. �

The proof of Theorem 5 calls for several intermediate results, which will turn out to be useful for

some other proofs as well. We �rst state su¢ cient conditions under which an increasing selection

of zn (S) is di¤erentiable for almost all S, and give a speci�c functional form for its slope. We then

show that when 0 is part of the equilibrium set, then zn (0) is single-valued and right-continuous.

Lemma 24 Assume A1-A5 are satis�ed. Let bzn be an increasing selection of zn (S), such thatbzn (S) 2 (0; nK). Then bzn (S) is di¤erentiable for almost all S; and its slope is given by
@bzn (S)
@S

=
�n fP1(bzn; S)P2(bzn; S)� [P (bzn; S)� C 0 (bzn=n)]P12(bzn; S)g

(n+ 1) [P1(bzn; S)]2 � n [P (bzn; S)� C 0 (bzn=n)]P11(bzn; S)� P1(bzn; S)C 00 (bzn=n) (20)

35



where bzn stands for bzn (S) :
Proof of Lemma 24

If bzn (S) is interior, it must satisfy the �rst order condition
P (bzn; S) + (bzn=n)P1(bzn; S)� C 0 (bzn=n) = 0 (21)

where bzn stands for bzn (S). Multiplying both sides of (21) by n
nP (bzn; S) + znP1(bzn; S)� nC 0 (bzn=n) = 0: (22)

Since bzn (S) is increasing, it is di¤erentiable almost everywhere (w.r.t. Lebesgue measure) and
@bzn (S)
@S

=
� [nP2(bzn; S) + eznP12(bzn; S)]

(n+ 1)P1(bzn; S) + bznP11(bzn; S)� C 00 (bzn=n) : (23)

Substituting bzn (S) by its implicit value in (21), and multiplying the numerator and the denominator
by P1(zn; S), we obtain (20). �

Proof of Lemma 6

We �rst show that if 0 2 zn (0), then 0 = zn (0), i.e., zn (0) is a singleton. By Lemma 4 we know

that 0 2 zn (0) if and only if

xP (x; 0) � C (x) for all x 2 [0;K] : (24)

Since P1 (Z; S) < 0 by A1, it follows from (24) that xP (x+ y; 0) < C (x) for all x 2 (0;K] and all

y > 0: Hence, 0 is a dominant strategy in the standard Cournot game given S = 0. This proves

that zn (0) is single-valued.

The fact that P (0; 0) = C 0(0) ensures the trivial outcome is an interior equilibrium. To show

(4), take any sequence Sk # 0 such that bzn is di¤erentiable at Sk for all k (this is possible since the
set of points of di¤erentiability of an increasing function forms a dense subset of its domain). Sincebzn is increasing, it has left and right limits at every point, so the limit limk!1 bzn(Sk) exists. Since
zn(:) is u.h.c. (see the proof of Lemma 3), limk!1 bzn(Sk) 2 zn (0) = f0g, so that by the earlier part
of this proof, limk!1 bzn(Sk) = 0.

Now consider (23) with S = Sk. By Assumption A1 and the fact that limk!1 bzn(Sk) = 0, the
right-hand side of (23) is right-continuous in S at 0. Taking limits as k �! 1, (4) follows. Since
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this argument is clearly independent of the particular (increasing) selection bzn and of the sequence
(Sk) chosen, @zn (S) =@SjS=0 is single-valued, continuous at 0, and given by (4).

The fact that z0n (0) = 0 if the trivial equilibrium in not interior follows directly from our previous

arguments, thus we omit this proof. �

We next show that, for all S 2 [0; nK], any argmax of a �ctitious objective function �(Z; S)

is an element of zn (S) : Note that, given S, �(Z; S) may be viewed as a weighted combination of

industry pro�ts and welfare, with respective weights 1
n and

n�1
n , as constructed by Bergstrom and

Varian (1985) for standard Cournot.

