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Abstract

To study how economic fundamentals affect the formation of social networks, a

model is needed that (i) has agents responding rationally to incentives (ii) can be

taken to the data. This paper combines game-theoretic and statistical approaches to

network formation in order to develop such a model. Agents spend costly resources

to socialize. Their effort levels determine the probabilities of relationships, which are

valuable for their direct benefits and also because they lead to other relationships in

a second stage of “meeting friends of friends”. The model predicts random graphs

with tunable degree distributions and clustering, and characterizes how those statistics

depend on the economic fundamentals. When the value of friends of friends is low,

equilibrium networks can be either sparse or thick. But as soon as this value crosses a

key threshold, the sparse equilibrium disappears completely and only densely connected

networks are possible. This transition mitigates an extreme inefficiency.
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Hirsch, André Henriques, Yuichiro Kamada, Ruth Kricheli, Antoine Lallour, Carlos Lever, James Liang,
Pietro Majer, Michael Ostrovsky, and seminar participants for helpful conversations. We are especially
indebted to Matthew O. Jackson and Andrzej Skrzypacz for their invaluable guidance. We gratefully ac-
knowledge financial support from the NET Institute (www.NETinst.org). Golub gratefully acknowledges
financial support from the Jaedicke fellowship at the Stanford Graduate School of Business. Livne gratefully
acknowledges financial support from the Bonner fellowship at the Stanford Graduate School of Business.

†Graduate School of Business, Stanford University. Email: bgolub@stanford.edu,
http://www.stanford.edu/∼bgolub/

‡Graduate School of Business, Stanford University. Email: ylivne@stanford.edu



Social and economic institutions are embedded in the fabric of social networks — the

patterns of relationships in society. Why is this fabric sometimes thick and sometimes sparse?

How does this depend on the economic fundamentals and on the accidents of history? What

are the welfare consequences? What are the effects of interventions?

An economic theory to address these questions should have two key properties. First,

it should have rational agents responding to incentives. Second, its predictions should be

consistent with observations — indeed, it should be possible to use observations to estimate

the key economic parameters, which can then be used to understand how the observed

phenomena came about and to perform policy analyses.

The goal of this paper is to develop such a theory. For the sake of realism and econo-

metric usefulness, we build on standard random graph models, which have enough flexibility

to be consistent with observed networks. To make the theory economic, we add rational

foundations to these models by viewing link probabilities not as exogenous parameters, but

as the outcomes of strategic investments. In the Related Literature section below, we discuss

how this model goes beyond existing work.

The model works as follows. A large group of people meet each other for the first time.

They simultaneously select levels of socializing effort during an initial period of mingling,

such as the first few weeks of an academic program. Interactions take time or some other

resource, and agents have costs that are convex in the total amount of this resource they

expend. The costs are also proportional to a privately known cost parameter. The probability

of the formation of a valuable relationship between two particular people is increasing in their

effort levels during this phase of initial meetings. Once the mingling is over, the early social

network forms: each link, independently, is realized or not with the appropriate probability.

At this point, agents begin reaping the benefits of their investments. Afterwards, agents meet

some of the friends of their friends, forming further relationships, which also confer utility.

Agents’ strategic choices are their effort levels in the mingling stage, and our equilibrium

concept assumes they make these knowing how much others are investing, though not what

network will form.

The model is intended to capture three key features of network formation. First, the

process of forming new relationships exhibits a substantial amount of fundamental uncer-

tainty. When investing effort in socializing, agents can prevent a relationship (by investing

nothing), and they can increase its probability (by increasing their investments), but in gen-

eral are not be able to guarantee it. Otherwise, we allow for a very general specification of

how socializing efforts translate into a relationship probability. Second, in contrast to many

network models, agents pay not only for maintenance of links but for the effort it takes to
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Low effort High effort

Occurs when the value below threshold τeq below threshold τeq

of friends of friends is: or above threshold τeq

Number of friends per agent converging to a constant growing as n

Connectedness fragmented fully connected

Diameter ∞ 2 or 3

Table 1: A summary of the properties of the two equilibrium regimes; n is the population
size.

form them — effort which is sometimes futile due to accidents of fate. Again, we allow for

a fairly general specification of the costs. Third, as first modeled by Jackson and Rogers

(2007), there is both a random element to socializing (“meeting strangers”) and a natural

source of dependence and clustering that comes from “meeting friends of friends”. That

is, agents who are friends are more likely than randomly selected agents to have friends in

common — one of the robust tendencies of social networks.

The most stylized aspect of the model is the strict separation into a mingling phase,

before any links are realized, and a period of meeting friends of friends after an early net-

work is formed. Clearly, in reality these processes overlap somewhat, and a richer model

would feature a more gradual transition. Still, we think the timing does capture something

important, and that the tractability gained by this assumption outweighs the realism lost.

Adding best responses to a standard random graph model shows how network phenomena

like the degree distribution and connectedness relate to economic fundamentals. It also

reveals that there are completely new qualitative phenomena that arise when agents best-

respond to each other in this setting.

The first main result is that, when the overall cost of resources is not too convex, equi-

librium networks come in two varieties: a connected, high-effort regime, or a fragmented,

low-effort one. These regimes are extremely different, and which equilibria are present de-

pends on the value of friends of friends1 — in particular, how it compares to a certain

threshold called τeq. The properties of the regimes are summarized in Table 1, and some

illustrative examples are shown in Figure 1. When friends of friends are sufficiently valuable,

with their value exceeding the threshold, agents in equilibrium are guaranteed to devote a

1The expected value of a friend of friend is the probability of befriending that person times the value of
the relationship conditional on it being formed.
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(a)

(b)

Figure 1: Examples showing typical networks formed in equilibrium with n = 400 agents
in (a) a high-effort equilibrium and (b) a low-effort equilibrium. The high-effort network
has a single component and many links per node, whereas the low-effort network is highly
fragmented.
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lot of resources to socializing, and the expected number of friends each has scales as the

population size. Networks in this regime are connected with very high probability as the

population grows large — indeed, there is a path of length at most three between any two

agents. In contrast, when the value of friends of friends falls just slightly below the thresh-

old, another equilibrium exists in which agents socialize significantly less, and the resulting

networks consist of many disconnected pieces. The expected number of friends per agent

tends to a constant as the network grows large. Thus, in a finite network, arbitrarily small

changes in economic fundamentals can lead to arbitrarily large jumps in equilibrium levels

of social activity — a result that has not been obtained before, to our knowledge, in an

equilibrium network formation setting.

The second main result focuses on efficiency. Assuming that agents’ costs depend only on

their own efforts, the only externalities in the model are positive: investing in links creates

value for others without imposing any costs on them. Thus, any equilibrium will involve

weakly too little socializing. Still, some equilibria are vastly more efficient than others. In

the areas of the parameter space where there are multiple equilibria, the high-effort equilibria

realize more value than the low-effort ones by arbitrarily large factors in large societies. Thus,

temporary interventions that don’t permanently change any of the key parameters can lead

to vast changes in the welfare obtained. Moreover, increasing the value agents expect to get

from meeting friends of friends can remove the most inefficient equilibria entirely.

The paper is organized as follows. In Section 1, we discuss how our approach relates to

the literature. Next, in Section 2, we formally lay out the model. In Section 3, we examine

equilibrium and efficiency. In Section 4, we show that analyzing the model as if agents

mingle uniformly (without targeting effort depending on others’ labels) is not restrictive,

assuming there are at least some search costs that agents must pay if they wish to interact

non-uniformly. Section 5 concludes.

1 Related Literature

The importance of the basic problem of how social networks form has been widely recognized

in economics2, and the study of rational network formation has a rich history. One strand

of this literature, starting with Myerson (1991) and continuing with Jackson and Wolinsky

2Social networks affect economic outcomes in a multitude of ways. They influence decisions and outcomes
relating to employment (Topa, 2001), investment (Duflo and Saez, 2003), risk-sharing (Ambrus, Mobius, and
Szeidl 2010), education (Calvó-Armengol, Patacchini, and Zenou, 2009), and crime (Glaeser, Sacerdote, and
Scheinkman, 1996), to name just a few of their effects. See Granovetter (2005) for a broad survey of the
effects of social networks.
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(1996), Bala and Goyal (2000), and Hojman and Szeidl (2008), among many others, has has

studied the stability of certain networks to unilateral and bilateral deviations which translate

deterministically into changes in the network. The literature is surveyed extensively by

Jackson (2005) and Jackson (2008). This approach implicitly assumes that agents know the

network insofar as that is important for their deviations, and delivers very specific and often

stark predictions about network structure. While this has been an extremely important

approach for understanding aspects of network formation, a different model is appropriate

for the first-meeting setting that we focus on, as well as for generating the random graphs

that are our equilibrium predictions. In our model, in contrast to these, any network has

a positive probability of appearing in equilibrium, though some are much less likely than

others; moreover, agents are fully aware of the randomness that generates this and take it

into account when optimizing. This makes the present model a natural fit for structural

estimation.

