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Preface

This volume gathers the papers presented at the Detection and Classification of Acoustic Scenes and Events
2019 Workshop (DCASE2019), New York University, NY, USA, during 25–26 October 2019.

The DCASE 2019 Workshop was the fourth workshop on Detection and Classification of Acoustic Scenes
and Events, organized again in conjunction with the DCASE Challenge. The aim of the workshop was to
bring together researchers from many different universities and companies with interest in the topic, and
provide the opportunity for scientific exchange of ideas and opinions.

The DCASE 2019 Workshop was jointly organized by researchers at New York University, Brooklyn College,
Cornell University, Adobe, and Google, Inc. The associated DCASE 2019 Challenge tasks were organized by
researchers at Tampere University (Task 1: Acoustic scene classification, Task 3: Sound Event Localization
and Detection); Universitat Pompeu Fabra and Google, Inc. (Task 2: Audio tagging with noisy labels and
minimal supervision); University of Lorraine, Inria Nancy Grand-Est, Carnegie Mellon University, Johannes
Kepler University, and Adobe (Task 4: Sound event detection in domestic environments); and New York
University, Cornell University, and Adobe (Task 5: Urban Sound Tagging).

For this edition of the DCASE 2019 Workshop, 82 full papers were submitted, each reviewed by at least
three members of our Technical Program Committee. From these, 54 papers were accepted, 14 for oral
presentation and 40 for poster presentation.

The Organizing Committee was also pleased to invite leading experts for keynote addresses:

• Catherine Gustavino (McGill University, School of Information Studies)

• Jessie Barry (Cornell University, The Cornell Lab of Ornithology)

The success of the DCASE 2019 Workshop was the result of the hard work of many people whom we wish
to warmly thank here, including all the authors and keynote speakers, as well as all the members of the
Technical Program Committee, without whom this edition of the DCASE 2019 Workshop would not exist.
We also wish to thank the organizers and participants of the DCASE Challenge tasks.

This edition of the workshop was supported by sponsorship from Adobe, Amazon Alexa, Audio Analytic,
Bose, Cochlear.ai, Facebook, Google, IBM Research, Microsoft, Mitsubishi Electric, and Sound Intelligence.
We wish to thank them warmly for their valuable support to this workshop and the expanding topic area.

Juan P. Bello
Mark Cartwright
Michael Mandel
Justin Salamon
Daniel P. W. Ellis
Vincent Lostanlen
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gemeinnützige GmbH, Ilmenau, Germany
3 Software-Service John GmbH, Ilmenau, Germany

jakob.abesser@idmt.fraunhofer.de

ABSTRACT

As noise pollution in urban environments is constantly rising, novel
smart city applications are required for acoustic monitoring and mu-
nicipal decision making. This paper summarizes the experiences
made during the field test of the Stadtlärm system for distributed
noise measurement in summer/fall of 2018 in Jena, Germany.

Index Terms— internet of things (IoT), smart city, acoustic
scene classification, sensor network, noise level measurement

1. INTRODUCTION

Urban dwellers are often exposed to high levels of noise from a
variety of sources such as road traffic, construction sites and public
sport and music events. Ideally, the city administration needs to sys-
tematically investigate any complaint. However, this task is hardly
feasible due to the high personnel and cost involved.

As previously introduced in [1], the main goal of the Stadtlärm
research project was to develop a distributed noise monitoring sys-
tem, which supports city management by continuously measuring
noise levels and sources. The developed system of 12 distributed
sensors was subjected to a field test lasting several months after one
and a half years of development. This paper presents a field re-
port and discusses various experiences that have been made. We
hope that this experience report will also be useful for other re-
search projects in the field of IoT and Smart Cities. Related re-
search projects propose similar solutions for noise monitoring in
urban environments (see for instance [2, 3, 4]). Among others, the
special focus during the Stadtlärm project was on checking legally
prescribed noise limits.

The paper will be structured as follows. Section 2 briefly de-
scribes the individual components of the Stadtlärm noise monitor-
ing system. Then, Section 3 discusses practical hardware considera-
tions such as the microphone selection, weather resistance, moisture
protection, as well as the long-term operating status of the sensor
devices. Different measurements towards on-site sound propaga-
tion will be described in Section 4. Finally we will illustrate how
the set of acoustic classes was refined and the algorithm for acous-
tic scene classification was improved during the project duration in
Section 5.
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Figure 1: Stadtlärm system overview. The block diagram illustrates
the data measurement and processing on the acoustic sensor units,
communication via an MQTT broker, as well as data storage and
visualization [1].

2. SYSTEM OVERVIEW

The Stadtlärm noise monitoring system consists of multiple dis-
tributed sensors, i. e., embedded systems that record and process au-
dio data, and server-side services for further audio processing, data
storage and access, as well as user applications. The overall sys-
tem’s backbone is a broker-based communications architecture. All
communications among components and services utilize MQTT via
a central broker, which also handles authentication and authoriza-
tion. We used MQTT as the underlying communication protocol.
Therefore, we defined a topics hierarchy and extended the publish/
subscribe paradigm by a convention enabling a request/response
mechanism. The communications architecture is discussed in more
detail in [5].

As shown in Figure 1, the system’s components can be parti-
tioned into three main functional groups. The acoustic sensor units
are embedded field devices for acoustic data acquisition (see Sec-
tion 3). On the software side, the sensors run embedded Linux and a
custom application (implemented in Go), which handles communi-
cation (data, metadata, and management aspects). This application
is also responsible for integration with the actual audio retrieval and
processing software (implemented in Python). This software per-
forms level measurements according to requirements of the German

https://doi.org/10.33682/s9w3-5341
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TA Lärm regulations (see Section 4) as well as acoustic scene clas-
sification based on deep neural networks (see Section 5). By only
transmitting the noise level and classification analysis results, pri-
vacy by design is implemented (as no speech recognition / surveil-
lance is possible) and the amount of data for mobile communica-
tions is reduced.

The Stadtlärm audio service runs on a central server. After re-
ceiving measurement data from the acoustic sensor units, the ser-
vice complements their data processing by computing long-term
noise level parameters as defined in the German TA Lärm reg-
ulations. Data is stored and made available by request through
an MQTT API. The Stadtlärm web application runs on a separate
server and offers a web frontend to the data accumulated by the sys-
tem tailored for administrative employees in departments concerned
with urban noise. As such, it represents sensors on a city map, indi-
cating status and current noise levels per location. On a per-sensor
basis, historical level and classification data can be viewed, and re-
ports can be created based on this.

Central to the system, an MQTT broker (Mosquitto) runs on
another server and acts as a communications hub with central au-
thentication/authorization. The broker is complemented by a central
administration component serving as a registry of acoustic sensor
units, a monitor of the overall system’s status and load, and provid-
ing facilities to manage the sensors.

3. SENSOR HARDWARE

The acoustic sensor units are custom embedded devices developed
in the course of the project. Each unit consists of a computation
platform (Raspberry Pi 3 Compute Module Lite) and a microphone
integrated on a custom PCB that also addresses aspects of robust-
ness (robust power supply, hardware watchdog, etc.) and commu-
nications (M.2 slot for a wireless modem). The required computing
power was estimated based on an initial implementation of the audio
processing software (implemented in Python and utilizing the keras
deep learning framework). Thanks to further optimizations made
during the algorithmic development in the course of the project,
the final CPU load is about 50% (across its 4 cores, i.e., equiva-
lent to 200% load on a single core) and thus more than adequate,
with ample reserves for communications and management as well
as potential future adaptations.

For communications, both mobile wireless communications
and utilizing public WiFi networks were considered. Each sensor
unit is outfitted with a wireless modem and a SIM card. The total
data volume used per month and unit is less than 1 GB (even includ-
ing a remote firmware update or two), with the net amount of audio
data being communicated by a single sensor being about 9 MB per
day. As the sensors were meant to be mounted on lighting posts,
assuming a permanent mains supply was an unrealistic assumption.
The devices were therefore fitted with an additional power man-
agement PCB and a rechargeable battery (150 Wh), which enable
off-grid operation with a periodic recharge (of at least 5 hours per
day, typically overnight). Both computations and always-on mobile
communications (with data being sent in near-real-time) result in a
continuous power consumption of about 4 W. For this, the battery’s
capacity is ample; the situation is further relaxed by the fact that, in
the field trial, lighting posts are powered for significantly more than
5 hours in the annual average, topping 16 hours in winter.

The sensor systems are fitted in weatherproof housings (for cost
reasons, off-the-shelf) meant to be mounted on lighting posts of
varying heights and diameters, at heights of 3 m or more. For this,

Figure 2: A Stadtlärm sensor equipped with the optional weather
station components.

the housings were fitted with steel strap clamps, which are flexible
with respect to a post’s diameter. The housing’s external dimensions
are 25 x 35 x 15 cm3, so it is large enough to fit all the components
and even leaves some room for optional equipment. It features a
lockable hinged door, enabling easy but restricted access to its in-
terior, necessary for wiring the device up to mains power during
installation. For the pilot trial, the devices were otherwise assem-
bled and configured manually prior to their being rolled out.

Another challenge was the integration of the microphone.
Industry-grade microphones in outdoor-capable housings cost eas-
ily as much as the rest of the sensor system, which is why the goal
with respect to the microphone was to use low-cost hardware in
conjunction with state-of-the-art processing to nevertheless deliver
high-quality audio recognition results. To this end, a MEMS mi-
crophone (ICS 43434, with an I2S interface) was selected based
on an systematic measurement and comparison of various micro-
phone models. The easiest way of integrating that with the housing
was to place the microphone directly behind a 4 mm drill hole at
the bottom. Frequency response measurements and field recordings
confirmed this to be adequate for the purpose of noise measurement
and acoustic scene classification. However, in the course of the pilot
trial, wind noise manifested itself as an issue of underestimated im-
pact, requiring to make adaptions to the underlying acoustic scene
classification model (see Section 5).

As weather may have profound effects on audio propagation
and reception, a subset of sensor units in the pilot trial were ex-
tended by an inexpensive weather station measuring wind speed and
direction as well as temperature and ambient humidity (Fig. 2). In-
ternally, these additional components are connected via USB, prov-
ing the extensibility of the hardware platform. The weather data
(measured by 3 devices placed in representative locations during the
field test) correlate closely with weather data available from public
providers, with plausible local deviations nevertheless being evi-
dent.

4. NOISE LEVEL MEASUREMENT

4.1. Sound Propagation in the Target Area

We performed an experiment to investigate the sound propagation in
the target area of the field test. Therefore, given different configura-
tions of source-to-sensor distances, we measured the drop in sound
level. As a rule of thumb, we expect the sound level to drop by
6dB for a doubling of the distance. The test setup included an om-
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Figure 3: Examples of two-second long spectrogram patches for
the classes car, conversation, music, roadworks, siren, train, tram,
truck, and wind (from top left to right bottom), which are processed
by the neural network.

nidirectional loudspeaker (GlobeSource Radiator by Outline) with
a mobile power supply unit, which was powered by a truck battery.
The measurement device was a NTi Audio XL2 with a calibrated
Earthworks M30 as microphone. The Earthworks microphone was
phantom-powered by the internal batteries of the NTi XL2 audio.
We initially set up the SPL at a distance of 1 meter to 90 dB and for
the second play-through to 100 dB.

As test signals, we used a simple sinusoidal signal with fre-
quency of 1 kHz as well as a pink noise signal. A third test signal
was a compilation of audio recordings covering different acoustic
scenes. We repeated the test procedure at six different locations
within the target area. From the results, we found that the measured
SPL levels were slightly higher than expected. Possible reasons
could be the rustling of the leaves or the wind, sound reflections
by trees and buildings, as well as noises caused by pedestrians and
cyclists nearby.

4.2. Case Study: Noise Pollution caused by Soccer Games

Residents from the nearby residential areas around the target area
often complain about noise from soccer games, which happen typ-
ically on the weekends. As a show case, we analyzed the loud-
ness curves, which have a temporal resolution of 0.125 s, recorded
at the sound emission location i. e., the soccer stadium as well as
a higher residential area around 600 m away. By computing the
cross-correlation between overlapping 30 second long segments of
the loudness curve, we derive the local maximum cross-correlation.
Based on an additional test-recording nearby the second sensor, we
were able to associate peaks in the cross-correlation curve with typ-
ical acoustic events during a soccer game such as drumming, fan
cheering, and announcements from the stadium speaker. This pro-
vides clear evidence that noise from the soccer game is audible even
in surrounding residential areas.

5. ACOUSTIC SCENE AND EVENT CLASSIFICATION

5.1. Acoustic Classes

In the final project stage, the initial number of acoustic scene classes
(as presented in [1]) was reduced from 18 to 9 by focusing on
the most relevant noise sources in the target area. In order to im-
prove the applicability of the Stadtlärm system for traffic moni-

toring applications, the “truck” class was added to distinguish be-
tween the four most relevant vehicle types in the target site—cars,
trains, trams, and trucks. During test recordings, we found that
wind noises often overshadow other present noise sources, hence
we added “wind” as an additional sound class. The intuition was
to get a better sense of the classification confidence of other rec-
ognized sound sources. The initial sound classes “busking”, “mu-
sic event”, and “open-air” were merged to a unified class “music”,
which includes all music-related events. For the class “siren”, we
improved the training data by adding recordings of local police cars,
fire trucks, and ambulances. At the same time, we discarded the
sound event classes “applause, “chants”, “horn”, and “shouting”
as well as the (more ambiguous) sound scenes “public place” and
“sports events” for now.

5.2. Acoustic Scene Classification

The classification model, which processes the recorded audio
stream on the sensor units, was improved following the convolu-
tional neural network (CNN) architecture proposed in [6]. The net-
work is based on the VGG model paradigm that includes pairs of
convolutional layers with small filter size and no intermediate pool-
ing operation. In the applied architecture, four such layer pairs are
concatenated with increasing number of filters (32, 64, 128, 256).
After each layer pair, we apply a (3,3) max pooling in order to grad-
ually decrease the spatial resolution and to encourage learning more
abstract spectrogram patterns in higher layers. In order to improve
the model’s generalization towards unseen input data, we apply
batch normalization between the convolutional layers, global av-
erage pooling between the convolutional and dense layers, dropout
(0.25) between the final dense layers, as well as L2 regularization
(0.01) on the penultimate dense layer.

Given the project-specific set of acoustic classes discussed in
the previous section, we assembled training data from various pub-
lically available datasets such as the Urban Sound dataset1, the TUT
acoustic scenes 2016 dataset2, as well as the freefield1010 dataset3.

5.3. Results & Observations

Figure 3 shows examples of two-second long spectrogram patches
for all 9 classes as they are processed by the neural network. These
plot give a better intuition of the difficulty of the classification task.
The classes “conversation”, “music”, “roadworks”, and “siren”
show distinctive patterns of either harmonic components (horizon-
tal lines) or percussive components (vertical lines). For the vehicle-
related classes “car”, “train”, “tram”, and “truck”, the sounds are
more complex and noisy. The choice of an analysis window of
two seconds (and a processing hop-size of one second) allows for
a pseudo real-time processing of the recorded audio streams at the
sensor units. However, such short analysis windows cannot capture
slowly changing sounds such as passing vehicles. The noisy nature
of wind also becomes apparent from the plot.

Figure 4 shows the receiver operation characteristic (ROC)
curves as well as the precision-recall curves, which we obtained
in a classification experiment on a separate test set, which was not
used in the model training process. For each class, we obtained an

1https://urbansounddataset.weebly.com/
urbansound.html

2https://zenodo.org/record/45739
3https://c4dm.eecs.qmul.ac.uk/rdr/handle/

123456789/35
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Figure 4: Receiver operation curves (ROC) and precision-recall curves for all 10 sound classes. Area-under-the-curve (AUC), optimal class-
wise decision thresholds and best f-measure values are given in brackets.

optimal decision treshold on the sigmoid output values from the fi-
nal network layer by maximizing the f-score. While all classes get a
high AUC (area-under-the-curve) value, the precision-recall curves
provide a better insight into the classifier performance.

When analyzing test recordings, which were made on the target
site with the sensor, we observed a constant level of noise, either
from environmental factors such as wind and rain or from the sen-
sor hardware itself. Future steps for improving the model could be
a stronger focus on data augmentation, where the high-quality au-
dio recordings in the training data sets will be mixed with on-site
background noise recordings to make the model more robust. Also
we plan to test recently proposed methods for domain adaptation to
achieve more robust classification results in different test environ-
ments.

6. WEB APPLICATION

We used the field test to evaluate the practical suitability of the web
application. Based on continuous communication with the local
city administration, we received regular feedback and optimized the
main functionalities of the web application. This mainly concerned
the identification of the prominent noise sources as well as the over-
all documentation of the noise level measurements. By providing
the estimated noise source class probabilities from the model, non-
expert users can better interpret the confidence of the acoustic scene
classifier.
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ABSTRACT

In this paper, we propose a framework for environmental sound
classification in a low-data context (less than 100 labeled examples
per class). We show that using pre-trained image classification mod-
els along with the usage of data augmentation techniques results in
higher performance over alternative approaches. We applied this
system to the task of Urban Sound Tagging, part of the DCASE
2019. The objective was to label different sources of noise from
raw audio data. A modified form of MobileNetV2, a convolutional
neural network (CNN) model was trained to classify both coarse
and fine tags jointly. The proposed model uses log-scaled Mel-
spectrogram as the representation format for the audio data. Mixup,
Random erasing, scaling, and shifting are used as data augmenta-
tion techniques. A second model that uses scaled labels was built to
account for human errors in the annotations. The proposed model
achieved the first rank on the leaderboard with Micro-AUPRC val-
ues of 0.751 and 0.860 on fine and coarse tags, respectively.

