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Abstract

With a focus on risk, classical portfolio theory assumes that probabilities of future

outcomes are known. In reality, however, there is ambiguity in these probabilities. This

paper studies the nature of the relationship between risk and ambiguity and proves that in

most cases ambiguity cannot be diversified without increasing risk. This insight implies

that holding a fully diversified portfolio is not necessarily optimal. It challenges the

conventional wisdom which asserts that investors should hold such a portfolio.
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Does Ambiguity Diversification Pay?

I Introduction

The conventional wisdom of neoclassical portfolio theory asserts that investors should minimize

risk by holding fully a diversified asset portfolio. This literature, however, assumes that proba-

bilities of future outcomes are perfectly known, despite the fact that in reality there is ambiguity

in these probabilities.1 When ambiguity is involved, two key questions arise: (i) whether pos-

sessing a portfolio with minimal risk for a given expected return is optimal; (ii) whether, and

in what circumstances, ambiguity can be diversified away. The current paper is motivated by

these questions.

The contribution of this paper to the existing literature is twofold. First, it studies the nature

of the risk–ambiguity relationship and proves that ambiguity and risk are usually inversely

related. To the best of our knowledge, this study is the first to address this subject. Second, it

proves that in most cases risk and ambiguity cannot be simultaneously minimized by portfolio

diversification.

Assuming that investors are averse to risk and to ambiguity, one might conjecture that

they would aim to minimize both factors for a given expected return as they assemble their

optimal asset portfolios. The compositions of these optimal portfolios are determined by the

relationship between the objective risk and the objective ambiguity, as well as by the subjective

level of risk aversion and the subjective level of ambiguity aversion the investors exhibit.

This paper focuses on the interplay between objective risk and objective ambiguity in iso-

lation from investors’ subjective preferences.2 To this end, it employs a measure of ambiguity

that is derived form a decision-making model called expected utility with random probabilities

(henceforth, EURP). This model, proposed by Izhakian (2012a), is based on Schmeidler’s (1989)

Choquet expected utility. Similarly to Tversky and Kahneman’s (1992) cumulative prospect the-

ory, it assumes that returns are classified either as a loss or as a gain relative to a meaningful

1Risk is defined as a condition in which the event to be realized is a-priori unknown, but the odds of all
possible events are perfectly known. Ambiguity, or Knightian uncertainty, refers to conditions in which not only
is the event to be realized a-priori unknown, but the odds of events are also either not uniquely assigned or are
unknown.

2Previous studies focus on the relationship between attitude toward risk and attitude toward ambiguity. See,
for example, Gollier (2011).
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reference point.3 The central concept of EURP is that not only are the returns on assets ran-

dom, but the probabilities of these returns are themselves also random. Its main advantage is

that, as the degree of risk can be measured by the variance of returns, so too can the degree of

ambiguity be measured by the variance of the probabilities of loss (or gain).4

Ambiguity arises from random probabilities, which are assumed to be governed by the ran-

dom means and random variances of normally distributed returns on assets. The degree of

ambiguity is a matter of the classification of returns as losses or gains, relative to a reference

point. Assuming that investors possess a reasonable reference point, the paper proves that

ambiguity and risk are inversely related. Namely, when the reference point is within
√
2 stan-

dard deviations of the mean, ambiguity cannot be diversified without increasing risk. Perhaps

counterintuitively, adding an asset to a portfolio of assets increases its ambiguity as it decreases

its risk. The reason is that ambiguity is positively affected by the amplitude of the probability

density function of returns. In turn, the probability density function is a negative function of

variance. Higher variance results in a flatter random probability density function and a moder-

ately sloped cumulative probability distribution. Hence, the degree of ambiguity is lower. For

example, in the most extreme case, as the random variance tends to infinity, the probability

density function tends to a uniform distribution, implying a zero degree of ambiguity.

The importance of ambiguity as a determinant of asset returns has been demonstrated by

Brenner and Izhakian (2011), who show that ambiguity has a significant effect on the equity

premium. The relevance of ambiguity for capital asset pricing has been studied by Izhakian

(2012b), who proposes a generalization of the CAPM model.

The inverse relation between risk and ambiguity has considerable implications for finance. It

implies that holding a fully diversified asset portfolio is not necessarily optimal for ambiguity-

averse investors. This insight may shed new light on various puzzling financial phenomena.

For example, individual investors tend to hold very small portfolios—only 3-4 stocks, i.e.,

underdiversification (see, for example, Goetzmann and Kumar (2008)), or they choose not to

participate in the stock market, i.e., limited market participation (see, for example, Guo (2004)

and Bogan (2008)). Another phenomenon is that expected volatility is higher than realized

volatility, i.e., the volatility risk premium (see, for example, Eraker (2004), Car and Wu (2009)

3Unlike cumulative prospect theory, EURP does not assume different attitudes toward risk for losses and for
gains (e.g. loss aversion).

4Measuring risk by the variance of outcomes is admissible under some conditions; the same is true for
measuring ambiguity by the variance of probabilities. See Izhakian (2012a).
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and Drechsler (2012)).5 The relationship between risk and ambiguity can potentially be applied

to further studies of these phenomena.

The main implication of our results for portfolio theory is that holding a fully diversified

portfolio is usually not optimal for ambiguity-averse individuals. Accordingly, one may presume

that as the degree of ambiguity associated with stocks rises, the number of stocks individuals

hold in their portfolios should decline. This conclusion coincides with the findings of Guiso et

al. (2008) and van Rooij et al. (2011). In their behavioral study Guiso et al. (2008) find that

as individuals’ faith (trust) increases, the number of stocks they hold increases, where faith is

derived from the reliability of the data that individuals possess. In fact, the degree of faith is

an indicator of the degree of ambiguity, which is also a matter of belief concerning the quality

of information about the distribution of outcomes. Another determinant of ambiguity might be

financial literacy, which is found to have a positive effect on individuals’ willingness to invest in

stocks (see, van Rooij et al. (2011)). Lower financial literacy implies reduced access to financial

information, which in turn results in a higher degree of ambiguity.

To explain the phenomena of limited market participation and underdiversification, several

theoretical studies introduce ambiguity into asset pricing models. Mukerji and Tallon (2001),

for example, explain no-trading in incomplete financial markets by ambiguity aversion. Other

studies that tie these phenomena to ambiguity include Dow and Werlang (1992), Epstein and

Wang (1994), Trojani and Vanini (2004), Cao et al. (2005) and Ui (2011). These studies

focus on individuals’ reluctance to trade financial assets due to their subjective aversion to

ambiguity. Unlike these studies, the current study centers around the relationship between

objective risk and objective ambiguity and its implication for optimal portfolio selection. In

this paper, neither preferences concerning ambiguity nor market structure (i.e., complete or

incomplete) play a role.