Recently, there has been a growing recognition that an approach featuring stochastic

network formation is necessary. We briefly review some of the most recent and influential

papers, and explain why our approach is different.

Cabrales, Calvó-Armengol, and Zenou (2009) were among the first to argue that an ap-

proach inspired by random networks may provide a useful angle on the theory of network

formation. Their modeling takes a mean-field perspective, assuming that agents in a com-

munity have weak links with everyone; the link strengths may then informally be interpreted

as link probabilities. Our approach is similar in spirit, but seeks to model the network more

realistically, viewing the existence of a relationship as a discrete random variable (though

the relationship may also have a strength dimension). We view this difference as essential

for empirical applications, since, in practice, a link is typically observed to exist or not.

Currarini, Jackson, and Pin (2009a; 2009b) analyze a model in which agents sequentially

meet others at random, optimizing their search process to acquire a desirable mix of friends.

They are able to use this to estimate, for example, the relative effects of choice and chance in

accounting for homophily. The main innovation of our approach is that agents care not only

about the composition of the social circle they acquire in the initial meetings process (as in

the CJP papers) but also about the benefits they may expect from friends of friends they meet

later. We view this ingredient as an essential feature of any rational network model, since it

is clear that often agents do take such benefits into account when “networking”. By including

this element, we will be able to address many of the central questions of network formation

in a richer setting, which may change some of the important estimates and conclusions.

Finally, Christakis et al. (2010) have recently proposed a model of network formation
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suitable for structural econometrics. The model is based on myopic decisions in sequential

meetings. While the agents in this model do potentially value benefits that flow indirectly

through the network, the model is not a rational equilibrium theory in the classical sense,

because it assumes somewhat ad hoc limits on the agents’ reasoning. We seek to develop a

model where agents are behaving optimally in view of the (limited) information they have,

without losing the tractability obtained in the work of Christakis et. al.

2 The Environment

Players and Types We now define the game Γ(n). The set of agents is N = {1, . . . , n},

with n ≥ 4. Agents have types, which relate to their costs of interaction. Types are

independently and identically distributed according to a commonly known distribution. Its

support is C = {c1, ..., cm} ⊆ (0,∞), and the distribution is given by a probability vector π,

so that πk is the probability of type ck.

Timing All the strategic decisions take place at step 2; we break down the mechanics of

the environment into several additional steps.

1. Each agent i ∈ N has his type Ci drawn by nature and learns only his own Ci.

2. Simultaneously, each agent i ∈ N chooses a number zi ∈ [0, 1] called the socializing

effort. Agents pay costs up-front for their effort, specified below.

3. The early social network is realized: we denote it by an n-by-n symmetric matrix

GE. The indicator variable of the presence of the link {i, j} is written GE
ij = GE

ji ∈

{0, 1}. The links form independently, with P(GE
ij = 1) = p (zi, zj) . The number

p(zi, zj) measures the probability that i and j become linked given their efforts. The

assumptions made about the function p : [0, 1] × [0, 1] → [0, 1], which is a parameter

of the socializing technology, are discussed below.

4. Meetings take place between agents who do not know each other but are connected

through mutual friends in the early-stage network. For every i, j, ` ∈ N such that

GE
ij = 0 and GE

i` = GE
`j = 1, there is a Bernoulli random variable Mij;` which is,

intuitively, the indicator of the event “i and j meet through the mutual friend `”. This

variable takes the value 1 with probability q > 0, and 0 otherwise. The Mij;` are all

independent.

7



5. The graph of late relationships GL is realized by setting

GL
ij = GL

ji =






1 if GE
ij = 0 and Mij;` = 1 for at least one ` ∈ N

0 otherwise.

The final network is G, the sum of GE and GL.

In this description, we have assumed that agents choose one socializing effort for the

whole group. In Section 4, we enrich the game to one in which discrimination is allowed

and show that, if there are small costs associated with seeking out particular agents, this

assumption is not restrictive.

Preferences Agent i’s costs take the form:

ci

α

(
∑

j 6=i

f
(
zi, zj

)
)α

.

Here ci, the type of agent i, is an agent-specific coefficient capturing the cost of social

interaction. The number f (zi, zj) measures the quantity of resources i spends interacting

with j given their efforts. The assumptions made about the function f : [0, 1] × [0, 1] →

[0,∞), which, like p, is a parameter of the socializing technology, are discussed below. Finally

α > 1 measures the convexity of resource costs.

Agent i gains a value3 v1 from any early friend (a j such that GE
ij = 1) and a value v2

from each late friend (a j such that GL
ij = 1). We assume that v1 > v2 ≥ 0. The difference

in values comes from the extra time spent with the early friend. Thus, the utility of agent i

after all the uncertainty is resolved can be written as

ui(z) = v1 ∙ #early friends + v2 ∙ #late friends −
ci

α

(
∑

j 6=i

f
(
zi, zj

)
)α

.

Parameters of the Socializing Technology The probability function for forming early

links, p : [0, 1]2 → [0, 1], is assumed to be an analytic4, symmetric function of two variables,

which is strictly increasing in both efforts in the interior of the unit square, and concave.

We assume that a link cannot form between two agents if one of them is not investing any

3Long-term maintenance costs can be modeled by reducing the values of links appropriately.
4An analytic function is a function with a Taylor series which converges to it uniformly.
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effort, so p(0, x) = 0 for any x ∈ [0, 1].5 Finally, we assume that at 0 the cross partial of

p is positive: ∂2

∂x∂y
p(0, 0) > 0. This implies that for very low effort levels agents’ efforts are

complementary.

The resource function f(x, y) is similarly assumed to be analytic. We require that an

agent cannot impose costs unilaterally upon another agent who is not investing any effort

in the relationship, which translates into: f(0, x) = 0 for any x ∈ [0, 1]. We also assume

that the marginal resources required to interact with an agent who does not invest are low

(f1(0, 0) = 0), but increasing (f11(0, 0) > 0). We also assume that f is convex over its domain.

This general formulation of the resource function allows for settings where agents’ expended

resources depend only on their own efforts, but also for settings where these resources may

depend on the interaction between the two efforts. Finally, we assume that f1(x, y) > 0 if

both x, y > 0, so that the marginal cost of additional own effort is strictly positive if both

sides of the relationship invest effort.

3 Equilibrium and Welfare

We now turn to analyzing the model, first focusing on equilibrium behavior of the strategic

agents, and then on its efficiency. All proofs are provided in the appendix.

3.1 Definitions and the Equilibrium Concept

A pure strategy for i is a vector σi ∈ [0, 1]m specifying how much effort i selects for every

type he might be (recall m is the cardinality of the type space C). We denote by σi
k the

effort that the strategy σi prescribes for type ck of agent i. A strategy profile σ = (σi)i∈N

is symmetric if σi
k does not depend on i, so that the action one plays depends only on one’s

type, not one’s label.

We will be focusing on symmetric Bayesian Nash equilibria of the game, and we will

ignore the uninteresting equilibrium in which everyone puts in no effort.

Definition. The word “equilibrium” will mean, unless otherwise stated, “symmetric Bayesian

Nash equilibrium different from the no-effort equilibrium”, though sometimes we will empha-

size these features in the statements of results.

We will denote an equilibrium strategy for i by xi and an equilibrium strategy profile by

x = (xi)i∈N . The notation x(n) will refer to an equilibrium of Γ(n).

5This can be greatly generalized: for all the results to hold it suffices that the leading term in the Taylor
expansion of p(x, y) is xy. This allows for technologies where links can form with only unilateral investment.
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3.2 Equilibrium Existence

In this game there may exist a trivial symmetric equilibrium – the one in which all agents

invest effort level 0. The first result establishes the existence of a more interesting equilib-

rium.

Theorem 1. Fix n ≥ 4. There exists a symmetric interior equilibrium of Γ(n) in which all

linking probabilities are positive. This is a strict equilibrium, in the sense that each agent

has a unique best response.

3.3 Equilibrium in Large Populations

We now analyze the properties of equilibria when n is large. For the remainder of this section,

we focus on the case in which f(x, y) = f(x): that is, the resources required to socialize

depend only on one’s own effort, and not on the effort of others. We believe analogues of

most of the results could be obtained without this assumption, but it makes the analysis

and intuition much simpler in places.