Index Terms— DCASE, machine listening, audio tagging,
convolutional neural networks

1. INTRODUCTION

The IEEE AASP challenge on Detection and Classification of
Acoustic Scenes and Events (DCASE) 1, now in its fifth edition,
is a recurring set of challenges aimed at developing computational
scene and event analysis methods. In Task 5, Urban Sound Tagging,
the objective is to predict the presence or absence of 23 different
tags in audio recordings. Each of these tags represents a source of
noise and thus a cause of noise complaints in New York City. Solu-
tions for this task, such as the one proposed in this paper, will help
inspire the development of solutions for monitoring, analysis, and
mitigation of urban noise.

2. RELATED WORK

The current task of Urban Sound Tagging is part of the broader
research area of Environmental Sound Classification [1]. Con-
volutional neural networks (CNNs) that use Log-scaled Mel-
spectrogram as the feature representation have been proven to be
useful for this use case [2, 3], and have also achieved leading per-
formance in recent DCASE tasks [4, 5, 6]. Extensions to the CNN
framework, in the form of Convolutional Recurrent Neural Net-
works (CRNNs) have been proposed [7]. Transformation of the
raw audio waveform into the Mel-spectrogram representation is a
”lossy” operation [8]. As such, there has been ongoing research

1http://dcase.community/

into evaluating alternatives such as using Scattering transform [9],
Gammatone filter bank [7] representations, as well as directly em-
ploying one-dimensional CNN on the raw audio signal [10]. Op-
erating in the context of noisy labels [11] or in a low-data regime
[12] (both of which are properties of the present task) are two other
active research areas in this domain. One particular approach for
dealing with small labeled datasets is the usage of pre-trained mod-
els to generate embeddings that can be used for downstream audio
classification tasks. VGGish[13], SoundNet[14], and L3-Net[15]
are examples of such models.

3. DATASET

For this challenge, SONYC [16] has provided 2351 recordings as
part of the train set, and 443 recordings as a part of the validate
set. All the recordings, acquired from different acoustic sensors in
New York City, are Mono channel, sampled at 44.1kHz, and are
ten seconds in length. The private evaluation set consisted of 274
recordings. Labels for these recordings were revealed only at the
end of the challenge. A single recording might contain multiple
noise sources. Hence, this is a task of multi-label classification.

The 23 noise tags, termed fine-grained tags, are further grouped
into a list of 7 coarse-grained tags. This hierarchical relation-
ship is illustrated in Figure 1. Each recording was annotated by
three Zooniverse2 volunteers. Additional annotations, specifically
for validate set, were performed by the SONYC team members
and ground truth is then agreed upon by the SONYC team. Since
the fine-grained tags are not always easily distinguishable, anno-
tators were given the choice of assigning seven tags of the form
”other/unknown” for such cases. Each of these seven tags termed
”incomplete tags,” correspond to a different coarse category.

4. PROPOSED FRAMEWORK

4.1. CNN Architecture

In this work, we use a modified form of MobileNetV2 [18]. The
architecture of MobileNetV2 contains a 2D convolution layer at the
beginning, followed by 19 Bottleneck residual blocks (described in
Table 1). Spatial average of the output from the final residual block
is computed and used for classification via a Linear layer.

The proposed model makes few modifications to the above-
described architecture. The input Log Mel-spectrogram data is sent
to the MobileNetV2 after passing it through two convolution lay-
ers. This process transforms the single-channel input into a three-
channel tensor to match the input size of original MobileNetV2 ar-
chitecture. Instead of the spatial average, Max pooling is applied

2https://www.zooniverse.org/

https://doi.org/10.33682/8axe-9243
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Figure 1: Hierarchical taxonomy of tags. Rectangular and round
boxes respectively denote coarse and fine tags respectively. [17]

Input Operator Output

h× w × k 1x1 , h× w × (tk)
h× w × tk 3x3 s=s, h

s
× w

s
× (tk)

h
s
× w

s
× tk linear 1x1 h

s
× w

s
× k′

Table 1: Bottleneck residual block transforming from k to k′ chan-
nels, with stride s, and expansion factor t.

to the output from the final residual block. Additionally, the sin-
gle linear layer at the end is replaced by two linear layers. The full
architecture is described in Table 2.

4.2. Initialization with Pre-trained weights

In many fields, including in the acoustic area, CNNs exhibit bet-
ter performance with an increase in the number of layers [19, 20].
However, it has been observed that deeper neural networks are
harder to train and prone to overfitting, especially in the context
of limited data [21].

Many of the fine-grained tags have less than 100 training exam-
ples with positive annotations, thus placing the current task into a
low-data regime context [12]. Since the proposed architecture has a
large (24) number of layers, we initialized all the unmodified layers
of the network with weights from the MobileNetV2 model trained
on ImageNet [22, 23]. Kaiming initialization [24] is used for the
remaining layers. Since the domain of audio classification is dif-
ferent from image classification, we do not employ a Fine-tuning
approach [25] here. All the layers are jointly trained from the be-

Operator t c n s
conv2d - 10 1 1
conv2d - 3 1 1
conv2d - 32 1 2

bottleneck 1 16 1 1
bottleneck 6 24 2 2
bottleneck 6 32 3 2
bottleneck 6 64 4 2
bottleneck 6 96 3 1
bottleneck 6 160 3 2
bottleneck 6 320 1 1
conv2d 1x1 - 1280 1 1
maxpool - 1280 1 -

linear - 512 1 -
linear - k 1 -

Table 2: Each line describes a sequence of 1 or more identical (mod-
ulo stride) layers, repeated n times. All layers in the same sequence
have the same number c of output channels. The first layer of each
sequence has a stride s and all others use stride 1. All spatial con-
volutions use 3× 3 kernels (except for the first two which use 1× 1
kernels). The expansion factor t is always applied to the input size
as described in Table 1. Modifications to the MobileNetV2 archi-
tecture are highlighted in bold.

ImageNet
pre-trained

weights

Kaimin
initialization

train set loss 0.1401 ± 0.0017 0.1493 ± 0.0019
validate set loss 0.1200 ± 0.0008 0.1266 ± 0.0022

Table 3: Final Binary Cross-entropy loss values at the end of train-
ing. 5 repetitions of training runs from scratch were performed.

ginning. When all the layers with ImageNet weights were frozen
at that parameters, the model performed worse than the baseline
model (Section 6) showing the need for joint training of the whole
network.

The rationale behind the use of ImageNet weights is that the
kind of filters that the ImageNet based model has learned are appli-
cable in the current scenario of Spectrograms as well. Especially the
filters in the initial layers that detect general patterns like edges and
textures[26] are easily transferable to the present case. With the de-
scribed initialization, we noticed faster and better convergence (il-
lustrated in Figure 2 and Table 3) when compared to initializing all
the layers with Kaimin initialization. Similar gains were observed
previously in the context of Acoustic Bird Detection [3].

Other pre-trained models such as ResNeXt[27], and
EfficientNet[28] were also tested. The observed metrics were
at the same level as the MobileNetV2 architecture. Since the
performance is similar, MobileNetV2 was chosen as it has the least
number of parameters among the models tried.

4.3. Preprocessing and Data augmentation

The proposed model uses Log Mel-spectrogram as the representa-
tion format for the input data. Librosa [29] toolbox was used to
compute the Mel-spectrogram. For the Short-time Fourier trans-
form (STFT), window length of 2560 and hop length of 694 was
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Figure 2: Trajectory of validate set loss during training, demon-
strating that using pre-trained ImageNet weights results in faster
convergence.

Fine-level
Micro-AUPRC

Coarse-level
Micro-AUPRC

No data augmentation 0.716 0.819
Only Mixup 0.745 0.840
Only Random erasing 0.732 0.820
Only Random rotate 0.728 0.832
Only Shifting time 0.719 0.822
Only Grid distortion 0.753 0.842
Pitch shifting and
Time stretching 0.732 0.834

All the techniques 0.772 0.855

Table 4: Performance on the validate set, demonstrating the gains
due to data augmentation

used. For the Mel-frequency bins computation, the lowest and the
highest frequencies were set at 20Hz and 22050Hz, respectively,
with the number of bins being 128.3 No re-sampling or additional
preprocessing steps were performed.

Several data augmentation techniques were used to supplement
the training data. Deformations such as Time stretching and Pitch
shifting that were previously shown to help in sound classification
were employed [2]. Also, image augmentation methods such as
Random rotate, Grid distortion [30], and Random erasing [31] were
used. Mixup [32], an approach that linearly mixes two random
training examples was used as well. Table 4 shows the impact of
Data augmentations, when each of the methods were applied sepa-
rately.

4.4. Re-labeling

For the validate set, we have access to both the ground truth and
the three sets of annotations by Zooniverse volunteers. When the
ground truth of a label is positive, 36% of annotations (by Zooni-
verse volunteers) do not match with the ground truth. If the quality
of the labels can be improved, it is quite possible that the accuracy
of the model can be increased as well. Hence, a logistic regression

3https://www.kaggle.com/daisukelab/fat2019 prep mels1

Coarse
label

Fine
label

Positive
annotations

count

Predicted
score

music uncertain 1 0.10
music uncertain 3 0.98
music stationary 2 0.88

powered saw chainsaw 3 0.98
machinery impact - 0 0.05

Table 5: Predictions for few cases from the automatic re-labeling
model

model that takes the annotations as input and estimates the ground
truth label was developed. This model was trained on the validate
set, and then the ground truth estimate for the train set was gener-
ated. Table 5 shows a sample of predictions from the model.

5. MODEL TRAINING

5.1. Evaluation metric

Area under the precision-recall curve using the micro-averaged pre-
cision and recall values (Micro-AUPRC) is used as the classifica-
tion metric for this task. Micro-F1 and Macro-AUPRC values are
reported as secondary metrics. Detailed information about the eval-
uation process is available on the task website [17].

5.2. Training

Two models were trained for this challenge:
M1: The first model generates probabilities for both the fine

and coarse labels. During training, whenever the annotation is ”un-
known/other”, loss for the fine tags corresponding to this coarse tag
was masked out. Hence, this model does not generate predictions
for uncertain fine labels. Since there are three sets of annotations
for each training example, one by each Zooniverse volunteer, the
loss is computed against each annotation set separately. Average of
the three loss values is taken as the final loss value for a training
example.

M2: For the second model, predictions from the re-labeling
model described in Section 4.4 are used as labels. This model gen-
erates probabilities for both the fine and coarse labels, including the
uncertain fine labels.

Both the models use identical input data representation and em-
ploy the same data augmentation techniques (mentioned in Section
4.3). They also use Binary Cross-entropy loss as the optimization
metric. The models are trained on the train set using the validate
set to determine the stopping point.

Training was done on PyTorch [33]. AMSGrad variant of the
Adam algorithm [34, 35] with a learning rate of 1e-3 was utilized for
optimization. Whenever the loss on validate set stopped improving
for five epochs, the learning rate was reduced by a factor of 10.
Regularization in the form of Early stopping was used to prevent
overfitting [36]. At the time of prediction, test-time augmentation
(TTA) in the form of Time shifting was used.

6. RESULTS

The baseline system mentioned on the task page [17] computes VG-
Gish embeddings [13] of the audio files and builds a multi-label
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FINE-LEVEL COARSE-LEVEL
PREDICTION PREDICTION

Macro
AUPRC

Micro
F1

Micro
AUPRC

Macro
AUPRC

Micro
F1

Micro
AUPRC

Baseline 0.531 0.450 0.619 0.619 0.664 0.742
M1 0.645 0.484 0.751 0.718 0.631 0.860
M2 0.622 0.575 0.721 0.723 0.745 0.847

Table 6: Performance on the private evaluation set

COARSE-LEVEL FINE-LEVEL
PREDICTION PREDICTION

Baseline M1 M2 Baseline M1 M2

Engine 0.832 0.888 0.878 0.638 0.665 0.673
Machinery impact 0.454 0.627 0.578 0.539 0.718 0.604
Non-machinery impact 0.170 0.361 0.344 0.182 0.362 0.374
Powered saw 0.709 0.684 0.643 0.478 0.486 0.378
Alert signal 0.727 0.897 0.875 0.543 0.858 0.832
Music 0.246 0.404 0.586 0.168 0.289 0.351
Human voice 0.886 0.947 0.949 0.777 0.841 0.833
Dog 0.929 0.937 0.931 0.922 0.936 0.931

Table 7: Class-wise AUPRC on the private evaluation set

logistic regression model on top of the embeddings. For this base-
line system, a label for an audio recording is considered positive
if at least one annotator has labeled the audio clip with that tag.
Table 6 shows the performance of the baseline system compared
against the proposed models on the private evaluation set. The
proposed models4 exhibit improved Micro-AUPRC values for both
fine-grained and coarse-grained labels when compared against the
baseline model. Moreover, it can be observed that re-labeling didn’t
prove effective; it helped improve the Micro-F1 score significantly,
but it didn’t help raise Micro-AUPRC or Macro-AUPRC.

Class-wise AUPRC performance is reported in Table 7. The
modified MobileNetV2 architecture improves over the Baseline
model performance for all classes (except one) at both coarse and
fine-level prediction. In the case of coarse-level prediction, the
AUPRC performance for ”Powered saw” is lesser than that of Base-
line.

7. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented our solution to Task 5 (Urban Sound
Tagging) of the DCASE 2019 challenge. Our approach involved us-
ing a pre-trained image classification model and modifying it for au-
dio classification. We also employed data augmentation techniques
to help with the training process. This resulted in our model achiev-
ing Micro-AUPRC values of 0.751 and 0.860 on Fine and Coarse
tags, respectively thus obtaining the first rank on the leaderboard.
We thus demonstrated that impressive gains could be made when
compared to using audio embeddings, even in a low-resource sce-
nario such as the one presented here.

As noted in [37], AUPRC only partially correlates with cross-
entropy, i.e., decrease in Binary cross-entropy loss may not always
result in increase in AUPRC. Exploring loss functions that are more
related to AUPRC metric is an avenue for improvement. Depending

4https://github.com/sainathadapa/urban-sound-tagging

on the type of class to be predicted, different input representations
(such as STFT, HPSS, Log-Mel) might be better [38]. Thus, an
ensemble model that uses these different representations can sur-
pass the one proposed in this paper. This ensemble can also involve
models that use VGGish or L3-Net embeddings.
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A MULTI-ROOM REVERBERANT DATASET FOR
SOUND EVENT LOCALIZATION AND DETECTION
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ABSTRACT
This paper presents the sound event localization and detection
(SELD) task setup for the DCASE 2019 challenge. The goal of
the SELD task is to detect the temporal activities of a known set
of sound event classes, and further localize them in space when
active. As part of the challenge, a synthesized dataset where each
sound event associated with a spatial coordinate represented using
azimuth and elevation angles is provided. These sound events are
spatialized using real-life impulse responses collected at multiple
spatial coordinates in five different rooms with varying dimensions
and material properties. A baseline SELD method employing a
convolutional recurrent neural network is used to generate bench-
mark scores for this reverberant dataset. The benchmark scores are
obtained using the recommended cross-validation setup.

Index Terms— Sound event localization and detection, sound
event detection, direction of arrival, deep neural networks

1. INTRODUCTION

The goals of the sound event localization and detection (SELD) task
includes recognizing a known set of sound event classes such as
‘dog bark’, ‘bird call’, and ‘human speech’ in the acoustic scene,
detecting their individual onset and offset times, and further local-
izing them in space when active. Such a SELD method can auto-
matically describe human and social activities with a spatial dimen-
sion, and help machines to interact with the world more seamlessly.
Specifically, SELD can be an important module in assisted listening
systems, scene information visualization systems, immersive inter-
active media, and spatial machine cognition for scene-based deploy-
ment of services.

The number of existing methods for the SELD task are lim-
ited [1–5] providing ample research opportunity. Thus to promote
the research and development of SELD methods we propose to or-
ganize the SELD task at DCASE 20191. Previously, the SELD task
has been treated as two standalone tasks of sound event detection
(SED) and direction of arrival (DOA) estimation [1]. The SED
in [1] was performed using a classifier-based on Gaussian mixture
model - hidden Markov model, and the DOA estimation using the
steered response power (SRP). In the presence of multiple over-
lapping sound events, this approach resulted in the data association
problem of assigning the individual sound events detected in a time-
frame to their corresponding DOA locations. This data association
problem was overcome in [2] by using a sound-model-based local-
ization instead of the SRP method.

Recent methods have proposed to jointly learn the SELD sub-
tasks of SED and DOA estimation using deep neural networks

This work has received funding from the European Research Council
under the ERC Grant Agreement 637422 EVERYSOUND.