The rest of the paper is organized as follows. Section II reviews the basic principles of

the EURP model of ambiguity. Section III lays out the motivation for this study through the

lens of investors’ preferences. Section IV models the ambiguity of financial assets. Section

V studies the risk–ambiguity relationship. Section VI discusses ambiguity diversification, and

5Other empirical phenomena referred to by the financial literature as puzzles under the rational expectations
hypothesis, i.e., the assumption that there exists a unique objective probability law governing the state process
and that investors know this law, include: the equity premium puzzle (Mehra and Prescott (1985)), the risk-free
rate puzzle (Weil (1989)), the phenomenon wherein the observed equity volatility is too high to be justified by
changes in the fundamental (Shiller (1981)), and the home bias puzzle (Coval and Moskowitz (1999)).
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Section VII concludes.

II The model of ambiguity

The ambiguity measure derived from a model of decision making under ambiguity, called ex-

pected utility with random probabilities (EURP), provides the theoretical underpinning of this

paper. EURP, proposed by Izhakian (2012a), extends Schmeidler’s (1989) Choquet expected

utility by adding reference-dependent beliefs. Like Tversky and Kahneman’s (1992) cumulative

prospect theory, it assumes that investors have a reference point relative to which outcomes

are classified as a loss or as a gain. In EURP beliefs regarding the probability of loss play

an important role in measuring the degree of ambiguity.6 This theory assumes two tiers of

uncertainty, one with respect to outcomes and the other with respect to the probabilities of

these outcomes, each tier being modeled by a separate state space. This structure introduces

a complete distinction of risk from ambiguity with regard to both beliefs and preferences. The

degree of risk is then measured with respect to one space, while the degree of ambiguity is

measured with respect to the second space.

Let (Ω,F ,P) be a probability space, where P ∈ P is a random probability measure, and

the set of probability measures P is closed and convex. P is equipped with a Borel probability

measure, denoted χ, with a bounded support. Given a random variable, X : Ω → R, its

random mean, EP (X), and random variance, VarP (X), are denoted by the Greek letters µX

and σ2
X , respectively. Similarly, the random covariance between two random variables X and

Y , EP (X − EP (X)) (Y − EP (Y )), is denoted σX,Y , and their random correlation is thus ρX,Y =

σX,Y

σXσY
.

The expectation, E [X], and the variance, Var [X], of X are computed using expected prob-

abilities. That is, a double expectation with respect to the first-order random probability

distribution P of X and to the second-order probabilities χ:

E [X] =

∫
P

(∫
Ω

X (ω) dP (ω)

)
dχ (P) , (1)

and

Var [X] =

∫
P

(∫
Ω

(X (ω)− E [X])2 dP (ω)

)
dχ (P) , (2)

6Previous literature focuses on the implication of losses and gains for preferences (see, for example Barberis
and Huang (2001) and Hirshleifer (2001)), while our study focuses on beliefs.
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where ω ∈ Ω. Similarly, the covariance between the random variables X and Y is given by

Cov [X, Y ] =

∫
P

(∫
Ω

(X (ω)− E [X]) (Y (ω)− E [Y ]) dP (ω)

)
dχ (P) . (3)

The central concept of EURP is that the probabilities of outcomes are random; thus, as

the degree of risk can be measured by the variance of outcomes, the degree of ambiguity can

be measured by the variance of probabilities. Let PL and PG be the random probabilities of

loss and gain, respectively. Their expectations E [PL] and E [PG], taken with respect to the

second-order probability distribution χ, are

E [PL] =

∫
P
P (X < k) dχ (P) and E [PG] =

∫
P
P (X > k) dχ (P) , (4)

where k is the reference point distinguishing losses from gains. The measure of ambiguity

f2 [X] = 4Var [PL] = 4Var [PG] (5)

is four times the variance of the probability of loss or four times the variance of the probability

of gain, taken with respect to χ.7 This measure, f2 ∈ [0, 1], attains its minimal value, 0,

when probabilities are known, and its maximal value, 1, only in the extreme case of a binomial

probability distribution with random probabilities that can take the values 0 or 1 with equal

likelihood.

To illustrate the concept of ambiguity in EURP, consider the following binomial example of

an asset with two possible future returns: d = −10% and u = 20%. Assume for the moment that

the probabilities of d and u are known, say P (d) = P (u) = 0.5. The expected return is thus 5%,

and the standard deviation of return, measuring the degree of risk, is 15%. In this case, since

the probabilities are precisely known, ambiguity is not present (f = 0) and investors face only

risk. Assume now that the probabilities of d and u can be either P (d) = 0.4 and P (u) = 0.6 or

alternatively P (d) = 0.6 and P (u) = 0.4, where these two alternative distributions are equally

likely. Investors now face ambiguity in addition to risk. Assuming that negative returns are

considered a loss, the degree of ambiguity, measured by twice the standard deviation of the

probability of loss, is f = 0.2. Note that the degree of risk, computed using the expected

probabilities E [Pd] = E [Pu] = 0.5, has not changed.

7This measure is admissible for symmetric probability distributions that satisfy stochastic dominance with
respect to ambiguity (see, Izhakian (2012a)).
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III Investors’ preferences

The motivation for this paper arises from an interest in understanding investors’ choices re-

garding portfolio composition. Assuming that investors are averse to risk and to ambiguity, one

might conjecture that they would aim to minimize both factors for a given expected return.

To prove this we show that, for a given expected return, higher risk and higher ambiguity each

result in a lower expected utility.

Preferences are the primitives of the decision-making model we employ to form expected

utility. Aversion to ambiguity is exhibited when an investor prefers the expectation of the

random probability of each outcome over the random probability itself. These preferences

concerning ambiguity are modeled by a strictly-increasing, continuous and twice-differentiable

function Γ : [0, 1] → R, called the outlook function. Ambiguity aversion takes the form of a

concave Γ, while ambiguity loving takes the form of a convex Γ, and ambiguity neutrality the

form of a linear Γ. Preferences concerning risk are modeled by a strictly-increasing, continuous

and twice-differentiable utility function U : R → R, which is normalized to U (1 + k) = 0. As

usual, risk aversion takes the form of a concave U, risk loving the form of a convex U, and risk

neutrality the form of a linear U.

As a consequence of the nonlinear ways in which individuals may interpret random prob-

abilities, perceived probabilities are nonadditive. Ambiguity aversion results in a subadditive

probability measure, while ambiguity loving results in a superadditive measure.8 Formally, in

this framework, the expected utility of saving one unit of wealth takes the form

V (1 +X) = −
∫ k

−∞
Γ−1

(∫
P
Γ (P (U (1 +X) < z)) dχ (P)

)
dz (6)

+

∫ ∞

k

Γ−1

(∫
P
Γ (P (U (1 +X) > z)) dχ (P)

)
dz,

where X is the return on investment. The value function V, proposed by Izhakian (2012a),

is based on the functional representation of Wakker (2010) and Kothiyal et al. (2011). This

function applies a two-sided Choquet integration to gains and to losses (relative to the reference

point). Note that when investors are ambiguity neutral, i.e., Γ is linear, Equation (6) collapses

to the conventional expected utility.