There will be two types of equilibria. In one regime, agents will have a number of friends

that is of the same order as the population size. In another regime, they will have a number

of friends that does not scale with the population size. To state this formally we define Fk(x)

to be the expected number of friends (degree) in the final network for an agent with cost

type ck when the equilibrium x is played. This allows us to formally define “high” and “low”

equilibria:

Definition 1. Define an equilibrium x to be β-low if maxk Fk(x) ≤ β. For a given n, define

an equilibrium x of Γ(n) to be β-high if mink Fk(x) ≥ βn.

With these definitions in hand, first we treat the most interesting case: the one in which

1 < α < 2. In this case, both high and low equilibria are possible. The key quantity for

characterizing which can occur is the value of friends of friends. Formally defined as qv2,

this is the probability that i befriends j through a particular intermediary `, multiplied by

the value to i of the relationship with j, conditional on it being realized. The important

comparison will be between qv2 and a positive number called τeq, which depends on the

parameters of the model other than q and v2. It is defined by equation (12) in the appendix,

and can be solved for explicitly.

The next theorem classifies the equilibria in the case 1 < α < 2. If qv2 ≤ τeq, then there

are both high- and low- effort equilibria. Otherwise, there are only high-effort ones. Figure 2
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Figure 2: The equilibrium correspondence (in the case 1 < α < 2) as the value of friends of
friends is varied. When qv2 ≤ τeq, there are low-effort equilibria as well as a high effort one.
When qv2 > τeq, then there is only a high-effort equilibrium.

illustrates the large-sample result by plotting the equilibrium correspondence in a particular

example.

Theorem 2. Assume 1 < α < 2 . Then there exist some β, γ > 0 and some N so that for

any n ≥ N ,

1. if qv2 ≤ τeq, then every equilibrium of Γ(n) is either γ-high or β-low, and there is at

least one of each kind.

2. if qv2 > τeq, then any nonzero equilibrium of Γ(n) is γ-high.

Now we treat the case of highly convex costs, α > 2. In this case, there are only low

equilibria.
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Theorem 3. Assume α > 2. Then there exists some β > 0 and some N so that for any

n ≥ N , every equilibrium is β-low.

Finally, we establish that every low-effort equilibrium has a simple structure: agents

invest in inverse proportion to a power of their costs.

Theorem 4. Assume α > 1. Fix β > 0 and ε > 0. Then there is some N so that if n ≥ N

and x is a β-low equilibrium of Γ(n), we have

Fk(x)

Fj(x)
=

(
cj

ck

) 1
2α−1

+ ε

where |ε| < ε.

In the case of low-effort equilibria, agents’ degrees (numbers of friends) depend on costs

of socializing in a way that can be precisely pinned down. In high-effort equilibria, the

connection between costs and degrees is more subtle and is obtained by solving a system of

nonlinear equations. Nevertheless, as shown in Lemma 2(2) of the appendix, agents with

higher costs choose lower levels of effort in the high equilibrium, too.

3.4 Network Properties

The qualitative difference between the sizes of agents’ neighborhoods in the two regimes

results in dramatic differences in overall features of the network as a whole. To describe

these differences we define the following terms: we say that a network G is connected, if

for any two agents i, j there exists a sequence of agents i1, ∙ ∙ ∙ , i` linking them, such that

Gi,i1 = 1, Gi`,j = 1, and for every 1 ≤ k ≤ ` − 1, Gik,ik+1
= 1; we say that agents i, j are at

distance k in a network G if the shortest path connecting them in G is of length k; finally,

given a network G, we define the diameter of G to be the maximum distance between any

two agents in G.

Using classical results from the theory of random graphs, we characterize the macro-

scopic differences between the two regimes in the following result. We say a statement holds

“asymptotically almost surely” (a.a.s.) if it holds with a probability that tends to 1 as n

grows.

Proposition 1. In the high-effort regime the realized social network is connected asymp-

totically almost surely, and the diameter of the network is between 2 and 3 asymptotically

almost surely. In the low-effort regime the realized network is a.a.s. not connected.
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This result shows that the difference between high-effort and low-effort regimes yields

sharp empirical predictions at the macroscopic level. High-effort regime networks are con-

nected with a very high probability, so that any agent is linked, directly or indirectly, to any

other agent. Moreover, with a probability that tends to 1, any two agents are at most three

steps away from each other. Low-effort networks, on the other hand, are disconnected with

arbitrarily high probability once they become large enough.

The proof of this result uses the asymptotic behavior of the linking probabilities p(xk, xj);

in particular, that these probabilities are decaying as n−1 in the low-effort regime and roughly

as n−1/2 in the high-effort regime. A result of Bollobás (2001) then allows us to characterize

the diameter readily.

Proposition 1 implies, together with the previous results, that small changes in the exoge-

nous parameters can cause dramatic differences in the large-scale properties of the resulting

social networks. For example, a very slight increase in the probability of meeting friends of

friends can lead to the network going from disconnected to very densely connected. As we

will show below, this shift is also associated with a sharp rise in efficiency.

3.5 An Application: Social Networking Technology

These results can shed some light on the recent developments in social networking tech-

nologies, and specifically the dramatic rise and substantial impact of online social networks

such as Facebook, MySpace, LinkedIn and Twitter. Hundreds of millions of people now use

these networks regularly, spending, on average, hours a day on the sites (Boyd and Ellison,

(2007); “Facebook: Statistics” (2010)). While these networks offer their users different and

perhaps easier forms of connecting with friends, the direct benefits of using them (to browse

photographs, exchange messages, etc.) are arguably similar to those of other technologies

already in existence. It is clear, though, that these networks specifically and intentionally

increase users’ benefits from indirect friends. All of the above networks expose a user to

the identities of friends of friends, usually providing some information about them, such as

occupations, photos, hobbies and interests. Moreover, some of these tools, like LinkedIn,

explicitly emphasize friends of friends by showing users how they can connect to certain

individuals or organizations through their personal and professional social networks. In the

model, this is exactly the kind of change that would push the formation of social networks

beyond the critical threshold and into the high-effort regime, and even slight changes can

make a big difference. Thus, the theory presented here provides one mechanism for the

seemingly outsize impact of these technologies.
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3.6 Welfare: Comparing Equilibria

Under the assumption that agents pay only for their own effort levels, there are only positive

externalities in the game, and any equilibrium involves weakly too little effort. Despite this,

there are huge differences in efficiency between the equilibria when both high- and low-effort

equilibria coexist at the same parameter values. In particular, the following proposition fol-

lows immediately from the properties deduced in the appendix of the two types of equilibria.

Proposition 2. Assume 1 < α < 2, and fix the β, γ > 0 guaranteed by Theorem 2. Choose

any ε > 0. Then there is an N so that for n ≥ N , if xL is a β-low equilibrium and xH is a

γ-high equilibrium, the total utility under xL is at most ε times that under xH .

One important implication of this is that the system can exhibit history-dependence not

only in local and large-scale network structure but also in welfare: interventions that move

the levels of socializing without changing any underlying parameters can have lasting effects,

either increasing or decreasing the welfare by huge factors. Structural estimation of the

parameters (especially α) would be important for shedding light on whether this is possible

in a given situation.

4 Mingling Evenly as an Equilibrium

In the description of our game, we assumed that agents choose one intensity for socializing

within the group in general, without the possibility of discriminating. While this can be

motivated as a reasonable restriction based on the difficulty of coordinating and focusing

on specific others at the early stages of interactions, as in Cabrales, Calvó-Armengol, and

Zenou (2009), we do not have to view this as a restriction. Indeed, we can enrich the model

to one in which discrimination is allowed and show that, when there are small search costs,

it is equilibrium behavior not to discriminate, but instead to mingle evenly.

To this end, define a new game Γ̃(n). This game is the same as Γ(n) except for two

changes. Each agent’s action is not determined merely a number zi
k for each of his types,

but rather by a set of numbers zij
k for each type, where j takes on all indices in N other than

i. The probability that i and j are linked given their actions becomes p(zij , zji), and the

resource costs paid become f(zij , zji), which are subject to the assumptions that we made

in describing the model. The other difference is the utility function. We assume now that

ui(z) = v1 ∙ #early friends + v2 ∙ #late friends −
ci

α

(
∑

j 6=i

f
(
zij , zji

)
)α

− Δ(zi).
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Here Δ : [0, 1]n−1 → R is the discrimination cost, capturing how difficult it is to set

unequal levels of interaction. We assume that Δ(zi) is 0 when zi is a constant and that Δ

is a convex function, meaning that more evenly mixed interactions are cheaper.