1http://dcase.community/challenge2019/
task-sound-event-localization-and-detection

(DNN). Based on the DOA estimation approach, these methods
can be broadly categorized into classification [3] and regression
approaches [5]. The classification approaches estimate a discrete
set of angles, whereas the regression approaches estimate continu-
ous angles. As the classification approach, Hirvonen [3] employed
a convolutional neural network and treated SELD as a multiclass-
multilabel classification task. Power spectrograms extracted from
multichannel audio were used as the acoustic feature and mapped
to two sound classes at eight different azimuth angles. Formally,
the SELD task was performed by learning an acoustic model, pa-
rameterized by parameters W, that estimates the probability of
each sound class to be active at a certain time-frame, and discrete
spatial angle P (Y|X,W), where X ∈ RK×T×F is the frame-
wise acoustic feature for each of the K channels of audio with
feature-length F , and number of time-frames T . Y ∈ RT×C×U is
the class-wise SELD probabilities for C sound classes and U num-
ber of azimuth angles. The SELD activity could then be obtained
from the class-wise probabilities Y by applying a binary threshold.
Finally, the onset and offset times of the individual sound event
classes, and their respective azimuth locations could be obtained
from the presence of prediction in consecutive time-frames.

As the regression approach, we recently proposed a convolu-
tional recurrent neural network, SELDnet [5], that was shown to
perform significantly better than [3]. In terms of acoustic features
X, the SELDnet employed the naive phase and magnitude compo-
nents of the spectrogram, thereby avoiding any task- or method-
specific feature extraction. These features were mapped to two
outputs using a joint acoustic model W. As the first output, SED
was performed as a multiclass-multilabel classification by estimat-
ing the class-wise probabilities YSED ∈ RT×C as P (YSED|X,W).
The second output, DOA estimation was performed as multiout-
put regression task by estimating directly the L dimensional spa-
tial location as YDOA ∈ RT×L×G×C for each of the C classes as
fW : X 7→ YDOA. At each time-frame, G spatial coordinates are
estimated per sound class and can be chosen based on the complex-
ity of the sound scene and recording array setup capabilities. In [5],
one trajectory was estimated per sound class (G = 1), and the re-
spective DOA was represented using its 3D Cartesian coordinates
along x, y, and z axes (L = 3).

The two DNN-based approaches for SELD, i.e., classifica-
tion [3] and regression approach [5], have their respective advan-
tages and restrictions. For instance, the resolution of DOA estima-
tion in a classification approach is limited to the fixed set of angles
used during training, and the performance on unseen DOA values
is unknown. For datasets with a higher number of sound classes
and DOA angles, the number of output nodes of the classifier in-
creases rapidly. Training such a large multilabel classifier, where
the training labels per frame have a few positives classes represent-
ing active sound class and location in comparison to a large number
of negative classes, poses problems of imbalanced dataset train-

https://doi.org/10.33682/1xwd-5v76
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ing. Additionally, such a large output classifier requires a larger
dataset to have sufficient examples for each class. On the other
hand, the regression approach performs seamlessly on unseen DOA
values, does not face the imbalanced dataset problems, and can
learn from smaller datasets. As discussed earlier, algorithmically
the two approaches can potentially recognize multiple instances
of the same sound class occurring simultaneously, but such a sce-
nario has never been evaluated and hence their performances are
unknown. Additionally, it was observed that the DOA estimation
of the classification approach for seen locations was more accurate
than the regression approach. This was concluded to be a result of
incomplete learning of the regression mapping function due to the
small size of dataset [5].

Data-driven SELD approaches [3,5] require sufficient data with
annotation of sound event activities and their spatial location. An-
notating such a real-life recording to produce a large dataset is a
tedious task. One of the ways to overcome this is to develop meth-
ods that can learn to perform real-life SELD from a large synthe-
sized dataset and a smaller real-life dataset. The performance of
such methods is directly related to the similarity of the synthesized
dataset to the real-life sound scene. In [5] we proposed to create
such realistic sound scene by convolving real-life impulse responses
with real-life isolated sound events, and summing them with real-
life ambient sound. These sound scenes were created to have both
isolated, and overlapping sound events. The ambient sound was
added to the recording at different signal-to-noise ratios (SNRs) to
simulate varying real-life conditions. However, all the impulse re-
sponses for the dataset in [5] were collected from a single environ-
ment. Learning real-life SELD with such restricted dataset is diffi-
cult. One of the approaches to overcome this is to train the methods
with larger acoustic variability in the training data. In this regard,
for the DCASE 2019 SELD task, we employ impulse responses col-
lected from five different environments with varying room dimen-
sions and reverberant properties. Additionally, in order to support
research focused on specific audio formats, we provide an identical
dataset in two formats of four-channels each: first-order Ambison-
ics and microphone array recordings.

To summarize, we propose the SELD task for the DCASE 2019
challenge to promote SELD research. We present a challenging
multi-room reverberant dataset with varying numbers of overlap-
ping sound events, and a fixed evaluation setup to compare the per-
formance of different methods. As the benchmark, we provide a
modified version of the recently proposed SELDnet2 [5] and report
the results on the multi-room reverberant dataset.

2. MULTI-ROOM REVERBERANT DATASET

The SELD task in DCASE 2019 provides two datasets, TAU Spa-
tial Sound Events 2019 - Ambisonic (FOA) and TAU Spatial Sound
Events 2019 - Microphone Array (MIC), of identical sound scenes
with the only difference in the format of the audio. The FOA dataset
provides four-channel First-Order Ambisonic recordings while the
MIC dataset provides four-channel directional microphone record-
ings from a tetrahedral array configuration. Both formats are ex-
tracted from the same microphone array. The SELD methods can
be developed on either one of the two or both the datasets to ex-
ploit their mutual information. Both the datasets, consists of a de-
velopment3 and evaluation4 set. The development set consists of

2https://github.com/sharathadavanne/
seld-dcase2019

3https://doi.org/10.5281/zenodo.2599196
4https://doi.org/10.5281/zenodo.3377088

400 one-minute recordings sampled at 48000 Hz, divided into four
cross-validation splits of 100 recordings each. The evaluation set
consists of 100 one-minute recordings. These recordings were syn-
thesized using spatial room impulse response (IRs) collected from
five indoor environments, at 504 unique combinations of azimuth-
elevation-distance. In order to synthesize these recordings, the col-
lected IRs were convolved with isolated sound events from DCASE
2016 task 2. Additionally, half the number of recordings have up to
two temporally overlapping sound events, and the remaining have
no overlapping. Finally, to create a realistic sound scene recording,
natural ambient noise collected in the IR recording environments
was added to the synthesized recordings such that the average SNR
of the sound events was 30 dB. The only explicit difference between
each of the development dataset splits and evaluation dataset is the
isolated sound event examples employed.

2.1. Real-life Impulse Response Collection
The real-life IR recordings were collected using an Eigenmike
spherical microphone array. A Genelec G Two loudspeaker was
used to playback a maximum length sequence (MLS) around the
Eigenmike. The MLS playback level was ensured to be 30 dB
greater than the ambient sound level during the recording. The IRs
were obtained in the STFT domain using a least-squares regression
between the known measurement signal (MLS) and far-field record-
ing independently at each frequency. These IRs were collected in
the following directions: a) 36 IRs at every 10◦ azimuth angle, for
9 elevations from −40◦ to 40◦ at 10◦ increments, at 1 m distance
from the Eigenmike, resulting in 324 discrete DOAs. b) 36 IRs
at every 10◦ azimuth angle, for 5 elevations from −20◦ to 20◦ at
10◦ increments, at 2 m distance from the Eigenmike, resulting in
180 discrete DOAs. The IRs were recorded at five different indoor
environments inside the Tampere University campus at Hervanta,
Finland during non-office hours. These environments had varying
room dimensions, furniture, flooring and roof materials. Addition-
ally, we also collected 30 minutes of ambient noise recordings from
these five environments with the IR recording setup unchanged dur-
ing office hours thereby obtaining realistic ambient noise. We refer
the readers to the DCASE 2019 challenge webpage for description
on individual environments.

2.2. Dataset Synthesis
The isolated sound events dataset5 from DCASE 2016 task 2 con-
sists of 11 classes, each with 20 examples. These examples were
randomly split into five sets with an equal number of examples for
each class; the first four sets were used to synthesize the four splits
of the development dataset, while the remaining one set was used
for the evaluation dataset. Each of the one-minute recordings were
generated by convolving randomly chosen sound event examples
with a corresponding random IR to spatially position them at a given
distance, azimuth and elevation angles. The IRs chosen for each
recording are all from the same environment. Further, these spa-
tialized sound events were temporally positioned using randomly
chosen start times following the maximum number of overlapping
sound events criterion. Finally, ambient noise collected at the re-
spective IR environment was added to the synthesized recording
such that the average SNR of the sound events is 30 dB.

Since the number of channels in the IRs is equal to the num-
ber of microphones in Eigenmike (32), in order to create the MIC

5http://dcase.community/challenge2016/
task-sound-event-detection-in-synthetic-audio
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Figure 1: Convolutional recurrent neural network for SELD.

dataset we select four microphones that have a nearly-uniform tetra-
hedral coverage of the sphere. Those are the channels 6, 10, 26, and
22 that corresponds to microphone positions (45◦, 35◦, 4.2 cm),
(−45◦,−35◦, 4.2 cm), (135◦,−35◦, 4.2 cm) and (−135◦, 35◦, 4.2
cm). The spherical coordinate system in use is right-handed with
the front at (0◦, 0◦), left at (90◦, 0◦) and top at (0◦, 90◦). Finally,
the FOA dataset is obtained by converting the 32-channel micro-
phone signals to the first-order Ambisonics format, by means of
encoding filters based on anechoic measurements of the Eigenmike
array response, generated with the methods detailed in [6].

2.3. Array Response
For model-based localization approaches, the array response may
be considered known. The following theoretical spatial responses
(steering vectors) modeling the two formats describe the directional
response of each channel to a source incident from DOA given by
azimuth angle φ and elevation angle θ.

For the FOA format, the array response is given by the real
orthonormalized spherical harmonics:

H1(φ, θ, f) = 1 (1)

H2(φ, θ, f) =
√
3 ∗ sin(φ) ∗ cos(θ) (2)

H3(φ, θ, f) =
√
3 ∗ sin(θ) (3)

H4(φ, θ, f) =
√
3 ∗ cos(φ) ∗ cos(θ). (4)

For the tetrahedral array of microphones mounted on spherical
baffle, similar to Eigenmike, an analytical expression for the direc-
tional array response is given by the expansion:

Hm(φm, θm, φ, θ, ω) =

1

(ωR/c)2

30∑

n=0

in−1

h
′(2)
n (ωR/c)

(2n+ 1)Pn(cos(γm)), (5)

where m is the channel number, (φm, θm) are the specific micro-
phone’s azimuth and elevation position, ω = 2πf is the angular fre-
quency, R = 0.042 m is the array radius, c = 343 m/s is the speed

Table 1: Cross-validation setup
Splits

Folds Training Validation Testing
Fold 1 3, 4 2 1
Fold 2 4, 1 3 2
Fold 3 1, 2 4 3
Fold 4 2, 3 1 4

of sound, cos(γm) is the cosine angle between the microphone po-
sition and the DOA, Pn is the unnormalized Legendre polynomial
of degree n, and h′(2)n is the derivative with respect to the argument
of a spherical Hankel function of the second kind. The expansion is
limited to 30 terms which provide negligible modeling error up to
20 kHz. Note that the Ambisonics format is frequency-independent,
something that holds true to about 9 kHz for Eigenmike and devi-
ates gradually from the ideal response for higher frequencies.

3. BASELINE METHOD

As the benchmark method, we employ the SELDnet [5]. Contrary
to [5], where the DOA estimation is performed as multi-output re-
gression of the 3D Cartesian DOA vector components x, y, z ∈
[−1, 1], in this benchmark implementation we directly estimate the
azimuth φ ∈ [−π, π] and elevation θ ∈ [−π/2, π/2] angles. Ac-
cordingly, the activation function of the DOA estimation layer is
changed from tanh to linear. The remaining architecture remains
unchanged and is illustrated in Figure 1. The input to the method
is a multichannel audio of 48 kHz sampling rate, from which the
phase and magnitude components of the spectrogram are extracted
using 2048-point discrete Fourier transform from 40 ms length Han-
ning window and 20 ms hop length. A sequence of T spectrogram
frames (T = 128) is then fed to the three convolutional layers that
extract shift-invariant features using 64 filters each. Batch normal-
ization is used after each convolutional layer. Dimensionality re-
duction of the input spectrogram feature is performed using max
pooling operation only along the frequency axis. The temporal axis
is untouched to keep the resolution of the output unchanged from
the input dimension.

The temporal structure of the sound events is modeled using
two bidirectional recurrent layers with 128 gated recurrent units
(GRU) each. Finally, the output of the recurrent layer is shared be-
tween two fully-connected layer branches each producing the SED
as multiclass multilabel classification and DOA as multi-output re-
gression; together producing the SELD output. The SED output ob-
tained is the class-wise probabilities for the C classes in the dataset
at each of the T frames of input spectrogram sequence, resulting
in a dimension of T × C. The localization output estimates one
single DOA for each of the C classes at every time-frame T , i.e.,
if multiple instances of the same sound class occur in a time frame
the SELDnet localizes either one or oscillates between multiple in-
stances. The overall dimension of localization output is T × 2C,
where 2C represents the class-wise azimuth and elevation angles.
A sound event class is said to be active if its probability in SED out-
put is greater than the threshold of 0.5, otherwise, the sound class is
considered to be absent. The presence of sound class in consecutive
time-frames gives the onset and offset times, and the corresponding
DOA estimates from the localization output gives the spatial loca-
tion with respect to time.

A cross-entropy loss is employed for detection output, while
a mean square error loss on the spherical distance between refer-
ence and estimated locations is employed for the localization out-
put. The combined convolutional recurrent neural network archi-

12



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

tecture is trained using Adam optimizer and a weighted combina-
tion of the two output losses. Specifically, the localization output is
weighted 50 times more than the detection output.

4. EVALUATION

4.1. Evaluation Setup
The development dataset consists of four cross-validation splits as
shown in Table 1. Participants are required to report the perfor-
mance of their method on the testing splits of the four folds. The
performance metrics are calculated by accumulating the required
statistics from all the folds [7], and not as the average of the metrics
of the individual folds. For the evaluation dataset, participants are
allowed to decide the training procedure, i.e. the amount of training
and validation files in the development dataset and the number of
ensemble models.

4.2. Metrics
The SELD task is evaluated with individual metrics for SED and
DOA estimation. For SED, we use the F-score and error rate (ER)
calculated in one-second segments [8]. For DOA estimation we use
two frame-wise metrics [9]: DOA error and frame recall. The DOA
error is the average angular error in degrees between the predicted
and reference DOAs. For a recording of length T time frames,
let DOAt

R be the list of all reference DOAs at time-frame t and
DOAt

E be the list of all estimated DOAs. The DOA error is now
defined as

DOAerror =
1∑T

t=1D
t
E

T∑

t=1

H(DOAt
R,DOAt

E), (6)

where Dt
E is the number of DOAs in DOAt

E at t-th frame,
and H is the Hungarian algorithm for solving assignment prob-
lem, i.e., matching the individual estimated DOAs with the re-
spective reference DOAs. The Hungarian algorithm solves this
by estimating the pair-wise costs between individual predicted
and reference DOA using the spherical distance between them,
σ = arccos(sinλE sinλR + cosλE cosλR cos(|φR − φE |)),
where the reference DOA is represented by the azimuth angle
φR ∈ [−π, π) and elevation angle λR ∈ [−π/2, π/2], and the
estimated DOA is represented with (φE , λE) in the similar range
as reference DOA.

In order to account for time frames where the number of
estimated and reference DOAs are unequal, we report a frame
recall type metric, which is calculated as, Frame recall =∑T

t=1 1(Dt
R = Dt

E)/T , with Dt
R the number of DOAs in DOAt

R

at t-th frame, 1() the indicator function returning one if the
(Dt

R = Dt
E) condition is met and zero otherwise. The submit-

ted methods will be ranked individually for all four metrics of SED

Table 2: Evaluation scores for cross-validation folds.
FOA MIC

Fold ER F DE FR ER F DE FR
1 0.25 85.0 30.4 86.6 0.32 81.9 32.0 84.5
2 0.39 77.0 25.9 85.0 0.37 79.0 30.5 83.1
3 0.30 83.1 27.9 86.6 0.29 83.4 30.9 85.4
4 0.42 74.7 30.2 83.3 0.42 76.2 29.8 83.1

and DOA estimation, and the final positions will be obtained using
the cumulative minimum of the ranks.

5. RESULTS

The results obtained with the SELDnet for different folds of the de-
velopment dataset are presented in Table 2. Although the folds are
identical for the FOA and MIC datasets, the SELDnet is observed to
perform better on fold 1 for FOA and fold 3 for MIC datasets. This
suggests that the spectral and spatial information in the two formats
are not identical and potentially methods can benefit from mutual
information from the two datasets.

The overall results with respect to the different number of over-
lapping sound events and different reverberant environments are
presented in Table 3. It is observed that the general performance
of SELDnet on FOA format is marginally better than MIC for both
development and evaluation datasets. The SELDnet is seen to per-
form better when there is no polyphony across datasets. Finally, the
SELDnet trained with all five environments is seen to perform the
best in the first environment, across datasets. This environment had
carpet flooring and multiple cushioned furniture that is known to re-
duce the overall reverberation, and hence resulted in a better SELD
performance in comparison to the other four environments.