8Nonadditivity means that probabilities do not necessarily add up to 1.
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Theorem 1. Consider an asset whose return, X, is relatively small with relatively small prob-

abilities. Assuming a risk and ambiguity averse investor whose reference point k is relatively

close to E [X], higher risk and higher ambiguity each independently result in a lower expected

utility.

This theorem proves that, for a given expected return, a rational (risk and ambiguity averse)

investor prefers the portfolio with the lower risk and the lower ambiguity. This brings us to

inquire whether risk and ambiguity can be minimized simultaneously.

IV Ambiguity in financial assets

The return on an asset takes the form of a random variable, X, with a non-unique probability

distribution.9 A return, denoted x, is assumed to be normally distributed with a random mean

and a random variance.10

The probabilities of loss are measured with respect to a reference point k, which is assumed

to satisfy 0 ≤ k ≤ E [X]. Otherwise, if k < 0, negative outcomes (returns) are considered a

gain. On the other hand, if E [X] < k, the expected return E [X] is considered a loss and thus

investors will not hold the asset. Since returns are normally distributed, probabilities of loss

can be defined as a function of µX and σX . That is,

P (x ≤ k) =

∫ k

−∞

1√
2πσ2

X

e
− (x−µX)2

2σ2
X dx. (7)

The measure of ambiguity, f2, can then be established using the standard normal probability

distribution, denoted Φ. Hence, f2 takes the form11

f2 [X] = 4Var

[∫ k−µX
σX

−∞

1√
2π

e−
x2

2 dx

]
= 4Var

[
Φ

(
k − µX

σX

)]
, (8)

where the (random) probability density function is defined by ϕ
(

x−µX

σX

)
= 1√

2πσ2
X

e
− (x−µX)2

2σ2
X .

9An individual asset or an asset portfolio is referred to by its return, X.
10This probability density function implies that returns satisfy first-order stochastic dominance with respect

to ambiguity (see Izhakian (2012a)).
11This representation is obtained by changing the integration variable of the normal probability distribution.
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Proposition 1. The degree of ambiguity of an asset remains unchanged when the same mono-

tonic transformation is applied to its return and to the reference point. That is,

f2 [T (X)] = f2 [X] (9)

for any monotonic function T.

This proposition asserts that ambiguity is invariant to monotonic transformations of returns

as long as the reference point is adjusted accordingly. The reason is that ambiguity does not

depend upon cardinal values but only upon ordinal values, relative to the reference point.

A monotonic transformation of returns, accompanied by an identical transformation of the

reference point, does not affect the ordinal values relative to the reference point. Thus, neither

cumulative probability of loss nor ambiguity are changed.

Corollary 1. Applying an affine transformation, c+bx, to an asset return and to the reference

point k leaves the degree of ambiguity unchanged. That is,

f2 [c+ bX] = f2 [X] = 4Var

[∫ k

−∞

1√
2πσ2

X

e
− (x−µX)2

2σ2
X dx

]
. (10)

The random parameters, µX and σX , which govern probabilities and ambiguity also charac-

terize the expected return (perceived mean) and the risk (perceived volatility) associated with

an asset. The next proposition ties the perceived mean and the perceived volatility, defined by

Equations (1) and (2), to the random mean and variance.

Proposition 2. The perceived mean is equal to the expected mean, but the perceived volatility

Var [X] is always greater than the expected variance. That is,

E [X] = E [µX ] and Var [X] = E
[
σ2
X

]
+Var [µX ] ,

where the expectation and the variance on the right-hand sides of the equations are taken with

respect to the second-order probability distribution χ.

This proposition implies that a-priori the perceived volatility is higher than the simple

expected variance. This insight might provide a possible explanation for the phenomenon

known in the financial literature as the volatility (risk) premium (see, for example, Broadie et al.

(2009), Bollerslev et al. (2009), Todorov (2010) and Drechsler (2012)). The volatility premium

can be identified by the difference between the volatility implied by VIX and the realized

volatility in the stock market. The former can be considered a proxy for the perceived volatility,

and the latter can be considered a proxy for the expected variance. Thus, Proposition 2 suggests

9



that the volatility premium can be explained by the difference between perceived volatility and

average variance, namely, by Var [µX ].

V The risk–ambiguity relationship

The common thread between risk and ambiguity is the random variance σ2
X . In order to

maintain focus on the risk-ambiguity relationship, it is assumed that changes in σ2
X do not

affect the random mean µX . Since the variance σ
2
X is random, a higher variance is obtained by

applying a monotonic increasing transformation to the entire distribution of σ2
X such that µX

remains unchanged. As a result, by Proposition 2, the higher σ2
X , the higher the risk (perceived

volatility) Var [X].

The random variance σ2
X also affects the degree of ambiguity. Ambiguity is a function of

cumulative probabilities, defined by a probability density function, which in turn is a function

of σ2
X . Generally speaking, a higher σ2

X implies a flatter (random) probability density function,

which in turn implies a lower ambiguity. Take, for example, the most extreme case where

the variance tends to infinity. The probability distribution tends to a uniform distribution,

which results in a zero degree of ambiguity. This can also be observed from Equation (8). As

the variance tends to infinity, the probability of loss, Φ
(

k−µX

σX

)
, tends to 1

2
regardless of the

reference point k and the mean µX . Hence, the variance of the probability of loss is 0, and so

too is the degree of ambiguity.

The domain of the probability distributions can be divided into two subdomains. One

is referred to as the negative domain, in which a higher variance implies lower probabilities.

The other is referred to as the positive domain, in which a higher variance implies higher

probabilities.12 The inclusion of the reference point in one of these domains determines the

relationship between ambiguity and risk. Namely, if the reference point is within the negative

domain, ambiguity and risk are negatively related. If the reference point is within the positive

domain, they are positively related. These two domains are defined by the derivative of the

probability of loss, Φ
(

k−µX

σX

)
, with respect to the standard deviation σX , which in turn is

defined by the derivative of the probability density function, ∂ϕ
∂σX

. The negative domain is

characterized by a decreasing derivative, ∂2ϕ
∂σ2

X
< 0, and the positive domain is characterized

by an increasing derivative, ∂2ϕ
∂σ2

X
> 0. The following theorem uses this notion to define the

12The positive domain consists of two disjoint subsets of the reals.
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conditions under which a higher variance leads to a lower degree of ambiguity.

Theorem 2. Assume an asset whose return is normally distributed with random mean, µX ,

and random variance, σ2
X , and a reference point k satisfying

µX − σX

√
2 ≤ k ≤ µX + σX

√
2 (11)

for every µX and σX . A higher (random) variance implies a lower degree of ambiguity.