The main result of this section is that when the curvature of Δ is not decaying too fast,

as measured by certain conditions on its second derivatives, then socializing evenly is an

equilibrium.

Theorem 5. Assume that, for large enough n, minj,`

∣
∣ ∂Δ
∂zij∂zi`

∣
∣ ≥ n−1/2 log7 n and that the

Hessian of Δ is positive definite. Consider a symmetric nonzero equilibrium of the no-

discrimination game Γ(n). Then, for n large enough, it is also an equilibrium of the game

Γ̃(n).

Using the magnitudes of the entries of the Hessian as a measure of the difficulty of

discriminating is a “reduced-form” approach; the aim is not to develop a detailed micro-

model of search costs. We would only like to point out that modest search frictions can

suffice to ensure that agents find it optimal to interact evenly, so the assumption of even

mingling is not too severe a restriction.

We believe that milder assumptions on Δ could give the same result, and we do not know

whether not discriminating is an equilibrium for large n when there are no search frictions.

5 Concluding Remarks

This model of network formation with rational agents and uncertainty in the realization

of links has two useful properties. First, the networks it predicts have the complex and

irregular structure seen in real networks (Newman, 2003); moreover, they correspond to

random network models with heterogeneous degrees recently developed in the probability

literature (Chung and Lu, 2002; Chung et al., 2004). At the same time, the model does not

rely on mechanistic foundations for link formation; the probabilities of links are endogenous

choice variables that are selected when agents optimize, trading off the costs of socializing

against the expected benefits. From a technical perspective, the fact that there is uncertainty

over the precise realizations of the links enables the classification of equilibria into two simple

kinds.

The main results of the paper serve as an illustration of the ways in which the simple

framework can generate nontrivial predictions about how the economic fundamentals affect

equilibrium and efficiency. In the particular application considered here, we showed that

small changes in the value of friends-of-friends can change the orders of growth of social
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activity, the fundamental shapes of equilibrium networks, and the efficiency of outcomes.

The framework is capable of accommodating other specifications of costs and benefits –

for instance, ones that have negative externalities or which involve more intricate network

properties like transitivity.

It is important for the particular type of analysis we did that agents interact evenly within

the population, without targeting their efforts at specific others. We showed in Section 4 that

this can be equilibrium behavior given mild search frictions. However, it is not our intent

to suggest that uniform mingling is always the reasonable model of relationship formation.

Sometimes highly targeted interactions are much more relevant, as in international trade

agreements. At other times, agents target their interactions, but do so randomly. Could it

be the case that “randomly targeted” interactions yield results similar to the ones seen in

this model? We view this as a potentially promising avenue for future theoretical work.
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Appendix A: Proofs

Existence of Equilibrium

Proof of Theorem 1 The strategy of the proof is as follows. We define an auxiliary game Γδ(n) in

which every type is constrained to play effort at least δ. Then: (1) We use a standard existence theorem to

obtain the existence of a symmetric equilibrium in this game. (2) We verify that for some small enough δ∗,

no type is playing effort level δ∗ in Γδ∗(n). (3) Then we show that this equilibrium survives as δ gets smaller

than δ∗.

An important ingredient in this is the following lemma, which we prove at the end.

Lemma 1. For any strategies of the other players, the utility function of each player is concave in his own

action zi.

In addition to this, Γδ(n) is a symmetric game with convex, compact strategy spaces. Nash’s theorem

for symmetric games (Moulin, 1986, p. 115) furnishes the existence of a symmetric equilibrium x(δ) of Γδ(n).

This gives step (1). Suppose now we can show (2) above, that the equilibrium is away from the lower

boundary. Step (3) then also follows from the lemma. In particular: since utility is concave in each zk
i , each

player’s marginal utility is decreasing in his own action. Thus, i’s marginal utility in Γδ∗(n) at x(δ) is 0,

or he is playing 1 (since we know he is not at the lower boundary). In either case, that response remains

optimal in Γδ∗(n), since the first order condition remains the same and no binding constraint was relaxed.

Now we focus on step (2). Recall that the marginal costs per other agent for an agent of type k is given

in equilibrium by:

1
n − 1

MCk =
ck

n − 1
EY1,...,Yn−1









n−1∑

j=1

f1 (xk, Yj)








n−1∑

j=1

f (xk, Yj)





α−1



 (1)

where Y1, ..., Yn−1 are i.i.d random variables taking for each j ∈ {1, ...,m} the value xj with probability πj .

The normalized marginal benefit for type k in equilibrium is given by:

1
n − 1

MBk = EY

[
(v1 − v2) P ′ + v2 (1 − qR)n−3 (P ′(1 − qR) + (1 − p)(n − 2)qR′)

]

with:

P = p (xk, Y ) P ′ = p1 (xk, Y )

R = EW [p (xk,W ) p (W,Y )|Y ] R′ = EW [p1 (xk,W ) p (W,Y )|Y ]

where the Wj are also i.i.d random variables taking for each j ∈ {1, ...,m} the value xj with probability πj .

We claim that if x(δ) is a symmetric equilibrium of Γδ(n), then maxk xδ
k cannot become arbitrarily small.

Suppose otherwise. Using Taylor expansion, we verify that marginal benefits are bounded below by a term

linear in maxk xδ
k, whereas marginal costs are bounded above by a term that decays faster than linearly in

maxk xδ
k. Thus, there is some lower bound ε > 0 so that for all δ < ε, there is some type playing at least

ε in any equilibrium of Γδ(n). But then it follows that, once δ is small enough, no type can be playing

δ, because marginal benefits are bounded below by something linear in ε (and independent of δ), whereas

marginal costs are decreasing with δ. This completes the second step.
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It only remains to prove Lemma 1.

Proof of Lemma 1. It suffices to prove that the action is concave in each zi
k because the overall expected

utility is just a linear combination taken over the various types. Fix a cost type k for agent i and compute

all expectations taking this as known. Let Yj denote the random variable capturing the effort level of agent

j. Write

E[ui(z
i)] = uE

i

(
zi; x−i

)
+ uL

i

(
zi; x−i

)
− uC

i

(
zi; x−i

)

where:

uE
i = v1E




∑

j 6=i

p
(
zi

k, Yj

)


 ;

uL
i = v2E






∑

j 6=i

[
1 − p(zi

k, Yj)
] ∑

L⊂N\{i,j}

[
1 − (1 − q)|L|

]∏

`∈L

[
p(zi

k, Y`)p(Y`, Yj)
] ∏

`/∈L
` 6=i,j

[
1 − p(zi

k, Y`)p(Y`, Yj)
]





 ;

and

uC
i = E



ci

α




∑

j 6=i

f
(
zi

k, Yj

)




α

 .

Here we have split the expected utility of agent i into three pieces: the benefits coming from early-stage

friends, the benefits coming from late-stage friends, and the costs. We know uE
i is concave because p is

concave, and we know −uC
i is concave because f is convex and α > 1. So it remains only to deal with uL

i .

We do this by conditioning on the realizations of all early links not involving i, a network we call GE
−i.

If each of these conditional expectations is concave in zk
i , the same is true of the unconditional expectation.

Let Nj be the neighborhood of agent j in this network. Then

E[ui(z
i
k) |GE

−i] = E




∑

j

1GE
ij=0



1 −
∏

`∈Nj

(1 − qp(zi
k, Y`))





∣
∣
∣
∣
∣
GE

−i



 .

We will show the concavity of the expression inside the summation for each separate j. Note that in treating

each such term, we may condition on GE
ij = 0, because the other realization contributes nothing to the

expectation. In that case, we just have to show the concavity of

E



1 −
∏

`∈Nj

(1 − qp(zi
k, Y`))

∣
∣
∣
∣
∣
GE

−i, G
E
ij = 0



 .

But this is concave because
∏

`∈Nj
(1− qp(zi

k, Y`)) is convex in zk
i : why the latter? Because it is the product

of nonnegative functions with negative first derivatives and positive second derivatives in zi
k — one checks

by an elementary calculus exercise that this suffices to guarantee convexity.

This completes the proof of Theorem 1.

20



Large Population Analysis

We lay out a sequence of technical lemmas from which the proofs of Theorems 2, 3, and 4 follow directly.

The notation c will refer to the vector of types, ordered from least to greatest cost.

Lemma 2. Let x(n) be a sequence of m-vectors of equilibrium intensities, such that xk is the level of effort

invested by an agent with cost coefficient ck in a mingling equilibrium with n agents, for every k ∈ {1, ...,m}.

Then:

1. lim
n→∞

xk(n) = 0.