6. CONCLUSION

In this paper, we proposed the sound event localization and de-
tection (SELD) task for the DCASE 2019 challenge to promote
SELD research. An acoustically challenging multi-room reverber-
ant dataset is provided for the task. This dataset is synthesized with
isolated sound events that are spatially positioned using real-life im-
pulse responses collected from five-different rooms that have differ-
ent acoustic properties. Additionally, in order to support research
focused on specific audio-formats, the dataset provides Ambisonic
and microphone array recordings of identical sound scenes, that are
of four-channels each. Further, the dataset provides a pre-defined
four-fold cross-validation split for evaluating the performance of
competing methods. As the baseline results for the dataset, we re-
port the performance of a benchmark SELD method based on con-
volutional recurrent neural network.

Table 3: SELDnet performance on overlapping sound events and reverberant scenes. ID - identifier, DE - DOA Error, FR - Frame Recall
Development dataset scores Evaluation dataset scores

FOA MIC FOA MIC
ID ER F DE FR ER F DE FR ER F DE FR ER F DE FR

Overlap 1 0.32 82.2 23.1 93.0 0.35 81.2 25.9 92.3 0.26 87.3 18.5 92.9 0.27 86.2 33.5 92.4
2 0.35 78.6 31.6 77.8 0.35 79.1 33.6 75.8 0.29 84.3 28.0 78.5 0.31 81.6 40.7 74.4

Indoor
environ-
ment

1 0.30 81.6 28.3 85.3 0.33 80.2 30.4 83.9 0.24 87.5 24.2 87.6 0.27 84.3 37.5 81.5
2 0.38 78.6 28.5 86.7 0.36 80.2 30.7 86.2 0.41 80.3 23.3 79.2 0.33 82.0 39.0 85.1
3 0.33 80.0 28.7 84.3 0.35 79.9 30.7 82.5 0.26 85.3 25.4 85.8 0.29 83.5 37.4 82.7
4 0.37 79.3 28.3 84.9 0.35 80.4 30.3 83.7 0.27 86.1 24.0 87.1 0.31 82.2 36.4 83.3
5 0.34 80.0 29.0 85.7 0.36 79.5 31.9 83.4 0.24 87.4 26.0 88.9 0.28 84.1 40.1 84.3

Total 0.34 79.9 28.5 85.4 0.35 80.0 30.8 84.0 0.28 85.4 24.6 85.7 0.30 83.2 38.1 83.3
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ABSTRACT

The Sound Event Classification (SEC) task involves recognizing the
set of active sound events in an audio recording. The Sound Event
Detection (SED) task involves, in addition to SEC, detecting the
temporal onset and offset of every sound event in an audio record-
ing. Generally, SEC and SED are treated as supervised classifica-
tion tasks that require labeled datasets. SEC only requires weak
labels, i.e., annotation of active sound events, without the temporal
information, whereas SED requires strong labels, i.e., annotation
of the onset and offset times of every sound event, which makes
annotation for SED more tedious than for SEC. In this paper, we
propose two methods for joint SEC and SED using weakly labeled
data: a Fully Convolutional Network (FCN) and a novel method that
combines a Convolutional Neural Network with an attention layer
(CNNatt). Unlike most prior work, the proposed methods do not as-
sume that the weak labels are active during the entire recording and
can scale to large datasets. We report state-of-the-art SEC results
obtained with the largest weakly labeled dataset — Audioset.

Index Terms— Convolutional neural network, sound classifica-
tion, sound event detection, weakly supervised learning

1. INTRODUCTION

Sound Event Classification (SEC) is the task of recognizing the set
of active sound events in a given audio recording. Additionally, de-
tecting the temporal activity of each sound event, i.e., onset and off-
set times, is referred to as Sound Event Detection (SED). SEC and
SED can be helpful in query based multimedia retrieval [1], acoustic
scene analysis [2, 3], and bio-diversity monitoring [4–6]. The SED
task requires datasets that are strongly labeled [7–9], i.e., annotation
of active sound events and their respective onset and offset times.
On the other hand, the SEC task requires weakly labeled datasets,
that only provide annotation of the set of active sound events for ev-
ery recording [5, 10, 11]. In terms of complexity, it is more tedious
to annotate strongly labeled datasets than weakly labeled datasets.

The SEC task has traditionally been approached with Convolu-
tional Neural Network (CNN) architectures [5, 10, 12]. Whereas for
the SED task, which requires temporal localization of sound events,
the joint architecture of CNNs with recurrent neural networks, re-
ferred to as Convolutional Recurrent Neural Network (CRNN) [8,
13], has shown consistently good results across SED datasets. Re-
cently, it was shown in [9] that on large SED datasets, the perfor-
mance of CNN architectures is comparable to CRNN architectures
when the detection is happening at one-second resolution. In this
paper, we aim to perform SED at a similar resolution using a large
dataset. Given that the training time of CNN architectures is rel-
atively faster than comparable CRNN architectures, we focus on
CNN architectures.

*This work was performed during an internship at Facebook.

Recently, methods have been proposed to jointly learn SEC and
SED from just the weakly labeled data [14–18], in order to over-
come the complexity of annotating strongly labeled datasets. Prior
work in [14] used multiple established CNN architectures from the
computer vision domain and applied them to this task, but these
methods assumed that the weak labels were active throughout the
recording during training, and is hereafter referred to as Strong La-
bel Assumption Training (SLAT). This assumption leads to poor
SEC performance, as shown in [17]. As an alternative to SLAT,
the authors in [16] proposed a Fully Convolutional Network (FCN)
based method that enabled learning from the weakly labeled dataset
without assuming the presence of weak labels active throughout the
recording; such a training approach is hereafter referred to as Weak
Label Assumption Training (WLAT). Similar FCN based WLAT
methods were also proposed in [17, 19], but all of these meth-
ods have only been evaluated on small datasets, and their perfor-
mance on large datasets is unknown. In this paper, we study the
performance of FCN on the largest publicly available dataset —
Audioset [20].

In addition to the FCN-based approach, an alternative WLAT
method is proposed that combines CNN and an attention layer (CN-
Natt). The attention layer enables the CNNatt to automatically learn
to attend to relevant time segments of the audio during inference.
Thus, in the current task, given a weak label, an attention layer can
identify the relevant time segments in the audio where the weak la-
bel is active, and consequently provide strong labels.

To summarize, we study the performance of FCN for the task
of joint SEC and SED from a large weakly labeled dataset, and fur-
ther propose a novel CNNatt for the same task. The contributions
of this paper are as follows. We present, for the first time since the
benchmark work in [14], a study using the complete Audioset. Un-
like [14], which used SLAT, the two methods in this paper, FCN and
CNNatt, use WLAT to jointly perform SEC and SED. Finally, since
Audioset provides just the weak labels, we only present the quanti-
tative results for the SEC performance and compare them with the
recently published baselines [14, 21, 22]. The SED performance is
evaluated subjectively by visualizing the outputs and manual listen-
ing inspection.

2. METHOD

The input for the two methods — FCN and CNNatt — is a single
channel audio recording. A feature extraction block produces F -
band log mel-band energies for each of the T frames of input audio.
The feature sequence of dimension T×F for each recording is then
mapped to the C classes (SEC) as a multi-class multi-label classifi-
cation task. Additionally, as an intermediate output, both studied
methods generate frame-wise results for the C classes (SED) of
dimension TN × C. The time-dimensionality of the SED output
TN is smaller than the input T as a result of multiple max pool-
ing operations. During training, only the audio recording and its
respective weak label(s) — one-hot encoded — are used. During
inference, given an input audio, both methods produce two outputs

https://doi.org/10.33682/fx8n-cm43
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Figure 1: The Fully Convolutional Network (FCN) and Convolu-
tional Neural Network with attention layer (CNNatt) methods for
joint learning of SEC and SED from weakly labeled dataset.

in sequence: first, the strong labels (SED), followed by the weak
labels (SEC). These outputs are the respective class probabilities in
the continuous range of [0, 1]. A value closer to one signifies that
the sound class is active, and closer to zero signifies that it is absent.
The details of the feature extraction and the two methods studied are
presented below.

2.1. Feature Extraction
The log mel-band energy features are extracted for each frame of
1024 samples with 50% overlap using a 1024-point fast Fourier
transform. A total of 40 bands are extracted in the frequency range
of 0-8000 Hz from an audio recording sampled at 16 kHz. For a
10 s audio input, the feature extraction step produces a sequence of
T = 320 frames and F = 40 features.

2.2. Neural Network
2.2.1. Fully Convolutional Network (FCN)

Figure 1 presents the overall structure of the FCN. The input is a
T × F dimension sequence of the extracted features. The initial
layers of the network consist of 2D convolutional layers that learn
local shift-invariant features. Each of the convolutional layers has
filters with a 3 × 3 receptive field, with the output dimension kept
the same as the input dimension using zero padding. Batch nor-
malization [23] is performed on this output, followed by a Recti-
fied Linear Unit (ReLU) activation and a dropout layer [24]. The
audio features dimensionality is reduced by performing max pool-
ing after every second convolutional layer, such that the temporal-
and feature-dimensionality in the final convolutional layer N with
CN filters is reduced to TN and FN , respectively. In the reduced
dimensionality, each frame in TN represents one second of input
audio and FN = 1. These multi-layered convolutional layers are,
hereafter, referred to together as the CNN block, and its output ot

is an embedding of dimension CN × TN , as seen in Figure 1.
The embedding from the CNN block is fed to a single 2D con-

volutional layer with C filters (equal to the number of classes in
the dataset), a receptive field of dimension 1 × 1 and sigmoid ac-
tivation to support multi-class multi-label classification. Given the

CNN block embedding of dimension CN × TN , the newly added
layer produces SED results of dimension TN ×C. Further, the SEC
results are obtained from the SED results by performing a global
average pooling across TN . The FCN was tuned as described in
Section 3.4.

2.2.2. Convolutional Neural Network with attention layer (CN-
Natt)

The overall structure of the CNNatt is shown in Figure 1. Given a
feature sequence of T × F dimension, a CNN block similar to the
FCN generates output ot of dimension CN × TN . This is fed to an
attention layer identical to that described in [21, 22]. The attention
layer performs the following operation on it:

at = cls(ot)� (atn(ot)/

T∑

t=0

atn(ot)), (1)

where � signifies element-wise multiplication. The atn() function
guides the network to be attentive to certain time frames, while the
cls() function performs the classification for each input time frame
t. The atn() and cls() functions are implemented as 2D convolu-
tional layers with C filters each and a receptive field of dimension
1× 1. The atn() function employs a softmax activation, while the
cls() function is implemented with a sigmoid activation. The out-
put of the attention layer at produces the frame-wise SED results
of dimension TN × C. Further, the SEC results are obtained from
at by adding the activations across TN and feeding them to a fully
connected dense layer with C units and sigmoid activation. The
CNNatt was tuned as described in Section 3.4.

The proposed implementation of the two methods enables them
to operate on input audio of variable length, but with a minimum
length criterion arising from the multiple max pooling operations
employed. Both methods were trained for 100 epochs using binary
cross entropy loss calculated between the predicted SEC output and
the weak labels in the reference annotation of the dataset. As the
optimizer, we employ Adam [25], a first-order adaptive variant of
stochastic gradient descent, with the parameters introduced in [25],
α = 0.001, β1 = 0.9, and β2 = 0.999. Early stopping was used
during training to avoid overfitting. The training was stopped if
the mean Average Precision (mAP) score (see Section 3.2) did not
improve for 25 epochs. The methods were implemented using Py-
Torch and trained in data parallel mode over eight GPUs.

3. EVALUATION3.1. Dataset
We used the complete dataset, Audioset [20], in this paper. The
dataset provides a pre-defined development and evaluation split. At
the time of this study, only about 94% of the YouTube videos of
Audioset were active. The audio recordings for these videos were
pre-processed to have a sampling rate of 16 kHz, and a single chan-
nel. Although the two methods are invariant to the length of the
input audio, the Audioset recordings used are of a constant length
of ten seconds. The complete Audioset has C = 527 classes with a
highly imbalanced distribution (see [20] for more details).

3.2. Metrics
The mean Average Precision (mAP) metric is used to evaluate the
performance of our methods for SEC, due to class imbalance, simi-
lar to that in prior studies on Audioset [20–22]. The mAP is defined
as the mean of the area under the precision-recall curve across the
C classes,

mAP =
1

C

C∑

i=1

M∑

m=1

Pm,i(Rm,i −Rm−1,i), (2)
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Figure 2: The mAP scores obtained with respect to different number
of convolutional layers of FCN and CNNatt.

where Pm,i and Rm,i are the precision and recall values of class i
at M different threshold values.

Finally, since the strong labels of Audioset are unavailable, we
only visualize and manually inspect the SED performance.

3.3. Baseline Methods
We compare the performance of the two methods with four baseline
methods [14, 21, 22]. Note that the dense method in [14] is the only
method that was trained using the complete Audioset dataset; the
other three baseline methods [14, 21, 22] study the performance
on the Audioset embeddings obtained using a network trained on a
dataset larger than Audioset.

The first method proposed in [14] uses log mel-band energy
features similar to those used in this paper. A 64-band feature is
mapped to 527 classes of Audioset using a multi-layered fully con-
nected dense network with SLAT.

Among the methods using Audioset embeddings, the embed-
dings used in the second method proposed in [14] are different from
the ones used in [21] and [22]. The embeddings in [14] were ob-
tained using a ResNet-50 network and SLAT on a much larger YT-
100M dataset (20× larger than Audioset — not available publicly).
This network was then used as a feature extractor to generate em-
beddings from each of the Audioset recordings, hereafter referred
to as ResNet embeddings. Finally, the benchmark scores on the
ResNet embeddings were obtained using a multi-layered fully con-
nected dense network similar to the one described above.

In comparison, the two recent methods — single attention [21]
and multiple attention [22] — use embeddings that were generated
using a VGGish network instead of a ResNet-50 and SLAT on a
YT-8M dataset instead of a YT-100M dataset. This is referred to
as VGGish embeddings hereafter and is publicly available. Unlike
YT-100M, the YT-8M dataset is publicly available, but the exact
splits used to learn the VGGish embeddings described above are
unknown. The single attention method [21] uses multiple layers of
a fully connected dense network, followed by an attention layer as
the classification layer, whereas the multiple attention method [22]
uses multiple attention layers located between fully connected lay-
ers, and concatenates the output of these attention layers to perform
the final classification.

3.4. Experiments
Hyper-parameter tuning of both methods is performed to identify
the best configuration for Audioset. Since the attention and dense
layers of CNNatt and the final classification convolutional layer of
FCN are dependent on the output number of classes, the only tun-
able part is the CNN block. In order to restrict the number of pos-
sible options to tune, we made sure that the number of filters in a
convolutional layer doubles after every two layers. For example,
C2 = 2C1 in Figure 1. The number of layers in the CNN block was
tuned randomly [26] in the range of five to twenty with the number
of filters in the first layer varying in the set ∈ {16, 32, 64}. In order
to study the effect of regularization, the dropout layer was tuned in
the set ∈ {0, 0.15, 0.3, 0.5, 0.75}.

Table 1: The mAP scores on Audioset with different methods
Methods on Audioset recordings mAP
Random chance 0.005
Dense [14] 0.137
FCN 0.324
CNNatt 0.330

Method on Audioset ResNet embeddings*+

Dense [14] 0.314

Method on Audioset VGGish embeddings*#

Single attention [21] 0.327
Multiple attention [22] 0.360

*Embeddings from network trained on dataset larger than Audioset.
+The YT-100M dataset used to train the ResNet is not publicly available.

#The YT-8M dataset used to train the embeddings network is publicly
available, but the exact splits used to produce the embeddings are unknown.

The SEC performance is evaluated on the evaluation split of
Audioset and compared with the existing baselines using Audioset
recordings [14] and embeddings [14, 21, 22].

Finally, since the Audioset dataset lacks strong labels, we only
perform a subjective analysis of SED through manually listening
and visualizing the SED output of the two methods on a subset of
Audioset examples.

4. RESULTS AND DISCUSSION

The best configuration for the FCN that obtained the highest mAP
score had 16 convolutional layers including the (last) classifica-
tion convolutional layer, with the first layer having 16 filters. The
best CNNatt configuration had 12 convolutional layers in the CNN
block, starting with 16 filters in the first layer, and followed by an
attention and dense layer. Further, using zero dropout gave the best
results for both methods. In terms of the number of parameters,
the CNNatt uses only about 20% of the 25M parameters in FCN.
The performance for other configurations of FCN and CNNatt when
the first convolutional layer had 16 filters is visualized in Figure 2.
Here, it can be observed that the CNNatt achieves better mAP scores
than FCN with just 10 convolutional layers.

A classifier generating random results on Audioset obtains a
mAP score of 0.005, as seen in Table 1. In comparison, the base-
line dense method [14] trained on Audioset recordings obtained a
mAP score of 0.137. This is a 27× improvement over the random
results generating classifier. The FCN improved 2.36× over the
dense method [14] and obtained a mAP score of 0.324. In fact,
this score is higher than the dense method using ResNet embed-
dings [14], which obtained a mAP score of 0.314. This suggests
that the FCN with WLAT outlearns the ResNet-50 with SLAT on a
much larger YT-100M dataset.