A reasonable reference point would be lower than (but relatively close to) the expected

return on an asset and higher than the return on a risk-free asset. Otherwise, the investor

would not hold such an asset. Therefore, in most cases Equation (11) holds.

As the variance decreases, the probability density function becomes steeper. Theorem 2

implies that as a result, when k is in the interval
[
max

(
µX − σX

√
2
)
,min

(
µX + σX

√
2
)]
, the

variance of the probability of loss is higher, and therefore the degree of ambiguity is higher.

However, decreasing the variance to a level lower than (k−µX)2

2
(while keeping all other parame-

ters unchanged) causes k to deviate from the interval
[
max

(
µX − σX

√
2
)
,min

(
µX + σX

√
2
)]
,

which is now smaller. In this case, a lower variance results in a lower degree of ambiguity.

When the variance tends to zero, the degree of ambiguity tends to zero, unless the reference

point is surrounded by the random mean, wherein the degree of ambiguity tends to one. If the

mean is known, i.e., the expected return is identical for all feasible distributions, and it is equal

to the reference point, then the degree of ambiguity is zero regardless of the variance.13 If,

however, the reference point is not equal to the common mean, then a strictly positive degree

of ambiguity is observed.

Figure 1 depicts the impact of the random standard deviation, σX , on the degree of ambi-

guity. It considers a normally distributed return with known mean µX = 0.1; random standard

deviation that can be either σX,1 = 0.05 or σX,2 = 0.1 with equal likelihoods; and reference

point k = 0.09. The y-axis describes the degree of ambiguity, and the x-axis describes an

incremental factor λ of the standard deviation. Namely, for a given value of λ, the standard

deviation can be either λσX,1 or λσX,2. This figure shows that only for a narrow range of λ,

between 0 and 0.14, a higher standard deviation results in a higher degree of ambiguity. When

λ = 0.14 the standard deviation can be either 0.007 or 0.014. In this case, since k = 0.09,

Equation (11) is violated, and so ambiguity and risk are positively related. For any λ greater

13Even if the instances of the random probability distribution take different functional forms, the degree of
ambiguity is zero as long as all distributions are symmetric with an identical point of symmetry which is equal
to the reference point.
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than 0.14 Equation (11) holds such that a higher variance implies a lower degree of ambiguity.

0.5 1.0 1.5 2.0

0.05

0.10

0.15

λ

f

Figure 1: Ambiguity and risk
This figure describes the effect of increasing (random) standard deviation by factor λ on the degree
of ambiguity f. It considers a normally distributed return with known mean µX = 0.1; random
standard deviation that can be either σX,1 = 0.05 or σX,2 = 0.1 with equal likelihoods; and reference
point k = 0.09. The y-axis describes the degree of ambiguity, and the x-axis describes the incremental
factor λ. For a given value of λ the standard deviation can be either 0.05λ or 0.1λ. A higher λ implies
a higher risk.

A high degree of ambiguity is caused by high probability perturbations, derived from the

random mean, µX , and the random variance, σ2
X . Figure 2 illustrates the interplay between

the random variance and the random probability of loss in a standard normal probability

representation. Panel I describes the probability density function, while Panel II describes

its associated cumulative probability distribution. The values on the x-axes are the upper

integration limits, k−µX

σX
, of the probability of loss, i.e., the adjusted reference point k (see

Equation (8)). The y-axis in Panel I describes the amplitude of the probability density function,

and the y-axis in Panel II describes the cumulative probability of loss. The light shaded area

depicts the range in which the integration limit, k−µX

σX
, is volatile when the random variance of

return is relatively low, and the dark area depicts the range when it is relatively high.

Panel II of Figure 2 shows that a lower variance of return shifts the region in which the

probability of loss is volatile from a range of steeper cumulative probability distribution to a

range of flatter cumulative probability distribution. This implies a positive effect of variance

on the degree of ambiguity. However, lower variance has a second and opposite effect on

ambiguity: the lower the variance, the higher the dispersion of the random probability of loss.

When the reference point k satisfies −1 ≤ k−µX

σX

√
2
≤ 1, the dispersion effect is stronger than the

shifting effect, resulting in a higher degree of ambiguity. When k violates −1 ≤ k−µX

σX

√
2
≤ 1, the

cumulative probability distribution is sufficiently flat such that the shifting effect is stronger

12
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Panel I: Probability density function
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Panel II: Cumulative probability distribution

Figure 2: Random probability of loss in a standard normal probability representation

Using standard normal probability representation, this figure describes the region in which the random
probability of loss is volatile. Panel I describes the probability density function, and Panel II describes
its associated cumulative probabilities. The values on the x-axes are the upper integration limit k−µX

σX

of the probability of loss, i.e., the adjusted reference point k. The y-axis in Panel I describes the
amplitude of the probability density function, and the y-axis in Panel II describes the cumulative
probability. The light shaded region depicts the area where k−µX

σX
is volatile when the random variance

of return is relatively low, and the dark area depict the range when it is relatively high.

than the dispersion effect, resulting in a lower degree of ambiguity.

Figure 3 provides an additional view of the interplay between the random variance of return

and the random probability of loss. It considers the probability density function of an asset

whose mean return is known and whose variance is random. Each shaded area describes a

13



range in which the probability density function is volatile as a result of the random variance.

The light shaded area depicts this range when the random variance of return is relatively low

and the dark area when it is relatively high. Figure 3 shows that when the reference point is

relatively close to the mean, a lower variance of return (depicted by the light area) results in a

sharper curve. In this case, a sharper random density function positively affects the variance

of probabilities and thus the degree of ambiguity.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

}

}

Low variance
of return

High variance
of return

Xk

Figure 3: Random probabilities of a normally distributed return with known mean
and unknown variance
This figure describes the random probability density function of a normally distributed return with
known mean and unknown variance. Each shaded area describes a range in which the random proba-
bility density is volatile. The light shaded area depicts this range when the random variance of return
is relatively low and the dark area when it is relatively high.

VI Ambiguity diversification

Can ambiguity be diversified away in an asset portfolio? In other words, are two assets less

ambiguous when combined than each asset separately? Motivated by these questions, let us

begin with an illustration.

Assume two assets, X and Y , with three states of nature. The returns on X and Y (in per-

centage points) are X = (−2, 1, 2) and Y = (2, 1,−2), respectively. The possible probabilities

of the three states of nature are P1

P2

 =

 0.1 0.8 0.1

0.2 0.6 0.2

 ,

where a row, indexed i = 1, 2, is a probability distribution, and a column, indexed j = 1, 2, 3,
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is a state of nature. The probability distributions P1 and P2 are assigned with equal (second-

order) probabilities, i.e., χ = (0.5, 0.5). The expected probabilities of each state of nature are

therefore

E [P] = χ1P1 + χ2P2 = (0.15, 0.7, 0.15) .