2. Agents’ investments decay at the same rate, so that there exists constants 0 < d < D < ∞ such that

for any j, k and any n:

d <
xj(n)
xk(n)

< D

3. Assuming that f(x, y) = f(x), agents with lower cost coefficients choose higher effort levels in equi-

librium, so far large enough n:

x1(n) > ∙ ∙ ∙ > xm(n)

Proof. For the first part of the claim, assume that:

lim sup
n→∞

xk(n) = max
1≤j≤m

lim sup
n→∞

xj(n) = ε > 0

for some k ∈ {1, ...,m}. Slightly abusing notation, restrict to a subsequence so we can write lim x(n) = ε,

and let us drop the notation describing the dependence on n for the rest of this proof. Also, perhaps by

further restricting to a subsequence, assume that for any n, xk ≥ max
1≤j≤m

xj . Recall that the marginal costs

per other agent for an agent of type k is given in equilibrium by:

1
n − 1

MCk =
ck

n − 1
EY1,...,Yn−1









n−1∑

j=1

f1 (xk, Yj)








n−1∑

j=1

f (xk, Yj)





α−1



 (2)

where Y1, ..., Yn−1 are i.i.d random variables taking for each j ∈ {1, ...,m} the value xj with probability

πj . We first show that the normalized marginal cost diverges to infinity at a rate which at least polynomial.

By the strong law of large numbers, the probability rn that a proportion of at least πk/2 of the random

variables Y1, ..., Yn−1 get the value xk converges to 1. Therefore:

lim
n→∞

1
n − 1

MCk ≥ lim
n→∞

ckrn

n − 1

(πk

2
(n − 1)f1 (xk, xk)

)(πk

2
(n − 1)f (xk, xk)

)α−1

= lim
n→∞

(n − 1)α−1ck

(πk

2

)α

f1(ε, ε)f(ε, ε)α−1

where the last equality follows from rn → 1 and since f is a smooth function. Since we assume that f1 is

a strictly positive function for values both bounded away from 0, and since α > 1 we have that the marginal

cost diverges to infinity at a rate which at least polynomial.
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Recall that the normalized marginal benefit for type k in equilibrium is given by:

1
n − 1

MBk = EY

[
(v1 − v2) P ′ + v2 (1 − qR)n−3 (P ′(1 − qR) + (1 − p)(n − 2)qR′)

]

with:

P = p (xk, Y ) P ′ = p1 (xk, Y )

R = EW [p (xk,W ) p (W,Y )|Y ] R′ = EW [p1 (xk,W ) p (W,Y )|Y ]

where W,Y are i.i.d random variables taking for each j ∈ {1, ...,m} the value xj with probability πj .

Denote p̄1 = maxx,y∈[0,1] p1(x, y). This maximum exists since p is a smooth function. Using this notation:

lim
n→∞

1
n − 1

MBk

≤ lim
n→∞

(v1 − v2)p̄1 + v2p̄1EY

[
(1 − qEW [p (xk,W ) p (W,Y )|Y ])n−3 (1 + (n − 2)qEW [p(W,Y )|Y ])

]

Since p is an increasing function and since xk ≥ xj for any j:

≤ lim
n→∞

(v1 − v2)p̄1 + v2p̄1EY

[
(1 − qπkp (xk, xk) p (xk, Y ))n−3 (1 + (n − 2)qp (xk, Y ))

]

= C + lim
n→∞

v2p̄1EY

[
(1 − qπkp (xk, xk) p (xk, Y ))n−3 (n − 2)qp (xk, Y )

]

= C + lim
n→∞

v2p̄1EY [(1 − qπkp (xk, xk) p (xk, Y ))n
nqp (xk, Y )]

for some constant C. Elementary analysis shows that the expression inside the expectation, as a function

of the variable y = p (xk, Y ), is maximized when y = 1
(n+1)πkqp(xk,xk) , so the above expression is bounded

above by:

≤ C + lim
n→∞

v2p̄1

(

1 −
1

n + 1

)n−3
n

(n + 1)πkp(xk, xk)
= C +

v2p̄1

eπkp(ε, ε)
< ∞

This shows that the marginal benefits for an agent of type k are asymptotically bounded. This cannot hold

in equilibrium where the agent interacts with other agents with a positive intensity, and thus we have reached

a contradiction. We can therefore conclude that for any k ∈ {1, ...,m} it holds that xk → 0.

For the second part of the proof, let x(n) be a sequence of equilibrium intensities and assume that for

some 1 ≤ j1, j2 ≤ m it holds that:

lim inf
n→∞

xj1

xj2

= 0

Perhaps by switching to a subsequence, we can assume without loss of generality that this holds as an

actual limit. Because the number of permutations over a finite set is finite, we can also assume without loss

of generality, perhaps by switching to a further subsequence, that along this subsequence x1 ≤ x2 ≤ ... ≤ xm.

This implies that lim x1/xm = 0.

By the previous part of the proof, we know for that all large enough n, the FOC holds with equality.
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Using the same notation as before, for every k ∈ {1, ...,m} and for any large enough n, we have that:

1 = lim
n→∞

EY

[
(v1 − v2) P ′ + v2 (1 − qR)n−3 (P ′(1 − qR) + (1 − p)(n − 2)qR′)

]

ck

n−1EY1,...,Yn−1









n−1∑

j=1

f1 (xk, Yj)








n−1∑

j=1

f (xk, Yj)





α−1





= lim
n→∞

EY

[
(v1 − v2) P ′ + v2 (1 − qR)n−3 (P ′ + (n − 2)qR′)

]

ck

n−1EY1,...,Yn−1









n−1∑

j=1

f1 (xk, Yj)








n−1∑

j=1

f (xk, Yj)





α−1





(3)

We now aim to “get rid” of the expectations in this limit. Starting with the denominator, note that

since f, f1 are increasing functions:

lim
n→∞

1
n − 1

MCk ≤ lim
n→∞

1
n − 1









n−1∑

j=1

f1 (xk, xm)








n−1∑

j=1

f (xk, xm)





α−1





Similarly, by the strong law of large numbers the probability rn that a proportion of at least πm/2 of the

random variables take the value xm satisfies rn → 1. Hence:

lim
n→∞

1
n − 1

MCk ≥ lim
n→∞

πm

n − 1









n−1∑

j=1

f1 (xk, xm)








n−1∑

j=1

f (xk, xm)





α−1





We can thus write:

lim
n→∞

1
n − 1

MCk = lim
n→∞

h1
n

n − 1









n−1∑

j=1

f1 (xk, xm)








n−1∑

j=1

f (xk, xm)





α−1





= lim
n→∞

h1
n(n − 1)α−1f1 (xk, xm) f (xk, xm)α−1 (4)

for a sequence h1
n,k ≤ 1 with lim inf h1

n,k > 0.

Turning to the numerator, by the same type of argument:

lim
n→∞

EY (v1 − v2)P
′ = lim

n→∞
h2

np1(xk, Y ) (5)

with h2
n < v1 − v2 and lim inf h2

n,k > 0, and similarly:

lim
n→∞

EY

[
v2 (1 − qR)n−3 (P ′ + (n − 2)qR′)

]

= lim
n→∞

EY

[(
1 − h3

n,kp(xk, xm)p(xm, Y )
)n (

h4
n,kp1(xk, Y ) + h5

n,knp1(xk, xm)p(xm, Y )
)]

(6)

where h3
n,k, h4

n,k, h5
n,k < M for some M < ∞ and lim inf hi

n,k > 0 for each 2 ≤ i ≤ 5. We again note that
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these sequences may depend on k.

We now want to use the first part of the lemma, combined with the anlayticity of p, f to get more control

on these expressions. Since f and p are both analytic functions, we can write:

f(x, y) =
∑

i,j≥0

aijx
iyj p(x, y) =

∑

i,j≥0

bijx
iyj

Since we assume that costs cannot be imposed upon others, we have that a0j = 0 for any j ≥ 0. We also

directly assume that a10 = 0, and that either a11 > 0 or a20 > 0. By Lagrange’s formula for the remainder,

this allows us to describe f in a small enough neighborhood of 0 by:

f(x, y) = F1(x, y)x2 + F2(x, y)xy

where F1, F2 are positive bounded functions, with at least one of them bounded away from 0, and with:

lim
(x,y)→0

F1(x, y) = a20 lim
(x,y)→0

F1(x, y) = a11.

Similarly, we can write (in a neighborhood of 0):

f1(x, y) = F3(x, y)x + F4(x, y)y

with F3, F4 positive and bounded and at least one of them bounded away from 0 (corresponding to this

property for F1, F2), and with:

lim
(x,y)→0

F3(x, y) = 2a20 lim
(x,y)→0

F4(x, y) = a11.