The second method, CNNatt, obtained a best mAP score of
0.330. This is a significant result considering that the CNNatt learns
to perform SEC better than FCN using only 20% of FCN’s param-
eters. In fact, CNNatt performs better than the single attention
method [21] trained using VGGish embeddings obtained from a
VGG network and SLAT on a dataset larger than Audioset. This
makes CNNatt the state-of-the-art for SEC using the complete Au-
dioset recordings. The class-wise average precision score obtained
with CNNatt on the evaluation split, and the corresponding num-
ber of examples in the development split is visualized in Figure 3.
Among the top 30 frequent classes in Fig 3a we observe that the
CNNatt performs better on sound event classes (E.g. Speech, Mu-
sic, Car, Guitar, and Dog), and poorly on sound scene classes such
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Figure 3: Visualization of the class-wise number of training exam-
ples and the corresponding average precision (AP) scores obtained
with the CNNatt.

as Small room, Large room, Rural, and Urban classes.
The SED results obtained with the FCN for recordings in the

evaluation split of Audioset are visualized in Figures 4a, 4b, 4c, and
4d. For example, in Figure 4a according to the reference annota-
tion, the recording contains the classes: speech and heart murmur.
From the spectrogram, we can distinguish a heartbeat-like repetitive
structure in the first 2.5 s, and speech beyond 2.5 s. Similar tempo-
ral activity is observed in the overlaid class magnitude plot, which
shows the SED output from the FCN. To simplify the visualization,
we only show the classes whose SED output magnitude is greater
than 0.5 throughout the recording. In addition to the heart mur-
mur class, the FCN also recognized the first 2.5 s as heart sounds
and throbbing, which are classes that sound similar to a heart mur-
mur. Similarly, in Figure 4b, among the reference classes, the FCN
detected the speech and music classes successfully, but missed the
bang class (occurs from 1.5 s to 2.1 s) that was part of the music. In
Figure 4c, the FCN detected the reference speech and music classes
correctly, but missed the oink class (occurs from 6.3 s to 8.2 s), and
successfully detected the burping class (first 3 s) that was missing
in the reference annotation. Finally, in Figure 4d, the FCN missed
the sniff sound class but successfully detected the chewing class that
was missing in the reference annotation. Additionally, the FCN also
over-predicted the speech class beyond 4 s.

In general, although the FCN missed detection of few short du-
ration and low prior sound classes, we observe from the SED Fig-
ures 4a, 4b, 4c, and 4d a good recall of most of these low prior
(10−5) sound classes such as chewing, burping, heart sounds, and
murmur. Another observation from these figures is that the onset
and offset of the sound events are not of high precision. We believe
that this is a result of both the dimensionality reduction (max pool-
ing) operation within both methods and the limitation of learning
strong labels from a weakly labeled dataset. Similar SED results
were observed in all the recordings studied. Further, the SED per-
formance of the CNNatt was comparable to that of the FCN with
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Figure 4: Visualization of SED results from FCN, and the input
features for selected recordings from Audioset evaluation split.

no characteristic difference. This suggests that given only the weak
labels, the proposed methods can estimate their temporal activities
with good confidence.

5. CONCLUSION

In this paper, we studied two methods that perform joint SEC and
SED using weakly labeled data, and evaluated the methods on the
largest weakly labeled dataset — Audioset. The first method was
based on a Fully Convolutional Network (FCN) and obtained a
mean Average Precision (mAP) score of 0.324. The second novel
method comprised multiple convolutional layers followed by an at-
tention layer. This method was seen to perform better than the FCN
with only 20% of the 25 M parameters in the FCN, and obtained
a state-of-the-art mAP score of 0.330. In comparison to the base-
line method trained on Audioset recordings, which was the previ-
ous state-of-the-art, the two methods improve the mAP score by at
least a factor of 2.36. In fact, the two methods performed better
than methods trained on Audioset embeddings that were obtained
from learning on datasets larger than Audioset. This improvement
in performance is a result of using a more powerful classifier and not
assuming that the weak labels are active throughout the recording
during training.
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ABSTRACT

This paper investigates the joint localization, detection, and track-
ing of sound events using a convolutional recurrent neural network
(CRNN). We use a CRNN previously proposed for the localization
and detection of stationary sources, and show that the recurrent lay-
ers enable the spatial tracking of moving sources when trained with
dynamic scenes. The tracking performance of the CRNN is com-
pared with a stand-alone tracking method that combines a multi-
source direction of arrival estimator and a particle filter. Their re-
spective performance is evaluated in various acoustic conditions
such as anechoic and reverberant scenarios, stationary and mov-
ing sources at several angular velocities, and with a varying num-
ber of overlapping sources. The results show that the CRNN man-
ages to track multiple sources more consistently than the parametric
method across acoustic scenarios, but at the cost of higher localiza-
tion error.

Index Terms— Multiple object tracking, recurrent neural net-
work, sound event detection, acoustic localization

1. INTRODUCTION

Sound event localization, detection, and tracking (SELDT) is the
combined task of identifying the temporal onset and offset of po-
tentially temporally-overlapping sound events, recognizing their
classes, and tracking their respective spatial trajectory when they
are active. Performing SELDT successfully provides an automatic
description of the acoustic scene that can be employed by machines
to interact naturally with their surroundings. Applications such as
teleconferencing systems and robots can use this information for
tracking the sound event of interest [1–6]. Furthermore, smart cities
and smart homes can use it for audio surveillance [7–9].

The joint localization and detection in static scenes with spa-
tially stationary sources have been studied with different paramet-
ric [5, 8, 10, 11] and deep neural network (DNN) [12] based
methods. However, these methods do not employ any temporal
modeling required for the tracking of moving sources in dynamic
scenes. Recently, we proposed a convolutional recurrent neural net-
work (SELDnet) that was shown to perform significantly better lo-
calization and detection than the only other existing DNN-based
method [12]. SELDnet’s capabilities to localize events in full az-
imuth and elevation under matched and unmatched acoustic condi-
tions, and without relying on features dependent on specific micro-
phone arrays, were studied and presented in [13]. However, all the
existing DNN-based methods including[12, 13] have only studied
static scenes.

On the other hand, stand-alone tracking methods have been
widely studied for both stationary and moving sources based on spa-

This work has received funding from the European Research Council
under the ERC Grant Agreement 637422 EVERYSOUND.

tial information only [14–20], additional spectral information [21,
22], or in conjunction with visual information [23]. Such parametric
methods often require manual tuning of multiple parameters cor-
responding to the scene composition and dynamics, and new sets
of parameters have to be identified manually for different sound
scenes. Furthermore, tracking usually focuses on distinguishing
source trajectories, with no regard to source signal content. In the
case of temporally overlapping trajectories, track identities are as-
signed to individual trajectories, but these identities are not source
dependent and are generally re-used for trajectories from different
sources across the audio recording. A balance between consistent
association and localization determines the tracker’s performance
in most cases. Alternatively, a detect-before-track approach, as in
the proposed SELDnet, circumvents the association problem by first
detecting the active sound events, and then assigning a track to each
detected event. As long as such a system is able to react to time-
varying conditions, with temporally and spatially overlapping sound
events from both stationary and moving sources, it is also able to
detect and track the sound events of interest.

In this work, we study the multi-source tracking capabilities
of a detection and localization system based on our recently pro-
posed SELDnet [13]. To the best of the authors knowledge, this
is the first DNN-based SELDT studies. We show that training the
SELDnet with dynamic scene data results in tracking, in addition
to localization and detection. This tracking ability is enabled by
the recurrent layers of the SELDnet that can model the evolution of
spatial parameters as a sequence prediction task given the sequen-
tial features and their spatial trajectory information. We show that
the recurrent layers are crucial for tracking, and in comparison to
stand-alone trackers they additionally perform detection. Unlike the
parametric tracking methods discussed earlier, the recurrent layer is
a generic tracking method that learns directly from the data with-
out manual tracker-engineering. Finally, we show that the tracking
performance of SELDnet is comparable with stand-alone paramet-
ric tracking methods through evaluation on five datasets, represent-
ing scenarios with stationary and moving sources at different angu-
lar velocities, anechoic and reverberant environments, and different
numbers of overlapping sources. The method and all the studied
datasets are publicly available1.

2. METHOD

The block diagram of SELDnet [13] is illustrated in Figure 1. The
input to SELDnet is a multichannel audio recording, from which a
feature extraction block extracts the phase and magnitude compo-
nents of the spectrogram from each channel. The SELDnet maps
the input spectrogram of T -frames length to two outputs of the
same length – sound event detection, and tracking; together they

1https://github.com/sharathadavanne/seld-net
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Figure 1: Workflows for the parametric tracking and DNN-based
SELDT approaches. The sound class coloring and naming for the
tracking task is only shown here to visualize the concept better.
In practice tracking methods do not produce sound class labels as
shown in Figure 3.

produce the SELDT output. The detection output is the class-wise
probabilities for the C classes in the dataset of dimension T × C,
and is obtained as a multiclass multilabel classification task. The
tracking output is a single direction of arrival (DOA) estimate per
time frame for each sound class C as a multi-output regression task.
Thus, when multiple instances of the same sound class are tempo-
rally overlapping, the SELDnet tracks only one instance or oscil-
late between the multiple instances. The estimated DOA is repre-
sented using 3D Cartesian coordinates of a point on a unit sphere
around the microphone. The overall tracking output is of dimen-
sion T × 3C, where 3C represents the three axes of the 3D Carte-
sian coordinates of a DOA for each class in C. Finally, to obtain the
SELDT results, the class-wise probabilities of the detection output
are binarized with a threshold of 0.5, anything greater represents
the presence of the sound class and smaller represents the absence.
The presence of a sound class in consecutive frames gives the onset
and offset times, and the corresponding frame-wise DOA estimates
from the tracking output when the sound class is active gives the
DOA trajectory.

The SELDnet architecture used in this paper is identical to [13],
with three convolutional layers of 64 filters each, followed by two-
layers of 128-node gated recurrent units. The convolutional layers
in the SELDnet are used as a feature extractor to produce robust fea-
tures for detection and tracking. The recurrent layers are employed
to model the temporal structure and the trajectory of the sound
events. The output of the recurrent layers is shared between two
branches of dense layers each with 128 units producing the detec-
tion and tracking estimates. The training and inference procedures
of SELDnet are similar to [13] and is identical for both static and
dynamic scenes, i.e., the same SELDnet designed for static scenes
performs tracking when trained with moving scene data.

The recurrent layers utilize the current input frame along with
the information learned from the previous input frames to produce
the output for the current frame. This process is similar to a particle
filter, which is a popular stand-alone parametric tracker and is also
used as a baseline in this paper (see Section 3.3). The particle filter
prediction at the current time frame is influenced by both the knowl-
edge accumulated from the previous time frames and the input at the
current time frame. For the tracking task of this paper, the particle
filter requires the specific knowledge of the sound scene such as the
spatial distribution of sound events, their respective velocity ranges

Table 1: Summary of Datasets
Sources Sound scene Impulse response Acronym

Stationary [13]
Anechoic Synthetic ANSYN

Reverberant RESYN
Real-life REAL

Moving Anechoic Synthetic MANSYN
Reverberant Real-life MREAL

when active, and their probability of birth and death. Such concepts
are not explicitly modeled in the recurrent layers used in SELD-
net, rather they learn equivalent information directly from the input
convolutional layer features and corresponding target outputs in the
development dataset. In fact, recurrent layers have been shown to
work as generic trackers [24] that can learn temporal associations of
the target source from any sequential input features. Unlike the par-
ticle filters that only work with conceptual representations such as
frame-wise multiple DOAs for tracking, the recurrent layers work
seamlessly with both conceptual and latent representations such as
convolutional layer features.

Finally, by training the recurrent layers in SELDnet using the
loss calculated from both detection and tracking, the recurrent lay-
ers learn associations between DOAs from neighboring frames cor-
responding to the same sound class and hence produce the SELDT
results. In general, unlike the parametric trackers, the recurrent lay-
ers perform similar tracking of the frame-wise DOAs in addition to
also detecting their corresponding sound classes. Further, the re-
current layers do not need complicated problem-specific tracker- or
feature-engineering that are required by the parametric trackers. A
more theoretical relationship between recurrent layers and particle
filter is presented in [25].

3. EVALUATION PROCEDURE

3.1. Datasets
The performance of SELDnet is evaluated on five datasets that are
summarized in Table 1. We continue to use the stationary source
datasets: ANSYN, RESYN and REAL from our previous work [13]
to evaluate the tracking performance of the parametric tracker that
was missing in [13], and compare with SELDnet. The recordings
in ANSYN and RESYN are synthesized in anechoic and reverber-
ant environments respectively. The recordings in REAL are syn-
thesized by convolving isolated real-life sound events with real-life
impulse responses collected at different spatial locations within a
room. Further, we create moving-source versions of the ANSYN
and REAL datasets, hereafter referred as MANYSYN and MREAL,
to evaluate the performance on moving sources. The recordings of
all datasets are 30 seconds long and captured in the four-channel
first-order Ambisonics format [26]. Each dataset has three subsets
with no temporally overlapping sources O1, maximum two O2, and
maximum three temporally overlapping sources O3. Each of these
subsets has three cross-validation splits consisting of 240 recordings
for development and 60 for evaluation. All the synthetic impulse
response datasets (ANSYN, RESYN and MANYSN) have sound
events from 11 classes and DOAs with full azimuth range and ele-
vation range ∈ [−60, 60). The real-life impulse response datasets
(REAL and MREAL) have 8 sound event classes and DOAs in full
azimuth range and elevation range ∈ [−40, 40). During the synthe-
sis of stationary source datasets, all the sound events are placed in a
spatial grid of 10◦ resolution for both azimuth and elevation angles.
We refer the readers to [13] for more details on these datasets.

The anechoic moving source dataset MANSYN has the same
sound event classes as ANSYN and is synthesized as follows. Ev-
ery event is assigned a spatial trajectory on an arc with a constant
distance from the microphone (in the range 1-10 m) and moving
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with a constant angular velocity for its duration. Due to the choice
of the ambisonic spatial recording format, the steering vectors for
a plane wave source or point source in the far field are frequency-
independent. Hence, there is no need for a time-variant convolution
or impulse response interpolation scheme as the source is moving;
the spatial encoding of the monophonic signal was done sample-
by-sample using instantaneous ambisonic encoding vectors for the
respective DOA of the moving source. The synthesized trajectories
in MANSYN vary in both azimuth and elevation, and are simulated
to have a constant angular velocity in the range ∈ [−90◦, 90◦]/s
with 10◦/s steps. Similarly, the MREAL dataset was synthesized
with real-life impulse responses from [13] that were sampled at 1◦

resolution along azimuth only. Hence, unlike MANSYN, the sound
events in MREAL (that are identical to REAL) have motion only
along the azimuth with a constant angular velocity in the range
∈ [−90◦, 90◦]/s and 10◦/s steps.

3.2. Metrics
The evaluation of the SELDT performance is done using individual
metrics for detection and tracking identical to [13]. As the detection
metric, we use the F-score and error rate calculated in segments of
one-second with no overlap [27]. An ideal detection method will
have an F-score of one and an error rate of zero. As the tracking
metric, we use two frame-wise metrics: the frame recall and DOA
error. The frame recall gives the percentage of frames in which
the number of predicted DOAs is equal to the reference. The DOA
error is calculated as the angle in degrees between the predicted and
reference DOA. In order to associate multiple estimated DOAs with
the reference, we use the Hungarian algorithm [28] to identify the
smallest mean angular distance and use it as DOA error. An ideal
tracking method has a frame recall of one and DOA error of zero
(see [13] for more details).

3.3. Baseline Method
In the absence of publicly available implementations of multiple
moving sound sources trackers, we use a combination of MU-
SIC [29] and an RBMCDA particle filter [30] to obtain tracking
results in a similar fashion as in [15] and further made it pub-
licly available 2. The workflow of the baseline method is shown
in Figure 1. MUSIC is a widely used [13, 31] subspace-based high-
resolution DOA estimation method that can detect multiple narrow-
band sources. It relies on an eigendecomposition of the narrowband
spatial covariance matrix computed from the multichannel spectro-
gram, and it additionally requires a source number estimate in or-
der to distinguish between a signal and noise subspace. Herein,
the number of active sources is taken from the reference of the
dataset. To obtain broadband DOA estimates, the narrowband co-
variance matrices are averaged across three consecutive frames and
frequency bins from 50 Hz to 8 kHz. We perform 2D spherical
peak-finding on the resulting MUSIC pseudospectrum generated on
a 2D angular grid with a 10◦ resolution for stationary and 1◦ for
moving sources, in both azimuth and elevation. The final output
of MUSIC MUSGT is a list of frame-wise DOAs corresponding
to the highest peaks equal to the number of active sources in each
frame.