Using the expected probabilities, E [P], one can compute the perceived mean (expected return)

and the perceived volatility (risk). The expected return on assets X and Y is identical, E [X] =

E [Y ] = 0.7, and their risk is also identical, Var [X] = Var [Y ] = 1.41.

To compute the degree of ambiguity associated with each asset, the set of loss events first

needs to be identified. Assuming a reference point k = 0.5, asset X faces a loss in state j = 1,

and asset Y faces a loss in state j = 3,

X

[ −2︸︷︷︸
L

∣∣ 1 2︸ ︷︷ ︸
G

]

Y

[ 2 1︸ ︷︷ ︸
G

∣∣ −2︸︷︷︸
L

].

Conditional upon the probability measures P1 and P2, the probabilities of loss on asset X are

PX,L = (0.1, 0.2), and the same for asset Y , PY,L = (0.1, 0.2). The variance of the probability

of loss on each of these assets is identical, Var [PX,L] = Var [PY,L] = 0.0025, which implies also

an identical degree of ambiguity, f [X] = f [Y ] = 0.1.

Consider now an equally weighted portfolio, denoted Z, consisting of assets X and Y .

Conditional upon the state of nature, the return on this portfolio is

Z

[ 0︸︷︷︸
L

∣∣ 1︸︷︷︸
G

∣∣ 0︸︷︷︸
L

].

Using the expected probabilities, E [P], to compute the expected return and the risk of portfolio

Z provides E [Z] = 0.7 and Var [Z] = 0.21, respectively. Portfolio Z faces a loss in states j =

1, 3; therefore, its probabilities of loss PZ,L = (0.2, 0.4) imply a degree of ambiguity f [Z] = 0.2.

Portfolio Z maintains the same expected return as assetsX and Y , E [Z] = E [X] = E [Y ] = 0.7,

but with lower risk, 0.21 = Var [Z] < Var [X] = Var [Y ] = 1.41. Its degree of ambiguity,

however, is doubled f [Z] = 2f [X] = 2f [Y ] = 0.2, showing that the degree of ambiguity of

two assets can be greater when considered together in a portfolio than the degree of ambiguity

of each asset when considered separately.

Assuming that short selling is prohibited, this example demonstrates a case where risk

can be diversified away but ambiguity cannot. Even if short selling were allowed in this ex-
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ample, ambiguity still could not be diversified without increasing risk. Conditional upon the

reference point, there is generally a tradeoff between risk and ambiguity, such that ambiguity

diversification cannot be achieved without a higher exposure to risk. We now turn to prove it

theoretically.

Assume a portfolio Z consisting of n assets, indexed j = 1, . . . , n. The return on this

portfolio is thus

Z =
n∑

j=1

hjXj, (12)

where hj is the proportion of asset j having a return Xj, such that
∑

j hj = 1.14 The reference

point k is assumed to be a weighted average of the reference points associated with the assets

composing the portfolio; that is, k =
∑

j hjkj. The probabilities of loss and gain on portfolio

Z are determined by loss events and gain events relative to k. It is important to note that

the random probabilities of loss on individual assets are not independent across assets. Hence,

the probability of loss on an asset portfolio is also determined by the correlations among the

probabilities of loss on the individual assets composing it.

To account for the correlations among the probabilities of loss on individual assets, the

probability of loss on an asset portfolio is represented by a convolution of the probabilities of

the assets composing it. Assume, for example, a portfolio consisting of two assets X and Y with

proportion h1 and h2, respectively. Its degree of ambiguity can be defined by the convolution

f2 [h1X + h2Y ] = 2Var

[∫ k

−∞

∫ ∞

−∞
f (x, y) dydx

]
, (13)

where f (x, y) is the (random) joint probability density of the random variables X and Y .

Concerning assets whose returns are normally distributed, Equation (13) can be evolved to a

closed-form solution for the degree of ambiguity associated with an asset portfolio.

Theorem 3. Let portfolio Z consist of n assets whose returns are normally distributed with

random means, µX1 , . . . , µXn, and random standard deviations, σX1 , . . . , σXn. Assuming that

its reference point is k =
∑

j hjkj, the degree of ambiguity of portfolio Z =
∑

j hjXj is then

f2 [Z] = 4Var

[∫ k

−∞

1√
2πσ2

Z

e
− (z−µZ)2

2σ2
Z dz

]
, (14)

where µZ =
∑

j hjµXj
is its random mean, and σ2

Z =
∑

j h
2
jσ

2
Xj

+
∑

j

∑
i ̸=j hjhiρXj ,Xi

σXj
σXi

is

its random variance.

14To save on notations, an asset portfolio Z is occasionally referred to by its return Z rather than by its
composition.
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This theorem allows us to inquire into the impact that the correlations among assets compos-

ing a portfolio have on its degree of ambiguity. The next theorem focuses on this relationship.

Theorem 4. Let a portfolio Z consist of n assets whose returns are normally distributed.

Assume nonnegative proportions h1, . . . , hn of assets in the portfolio, whose return Z =
∑

j hjXj

is characterized by the random mean µZ =
∑

j hjµXj
and the random variance σ2

Z =
∑

j h
2
jσ

2
Xj
+∑

j

∑
i̸=j hjhiρXj ,Xi

σXj
σXi

. If the reference point k =
∑

j hjkj satisfies

µZ − σZ

√
2 ≤ k ≤ µZ + σZ

√
2, (15)

for every µZ and σZ, then a higher correlation between any asset pair in Z implies a lower

degree of ambiguity of Z.

This theorem finds that, assuming a reference point within
√
2 standard deviations from the

portfolio’s means, the correlations among the assets composing this portfolio have a negative

impact on its degree of ambiguity. At first glance, this result seems counterintuitive, since we

are tempted to surmise that like risk, which increases with the correlations among assets, so too

does ambiguity. However, this supposition is false. When the correlations among the returns

on assets composing a portfolio are relatively high, the variance of its return is relatively high.

By Theorem 2, the consequence of a higher variance is a lower degree of ambiguity.

The inverse relation between the correlations of returns and the degree of ambiguity holds

as long as max
(
µZ − σZ

√
2
)
≤ k ≤ min

(
µZ + σZ

√
2
)
. Reducing the correlations to a level

sufficiently low while the reference point k remains unchanged causes k to violate Equation (15)

by deviating from the range
[
max

(
µZ − σZ

√
2
)
,min

(
µZ + σZ

√
2
)]
. In this case, lower corre-

lations have a negative impact on the degree of ambiguity. The maximal possible correlation

between any two assets Xi and Xj is ρXj ,Xi
= 1. Therefore, from Theorem 4 one can infer

that any portfolio with assets having identical characteristics (mean and variance) is more

ambiguous than each asset taken separately. The next theorem studies this property.