Lemma 25 Assume A1-A5 are satis�ed and C (:) is convex. De�ne

�(Z; S) , n� 1
n

Z Z

0
P (t; S) dt+

Z

n
P (Z; S)� nC (Z=n) :

Given any n 2 N and S 2 [0; nK], if Z 0 2 argmax f�(Z; S) : 0 � Z � nKg then Z 0 2 zn (S) :

Proof of Lemma 25

Assume Z� is an argmax of �(Z; S), we need to show Z� corresponds to the industry output

of a symmetric Cournot equilibrium with exogenous S. Let Z� = x� + y�, with x� = Z�=n and

y� = (n� 1)x�, and consider Z 0 = x0 + y�, with x0 2 [0;K] : Then x0 denotes a possible deviation

of a given �rm from its equilibrium output x�: We next show this unilateral deviation is never

pro�table.

Since Z� is a maximizer of �(Z; S) ; then �(Z�; S) � �(Z 0; S), which is equivalent to say

n� 1
n

Z x�+y�

0
P (t; S) dt+ x�P (x� + y�; S)� nC (x�) �

(n� 1)
n

Z x0+y�

0
P (t; S) dt+

(x0 + y�)

n
P
�
x0 + y�; S

�
� nC

�
x0 + y�

n

�
(25)
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Then we have

x�P (x� + y�; S)� C (x�)

� n� 1
n

Z x0+y�

0
P (t; S) dt+

(x0 + y�)

n
P
�
x0 + y�; S

�
� nC

�
x0 + y�

n

�
�n� 1

n

Z x�+y�

0
P (t; S) dt+ (n� 1)C (x�)

� n� 1
n

Z x0+y�

x�+y�
P (t; S) dt+

(x0 + y�)

n
P
�
x0 + y�; S

�
� C

�
x0
�

� (n� 1) (x0 � x�)
n

P
�
x0 + y�; S

�
+
(x0 + y�)

n
P
�
x0 + y�; S

�
� C

�
x0
�

= x0P
�
x0 + y�; S

�
� C

�
x0
�
:

The �rst inequality follows from (25), after rearranging terms. The second one holds as we assumed

C (:) is convex (and y� = (n� 1)x�), and the last one by A1, P1 (Z; S) < 0: Since x0 is arbitrary,

this argument shows that x� is a symmetric Cournot equilibrium. �

Proof of Theorem 5

Part (i) holds because, if the trivial outcome (zero output) is not part of the equilibrium set,

Theorem 2 guarantees there is a FECE with strictly positive industry output.

Parts (ii) and (iii) are both based on the following argument. By Lemma 3, the maximal and

minimal selections of zn (S), zn (S) and zn (S), increase in S. Assume, for the moment, there exists

an S0 2 (0; nK] such that zn (S0) � S0: If we restrict attention to the values of S in [S0; nK],

it follows that zn (S) 2 [S0; nK] because zn (:) is increasing and zn (S0) � S0: Therefore, for all

S 2 [S0; nK], zn (S) is an increasing function that maps [S0; nK] into itself. Hence, by Tarski�s �xed

point theorem [Theorem A.3, Appendix], there is an S0 � S00 � nK such that zn (S00) = S00: Since

this condition implies zn (S00) is a strictly positive FECE, the existence of a nontrivial equilibrium

reduces to showing there is at least one S 2 (0; nK] for which an element of zn (S) is above S, i.e.

zn (S) � S:

To prove Part (ii), we show z0n (0) > 1. Using Lemma 6, z
0
n (0) > 1 if, given P1 (0; 0)+P2 (0; 0) >

0,

n >
�
�P1 (0; 0) + C 00 (0)

�
= [P1 (0; 0) + P2 (0; 0)] :

Then the existence of a nontrivial FECE follows by the argument in the previous paragraph, as

Lemma 6 and the property z0n (0) > 1; imply there exists a small " > 0 for which zn (") > ": This

completes the proof of Part (ii).