The second stage of the parametric method involves a particle
filter that produces tracking results by processing the frame-wise
DOA information of MUSIC MUSGT . The particle filter assumes
that the number of sources at each time frame is unknown and tracks

2https://github.com/sharathadavanne/multiple-target-tracking
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Figure 2: Visualization of the SELDnet predictions and its re-
spective reference for a MANSYN O2 dataset recording. The
horizontal-axis of all sub-plots represents the same time frames.
The vertical-axis represents sound event class indices for the de-
tection subplots, and DOA azimuth and elevation angles in degrees
for remaining subplots.

them with respect to time using a fixed number of particles. At each
time frame, the particle filter receives multiple DOAs and, based on
knowledge accumulated from the previous time frames, it assigns
each new DOA to one of the existing trajectories, clutter (noise),
or a newborn source. Additionally, it also decides if any of the ex-
isting trajectories have died. The final output of the particle filter
MUSPF

GT produces the temporal onset-offset and the DOA trajec-
tory for each of the active sound events. We refer the reader to [30]
for the details of this approach.

3.4. Experiments
In all our experiments, the baseline particle filter parameters and the
sequence length of input spectrogram for SELDnet was tuned using
the development set of the respective subset. The performance of
the tuned method was tested on the evaluation set of the subset,
and the respective metrics averaged across the three cross-validation
splits of the subset are reported.

Unlike the DNN-based method, the parametric method requires
additional information on the number of active sources per frame to
estimate the corresponding DOAs. However, SELDnet obtains this
information from the data itself. In order to have a fair comparison,
we used the minimum description length (MDL) [32] principle to
estimate the number of sources from the input spectrogram and use
it with MUSIC, resulting in the MUSIC output of MUSMDL and
the corresponding particle filter output of MUSPF

MDL.
Finally, we studied the importance of recurrent layers for the

SELDT task by removing them from SELDnet and evaluating the
model containing only convolutional and dense layers, referred to
as CNN hereafter. The best CNN architecture across datasets had
five convolutional layers with 64 filters each.

4. RESULTS AND DISCUSSION

On tuning the input sequence length for SELDnet, it was observed
that a sequence of 256 frames gave the best scores for the reverber-
ant datasets, and 512 frames gave the best scores for the anechoic
datasets. The SELDnet predictions and the corresponding refer-
ences are visualized in Figure 2 for a respective 1000 frame test
sequence from MANSYN O2 dataset. Each sound class is repre-
sented with a unique color across subplots. We see that the detected
sound events are accurate in comparison to reference. The DOA
predictions are seen to vary around the reference trajectory with a
small deviation. This shows that SELDnet can successfully track
and recognize multiple overlapping and moving sources.

Figure 3 visualizes the tracking predictions and their respective
references for SELDnet and the baseline method MUSPF

GT . In gen-
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Table 2: Evaluation results on different datasets. Since the number of active sources information is used in MUSGT, the frame recall is always
100% and hence not reported. DE: DOA error, FR: Frame recall, F: F-score, SCOF: Same class overlapping frames

ANSYN RESYN REAL MANSYN MREAL
Tracking results O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3 O1 O2 O3
MUSGT DE 1.3 5.0 12.2 21.7 28.9 32.5 15.1 33.9 44.1 0.6 14.8 28.0 16.4 34.1 43.9
MUSPF

GT DE 0.1 1.1 2.3 4.0 5.2 6.1 3.3 8.8 12.0 0.2 4.2 8.0 3.6 8.1 11.9
FR 97.0 88.5 74.3 83.8 55.6 37.3 93.0 71.0 44.7 98.7 92.3 75.1 91.0 69.9 48.3

Methods estimating the number of active sources directly from input data
MUSMDL DE 0.5 14.2 24.0 22.3 31.9 38.5 25.3 36.2 44.1 4.2 17.8 28.5 26.5 35.9 44.9

FR 93.9 89.4 86.7 61.7 45.6 52.5 53.6 35.7 57.5 63.8 48.1 51.85 53.4 35.2 58.9
MUSPF

MDL DE 0.1 4.4 7.2 6.4 10.6 12.7 9.3 10.9 13.7 3.5 6.8 8.0 13.6 11.2 13.6
FR 96.3 83.5 67.7 52.0 34.1 24.2 52.7 40.1 29.6 64 49.9 39.8 58.7 34.4 27.5

CNN DE 25.7 25.2 26.9 39.1 35.1 31.4 32.0 34.9 37.1 26.1 25.8 28.2 36.6 39.3 40.2
FR 80.2 45.6 32.2 69.5 45.8 29.7 45.1 28.4 16.9 83.7 58.1 38.3 44.5 26.2 16.3

SELDnet DE 3.4 13.8 17.3 9.2 20.2 26.0 26.6 33.7 36.1 6.0 12.3 18.6 36.5 39.6 38.5
FR 99.4 85.6 70.2 95.8 74.9 56.4 64.9 41.5 24.6 98.5 94.6 80.7 69.6 42.8 28.9

Detection results
CNN ER 0.52 0.46 0.51 0.44 0.45 0.54 0.52 0.51 0.51 0.59 0.47 0.48 0.46 0.49 0.52

F 70.1 66.5 68 57 54.9 42.7 50.1 49.5 48.9 65.6 62.7 60.1 55.4 50.9 48.8
SELDnet ER 0.04 0.16 0.19 0.1 0.29 0.32 0.4 0.49 0.53 0.07 0.1 0.2 0.37 0.45 0.49

F 97.7 89 85.6 92.5 79.6 76.5 60.3 53.1 51.1 95.3 93.2 87.4 64.4 56.4 52.3
SCOF (in %) 0.0 4.2 12.1 0.0 4.2 12.1 0.0 7.6 23.0 0.0 3.0 9.1 0.0 7.1 20.9

eral, the performance of the two methods is visually comparable.
Both methods are often confused in similar situations, for example
in the intervals of 4-5 s, 10-13 s, and 23-25 s.

The SELDnet, by design, is restricted to recognize just one
DOA for a given sound class. But in real life, there can be mul-
tiple instances of the same sound class occurring simultaneously.
This is also seen in the datasets studied, the last row (SCOF) in the
Table 2 presents the percentage of frames in which the same class
is overlapping with itself. In comparison, the parametric method
has no such restriction by design and can potentially perform bet-
ter than SELDnet in these frames (even though, highly correlated
sound events coming from different DOAs can easily degrade the
performance of parametric methods such as MUSIC). The perfor-
mance of the two methods in such a scenario can be observed in the
10-13 s interval of Figure 3. The SELDnet tracks only one of the
two sources, while the parametric method tracks both overlapping
sources and introduces an additional false track between the two
trajectories.

Table 2 presents the quantitative results of the studied meth-
ods. The general trend is as follows. The higher the number of
overlapping sources, the lower the tracking performance by both
SELDnet and the parametric method. Across datasets, the DOA
error improves considerably with the use of the temporal parti-
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Figure 3: The tracking results of the two proposed methods are visu-
alized for a MANSYN O2 dataset recording. The top figure shows
the input spectrogram. The center and bottom figures show the out-
put of SELDnet and MUSPF

GT tracker in red, and the groundtruth in
green. The blue crosses in the bottom figure represents the frame-
wise DOA output of MUSIC

cle filter tracker, but at the cost of lower frame recall. By us-
ing MDL instead of reference information for the source num-
ber, the overall performance of the parametric approach reduces
(MUSPF

GT > MUSPF
MDL). This reduction is especially observed

in the frame recall metric, that drops significantly for reverberant
and moving source scenario datasets, indicating the need for more
robust source detection and counting schemes.

The frame recall of SELDnet is observed to be consistently
better than MUSPF

MDL, but the DOA estimation is poorer across
datasets. A similar relationship is observed between SELDnet and
MUSPF

GT for all the datasets generated with simulated impulse re-
sponses, while for the real-life impulse response datasets the frame
recall of SELDnet is poorer than MUSPF

GT . That could indicate
the need for more extensive learning for real-life impulse response
datasets, with larger datasets and stronger models.

Using recurrent layers definitely helps the SELDT task. It was
observed from visualizations that the tracking performance by the
CNN was poor, with spurious and high variance DOA tracks, thus
resulting in poor DOA error across datasets as seen in Table 2. This
suggests that the recurrent layers are crucial for SELDT task and
perform a similar task as an RBMCDA particle filter of identifying
the relevant frame-wise DOAs and associating these DOAs corre-
sponding to the same sound class across time frames.

5. CONCLUSION

In this paper, we presented the first deep neural network based
method, SELDnet, for the combined tasks of detecting the temporal
onset and offset time for each sound event in a dynamic acoustic
scene, localizing them in space and tracking their position when
active, and finally recognizing the sound event class. The SELD-
net performance was evaluated on five different datasets containing
stationary and moving sources, anechoic and reverberant scenarios,
and a different number of overlapping sources. It was shown that
the recurrent layers employed by the SELDnet were crucial for the
tracking performance. Further, the tracking performance of SELD-
net was compared against a stand-alone parametric method based
on multiple signal classification and particle filter. In general, the
SELDnet tracking performance was comparable to the parametric
method and achieved a higher frame recall for tracking but at a
higher angular error.
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ABSTRACT 

This paper describes our approach to the DCASE 2019 challenge 

Task 2: Audio tagging with noisy labels and minimal supervision. 

This task is a multi-label audio classification with 80 classes. The 

training data is composed of a small amount of reliably labeled 

data (curated data) and a larger amount of data with unreliable 

labels (noisy data). Additionally, there is a difference in data dis-

tribution between curated data and noisy data. To tackle these dif-

ficulties, we propose three strategies. The first is multitask learn-

ing using noisy data. The second is semi-supervised learning us-

ing noisy data and labels that are relabeled using trained models’ 

predictions. The third is an ensemble method that averages mod-

els trained with different time length. By using these methods, our 

solution was ranked in 3rd place on the public leaderboard (LB) 

with a label-weighted label-ranking average precision (lwlrap) 

score of 0.750 and ranked in 4th place on the private LB with a 

lwlrap score of 0.75787. The code of our solution is available at 

https://github.com/OsciiArt/Freesound-Audio-Tagging-2019. 

Index Terms— Audio-Tagging, Noisy Labels, Multitask Learn-

ing, Semi-supervised Learning, Model Ensemble 

1. INTRODUCTION 

An automatic general-purpose audio tagging system can be useful 

for various usages, including sound annotating or video caption-

ing. However, there are no such systems with adequate perfor-

mance because of the difficulty of this task. To build such a sys-

tem using machine learning techniques, an audio dataset with re-

liable labels is required.  However, it is difficult to obtain large-

scale dataset with reliable labels because manual annotation by 

humans is time-consuming. In contrast, it is easy to infer labels 

automatically using metadata of websites like Freesound [1] or 

Flickr [2] that collect audio and metadata from collaborators. 

Nevertheless, automatically inferred labels are inevitable to have 

a certain amount of label noise. 

DCASE 2019 challenge Task 2: Audio tagging with noisy la-

bels and minimal supervision [3] is a multi-label audio classifica-

tion task with 80 classes. The FSDKaggle2019 dataset was pro-

vided for this challenge. The main motivation of this task is to fa-

cilitate research of audio classification leveraging a small amount 

of reliably labeled data (curated data) and a larger amount of data 

with unreliable labels (noisy data) with a large number of catego-

ries. 

 
 This work was supported by Osaka University Medical Doctor Scientist Training Program. 

This task has three main challenges. First, this is a multi-label 

classification task, which is more difficult than a single-label clas-

sification task. Second, most of the training data labels are so un-

reliable that the performance of a classification model trained with 

them would be lower than a one trained without them. Third, there 

is a difference in data distribution between curated data and noisy 

data because they come from different sources. Therefore, domain 

adaptation approaches would be required. 

2. OUR PROPOSALS 

2.1. MULTITASK LEARNING 

In this task, the curated data and noisy data are labeled in a differ-

ent manner, therefore treating them as the same one makes the 

model performance worse. To tackle this problem, we used a mul-

titask learning approach [4, 5], in which a model learns multiple 

tasks simultaneously. The aim of multitask learning is to get a 

more generalized model by learning representations shared be-

tween 2 tasks. We treated learning with curated data and noisy 

data as different tasks and performed multitask learning. In our 

proposal, a convolution layer architecture learns the feature rep-

resentations shared between curated and noisy data, and the two 

separated sequences of full-connect (FC) layers learn the differ-

ence between the two data (Fig. 1). In this way, we can get the 

advantages of representation learning from noisy data and avoid 

the disadvantages of noisy label perturbation. We set the loss 

weight ratio of curated and noisy as 1:1. 

2.2. SEMI-SUPERVISED LEARNING 

Because treating the noisy labels the same as the curated labels 

makes the model performance worse, it may be promising to do 

semi-supervised learning [6] (SSL) using the noisy data without 

the noisy labels. However, this task is different from the data that 

SSL is generally applied in two points. The first, there is a differ-

ence in data distribution between labeled data and unlabeled data. 

It is reported that applying SSL to such data makes model perfor-

mance worse [6]. The second, this is a multi-label classification 

task. Most of SSL methods are for single-label classification task. 

We tried Pseudo-Label [7], Mean Teacher [8], and MixMatch [9] 

and all of them were not successful in improving lwlrap score. In 

the original Pseudo-Label, guessed labels are made from predic-

tions of the training model itself, but we made guessed labels from 

trained models because it is a popular approach. 

https://doi.org/10.33682/0avf-bm61
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Therefore, we propose an SSL method that is robust to data 

distribution difference and can handle multi-label data (Fig. 1). For 

each noisy data sample, we guess the label using trained models. 

The guessed label is processed by a sharpening function [9], which 

sharpens the predicted categorical distribution by adjusting the 

“temperature.” We call this soft pseudo label. The basic Pseudo-

Label is a hard label with only one positive label so that it cannot 

apply to multi-label data. In contrast, the soft pseudo label is sharp-

ened label distribution and suits for multi-label data. The soft 

pseudo label is expected to be more robust to data distribution dif-

ference because it is smoother than the hard label. Learning with 

soft pseudo labels is performed in parallel with multitask learning. 

As the temperature of the sharpening function, we tried a value of 

1, 1.5, and 2. A value of 2 was the optimum. The predictions used 

for the guessed labels were obtained from a ResNet model with 

multitask learning (Table 1 #4) using Snapshot Ensembles [10] 

and 5-fold cross validation (CV) averaging with all the folds and 

cycle snapshots of 5-fold CV. We used mean squared error (MSE) 

as a loss function. We set loss weight of SSL as 20. To get the 

benefit of mixup [11] more, we mixed curated data and its label to 

soft pseudo label data with a ratio of 1:1. 

2.3. ENSEMBLE 

To obtain the benefit of ensemble, we prepared models 

trained with various conditions and averaged the categorical dis-

tribution predicted by the models with weighted ratio (model av-

eraging). As the variety of models, we employed 5-fold CV aver-

aging, Snapshot Ensembles [10] and models trained with wave-

form or log mel spectrogram. K-fold CV averaging is averaging 

of predictions of all the models of k-fold CV on the test data. 

Snapshot Ensembles is averaging of predictions of model snap-

shots which is model weights of each cycle's end in model training 

with cyclic cosine learning rate [12]. As an approach specific to 

this competition data, we averaged models trained with different 

cropping length of time, we call this cropping length averaging. 

There is a difference in time length average among classes. There-

fore, models trained with different time length are expected to be-

come experts for different classes, and they give a variety to the 

model ensemble. 

3. METHODOLOGY 

3.1. DATASET 

The FSDKaggle2019 dataset was provided for this challenge [3]. 

This dataset consists of four subsets: curated train data with 4,970 

audio samples, noisy train data with 19,815 samples, public test 

data with 1,120 samples, and private test data with 3,361 samples. 

Each audio sample is labeled with 80 classes, including human 

sounds, domestic sounds, musical instruments, vehicles, and ani-

mals. Curated train data and test data are collected from Freesound 

dataset [1] and labeled manually by humans. Noisy train data is 

collected from Yahoo Flickr Creative Commons 100M dataset 

(YFCC) [2] and labeled using automated heuristics applied to the 

audio content and metadata of the original Flickr clips. All audio 

samples are single-channel waveforms with a sampling rate of 

44.1kHz. In curated data, the duration of the audio samples ranges 

from 0.3 to 30 second, and the number of clips per class is 75, 

Figure 1: Overall architecture of our proposed model. The model 

is trained with three methods concurrently. (1) Basic classification 

(2) Soft pseudo label (3) Multitask learning with noisy label. 

Conv: convolution layer, GMP: global max pooling, FC: full-con-

nect layers, BCE: binary cross-entropy, MSE: mean squared error. 

 

 

except in a few cases. In noisy data, the duration of the audio sam-

ples ranges from 1 to 15 second, and the number of clips per class 

is 300, except in a few cases. 

3.2. PREPROCESSING 

We used both waveform and log mel spectrogram as input data. 

These two data types are expected to compensate for each other. 

3.2.1. Waveform 

We tried a sampling rate of 44.1 kHz (original data) and 22.05 kHz, 

and we found that 44.1 kHz was better. Each input data was regu-

larized into a range of from -1 to +1 by dividing by 32,768, the full 

range of 16-bit audio. 

3.2.2. Log mel spectrogram 

For the log mel spectrogram transformation, we used 128 mel fre-

quency channels. We tried 64 and 256, but model performance 

decreased. We used the short-time Fourier transform hop size of 

347 that makes log mel spectrogram 128 Hz time resolution. Data 

samples of the log mel spectrogram were converted from power 

to dB after all augmentations were applied. After that, each data 

sample was normalized with the mean and standard deviation of 

each single data sample. Therefore, the mean and standard devia-

tion values change every time, and this works as a kind of aug-

mentation. Normalization using the mean and standard deviation 

of all the data decreased model performance. 