Similarly, for p, since by our assumptions it follows that b00 = b10 = b01 = b20 = b02 = 0 and b11 > 0, we

can write in a neighborhood of 0:

p(x, y) = P1(x, y)xy

with P (x, y) strictly positive, bounded and bounded away from 0, and with:

lim
(x,y)→0

P1(x, y) = b11

Similarly, we have that:

p1(x, y) = P2(x, y)y

with P2 having the same properties. Plugging all this into the FOC together with (4), (5) and (6), gives:

1 = lim
n→∞

EY

[
h̃2

n,kY +
(
1 − h̃3

n,kxk (xm)2 Y
)n (

h̃4
n,kY + h̃5

n,k (xm)2 Y
)]

(n − 1)α−1
(
f3

n,kxk + f4
n,kxm

)(
f1

n,k (xk)2 + f2
n,kxkxm

)α−1 (7)

where:

h̃2
n,k =

h2
n,k

h1
n,k

P1 (xk, Y ) h̃3
n,k = h3

n,kP (xk, xm)P (xm, Y )
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h̃4
n,k =

h4
n,k

h1
n

P1(xk, Y ) h̃5
n,k =

h5
n,k

h1
n,k

nP1(xk, xm)P (xm, Y )

are bounded positive random variables which are also strictly bounded away from 0, and:

f i
n,k = Fi(xk, xm) for 1 ≤ i ≤ 4

Consider now the limit in (7) for k = m:

1 = lim
n→∞

EY

[
h̃2

n,mY +
(
1 − h̃3

n,m (xm)3 Y
)n (

h̃4
n,mY + h̃5

n,m (xm)2 Y
)]

(n − 1)α−1
((

f3
n,m + f4

n,m

)
xm

) ((
f1

n,m + f2
n,m

)
(xm)2

)α−1

≤ lim
n→∞

EY

[
h̃2

n,mY +
(
1 − h̃3

n,mx1 (xm)2 Y
)n (

h̃4
n,mY + h̃5

n,m (xm)2 Y
)]

(n − 1)α−1
((

f3
n,m + f4

n,m

)
xm

) ((
f1

n,m + f2
n,m

)
(xm)2

)α−1

= C lim
n→∞

EY

[
h̃2

n,1Y +
(
1 − h̃3

n,1x1 (xm)2 Y
)n (

h̃4
n,1Y + h̃5

n,1 (xm)2 Y
)]

(n − 1)α−1
((

f3
n,1 + f4

n,1

)
xm

) ((
f1

n,1 + f2
n,1

)
(xm)2

)α−1

≤ C lim
n→∞

EY

[
h̃2

n,1Y +
(
1 − h̃3

n,1x1 (xm)2 Y
)n (

h̃4
n,1Y + h̃5

n,1 (xm)2 Y
)]

(n − 1)α−1
(
f3

n,1x1 + f4
n,1xm

) ((
f1

n,1x1 + f2
n,1xm

)
xm

)α−1

= C lim
n→∞

EY

[
h̃2

n,1Y +
(
1 − h̃3

n,1x1 (xm)2 Y
)n (

h̃4
n,1Y + h̃5

n,1 (xm)2 Y
)]

(n − 1)α−1
(
f3

n,1x1 + f4
n,1xm

) (
f1

n,1 (x1)
2 + f2

n,1x1xm

)α−1 lim
n→∞

(
x1

xm

)α−1

= C ∙ 1 ∙ 0

= 0

where the inequalities are due to x1 ≤ xm, the equality between the two inequalities, for an appropriate

choice of a finite, positive constant C, follows from the fact that the (random) sequences f i
n,k, h̃i

n,k are

bounded and bounded away from 0, and the one before last equality follows from (7) for k = 1. This is a

contradiction, which ends the proof of the second part.

For the third part, assume that f(x, y) = f(x), so an agent’s costs are only dependent on his or hers

own effort. This allows us to write the asymptotic FOC from (3) as:

ck = lim
n→∞

b11(v1 − v2)E [Y ] + v2

(
1 − qb2

11xkE
[
W 2
]
Y
)n (

b11E[Y ] + nqb2
11E[Y ]E

[
Y 2
])

nα−12aα−
20 x2α−1

k

(8)

For a fixed n, we can think of the RHS of the above expression as a function of xk (holding the expecta-

tions fixed), and as such it is a strictly decreasing function of xk. Since the LHS is simply the cost coefficient

ck, we must have that for large enough n lower cost coefficients go with higher equilibrium efforts.

Lemma 3. Assume that f(x, y) = f(x), and that α 6= 2. Let x(n) be a sequence of m-vectors of equilibrium

intensities, then for every k:
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1. it holds that:

lim inf
n→∞

xk(n)n
1
2 > 0

and if also

lim inf
n→∞

xk(n)n
1
2 = ∞

then

lim inf
n→∞

xk(n)n
1
4 > 0

2. For every ε > 0:

lim sup
n→∞

xk(n)n
1
4−ε = 0

and if

lim sup
n→∞

xk(n)n
1
4 = 0

then

0 < lim inf
n→∞

xk(n)n
1
2 < lim sup

n→∞
xk(n)n

1
2 < ∞

Proof. For the first part, begin by assuming that lim inf
n→∞

xk(n)n
1
2 = 0. Consider the RHS of (8) along the

subsequence where the lim sup holds, still indexing it with n. By the assumption and the results of Lemma

2, we have that
(
1 − qb2

11xkE
[
W 2
]
Y
)n

→ 1, so (8) simplifies to:

ck = lim
n→∞

b11v1E [Y ] + v2nqb2
11E[Y ]E

[
Y 2
]

nα−12aα
20x

2α−1
k

= lim
n→∞

b11v1
E[Y ]
xk

+ v2nqb2
11

E[Y ]
xk

E
[
Y 2
]

2aα
20 (nx2

k)α−1 (9)

Since α > 1 and lim nx2
k = 0, the denominator of the RHS in the above goes to 0. However, by Lemma

2, the first term in the numerator is bounded from below, while the second term is nonnegative. Thus, the

entire fraction goes to ∞, which is a contradiction. This establish that lim inf
n→∞

xk(n)n
1
2 > 0.

Assume now that lim inf
n→∞

xk(n)n
1
2 = ∞, while lim inf

n→∞
xk(n)n

1
4 = 0. Rewriting (8), we get:

ck = lim
n→∞

b11(v1 − v2)
E[Y ]
xk

+ v2

(
1 − qb2

11xkE
[
W 2
]
Y
)n (

b11
E[Y ]
xk

+ nqb2
11

E[Y ]
xk

E
[
Y 2
])

2aα
20 (nx2

k)α−1

By the first assumption on the asymptotic behavior of xk, and since α > 1 we have that the denominator

goes to ∞, at least when switching to a partial limit. As before, the first term in the numerator is bounded.

For the second term:

lim
n→∞

v2

(
1 − qb2

11xkE
[
W 2
]
Y
)n
(

b11
E[Y ]
xk

+ nqb2
11

E[Y ]
xk

E
[
Y 2
]
)

= lim
n→∞

v2

(

b11
E[Y ]
xk

+ nqb2
11

E[Y ]
xk

E
[
Y 2
]
)

= v2b11 lim
n→∞

E[Y ]
xk

nE
[
Y 2
]

where the first equality follows from the second assumption on the asymptotic behavior of xk. Thus, the
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following limit holds:

ck = lim
n→∞

v2b11
E[Y ]
xk

nE
[
Y 2
]

2aα
20 (nx2

k)α−1

which since α 6= 2, is a contradiction, as the numerator and denominator have different rates of divergence.

This completes the first part of the proof.

For the second part of the proof, assume that there exists some ε > 0 such that lim sup
n→∞

xk(n)n
1
4−ε > 0.

We again switch to a subsequence where this occurs, and there this assumption implies that:

lim
(
1 − qb2

11xkE
[
W 2
]
Y
)n

= 0

and this term decays exponentially fast in n. Thus, the FOC in (8) reduces to:

ck = lim
n→∞

b11(v1 − v2)E [Y ]

nα−12aα
20x

2α−1
k

= lim
n→∞

b11(v1 − v2)
E[Y ]
xk

2aα
20 (nx2

k)α−1

The numerator in this last term is bounded above and below, while the denominator goes to infinity. This

is a contradiction, and thus lim sup
n→∞

xk(n)n
1
4−ε = 0 for every ε = 0.