38



Condition (3) in Part (iii) is equivalent to say there is some S 2 (0; nK] and some bZ � S for

which n
h
�
� bZ; S���(Z; S)i � 0 for all Z � S: As a consequence, the largest argmax of �(Z; S)

must be larger than S. Call this argmax Z 0. Our proof follows because Z 0 2 zn (S), by Lemma 25,

and this ensures there is an S 2 (0; nK] for which an element of zn (S) is higher than S: �

Proof of Theorem 7

Under A1-A6 we know, by Lemma 3, that zn (:) is a single-valued, continuous and increasing

function. The fact that f (Z; n) is equal to its slope along the diagonal, follows from a stronger

version of Lemma 24 as follows. Consider (21) with zn (S) instead of bzn (S). By the implicit

function theorem, @zn (S) =@S exists at every S and is given by (20) with bzn (S) replaced by zn (S).
Evaluating this along the diagonal Z = S, we see that it is equal to f (Z; n).

The uniqueness result now follows directly from the assumption f (Z; n) < 1 for all Z; since any

two adjacent �xed points of zn (S) must include one for which f (Z; n) � 1. �

Proof of Proposition 10

By Lemma 3, zn (:) and zn (:) are increasing.

To prove Part (i), �rst assume 0 is not an equilibrium. Then zn (0) > 0 and the orbit in (7) withbzn = zn and S0 = 0 (or S0 near 0) must converge to the smallest �xed point of zn (:), which is a

strictly positive equilibrium by (the successive approximation part of) Tarski�s �xed point theorem.

Hence orbits with higher values of S0 will converge to non-zero �xed points of zn (:) :

Next, assume Condition (ii) of Theorem 5 holds. Then we know that zn (S) > S for S small

enough (cf. Lemma 6). So any orbit with S0 near 0 converges to the smallest �xed point of zn (:)

with strictly positive output, and orbits with higher values of S0 are as in the previous step.

To prove Part (ii), Condition (iii) of Theorem 5 ensures there is an S0 2 (0; nK] for which

zn (S0) � S0. By Tarski�s Theorem applied to zn mapping [S0,nK] to itself, the orbit starting at

S0 must converge to a strictly positive equilibrium.

To prove Part (iii), note that since 0 is a FECE, there can be no other FECE by Theorem 7.

Hence, every orbit from any S0 is a decreasing sequence to 0. �

Proof of Theorem 12

We will show Part (i) for a change in n, the proof for � is almost identical so we omit it. To this

end, we use the mapping (19) in the proof of Lemma 3. We know, by Topkis�s theorem, that the
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maximal and minimal selections of Tn, Tn and Tn, exist. Furthermore, the largest value of zn (S),

zn (S), constitutes the largest �xed point of Tn. Since (n� 1) =n increases in n every selection of

Tn is increasing. Then the largest �xed point of Tn, zn (S) ; is also increasing in n [Theorem A.4,

Appendix]. A similar argument, using the selection Tn, establishes that zn (S) is increasing in n.

The second statement of Part (i) follows directly from De�nition 11 and the fact that zn (S)

and zn (S) shift up as n increases.

To prove Part (ii), observe that if the trivial equilibrium holds and P1 (0; 0)+P2 (0; 0) � 0, then,

by Lemma 6, z0n (0) < 1 8 n, so that 0 is a stable equilibrium 8 n. This ends our proof. �

Proof of Theorem 13

The maximal and minimal selections of Bn (as de�ned in the proof of Theorem 2) denoted,

respectively, Bn and Bn; exist by Topkis�s theorem. Furthermore, the largest equilibrium values of

yn and Zn ,
�
yn; Zn

�
, constitute the largest �xed point of Bn. Since (n� 1) =n is increasing in n,

Bn is increasing in n for all (y; S). Since Bn is also increasing in both y and S, the largest �xed

point of Bn;
�
yn; Zn

�
; is also increasing in n (see Milgrom and Roberts, 1990). A similar argument,

using the selection Bn; establishes that
�
y
n
; Zn

�
increases in n as well. This shows part (i).