3.3. AUGMENTATIONS 

3.3.1. Augmentations for log mel spectrogram 

Mixup/BC learning [11, 13] is an augmentation that mixes two 

pairs of inputs and labels with some ratio. The mixing rate is se-

lected from a Beta distribution. We set a parameter α of the Beta 

distribution to 1.0, which makes the Beta distribution equal to a 

uniform distribution. We applied mixup with a ratio of 0.5. 

SpecAugment [14] is an augmentation method for log mel 

spectrogram consists of three kinds of deformation. The first is 

time warping that deforms time-series in the time direction. The 

other two augmentations are time and frequency masking, 
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modifications of Cutout [15], that masks a block of consecutive 

time steps or mel frequency channels. We applied frequency mask-

ing, and masking width is chosen from 8 to 32 from a uniform 

distribution. Time warping and time masking are not effective in 

this task, and we did not apply them to our models. We applied 

frequency masking with a ratio of 0.5. 

For training, audio samples which have various time lengths 

are converted to a fixed length by random cropping. The sound 

samples which have short length than the cropping length are ex-

tended to the cropping length by zero paddings. We tried 2, 4, and 

8 seconds (256, 512, and 1024 dimensions) as a cropping length 

and 4 seconds scores the best. Averaging models trained with 4-

second cropping and 8-second cropping achieved a better score. 

Expecting more strong augmentation effect, after basic crop-

ping, we shorten data samples in a range of 25 - 100% of the basic 

cropping length by additional cropping and extend to the basic 

cropping length by zero padding. For data samples with a time 

length shorter than the basic cropping length, we shorten data 

samples in a range of 25 - 100% of original length by additional 

cropping and extend to the basic cropping length by zero paddings. 

We applied this additional cropping with a ratio of 0.5. 

As another augmentation, we used gain augmentation with a 

factor randomly selected from a range of 0.80 - 1.20 with a ratio 

of 0.5. We tried scaling augmentation and white noise augmenta-

tion, but model performance decreased. 

3.3.2. Augmentations for waveform 

We applied mixup to waveform input. We used a parameter α of 

1.0 for the Beta distribution as same as the case of log mel spec-

trogram. 

We applied cropping to waveform input. We tried 1.51, 

3.02, and 4.54 seconds (66,650, 133,300, and 200,000 dimen-

sions) as a cropping length, and we found that 4.54 seconds is 

optimal. Averaging models trained with 3.02-second cropping 

and 4.54-second cropping achieved a better score. 

We used scale augmentation with a factor randomly selected 

from a range of 0.8 - 1.25 and gain augmentation with a factor 

randomly selected from a range of 0.501 - 2.00. 

3.4. MODEL ARCHITECTURE 

3.4.1. ResNet 

We selected ResNet [16] as a log mel spectrogram-based model 

because it is a widely-used image classification model and rela-

tively simple. We compared ResNet18, ResNet34 and SE-

ResNeXt50 [17] and ResNet34 performed the best. The number 

of trainable parameters, including the multitask module is 

44,210,576. We applied a global max pooling (GMP) after con-

volutional layers to make a model adaptive to various input length. 

3.4.2. EnvNet 

We selected EnvNet-v2 [13] as a waveform-based model because 

it is state of the art of a waveform-based model. The number of 

trainable parameters, including the multitask module is 4,128,912. 

As same as ResNet, we applied a GMP after convolutional layers 

to allow variable input length. 

3.4.3. Multitask module 

For multitask learning, two separate FC layer sequences follow 

after convolution layers and GMP. The contents of both se-

quences are the same and consist of FC (1024 units) - ReLU - 

dropout [18] (drop rate = 0.2) - FC (1024 units) - ReLU - dropout 

(drop rate = 0.1) - FC (80 units) - sigmoid. Sigmoid is replaced by 

softmax in model E and F of EnvNet (Table 2). 

3.5. TRAINING 

3.5.1. ResNet 

We used Adam [19] for optimization. We used cyclic cosine 

learning rate for learning rate schedule. In each cycle, the learning 

rate is started with 1e-3 and decrease to 1e-6. There are 64 epochs 

per cycle. We used a batch size of 32 or 64. We used binary cross-

entropy (BCE) as a loss function for basic classification and mul-

titask learning with noisy data. We used mean squared error as a 

loss function for the soft pseudo label. The model weights of each 

cycle’s end were saved and used for Snapshot Ensembles. 

3.5.2. EnvNet 

We used stochastic gradient descent (SGD) for optimization. We 

used cyclic cosine learning rate for learning rate schedule. In each 

cycle, the learning rate is started with 1e-1 and decrease to 1e-6. 

There are 80 epochs per cycle. We used binary cross-entropy as a 

loss function for the model using sigmoid and Kullback-Leibler 

divergence for the model using softmax. We used a batch size of 

64 for the model using sigmoid and 16 for the model using soft-

max. 

3.6. POSTPROCESSING AND ENSEMBLE 

Prediction using the full length of audio input scores better than 

prediction using test time augmentation (TTA) with cropped au-

dio input. This may be because essential components for classifi-

cation is concentrated on the beginning part of audio samples. Pre-

diction with cropping of the beginning part scores better than pre-

diction with cropping of the latter part. In order to speed up the 

calculation, audio samples with similar lengths were grouped, and 

the lengths of samples in the same group were adjusted to the 

same length by zero paddings and converted to mini-batches. The 

patience for the difference of length within a group (patience rate) 

was adjusted based on the prediction speed. 

We found that padding augmentation is effective TTA. Padding 

augmentation is an augmentation method that applies zero pad-

dings to both sides of audio samples with various length and av-

erages prediction results. In the training phase, we applied pad-

ding to input data to make the sample size the same. Because there 

is a correlation between time length and class, models are thought 

to learn that there is a correlation between padding length and 

class. We think that padding augmentation reduces this bias and 

gives better predictions. 

 For model averaging, we prepared models trained with var-

ious conditions, as mentioned in section 2.3. In order to reduce 

prediction time, the cycles and padding lengths used for the en-

semble were chosen based on CV (For more details, please refer 
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# condition CV lwlrap 

1 1 × 512, Crop = 512, BS = 64 0.724 

2 1 × 512, Crop = 512, BS = 64, Augs 0.829 

3 8 × 64, Crop = 512, BS = 64, Augs 0.829 

4 8 × 64, Crop = 512, BS = 64, Augs, 

 MTL (model A) 

0.849 

5 7 × 64, Crop = 512, BS = 32, Augs, AC,  

MTL, 5-fold SPL, use #1 weights as  

pretrained weights (model B) 

0.870 

6 7 × 64, Crop = 512, BS = 32, Augs, AC, 

MTL, 1-fold SPL, use #1 weights as  

pretrained weights 

0.858 

7 6 × 64, Crop = 1,024, BS = 64, Augs, 

MTL (model C) 

0.840 

Table 1: Comparison of each learning condition of ResNet34. CV 

lwlrap is calculated based on the best epoch of each fold in 5-fold 

CV. m × x: m cycles of n epochs, Crop: cropping length, BS: batch 

size, Augs: MixUp, frequency masking, and gain augmentation, 

MTL: multitask learning, AC: additional cropping, SPL: soft 

pseudo label. 

 

# condition CV lwlrap 

8 1 × 400, Crop = 133,300, BS = 16, 

Augs, MTL, softmax 

0.809 

9 3 × 80, Crop = 133,300, BS = 64, Augs, 

MTL, sigmoid, use #8 weights as pre-

trained weight (model D) 

0.814 

10 5 × 80, Crop = 133,300, BS = 16, Augs, 

MTL, softmax, use #8 weights as pre-

trained weight (model E) 

0.818 

11 10 × 80, Crop = 200,000, BS = 16, 

Augs, MTL, softmax (model F) 

0.820 

Table 2: Comparison of each learning condition of EnvNet-v2. CV 

lwlrap is calculated based on the best epoch of each fold in 5-fold 

CV except for #8, which is calculated based on the final epoch. 

Augs: MixUp, gain, and scaling augmentation. 
 

 

to our repository). For the final submission, we used the predic-

tions of model A – F with 5-fold averaging, Snapshot Ensembles, 

and padding augmentation. The weights of model averaging are 

model A:B:C:D:E:F = 3:4:3:1:1:1, which is chosen based on CV. 

The total number of predictions is 170 (submission 1). In the sim-

plified version submission, we omitted padding augmentation, 

and the total number of predictions is 95 (submission 2). 

4. RESULT 

Table 1 and 2 show the results of each learning condition. The 

score is lwlrap of 5-fold CV. By multitask learning, the CV lwlrap 

improved from 0.829 to 0.849 (Table 1 #3 and #4) and score on 

the public LB increased + 0.021. By soft pseudo labeling, The CV 

lwlrap improved from 0.849 to 0.870 (Table 1 #4 and #5). On the 

other hand, on the test data (private LB), improvement in score 

was smaller (+0.009). We used predictions of all fold of models 

to generate soft pseudo label so that high CV is maybe because of 

indirect label leak. However, even if we use labels generated by 

only the same fold model, which has no label leak, CV was im-

proved as compared to one without SSL (Table 1 #4 and #6). 

Table 3 shows the results of each model averaging condition. 

# condition CV lwlrap 

1 model A, cycle = 1-8, Pad = 8, 32 0.868 

2 model B, cycle = 1-7, Pad = 8, 32 0.886 

3 model C, cycle = 1-6, Pad = 8, 32 0.862 

4 model D, cycle = 1-3, Pad = 8k, 32k 0.815 

5 model E, cycle = 1-5, Pad = 8k, 32k 0.818 

6 model F, cycle = 5-10, Pad = 8k, 32k 0.820 

7 model A + C 0.876 

8 model A + B + C 0.890 

9 model D + E + F 0.836 

10 submission 1 0.896 

11 submission 2 0.895 

Table 3: Comparison of model averaging. Pad: padding augmen-

tation. 

 

In every condition, we employed 5-fold CV averaging and Snap-

shot Ensembles. By Snapshot Ensembles and padding augmenta-

tion, the CV lwlrap increased +0.039 (Table 1 #4 and Table 3 #1). 

By cropping length averaging, the CV lwlrap increased +0.008 

(Table 3 #1 and #7). By averaging models trained with log mel 

spectrogram and waveform, the CV lwlrap increased +0.008 (Ta-

ble 3 #8 and #10). 

On the public LB, submission 1 was ranked in 3rd place with 

a lwlrap score of 0.750. On the private LB, submission 2 was 

ranked in 4th place with a lwlrap score of 0.75787. 

5. DISCUSSION 

Our proposed methods showed meaningful results in the task, but 

there is room for improvement. First, we used shared convolution 

layers and separated FC layers for multitask learning, but we did 

not evaluate whether this model architecture is optimal. The opti-

mized architecture may get more benefit from multitask learning. 

Second, soft pseudo label failed to achieve reliable CV be-

cause of implicit label leak from soft pseudo label. The procedure 

of soft pseudo label is very similar to model distillation [20], 

which uses averages of trained models’ predictions for training in 

the purpose of transferring knowledge of trained models to a sin-

gle smaller model. Therefore, soft pseudo labels obtained from 

models trained with other CV folds have knowledge of labels of 

out-of-fold, and this can be label leaks. Establishing the way of 

reliable CV would make soft pseudo label more useful. 

Third, we found that model averaging using models trained 

with different time length improves the score. This result suggests 

that training a single model with various time length would be 

successful and contributes to reducing the number of models.  

Fourth, zero padding in training time makes models learn 

that there is a correlation between zero values and classes. Full-

length prediction and padding augmentation can reduce this un-

preferable bias. However, to avoid zero padding and concatenate 

several clones of the sound file instead may be more promising. 

6. CONCLUSION 

This paper describes our approach to the DCASE 2019 challenge 

Task 2, which is a difficult task because of multi-label and noisy 

label. We propose three strategies, multitask learning with noisy 

data, SSL with soft pseudo label and ensemble of cropping length 

averaging. By using these methods, our solution ranked in 4th 

place on the private LB. 
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ABSTRACT

Sound event detection (SED) and localization refer to recognizing
sound events and estimating their spatial and temporal locations.
Using neural networks has become the prevailing method for SED.
In the area of sound localization, which is usually performed by esti-
mating the direction of arrival (DOA), learning-based methods have
recently been developed. In this paper, it is experimentally shown
that the trained SED model is able to contribute to the direction
of arrival estimation (DOAE). However, joint training of SED and
DOAE degrades the performance of both. Based on these results, a
two-stage polyphonic sound event detection and localization method
is proposed. The method learns SED first, after which the learned
feature layers are transferred for DOAE. It then uses the SED ground
truth as a mask to train DOAE. The proposed method is evaluated on
the DCASE 2019 Task 3 dataset, which contains different overlap-
ping sound events in different environments. Experimental results
show that the proposed method is able to improve the performance
of both SED and DOAE, and also performs significantly better than
the baseline method.

Index Terms— Sound event detection, source localization,
direction of arrival, convolutional recurrent neural networks

1. INTRODUCTION

Sound event detection is a rapidly developing research area that aims
to analyze and recognize a variety of sounds in urban and natural
environments. Compared to sound tagging, event detection also
involves estimating the time of occurrence of sounds. Automatic
recognition of sound events would have a major impact in a number
of applications [1]. For instance, sound indexing and sharing, bio-
acoustic scene analysis for animal ecology, smart home automatic
audio event recognition (baby cry detection, window break alarm),
and sound analysis in smart cities (security surveillance).

Recently, approaches based on neural networks have been shown
to be especially effective for SED [2]. Unlike audio tagging prob-
lems [3–5], which only aim to detect whether the sound events are
present in a sound clip, SED also involves predicting temporal infor-
mation of events. Early neural network architectures utilized fully-
connected layers to detect temporally-overlapping sound events [6].
More recently, due to their success in image recognition, convolu-
tional neural networks (CNNs) have become the prevailing architec-
ture in this area [7–10]. Such methods use suitable time-frequency
representations of audio, which are analogous to the image inputs

* Equal contribution.

in computer vision. Another popular type of neural network is the
recurrent neural network (RNN), which has the ability to learn long
temporal patterns present in the data, making it suitable for SED [11].
Hybrids containing both CNN and RNN layers, known as convolu-
tional recurrent neural networks (CRNNs), have also been proposed,
which have led to state-of-the-art performance in SED [4, 12].

Sound source localization, which focuses on identifying the
locations of sound sources, on the other hand, has been an active
research topic for decades [13]. It plays an important role in ap-
plications such as robotic listening, speech enhancement, source
separation, and acoustic visualization. Unlike the dominance of
neural-network-based techniques in SED, DOAE is mainly studied
using two methods: parametric-based methods and learning-based
methods.

Parametric-based DOAE methods can be divided into three cat-
egories [13]: time difference of arrival (TDOA) estimation, max-
imized steered response power (SRP) of a beamformer, and high-
resolution spectral estimation. Generalized cross-correlation (GCC)
methods are the most widely-used approaches for TDOA estima-
tion [14, 15]. Since the TDOA information is conveyed in the phase
rather than the amplitude of the cross-spectrum, the GCC Phase
Transform (GCC-PHAT) was proposed, which eliminates the effect
of the amplitude while leaving only the phase [14]. The primary
limitation of parametric-based GCC methods is the inability to ac-
commodate multi-source scenarios.

Learning-based DOAE methods have the advantages of good
generalization under different levels of reverberation and noise. They
are designed to enable the system to learn the connections between
input features and the DOA. There has already been a series of
research addressing DOAE using deep neural networks [16–24].
Results show that they are promising and comparable to parametric
methods. However, these neural-network-based methods are mainly
based on static sources. In addition to spectrum-based features,
GCC-based features, which can effectively supply time difference
information, have also been used as the input features [16,17,21–23].
In order to further improve learning-based methods, more practical
real-world sources need to be considered.

In real-world applications, a sound event is always transmitted in
one or several directions. Given this fact, it is reasonable to combine
sound event detection and localization with not only estimating their
respective associated spatial location, but also identifying the type
and temporal information of sound. Therefore, it is worthwhile to
study them together and investigate the effects and potential con-
nections between them. Recently, DCASE 2019 introduced Task 3,
which is Sound Event Localization and Detection (SELD) for over-
lapping sound sources [25]. A recently-developed system known as

https://doi.org/10.33682/4jhy-bj81
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SELDnet was used as the baseline system. SELDnet uses magnitude
and phase spectrograms as input features and trains the SED and
DOAE objectives jointly [26]. However, phase spectrograms are
hard for neural networks to learn from, and further relationships
between SED and DOAE have not been revealed.

In this paper, joint training of SED and DOAE is implemented
first with log mel spectrograms and GCC-PHAT as the input features.
According to the experimental results, SED is able to contribute to
the performance of DOAE, while joint training of SED and DOAE
degrades the performance of both. To solve this problem, a new two-
stage method for polyphonic sound event detection and localization
is proposed. This method deals with sound event detection and
localization in two stages: the SED stage and the DOAE stage,
corresponding to the SED branch and the DOAE branch in the
model, respectively. During training, the SED branch is trained first
only for SED, after which the learned feature layers are transferred
to the DOAE branch. The DOAE branch fine-tunes the transferred
feature layers and uses the SED ground truth as a mask to learn
only DOAE. During inference, the SED branch estimates the SED
predictions first, which are used as the mask for the DOAE branch
to infer predictions. The experimental results show that by using the
proposed method, DOAE can benefit from the SED predictions; both
SED and DOAE can be improved at the same time. The proposed
method performs significantly better than the baseline method.