Theorem 5. Assume that the conditions of Theorem 4 hold and that
µXj

σXj
=

µXi

σXi
, ∀Xj, Xi. If

short selling is prohibited then ambiguity is not diversifiable. The ambiguity of an asset portfolio

is higher than the ambiguity each asset considered separately. That is,

f2

[
n∑

j=1

hjXj

]
≥

n∑
j=1

hjf2 [Xj] = f2 [X] , (16)

where for any j = 1, . . . , n, f2 [Xj] = f2 [X] and 0 ≤ hj, and
∑

j hj = 1. If short selling is

allowed, then ambiguity can be diversified, but at the cost of higher risk
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By employing numerical simulations, one can show that the ability to diversify ambiguity

is a matter of accounting for the relationships among the random means and random variances

of returns. Figure 4, for example, simulates the degree of ambiguity of a two-asset portfolio

as a function of the proportion of the assets in the portfolio. It considers two uncorrelated

assets whose returns are normally distributed with known mean, µX = 0.1, random standard

deviation that can be either 0.05 or 0.1 with equal likelihoods, and reference point k = 0.09.

The x-axis shows the proportion of the first asset in the portfolio. The y-axis shows the degree

of ambiguity (solid line) and the degree of risk (dashed line) of the portfolio, where risk is

measured by standard deviation. In this simulation one can see that the portfolio generates

higher ambiguity as compared with the degree of ambiguity of each individual asset separately.

0.2 0.4 0.6 0.8 1.0

0.04

0.05

0.06

0.07

h

f, Std

Figure 4: Ambiguity versus risk of a two-asset portfolio
This figure considers two uncorrelated assets whose returns are normally distributed with known
mean, µX = 0.1, random standard deviation that can be either 0.05 or 0.1 with equal likelihoods,
and reference point k = 0.09. The x-axis shows the proportion of the first asset in the portfolio.
The y-axis shows the degree of ambiguity (solid line) and the degree of risk (dashed line) of the
portfolio, where risk is measured by standard deviation.

This leads us to study the impact of the number of assets composing a portfolio on its

degree of ambiguity.

Theorem 6. Assume an equally weighted portfolio Z consisting of assets whose returns are

normally distributed, all with identical random means and random variances. Let µZ and σZ be

the random mean and the random standard deviation of Z, respectively. If the reference point

k satisfies

µZ − σZ

√
2 ≤ k ≤ µZ + σZ

√
2, (17)

for every µZ and σZ, adding an asset to the portfolio increases its degree of ambiguity while it
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decreases its degree of risk.

This theorem implies that as the number of (not perfectly positively correlated) assets in

a portfolio tends to infinity, its variance tends to zero. In this case, one of two things can

happen (if k is not surrounded by µX): either the reference point deviates by more than
√
2

standard deviations from the mean, or the reference point is equal to the mean. Both imply a

perfectly diversifiable ambiguity, i.e., f2 = 0. However, if k is surrounded by µX , the degree

of ambiguity tends to its maximal possible value, 1, as the variance tends to 0. This is the

case in reality, where different assets are characterized by different random means. As a result,

portfolio composition might be concerned with the tradeoff between risk and ambiguity. In

other words, investors “pay” for risk reduction by incurring higher ambiguity.

Figure 5 illustrates the impact of the number of assets composing a portfolio on its degree

of ambiguity and its degree of risk. The figure considers uncorrelated assets whose returns are

normally distributed with random mean that can be either 0.04 or 0.08, and random variance

that can be either 0.2 or 0.4, all with equal likelihoods, and reference point k = 0.04. The x-axis

shows the number of assets in the portfolio. The y-axis shows the degree of ambiguity (solid

line) and the degree of risk (dashed line) of the portfolio, where risk is measured by standard

deviation. It can be observed from this example that increasing the number of assets in the

portfolio from 1 to 50 decreases its risk from 0.3 to almost 0. Yet, it increases its degree of

ambiguity from f = 0.04 to f = 0.5.

Our results have considerable implications for the conventional wisdom of the financial liter-

ature, which asserts that investors should minimize risk by holding a fully diversified portfolio.

The implication is that when ambiguity is present, in most cases, holding such a portfolio is

not optimal for ambiguity-averse investors, since for a given expected return, minimizing risk

increases ambiguity. The precise composition of an optimal portfolio is determined subjectively

by each investor according to her levels of risk aversion and ambiguity aversion. We leave the

topic of optimal portfolio composition, reflective of investors’ preferences, for future research.

The conclusions that emerge from our study coincide with field studies regarding individ-

ual investor behavior. These studies document that individuals tend to hold underdiversified

portfolios (3-4 stocks); see for example Barber and Odean (2000) and Goetzmann and Kumar

(2008). Bossaerts et al. (2010) demonstrate that ambiguity-averse investors are reluctant to

hold ambiguous assets. In an earlier study Uppal and Wang (2003) demonstrate that a small

difference in the ambiguity of the distribution of marginal returns results in a portfolio that is
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Figure 5: Ambiguity versus risk of an n-asset portfolio
This figure considers uncorrelated assets whose returns are normally distributed with random
mean that can be either 0.04 or 0.08 and random variance that can be either 0.2 or 0.4, all with
equal likelihoods, and reference point k = 0.04. The x-axis shows the number of assets in the
portfolio. The y-axis shows the degree of ambiguity (solid line) and the degree of risk (dashed
line) of the portfolio, where risk is measured by standard deviation.

significantly underdiversified relative to the standard mean-variance portfolio. An explanation

for these phenomena may look to the nature of ambiguity and its relationship with risk as pre-

sented in this paper. “Own-company stock,” “home-country equity” and “limited stock market

participation” are other financial puzzles upon which our model might help to shed new light.

VII Conclusion

This paper shows that it is not necessarily optimal to hold a fully diversified portfolio. The

financial literature asserts that investors should minimize risk by diversifying their investments.

This literature, however, assumes away ambiguity, the uncertainty over probabilities. When

accounting for ambiguity one may falsely assume that as a portfolio is diversified for risk,

it is also diversified for ambiguity. The present paper proves that risk minimization usually

coincides with increased ambiguity, implying that holding a portfolio with minimal risk for a

given expected return exposes investors to ambiguity that they may prefer not to bear.

The inverse relation between risk and ambiguity has significant implications for many as-

pects of financial decision making, especially concerning optimal portfolio selection. The op-

timal portfolios assembled by risk-averse and ambiguity-averse investors should minimize the

aggregation of risk and ambiguity for a given expected return. Such a portfolio should take
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into account this inverse relation between risk and ambiguity and investors’ attitudes toward

each. As a result, investors may choose to hold nondiversified portfolios. The tradeoff between

risk and ambiguity can shed new light on some puzzling financial phenomena. For example:

underdiversification, where investors hold an average of only 3-4 stocks; limited market partici-

pation, where investors choose not to hold stocks at all; and the volatility risk premium, where

investors overestimate the expected volatility of the stock market.
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A Appendix

A.1 Supporting claims

Lemma 1. Given an equally weighted portfolio consisting of assets whose returns have an

identical mean µX and an identical variance σ2
X , the variance of the portfolio’s return decreases

with the number of assets in the portfolio.