Part (ii) follows directly from Part (i) since dP (Z;Z) =dz = P1 (Z;Z) + P2 (Z;Z) : �

Proof of Theorem 14

Consider the following mapping

Mn : [0; nK] �! 2[0;K]

Z �! ex = �x : P (Z;Z) + xP1 (Z;Z)� C 0 (x) = 0	 : (26)

ThenMn maps industry output into the solution of a �ctitious �rst order condition, which coincides

with that of an interior FECE when x = Z=n and Z = Zn:

Totally di¤erentiating this �rst order condition with respect to n; we have

fP1 (Z;Z) + P2 (Z;Z) + ex [P11 (Z;Z) + P12 (Z;Z)]g dz
dn

= 0: (27)

Substituting in (27) ex by [C 0 (Z=n)� P (Z;Z)] =P1 (Z;Z) ; and rearranging terms, we get
� 1

P1 (Z;Z)

��
P (Z;Z)� C 0 (Z=n)

�
[P11 (Z;Z) + P12 (Z;Z)]� P1 (Z;Z) [P1 (Z;Z) + P2 (Z;Z)]

	 dz
dn

= 0:

(28)
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Substituting g (Z) from (10) into (28), we get

� 1

P1 (Z;Z)
g (Z)

dz

dn
= 0: (29)

By A1, P1 (Z;Z) < 0. Also, by Theorem 13 (i), the extremal equilibrium industry outputs increase

in n: Then, if g (Z) � (�) 0 over
�
Zn; Zn+1

�
, the mapping Mn increases (decreases) in n at the

largest equilibrium industry output. Theorem 14 follows because if Mn increases (decreases) in n

at the largest equilibrium industry output, then xn also increases (decreases) with this parameter.

By a similar argument it can be shown that this is also true for xn. �

Proof of Corollary 15

Inequality 11 equals function g (Z) when the �rms face no cost of production. Then the �rst

claim follows directly from Theorem 14 (i).

The �rst term in the left hand side of (11) is always positive by A5. As the log-convexity

of P (Z; S) in Z guarantees the second term is also positive, this is a su¢ cient condition for the

required inequality. �

Proof of Theorem 16

Consider the following inequalities

�n+1 = xn+1P
�
xn+1 + yn+1; Zn+1

�
� C (xn+1)

� xnP
�
xn + yn+1; Zn+1

�
� C (xn)

� xnP
�
xn+1 + yn+1; Zn+1

�
� C (xn)

� xnP
�
xn + yn; Zn

�
� C (xn)

= �n:

The �rst inequality follows by the Cournot equilibrium property. The second one is from xn+1 � xn
and A1. (The fact that xn+1 � xn here follows by Theorem 14 (i) because we assumed all its

required conditions are satis�ed.) The third inequality follows because our assumptions imply

P
�
Zn+1; Zn+1

�
� P

�
Zn; Zn

�
: Therefore, �n+1 � �n: By a similar argument it can be shown that

this is also true for the equilibrium per-�rm pro�ts evaluated at the minimal equilibrium outputs.

This shows Part (i).

We omit the proof of Part (ii) as it is almost identical to the previous one. �
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Proof of Corollary 17

If P11 (Z;Z)+P12 (Z;Z) = 0, then g (Z) = �P1 (Z;Z) [P1 (Z;Z) + P2 (Z;Z)] : By A1, P1 (Z;Z) <

0. Then the sign of g (Z) is equal to the sign of P1 (Z;Z) + P2 (Z;Z), and Corollary 17 (i) and (ii)

follow by Theorems 14 (i) and 16 (i), respectively. �

Proof of Theorem 18

To show Part (i) consider

Wn+1 �Wn =

Z Zn+1

0
P
�
t; Zn+1

�
dt� Zn+1A (xn+1)�

"Z Zn

0
P
�
t; Zn

�
dt� ZnA (xn)

#

�
Z Zn

0
P
�
t; Zn+1

�
dt� ZnA (xn+1)�

"Z Zn

0
P
�
t; Zn

�
dt� ZnA (xn)

#
� 0:

The �rst inequality follows because P
�
t; Zn+1

�
�A (xn+1) � 0 for all t � Zn+1, and Zn+1 � Zn by

Theorem 13 (i). The second inequality holds by the assumed conditions.