Finally, assume that lim sup
n→∞

xk(n)n
1
4 = 0. As in the first part of this proof, we have that the FOC (8)

reduces to (9). In (9), the first term in the numerator of the RHS is bounded above and below, while the

rates of growth or decay of both the other term in the numerator and the numerator are determined by the

behavior of g(n) = nx2
k. If g(n) diverges, then since α 6= 2, numerator and denominator diverge at different

rates, which is an immediate contradiction. If g(n) converges to 0, then the denominator converges to 0

while the numerator is bounded below, which is again a contradiction. This completes the proof.

Lemma 4. Let x(n) be a sequence of m-vectors of equilibrium efforts.

1. If for some k

lim sup
n→∞

xkn
1
2 < ∞, (10)

and along some subsequence it is the case that for each k lim xkn
1
2 = dk, then dk > 0:

dk

dj
=

(
cj

ck

) 1
2α−1

.

Equation (10) always holds for α > 2.

2. If 1 < α < 2 then there exists τeq (α, b11, a20, v1, c) > 0 such that if qv2 > τeq then

lim inf
n→∞

x(n)n
1
4 > 0.

Proof. For the first part, assume that α > 2, and that for some k, it holds that

lim inf
n→∞

xkn
1
2 = ∞.
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Then, using (9), we have:

ck ≤ lim
n→∞

b11v1E [Y ] + v2nqb2
11E[Y ]E

[
Y 2
]

nα−12aα
20x

2α−1
k

= lim
n→∞

b11v1
E[Y ]
xk

+ v2nqb2
11

E[Y ]
xk

E
[
Y 2
]

2aα
20 (nx2

k)α−1

Now the numerator of the RHS diverges to infinity at a rate of nx2
k, while the denominator diverges at the

higher rate of
(
nx2

k

)α−1
, since α > 2. This is a contradiction, and so we have that lim inf

n→∞
xkn

1
2 < ∞.

Now assume that for some 1 < α < ∞, for each k we have that lim xkn
1
2 = dk. Plugging this into (9),

gives:

ck = lim
n→∞

b11v1E [Y ] + v2nqb2
11E[Y ]E

[
Y 2
]

nα−12aα
20x

2α−1
k

=
b11v1E [D] + v2qb

2
11E[D]E

[
D2
]

2aα
20d

2α−1
k

where D is a random variable taking on the value dk with probability πk.

If dk is 0 this gives a contradiction, so dk > 0 for every k. Since the above equation holds for every k,

we have that:
dk

dj
=

(
cj

ck

) 1
2α−1

.

Plugging this result into the equation for c1, gives:

c1 =
b11v1E

[
S

1
2α−1

]
d1c

1
2α−1
1 + v2qb

2
11d

3
1c

3
2α−1
1 E

[
S

1
2α−1

]
E
[
S

2
2α−1

]

2aα
20d

2α−1
1

(11)

where S is a random variable taking on the value sk = 1/ck with probability πk. This translates to the

following equation:

2aα
20d

2(α−1)
1 = E

[
S

1
2α−1

](

b11v1s
2(α−1)
2α−1

1 + v2qb
2
11d

2
1s

2(α−2)
2α−1

1 E
[
S

2
2α−1

])

Rearranging this as an equation for v2q gives:

v2q =
s

1
2α−1
1

(

2aα
20s

2−2α
2α−1
1 d

2(α−1)
1 − b11v1E

[
S

1
2α−1

])

b2
11E

[
S

1
2α−1

]
E
[
S

2
2α−1

]
d2
1

(12)

Viewing v2q as a function of d1, we can maximize via elementary analysis with respect to d1 to obtain a

largest possible value of v2q for which the equation is solvable. Let this value (which is clearly positive) be

called τeq.

This completes the proof.

Lemma 5. Assuming v2q ≤ τeq, there is some β > 0 so that for large enough n, there exists an equilibrium

of Γ(n) with xkn1/2 < β for every k.

Proof sketch. Consider the first-order conditions of the agents in Γ(n) and perform the change of variables

xk = wkn−1/2. Write that system as Gn(w) = 0. Consider also the asymptotic system of equations

ck =
b11v1E [D] + v2qb

2
11E[D]E

[
D2
]

2aα
20d

2α−1
k

,
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in the notation of the previous lemma. Define G∞ so that this system can be written G∞(w) = 0. This

asymptotic system of equations, as seen above, boils down to just one equation, (11), which has at least one

solution d under the assumption v2q ≤ τeq. Moreover, it can be checked that the derivative of that equation

at one of those solutions is nonzero. Thus, the degree of G∞ in a punctured neighborhood of d, say Ω \ {d},

is nonzero. In the closure of Ω, it can be shown that Gn converges uniformly to G∞. Thus the degree of Gn

for high enough n is nonzero in Ω \ {d}, and in particular Gn has a zero there.6

Lemma 6. Given any γ > 0, for large enough n, there exists an equilibrium of Γ(n) with xk > γn−1/4 for

every k.

Proof sketch. Fix ε > 0. By Lemma 2, all equilibria eventually lie in an ε-neighborhood of 0. Since they are

interior, and the utility function is concave in each type’s action, equilibrium behavior is characterized by a

solution of the first-order condition. If this ε is chosen small enough, it can be checked by taking derivatives

and using asymptotic analysis as above that any agent’s best-response is increasing in others’ actions.

Assume that n is large enough so that all equilibria both of the game with the original costs and with

costs all equal to the maximum lie have actions of less than ε. Now restrict the strategy space to forbid

playing effort levels greater than ε. The game is now one of strategic complements.

It is also clear that agents’ response to increases in costs (holding all else fixed) is to decrease actions,

and vice versa. So let us consider the following exercise: change each type’s cost to the maximum cost, and

then iterate best responses until an equilibrium is reached. After this is done for all types, the monotonicity

discussed above shows that all actions are strictly lower than in the original equilibrium.

Now all types have the same first-order condition. It can be checked that if everyone is playing x =

γn−1/4, then marginal benefits exceed marginal costs for large enough n and agents will want to adjust

upwards. The structure of games with strategic complements implies the existence of an equilibrium with

effort levels exceeding γn−1/4.

Proof of Proposition 1 These observations follow from standard results in random graph theory.

See Jackson (2008), Theorem 4.1 for the results on connectedness. As for the diameter: Corollary 10.12(i)

in Bollobás (2001) gives that the diameter of GE is 3, so this is an upper bound on the diameter of the final

network. Moreover, since, a.a.s., there is a pair of agents in GE at distance 3 from each other, they cannot

end up at distance 1 due to the addition of links in GL. Thus, the diameter of the final network is at least

2.

Mingling as an Equilibrium

Proof of Theorem 5 Fix i ∈ N and k ∈ {1, . . . ,m}. Let x be the strategy profile corresponding

to the equilibrium considered in the problem statement. Observe that all agents j 6= i are, by assumption,

playing symmetric mingling strategies. We claim that for enough n, playing the same mingling strategy is

the unique best response for agent i. Let x = mink x
(j,`)
k and x = mink x

(j,`)
k for any fixed j, ` ∈ N \ {i}.

This definition makes sense because x(j,`) does not depend on j or `, given that x is a symmetric mingling

equilibrium.

6We are grateful to Pietro Majer and André Henriques for their suggestions, which were crucial to the
proof of this result.
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Let Yj = Z(j,`) for any `. This is the random variable describing the level of j’s effort. It is random

because of the randomness of j’s type. Given that the equilibrium is mingling, the choice of ` does not

matter. The symmetry of the equilibrium implies that the Yj are identically distributed across j, and the

assumption on how types are drawn implies that they are independent. We will drop references to the cost

type of agent i, taking that as known. Write

ui

(
zi; x(−i,∙)

)
= uE

i

(
zi; x(−i,∙)

)
+ uL

i

(
zi; x(−i,∙)

)
− uC

i

(
zi; x(−i,∙)

)
− Δ(zi).

where:

uE
i = v1E




∑

j 6=i

p
(
z(i,j), Yj

)


 ;

uL
i = v2E






∑

j 6=i

[
1 − p(zij , Yj)

] ∑

L⊂N\{i,j}

[
1 − (1 − q)|L|

]∏

`∈L

[
p(zi`, Y`)p(Y`, Yj)

] ∏

`/∈L
` 6=i,j

[
1 − p(zi`, Y`)p(Y`, Yj)

]





 ;

and

uC
i = E



ci

α




∑

j 6=i

f
(
zij , Yj

)




α

 .

Here we have split the expected utility of agent i into three pieces: the benefits coming from early-stage

friends, the benefits coming from late-stage friends, and the costs.