Theorem 7. Let px = E [Px] and ζ2x = Var [Px], where Px = P (X ≤ x) is the random prob-

ability of a random variable X, and assume a continuous twice-differentiable outlook function

Γ, satisfying 1
2

(
Γ′′(px)
Γ′(px)

ζ2x −
Γ′′(pz)
Γ′(pz)

ζ2z

)
≤ pz for any x ≤ z ≤ k and for any k ≤ z ≤ x. For a

relatively small Px, the perceived probability of a random variable X ≤ x is then

Q(X ≤ x) = Γ−1

(∫
P
Γ (P (X ≤ x)) dχ (P)

)
≈ px +

1

2

Γ′′ (px)

Γ′ (px)
ζ2x. (18)

A.2 Proofs

Proof of Lemma 1. Let Z be a portfolio consisting of n assets. Its variance is

σ2
Z =

n∑
j=1

1

n2
σ2
X +

n∑
j=1

∑
i̸=j

σ2
Xρ, (19)

where −1 ≤ ρ ≤ 1 is the correlation between each pair of assets in the portfolio. Simplifying

this expression provides σ2
Z = 1

n
σ2
X +

(
1− 1

n

)
σ2
Xρ. Differentiating σ2

Z with respect to n provides

∂σ2
Z

∂n
= − 1

n2σ
2
X + 1

n2ρσ
2
X ≤ 0 for any ρ.

Proof of Proposition 1. Applying an increasing transformation T to all the outcomes x

of an asset X does not change the ordering of these outcomes. The aggregate event of loss and

its probabilities, PL, remain unchanged because the references point k is adjusted accordingly.

Therefore, the degree of ambiguity f2 is not affected by the transformation T.

Proof of Proposition 2. Writing Var [X] explicitly provides

Var [X] =

∫
P

(∫
Ω

(
X (ω)−

∫
P

(∫
Ω

X (ω)dP (ω)

)
dχ (P)

)2

dP (ω)

)
dχ (P) (20)

=

∫
P

(∫
Ω

X2 (ω)dP (ω)

)
dχ (P)−

(∫
P

(∫
Ω

X (ω)dP (ω)

)
dχ (P)

)2

.

Since µX =
∫
Ω
X (ω) dP (ω), we can write(∫

P

(∫
Ω

X (ω)dP (ω)

)
dχ (P)

)2

=

(∫
P
µXdχ (P)

)2

=

∫
P
µ2
Xdχ (P)− Var [µX ] .
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Substituting into Equation (20) yields

Var [X] =

∫
P

(∫
Ω

X2 (ω)dP (ω)

)
dχ (P)−

∫
P
µ2
Xdχ (P) + Var [µX ] = E

[
σ2
X

]
+Var [µX ] .

Proof of Corollary 1. Writing the ambiguity measure explicitly provides

f2 [c+ hX] = 4Var [PL] = 4Var

[∫ c+hk

−∞

1√
2πh2σ2

X

e
− (x−c−hµX)2

2h2σ2
X dx

]
.

Changing the integration variable to x = c+ hy provides the required result.

Proof of Theorem 1. By Theorem 7, the expected utility of Equation (6) can be written

V (1 + E [Z]−K) ≈ −
∫ k

−∞

[
pz +

1

2

Γ′′ (pz)

Γ′ (pz)
ζ2z

]
dz +

∫ ∞

k

[
pz +

1

2

Γ′′ (pz)

Γ′ (pz)
ζ2z

]
dz,

where pz = E [P (Z ≤ z)] and ζ2z = Var [P (Z ≤ z)]. Changing the integration variable to

z = U(1 + x) provides

V (1 + E [X]−K) ≈ −
∫ k

−∞

[
px +

1

2

Γ′′ (px)

Γ′ (px)
ζ2x

]
U′ (1 + x) dx+∫ ∞

k

[
1− px +

1

2

Γ′′ (1− px)

Γ′ (1− px)
ζ2x

]
U′ (1 + x) dx,

where px = E [P (X ≤ x)] and ζ2x = Var [P (X ≤ x)]. Integrating by parts provides

V (1 + E [X]−K) ≈ −pxU(1 + x) |k−∞ +

∫ k

−∞
E [ϕ (x;µX , σX)] U (1 + x) dx (21)

−
∫ k

−∞

1

2

Γ′′ (px)

Γ′ (px)
ζ2xU

′ (1 + x) dx

+(1− px)U (1 + x) |∞k +

∫ ∞

k

E [ϕ (x;µX , σX)] U (1 + x) dx

+

∫ ∞

k

1

2

Γ′′ (1− px)

Γ′ (1− px)
ζ2xU

′ (1 + x) dx,

where ϕ (x;µX , σX) stands for the normal probability density function. Because U (1 + k) = 0,

the sum of the first element in the first line and the first element in the third line in Equation

(21) is zero. Since k is relatively close to E [X], taking a first-order Taylor approximation

(around E [X]) of the second and the fourth lines of Equation (21) provides

I ≈ −
∫ k

−∞
1
2
Γ′′(pk)
Γ′(pk)

ζ2kU
′ (1 + E [X]) dx−

∫ k

−∞
1
2

[
Γ′′(pk)
Γ′(pk)

ζ2kU
′ (1 + E [X])

]′
(x− E [X]) dx

+
∫∞
k

1
2
Γ′′(1−pk)
Γ′(1−pk)

ζ2kU
′ (1 + E [X]) dx+

∫∞
k

1
2

[
Γ′′(1−pk)
Γ′(1−pk)

ζ2kU
′ (1 + E [X])

]′
(x− E [X]) dx,

Thus, I satisfies

I ≈ −1

8

Γ′′ (pL)

Γ′ (pL)
f2 [X] U′ (1 + E [X])− 1

8

Γ′′ (pG)

Γ′ (pG)
f2 [X] U′ (1 + E [X]) ,
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where pL = E [PL] and pG = E [PG] are the expected probabilities of loss and gain, respectively.

The second-order Taylor approximation (around E [X]) of the second component in the first

line and the second component in the third line of Equation (21) provides

II =

∫ ∞

−∞
E [ϕ (x;µX , σX)] U (1 + x) dx

≈
∫ ∞

−∞
E [ϕ (x;µX , σX)]

 U(1 + E [X]) + U′ (1 + E [X]) (x− E [X]) +

1
2
U′′ (1 + E [X]) (x− E [X])2

 dx

= U(1 + E [X]) +
1

2
U′′ (1 + E [X]) Var [X] .

The first-order Taylor approximation (around 0) of the LHS of Equation (21) with respect to

K is

LHS = U(1 + E [X]−K) ≈ U(1 + E [X])−KU′ (1 + E [X]) .