To show Part (ii) let us de�ne Vn (x; S) =
R nx
0 P (t; S) dt�nC (x) : Notice Vn (x; S) is concave in

x since n [nP1 (nx; S)� C 00 (x)] < 0 by both A1 and A4. In addition,Z Zn+1

0
P
�
t; Zn+1

�
dt =

Z nxn+1

0
P
�
t; Zn+1

�
dt+

Z Zn+1

nxn+1

P
�
t; Zn+1

�
dt

�
Z nxn+1

0
P
�
t; Zn+1

�
dt+ xn+1P

�
Zn+1; Zn+1

�
(30)

where the inequality follows by A1. The following steps show our result

Wn+1 �Wn =

Z (n+1)xn+1

0
P
�
t; Zn+1

�
dt� (n+ 1)C (xn+1)�

�Z nxn

0
P
�
t; Zn

�
dt� nC (xn)

�
� �n+1 +

Z nxn+1

0
P
�
t; Zn+1

�
dt� nC (xn+1)�

�Z nxn

0
P
�
t; Zn

�
dt� nC (xn)

�
� �n+1 +

Z nxn+1

0
P
�
t; Zn+1

�
dt� nC (xn+1)�

�Z nxn

0
P
�
t; Zn+1

�
dt� nC (xn)

�
= �n+1 + Vn

�
xn+1; Zn+1

�
� Vn

�
xn; Zn+1

�
� �n+1 +

�
@Vn

�
xn+1; Zn+1

�
=@x

�
(xn+1 � xn)

= �n+1 + n
�
P
�
nxn+1; Zn+1

�
� C 0 (xn+1)

�
(xn+1 � xn)

� �n+1 + n
�
P
�
(n+ 1)xn+1; Zn+1

�
� C 0 (xn+1)

�
(xn+1 � xn)

� 0:
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The �rst inequality follows from inequality (30), the second one by A1 and Theorem 13 (i) and

the third one by the concavity of Vn (x; S) in x: The fourth inequality holds by A1 and because we

assumed xn+1 � xn, and the last one by the Cournot property. This completes our proof. �

Proof of Corollary 19

If the cost of production is linear, the right hand side of the required condition in Theorem 18

(i) is zero. Its left hand side is always positive because Zn+1 � Zn and, by A1, P2 (Z; S) > 0. Our

result follows because these two facts ensure Theorem 18 (i) is satis�ed. �

Proof of Theorem 20

The proof of Part (i) follows directly from Theorem 13 (i).

The following steps prove Part (ii)

CSn+1 � CSn =

Z Zn+1

0

�
P
�
t; Zn+1

�
� P

�
Zn+1; Zn+1

��
dt�

Z Zn

0

�
P
�
t; Zn

�
� P

�
Zn; Zn

��
dt

�
Z Zn

0

�
P
�
t; Zn+1

�
� P

�
Zn+1; Zn+1

��
dt�

Z Zn

0

�
P
�
t; Zn

�
� P

�
Zn; Zn

��
dt

= Zn
�
P
�
Zn; Zn

�
� P

�
Zn+1; Zn

��
�
Z Zn

0

��
P
�
Zn+1; Zn+1

�
� P

�
Zn+1; Zn

��
�
�
P
�
t; Zn+1

�
� P

�
t; Zn

��	
dt

� Zn
�
P
�
Zn; Zn

�
� P

�
Zn+1; Zn

��
� 0:

The �rst inequality follows directly from P1 (Z; S) < 0 and Theorem 13 (i). The next step is

obtained from the previous one by adding and subtracting
R Zn
0 P

�
Zn+1; Zn

�
dt; and rearranging

terms: To justify the second inequality notice that P12 (Z; S) � 0 is su¢ cient forZ Zn

0

�
P
�
t; Zn+1

�
� P

�
t; Zn

��
dt �

Z Zn

0

�
P
�
Zn+1; Zn+1

�
� P

�
Zn+1; Zn

��
dt:

Our last step is true since P1 (Z; S) < 0.