Note that uE
i is concave and uC

i is convex, so it suffices to show that uL
i − s is concave in zi. Define Hg

to be the Hessian of a function g in the variables zij for j 6= i. That is, let the (s, t) entry7 of Hg be

Hg
st =

∂2g

∂z(i,t)∂z(i,s)
.

Lemma 7. maxs,t∈N\{i} H
uL

i
st ∈ O(n−1/2 log6 n).

Once this is established, the assumed concavity of s and the rate of growth of the entries of its Hessian

guarantees that HuL
i becomes arbitrarily small, entry by entry, relative to HΔ. Since the Hessian of s is

positive definite, that implies that the Hessian of uL
i − Δ is eventually negative definite, yielding that this

function is concave. It remains to prove the lemma.

Proof of Lemma 7. Using Taylor expansion of p and Lagrange’s error bound as in [[TODO:cite]] we have,

for some absolute constants R1, R2 ∈ (0,∞),

H
uL

i
st

R1
= −E







∑

L⊂N\{i,s}
t∈L

Y 2
s Y 2

t

[
1 − (1 − q)|L|

]∏

`∈L
` 6=t

[
R2

2z
i`Y 2

` Ys

] ∏

`/∈L
` 6=i,s

[
1 − R2

2z
i`Y 2

` Ys

]







7Note that we are not allowing the index j to take the value i, so the rows and columns of Hg are, alas,
not numbered consecutively.
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+ E







∑

L⊂N\{i,s}
t/∈L

Y 2
s Y 2

t

[
1 − (1 − q)|L|

]∏

`∈L

[
R2

2z
i`Y 2

` Ys

] ∏

`/∈L
` 6=i,s,t

[
1 − R2

2z
i`Y 2

` Ys

]







+ E







∑

L⊂N\{i,t}
s/∈L

Y 2
s Y 2

t

[
1 − (1 − q)|L|

]∏

`∈L

[
R2

2z
i`Y 2

` Yt

] ∏

`/∈L
` 6=i,s,t

[
1 − R2

2z
i`Y 2

` Yt

]







− E







∑

L⊂N\{i,t}
s∈L

Y 2
s Y 2

t

[
1 − (1 − q)|L|

]∏

`∈L
` 6=s

[
R2

2z
i`Y 2

` Yj

] ∏

`/∈L
` 6=i,t

[
1 − R2

2z
i`Y 2

` Yj

]







+ E






∑

j 6=i

∑

L⊂N\{i,j}
s,t∈L

Y 2
s Y 2

t Y 2
j

[
1 − R2z

ijYj

] [
1 − (1 − q)|L|

] ∏

`∈L
` 6=t,s

[
R2

2z
i`Y 2

` Yj

] ∏

`/∈L
` 6=i,j

[
1 − R2

2z
i`Y 2

` Yj

]







− E






∑

j 6=i

∑

L⊂N\{i,j}
s∈L,t/∈L

Y 2
s Y 2

t Y 2
j

[
1 − R2z

ijYj

] [
1 − (1 − q)|L|

]∏

`∈L
` 6=s

[
R2

2z
i`Y 2

` Yj

] ∏

`/∈L
` 6=i,j,t

[
1 − R2

2z
i`Y 2

` Yj

]







− E






∑

j 6=i

∑

L⊂N\{i,j}
s/∈L,t∈L

Y 2
s Y 2

t Y 2
j

[
1 − R2z

ijYj

] [
1 − (1 − q)|L|

]∏

`∈L
` 6=t

[
R2

2z
i`Y 2

` Yj

] ∏

`/∈L
` 6=i,j,s

[
1 − R2

2z
i`Y 2

` Yj

]







+ E






∑

j 6=i

∑

L⊂N\{i,j}
s,t/∈L

Y 2
s Y 2

t Y 2
j

[
1 − R2z

ijYj

] [
1 − (1 − q)|L|

]∏

`∈L

[
R2

2z
i`Y 2

` Yj

] ∏

`/∈L
` 6=i,j,t,s

[
1 − R2

2z
i`Y 2

` Yj

]





 .

By the triangle inequality, and recalling that x is an upper bound for every Yj , we have:

∣
∣
∣
∣
∣
H

uL
i

st

R1

∣
∣
∣
∣
∣
≤ x4 ∙ E







∑

L⊂N\{i,s}
t∈L

[
1 − (1 − q)|L|

]∏

`∈L
` 6=t

[
R2

2z
i`Y 2

` Ys

] ∏

`/∈L
` 6=i,s

[
1 − R2

2z
i`Y 2

` Ys

]







+ x4 ∙ E







∑

L⊂N\{i,s}
t/∈L

[
1 − (1 − q)|L|

]∏

`∈L

[
R2

2z
i`Y 2

` Ys

] ∏

`/∈L
` 6=i,s,t

[
1 − R2

2z
i`Y 2

` Ys

]







+ x4 ∙ E







∑

L⊂N\{i,t}
s/∈L

[
1 − (1 − q)|L|

]∏

`∈L

[
R2

2z
i`Y 2

` Yt

] ∏

`/∈L
` 6=i,s,t

[
1 − R2

2z
i`Y 2

` Yt

]







+ x4 ∙ E







∑

L⊂N\{i,t}
s∈L

[
1 − (1 − q)|L|

]∏

`∈L
` 6=s

[
R2

2z
i`Y 2

` Yj

] ∏

`/∈L
` 6=i,t

[
1 − R2

2z
i`Y 2

` Yj

]
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+ x6 ∙
∑

j 6=i

E







∑

L⊂N\{i,j}
s,t∈L

[
1 − R2z

ijYj

] [
1 − (1 − q)|L|

] ∏

`∈L
` 6=t,s

[
R2

2z
i`Y 2

` Yj

] ∏

`/∈L
` 6=i,j

[
1 − R2

2z
i`Y 2

` Yj

]







+ x6 ∙
∑

j 6=i

E







∑

L⊂N\{i,j}
s∈L,t/∈L

[
1 − R2z

ijYj

] [
1 − (1 − q)|L|

]∏

`∈L
` 6=s

[
R2

2z
i`Y 2

` Yj

] ∏

`/∈L
` 6=i,j,t

[
1 − R2

2z
i`Y 2

` Yj

]







+ x6 ∙
∑

j 6=i

E







∑

L⊂N\{i,j}
s/∈L,t∈L

[
1 − R2z

ijYj

] [
1 − (1 − q)|L|

]∏

`∈L
` 6=t

[
R2

2z
i`Y 2

` Yj

] ∏

`/∈L
` 6=i,j,s

[
1 − R2

2z
i`Y 2

` Yj

]







+ x6 ∙
∑

j 6=i

E







∑

L⊂N\{i,j}
s,t/∈L

[
1 − R2z

ijYj

] [
1 − (1 − q)|L|

]∏

`∈L

[
R2

2z
i`Y 2

` Yj

] ∏

`/∈L
` 6=i,j,t,s

[
1 − R2

2z
i`Y 2

` Yj

]





 .

We will now bound (modulo a universal multiplicative constant) each expectation by a probability of i and

j having a late connection, under some strategy profile, and then bound each of these probabilities by 1. In

particular, define x̃(i; s, t; j) to be the strategy profile in which everyone behaves as in x, except that, for all

types of i, j, s, and t:

• i directs effort 1 at s and t;

• each of s and t directs effort 1 at i;

• j directs effort 1 at s and t;

• each of s and t directs effort 1 at j.

When there is only one index between the semicolons, the definition is analogous. That is, define x̃(i; s; j)

to be the strategy profile in which everyone behaves as in x, except that, for all types of i, j, and s,

• i directs effort 1 at s;

• s directs effort 1 at i and at j;

• j directs effort 1 at s.

Then, using that x → 0, we deduce that for some constant R3 we have:

∣
∣
∣
∣
∣
H

uL
i

st

R3

∣
∣
∣
∣
∣
≤ x4 ∙ Px̃(i;t;s)

(
GL

is = 1
)

+ x4 ∙ Px
(
GL

is = 1
)

+ x4 ∙ Px
(
GL

it = 1
)

+ x4 ∙ Px̃(i;s;t)
(
GL

is = 1
)

+ x6 ∙
∑

j 6=i

Px̃(i;s,t;j)
(
GL

ij = 1
)

+ x6 ∙
∑

j 6=i

Px̃(i;s;j)
(
GL

ij = 1
)

+ x6 ∙
∑

j 6=i

Px̃(i;t;j)
(
GL

ij = 1
)

+ x6 ∙
∑

j 6=i

Px
(
GL

ij = 1
)
.

It follows that for some constant R4 we have

∣
∣
∣H

uL
i

st

∣
∣
∣ ≤ R4(x

4 + nx6).
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This completes the proof of the theorem.
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