Combining the LHS, I and II, the uncertainty premium is

K ≈ −1

2

U′′ (1 + E [X])

U′ (1 + E [X])
Var [X]− 1

8

[
Γ′′ (pL)

Γ′ (pL)
+

Γ′′ (pG)

Γ′ (pG)

]
f2 [X] .

Write the approximated expected utility as

V (1 + E [X]−K) ≈ U

(
1 + E [X] +

1

2

U′′ (1 + E [X])

U′ (1 + E [X])
Var [X] +

1

8

[
Γ′′ (pL)

Γ′ (pL)
+

Γ′′ (pG)

Γ′ (pG)

]
f2 [X]

)
.

Risk aversion implies U′′

U′ < 0, and ambiguity aversion implies Γ′′

Γ′ < 0. Since U is strictly

increasing, a higher Var [X] or a higher f2 [X], each imply a lower expected utility.

Proof of Theorem 2. Differentiating the degree of ambiguity, formed by Equation (8), with

respect to σX yields

∂f2

∂σX

= 2

∫
P

(
P−

∫
P
Pdχ (P)

)(
P′ −

∫
P
P′dχ (P)

)
dχ (P) = 2E [(P− E [P]) (P′ − E [P′])] , (22)

where P′ = ∂P
∂σX

. By the Leibniz integral rule

P′ =
∂P

∂σX

= −(k − µX)

σ2
X

√
2π

e
− (k−µX)2

2σ2
X .

If k ≤ µX , then P′ ≥ 0, and therefore P increases in σX . Otherwise, if k > µX , then P decreases

in σX . Next, we differentiate P′ with respect to σX to find its slope:

∂P′

∂σX

= −(k − µX)

σ5
X

√
2π

[
(k − µX)

2 − 2σ2
X

]
e
− (k−µX)2

2σ2
X . (23)

If k ≤ µX , then
∂P′

∂σX
is non-positive when (k − µX)

2−2σ2
X ≤ 0. That is, if µX−σX

√
2 ≤ k ≤ µX ,

then ∂P′

∂σX
≤ 0. However, if µX ≤ k ≤ µX + σX

√
2, then ∂P′

∂σX
≥ 0. This implies that when

26



µX − σX

√
2 ≤ k ≤ µX , P

′ is a decreasing function of σX ; and when µX ≤ k ≤ µX + σX

√
2, P′

is an increasing function of σX . However, when k ≤ µX , P is an increasing function of σX ; and

when k ≥ µX , P is a decreasing function of σX . Therefore, the covariance between P and P′

(Equation (22)) is negative, which implies that ∂f2

∂σX
≤ 0.

Proof of Theorem 3. Using the convolution theorem, it can be shown that the sum of

normally distributed variables is also normally distributed with mean µZ =
∑

j hjµXj
and

variance σ2
Z =

∑
j h

2
jσ

2
Xj

+
∑

j

∑
i ̸=j hjhiρXj ,Xi

σXj
σXi

. Equation (8) then proves the theorem.

Proof of Theorem 4. Writing the ambiguity of Z explicitly provides

f2 [Z] = 4Var

[∫ k

−∞

1√
2πσ2

Z

e
− (z−µZ)2

2σ2
Z dz

]

= 4Var

Φ
 k −

∑
j hjµXj√∑

j h
2
jσ

2
Xj

+
∑

j

∑
j ̸=i hjhiρXj ,Xi

σXj
σXi

 ,

where the second equality is obtained by changing the integration variables and substituting

for µZ and σZ . Since any asset has a nonnegative weight in the portfolio, a higher correlation

implies a greater σZ , which in turn, by Theorem 2, implies a lower degree of ambiguity.

Proof of Theorem 5. This theorem is proved for a two-asset portfolio consisting of assets

X and Y . The proof can then be extended by induction to any number of assets. Since

µX

σX
= µY

σY
, then µY = aµX and σY = aσX . Therefore, since k is adjusted accordingly, the degree

of ambiguity associated with each of the two assets is identical:

4Var

[
Φ

(
kY − µY

σY

)]
= 4Var

[
Φ

(
akX − aµX

aσX

)]
= 4Var

[
Φ

(
kX − µX

σX

)]
.

Hence, hf2 [X] + (1− h)f2 [Y ] = 4Var
[
Φ
(

k−µX

σX

)]
, where h and (1− h) are the proportions

of X and Y in the portfolio, respectively. The degree of ambiguity associated with the asset

portfolio is

I = 4Var

Φ
 k − hµX − (1− h)µY√

h2σ2
X + (1− h)2 σ2

Y + 2h(1− h)ρX,Y σXσY


= 4Var

Φ
 k − hµX − a (1− h)µX√

h2σ2
X + (1− h)2 a2σ2

X + 2ah(1− h)ρX,Y σ2
X

 ,

where k = hkX + (1− h) kY = hkX + a (1− h) kX . When 0 ≤ h ≤ 1, by Theorem 4, I attains
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its minimal value when the correlation is maximal, i.e., when ρX,Y = 1; thus,

I ≥ 4Var

Φ
hkX + a (1− h) kX − hµX − a (1− h)µX√

h2σ2
X + (1− h)2 a2σ2

X + 2ah(1− h)σ2
X

 = 4Var

[
Φ

(
kX − µX

σX

)]
.

When short selling is allowed, one can increase the variance of a portfolio by choosing some

h < 0. Then, by Theorem 2, the degree of ambiguity is lower. However, by Proposition 2, the

perceived volatility (risk) is then higher.

Proof of Theorem 6. By Lemma 1, a greater number of assets in a portfolio implies a

lower variance which, by Proposition 2, implies a lower perceived volatility (risk). Theorem 2

proves that a lower variance results in a higher degree of ambiguity.

Proof of Theorem 7. The LHS of Equation (18) can be written as

Q (X ≤ x) = Γ−1 (Γ (px − φ)) = Γ−1

(∫
P
Γ (Px) dχ (P)

)
, (24)

for some φ, where px = E [P (X ≤ x)]. Ignoring Γ−1 and taking the first-order Taylor approxi-

mation of Γ (px − φ) around 0 with respect to φ yields

Γ (px − φ) ≈ Γ (px) + Γ′ (px) (px − φ− px) = Γ (px)− φΓ′ (px) . (25)

Ignoring Γ−1 and the integration in the RHS of Equation (24) for the moment, the second-order

Taylor approximation of Γ (Px) around px is

Γ (Px) ≈ Γ (px) + Γ′ (px) (Px − px) +
1

2
Γ′′ (px) (Px − px)

2 .

Since Γ (px), Γ
′ (px) and Γ′′ (px) are constants, applying the integration provides∫

P
Γ (Px) dχ (P) ≈ Γ (px) +

1

2
Γ′′ (px) ζ

2
x. (26)

Equating (25) to (26) and rearranging terms yields φ ≈ −1
2
Γ′′(px)
Γ′(px)

ζ2x. Substituting φ into Equa-

tion (24) proves the theorem.
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