Hence, P12 (Z; S) � 0 8 Z; S 2 [0; nK] is su¢ cient for CSn+1 � CSn � 0; or CSn+1 � CSn: �

Proof of Theorem 21

We next show the �rst statement in Part (i) For an extremal equilibrium industry output,
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consider

(n+ 1)�n+1 � n�n = Zn+1
�
P
�
Zn+1; Zn+1

�
�A (xn+1)

�
� Zn

�
P
�
Zn; Zn

�
�A (xn)

�
� Zn

�
P
�
Zn+1; Zn+1

�
�A (xn+1)

�
� Zn

�
P
�
Zn; Zn

�
�A (xn)

�
= Zn

�
[P
�
Zn+1; Zn+1

�
� P

�
Zn; Zn

�
]� [A (xn+1)�A (xn)]

	
:

Since P
�
Zn+1; Zn+1

�
� A (xn+1) � 0, the inequality follows by Theorem 13 (i). The �rst part of

Theorem 21 simply says that if the last function is positive, then (n+ 1)�n+1 � n�n: The second

statement in Part (i) follows directly from Theorem (16) (i).

The proof of Part (ii) is similar to the previous one so we omit it. �

Proof of Corollary 22

This result follows directly from our �rst statement in Theorem 21 (i), because linear costs imply

constant average costs of production. �
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APPENDIX

In an attempt to make this paper self-contained, we provide a summary of all lattice-theoretic

notions and results used here. Since this paper deals with real decision and parameter spaces, every

theorem that follows is a special case of the original one (see Topkis, 1998).

A function F : R2+ ! R is supermodular if, for x1 � x2; y1 � y2,

F (x1; y1)�F (x2; y1)� F (x1; y2)�F (x2; y2) : (31)

If F is twice continuously di¤erentiable, Topkis�s (1978) Characterization Theorem says that su-

permodularity is equivalent to
@2F

@x@y
� 0; for all x, y. Furthermore,

@2F

@x@y
> 0 implies that F is

strictly supermodular, the latter notion being de�ned by a strictly inequality in (31).

F has the single-crossing property or SCP in (x; y) if, for x1 � x2; y1 � y2,

F (x1; y2)�F (x2; y2)� 0 =) F (x1; y1)�F (x2; y1)� 0 (32)

Note that (31) implies (32), while the converse is generally not true. Additionally, (31) is a cardinal

notion while (32) is ordinal. Thus, the SCP is sometimes also referred to as ordinal supermodularity.

For x 2 R+, let A (x) = [a1 (x) ; a2 (x)] � R+, with a1 (:) and a2 (:) being real-valued functions.

We say A (:) is ascending (in x) if a1 and a2 are increasing in x: The following results on monotone

maximizers are central to our approach.

Theorem A.1. (Topkis, 1978). Assume that (i) F is upper-semi continuous (or u.s.c.) and

supermodular in (x; y) and (ii) A (:) is ascending. Then, the maximal and minimal selections of

y� (x) � argmaxy2A(x) F (x; y) are increasing functions. Furthermore, if F is strictly supermodular,

then every selection of y� (:) is increasing.

Theorem A.2. (Milgrom and Shannon, 1994). Assume that (i) F is u.s.c. and has the SCP in

(x; y) and (ii) A (:) is ascending. Then, the conclusion of Theorem A.1. holds.

Theorem A.3. Let n � 1 and B : Xn
i=1[ai; bi] ! Xn

i=1[ai; bi] be an increasing function. Then

B has a �xed point. (This theorem is a special case of Tarski�s Fixed Point Theorem.)

Our equilibrium comparisons are based on the following result (Milgrom and Roberts, 1990).

Theorem A.4. Let Bt : Xn
i=1[ai; bi] ! Xn

i=1[ai; bi] be an increasing function, 8t, such that

Bt (x) is also increasing in t, 8x. Then the minimal and maximal �xed-points of Bt are increasing

in t.
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