The rest of the paper is organized as follows. In Section 2, the
proposed learning method is described in detail. Section 3 introduces
the dataset used, other methods for comparison, and experimental
results. Finally, conclusions are summarized in Section 4.

2. LEARNING METHOD

Joint training of SED and DOAE was first proposed in [26]. Their
system is also used as the baseline system for DCASE 2019 Task 3.
In this baseline, temporal consecutive magnitude and phase spectro-
grams are extracted as the input features from the time-domain audio
waveform, which are then fed into a CRNN. Its loss is a weighted
combination of the SED loss and the DOAE loss. Therefore, it can
be imagined that this baseline system has an intrinsic trade-off be-
tween SED and DOAE according to the loss weight selected. In this
paper, a two-stage polyphonic sound event detection and localization
network is proposed to exploit their mutual strength.

2.1. Features

Selecting which features to use is an important factor for audio-
related neural network applications. In this paper, the input signal
format is of two types: First-Order of Ambisonics (FOA) or tetrahe-
dral microphone array [25]. Log mel spectrograms and GCC-PHAT,
which contains phase difference information between all microphone
pairs, are chosen as the input features. Ambisonics and GCC-PHAT
are explained in this section.

2.1.1. Ambisonics

Ambisonics was developed as a spatial sound encoding approach
several decades ago [27]. It is based on the spherical harmonic
(SH) decomposition of the sound field. Ambisonics encoding for
plane-wave sound fields can be expressed as

b(t) =

N∑

n=0

ynsn(t), (1)

where sn(t) is the n-th plane-wave source signal, N is the total
number of sources, and yn is the vector of the spherical harmonic
function values for direction (θn, φn), and can be expressed as

yn =
[
Y 0
0 (θn, φn) , Y −1

1 (θn, φn) , Y 0
1 (θn, φn) ,

Y 1
1 (θn, φn) , . . . , Y −LL (θn, φn) , . . . , Y 0

L (θn, φn) ,

. . . , Y LL (θn, φn)]T ,

(2)

where L indicates the order of Ambisonics. It can be seen that
Ambisonics contains the information of the source DOA. In addition,
a higher directional resolution relates to a higher order of Ambisonics.
Order-L of Ambisonics needs at least (L + 1)2 microphones to
encode. In real applications, the sound field is recorded using a
spherical microphone array and converted into Ambisonics.

2.1.2. Generalized Cross-Correlation

GCC is widely used in TDOA estimation by means of maximizing
the cross-correlation function to obtain the lag time between two
microphones. The cross-correlation function is usually calculated
through the inverse-FFT of the cross power spectrum. GCC-PHAT
is the phase-transformed version of GCC, which whitens the cross
power spectrum to eliminate the influence of the amplitude, leaving
only the phase. GCC-PHAT can be expressed as

GCCij(t, τ) = F−1
f→τ

Xi(f, t)X
∗
j (f, t)

|Xi(f, t)‖Xj(f, t)|
, (3)

where F−1
f→τ is the inverse-FFT from f to τ , Xi(f, t) is the Short-

Time Fourier Transform (STFT) of the i-th microphone signal, and
∗ denotes the conjugate. TDOA, which is the lag time ∆τ between
two microphones, can then be estimated by maximizing GCC with
respect to τ . Nevertheless, this estimation is usually not stable,
especially in high reverberation and low SNR environments, and
does not directly work for multiple sources. However, GCCij(t, τ)
contains all of the time delay information and is generally short-
time stationary. GCCij(t, τ) can also be considered as a GCC
spectrogram with τ corresponding to the number of mel-band filters.
That is, GCC-PHAT can be stacked with a log mel spectrogram as
the input features. In order to determine the size of GCC-PHAT, the
largest distance between two microphones dmax needs to be used.
The maximum delayed samples corresponding to ∆τmax can be
estimated by dmax/c · fs, where c is the sound speed and fs is the
sample rate. In this paper, log mel and GCC-PHAT are stacked as
the input features, considering the possibility of the advance and the
delay of GCC. The number of mel-bands, therefore, should be no
smaller than the doubled number of delayed samples plus one [14].

2.2. Network architecture

The network is shown in Fig. 1, and has two branches, the SED
branch and the DOAE branch. During training, the extracted features,
which have shape C × T × F , are first sent to the SED branch. C
indicates the number of feature maps, T is the size of time bins, and
F is the number of mel-band filters or delayed samples of GCC-
PHAT. The CNN layers, which are also named as feature layers in
this paper, are constructed with 4 groups of 2D CNN layers (Convs)
with 2× 2 average-pooling after each of them. Each Convs’ group
consists of two 2D Convs, with a receptive field of 3 × 3, a stride
of 1 × 1, and a padding size of 1 × 1 [10]. The Convs’ kernels
are able to filter across all of the channels of the input features or
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Figure 1: The diagram of the proposed two-stage sound event detection and localization network. SED ground truth is used as the mask to train
DOAE branch. SED predictions are used as the mask to infer DOAE.

the feature maps from the last layer, hence are able to learn inter-
channel information. CNN layers are capable of learning local
temporal and frequency information to better abstract the event-
level information. Each single CNN layer is followed by a Batch
Normalization layer [28] and a ReLU activation. After the CNN
layers, the data has shape Cout × T/16 × F/16, where Cout is
the number of output feature maps of the last CNN layer. It is then
sent to a global average-pooling layer to reduce the dimension of F .
After this, the data is reshaped to have shape T/16 × Cout and is
fed to a bidirectional GRU. The output size is maintained and is sent
to a fully-connected layer with output size T/16×N , where N is
the number of event classes. The sigmoid activation function is used
afterwards with an upsampling in the temporal dimension to ensure
the output size is consistent with T . The SED predictions can then
be obtained through an activation threshold. Binary cross-entropy is
used for this multi-label classification task.

The DOAE branch is then trained. The CNN layers are trans-
ferred from the SED branch and are fine-tuned. The output of the
fully-connected layer for the DOAE branch is a vector of N × 2
linear values, which are azimuth and elevation angles for N events.
They are then masked by the SED ground truth during training to
determine if the corresponding angles are currently active. Finally,
the mean absolute error is chosen as the DOAE regression loss.

During inference, the SED branch first computes the SED pre-
dictions, which are then used as the SED mask to obtain the DOAE.
The reason for building this network architecture is to enhance the
representation ability of a single network so that each branch is only
responsible for one task, while the DOAE branch can still incorporate
the benefits contributed from SED.

3. EXPERIMENTAL STUDY

The proposed two-stage polyphonic sound event detection and local-
ization method is compared with other methods described in Section
3.2. They are evaluated on the DCASE 2019 Task 3 dataset [25].
This task is for sound event detection and localization. The dataset
provides two formats of data: 1) First-Order of Ambisonics; 2)
tetrahedral microphone array. The development set consists of 400
one minute long recordings, divided into four cross-validation splits.

There are 11 kinds of isolated sound events in total. The audio record-
ings are mixtures of isolated sound events and natural ambient noise.
The sound events are convolved with impulse responses collected
from five indoor locations, resulting in 324 unique combinations of
azimuth-elevation angles. One challenging problem in this dataset is
that the sound events in the audio recordings have a polyphony of
up to two, which means sound events from different locations may
overlap. The source code for this paper is released on GitHub1.

3.1. Evaluation metrics

Polyphonic sound event detection and localization are evaluated with
individual metrics for SED and DOAE. For SED, segment-based
error rate (ER) and F-score [29] are calculated in one-second lengths.
A lower ER or a higher F-score indicates better performance. In
addition, mean average precision (mAP), which is the area under the
precision and recall curve, is used to evaluate the frame-level tagging
performance. The mAP is used here because it does not depend on
the threshold selection, hence is able to better objectively evaluate
the performance. A higher mAP indicates better performance. For
DOAE, DOA error and frame recall are used [24]. A lower DOA
error or a higher frame recall indicates better performance.

3.2. Methods for comparison

In order to show the effectiveness of the proposed method, several
other methods are compared, including

• Baseline, which is the baseline method used in DCASE 2019 Task
3, uses magnitude and phase spectrograms as the input features.
The features are then fed to a CRNN network. The loss of SED
and DOAE are combined and jointly trained.

• SELDnet, which has the same architecture with the baseline but
using log mel and GCC-PHAT spectrograms as the input features.

• DOA, which uses log mel and GCC-PHAT spectrograms as the
input features to only estimate DOA. It transfers the CNN layers
from the SED network and utilizes SED ground truth as the mask.

1https://github.com/yinkalario/Two-Stage-Polyphonic-Sound-Event-
Detection-and-Localization
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Table 1: Performance for the development dataset.

MIC-ARRAY FOA

Methods Net ER F mAP DOA FR ER F mAP DOA FR

Baseline CRNN 0.350 0.800 − 30.8◦ 0.840 0.340 0.799 − 28.5◦ 0.854

SELDnet CNN 0.277 0.844 0.718 11.0◦ 0.827 0.281 0.843 0.718 10.9◦ 0.828
CRNN 0.213 0.879 0.770 11.3◦ 0.847 0.221 0.876 0.768 12.6◦ 0.844

DOA CNN − − − 13.3◦ − − − − 13.1◦ −
CRNN − − − 11.9◦ − − − − 11.9◦ −

DOA-NT CNN − − − 14.7◦ − − − − 14.5◦ −
CRNN − − − 14.0◦ − − − − 14.3◦ −

Two-Stage CNN 0.251 0.862 0.749 10.9◦ 0.832 0.248 0.864 0.756 10.8◦ 0.832
CRNN 0.167 0.909 0.819 9.85◦ 0.863 0.181 0.898 0.800 9.84◦ 0.857

• DOA-NT, is the same as DOA method except for not transferring
CNN layers. Both DOA and DOA-NT only estimate DOAs.

All of the above-mentioned methods are evaluated on both CNNs
and CRNNs. The CNN has the same architecture as the CRNN but
without the recurrent layer. Furthermore, microphone array signals
do not need extra encoding processes. It is more convenient to use
in practice, whereas the encoding of FOA may contain extra spatial
information. Therefore, it is worthwhile to evaluate these methods
with both the microphone array and FOA data.

3.3. Hyper-parameters

To extract the input features, the sample rate of STFT is set to 32kHz.
A 1024-point Hanning window with a hop size of 320 points is
utilized. In the DCASE 2019 Task 3 dataset, the largest microphone
distance is 4.82cm [25]. According to Section 2.1.2, the number of
mel-band filters and the delays of GCC-PHAT is set to be 64. For 4
channels of signals, up to 10 input channels of signals are sent to the
network. The audio clips are segmented to have a fixed length of 2
seconds with a 1-second overlap for training. The learning rate is set
to 0.001 for the first 30 epochs and is then decayed by 10% every
epoch. The final results are calculated after 50 epochs.
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Figure 2: SED and DOAE Azimuth results for proposed two-stage
method. Different colors indicate different classes of events.

3.4. Results

The experimental results are shown in Table 1. SELDnet with log
mel and GCC-PHAT spectrograms as the input features was im-
plemented first to compare with the baseline method. It can be
seen from both microphone array data and FOA data that with log
mel and GCC-PHAT spectrograms as the input features, SELDnet
outperforms the baseline system using magnitude and phase spec-
trograms. Log mel spectrograms are more effective input features
than magnitude spectrograms, not only due to their better perfor-
mance, but they are also more compact. GCC-PHAT spectrograms,
which mainly contain the time difference information, show their
advantages over phase spectrograms. The results of DOA and DOA-
NT show that with trained CNN layers transferred, DOA error is
consistently lower than not transferring, which indicates that SED
information contributes to the DOAE performance; it can also be
observed that the convergence speed is much faster with CNN layers
transferred. Comparing SELDnet with DOA-NT, it also shows that
the joint training is better than the training of DOAE without CNN
layers transferred, which also proves SED contributes to DOAE. The
proposed two-stage method is presented in the end. The metrics
scores are the best among all the methods. Compared with SELDnet,
it indicates that the joint training of SED and DOAE degrades the
performance of both. This two-stage method minimizes each loss
individually, hence the network representation ability is enhanced
for each sub-task, while the contribution from SED to DOAE is still
preserved by transferring CNN layers to the DOAE branch.

Comparing microphone array data and FOA data, the results
do not show FOA is better, which means FOA does not necessarily
contain more spatial information than microphone array signals with
four channels. On the other hand, in most cases, CRNNs perform
better than CNNs, which indicates that long temporal information
may be useful for both SED and DOAE. A visualization of SED and
DOAE using the proposed method for one clip is shown in Fig. 2. It
can be seen that most of the SED and DOAE predictions are accurate
in both temporal and spatial dimensions.

4. CONCLUSION

Treating sound event detection and localization as a combined task
is reasonable. In this paper, it shows that SED information can be
used to improve the performance of DOAE. However, joint training
of SED and DOAE degrades the performance of both. A two-stage
polyphonic sound event detection and localization method is pro-
posed to solve this problem. The proposed method uses log mel and
GCC-PHAT spectrograms as the input features and has two branches
of SED and DOAE. The SED branch is trained first, after which
the trained feature layers are transferred to the DOAE branch. The
DOAE branch then uses the SED ground truth as a mask to train
DOAE. Experimental results show that the proposed method is able
to enhance the network representation ability for each branch, while
still keeping the contributions from SED to DOAE. The proposed
method is shown to significantly outperform the baseline method.
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ABSTRACT

SONYC Urban Sound Tagging (SONYC-UST) is a dataset for the
development and evaluation of machine listening systems for real-
world urban noise monitoring. It consists of 3068 audio recordings
from the “Sounds of New York City” (SONYC) acoustic sensor
network. Via the Zooniverse citizen science platform, volunteers
tagged the presence of 23 fine-grained classes that were chosen in
consultation with the New York City Department of Environmen-
tal Protection. These 23 fine-grained classes can be grouped into
eight coarse-grained classes. In this work, we describe the collec-
tion of this dataset, metrics used to evaluate tagging systems, and
the results of a simple baseline model.

Index Terms— Audio databases, Urban noise pollution, Sound
event detection

1. INTRODUCTION

Noise pollution is a major concern for urban residents and has neg-
ative effects on residents’ health [1, 2, 3] and learning [2, 4]. To
mitigate the recurrence of harmful sounds, the City of New York
employs a legal enforcement strategy guided by a “noise code”.
For example, jackhammers can only operate on weekdays; pet own-
ers are held accountable for their animals’ noises; ice cream trucks
may only play their jingles while in motion; blasting a car horn is
restricted to situations of imminent danger. After a city resident
complains about noise, the New York City Department of Environ-
mental Protection (DEP) sends an inspector to investigate the com-
plaint. If the inspector is able to confirm that the offending noise
violates the noise code, they incentivize the manager of the noise
source to reduce their noise footprint in compliance with the code.
Unfortunately, this complaint-driven enforcement approach results
in a mitigation response biased to neighborhoods who complain the
most, not necessarily the areas in which noise causes the most harm.
In addition, due to the transient nature of sound, the offending noise
source may have already ceased by the time an inspector arrives on
site to investigate the complaint.

Sounds of New York City (SONYC) is a research project inves-
tigating data-driven approaches to mitigating urban noise pollution.

∗This work was partially funded by National Science Foundation awards
1633259 and 1544753

One of its aims is to map the spatiotemporal distribution of noise
at the scale of a megacity like New York City, in real time, and
throughout multiple years. With such a map, city officials could
better understand noise in the city; more effectively allocate city
resources for mitigation; and develop informed mitigation strate-
gies while alleviating the biases inherent to complaint-driven ap-
proaches. To this end, SONYC has designed an acoustic sensor
for noise pollution monitoring that combines relatively high quality
sound acquisition with a relatively low production cost [5]. Be-
tween 2016 and 2019, over 50 different sensors have been assem-
bled and deployed in various areas of New York City.

Each SONYC sensor measures the sound pressure level (SPL)
of its immediate vicinity, but it does not infer and report the causes
of changes in SPL. From a perceptual standpoint, not all sources
of outdoor noise are equally unpleasant, nor are they equally en-
forcible with respect to the noise code. Therefore, it is necessary
to resort to computational methods for detection and classification
of acoustic scenes and events (DCASE) in the context of automated
noise pollution monitoring. To address this, the sensors have also
been collecting non-contiguous 10 s audio recordings during de-
ployment and have collectively gathered over 100 M recordings.

There are several attributes of urban sound event detection that
make it a challenging task. Sound sources of interest are often far
away from the sensors. Several sources of interest may occur simul-
taneously. Many sound classes seem quite similar, yet are distinct in
the noise code and so should be identified as such. Many other dis-
tractor sounds occur within urban sound recordings. And lastly, the
acoustic environment changes by location and by time within sea-
sonal cycles. Due to the complexity of this problem, it is important
to evaluate machine listening systems for monitoring urban noise in
realistic scenarios, using actual recordings from urban noise sensors
and a label space that matches the needs of city agencies.

In this article, we present the SONYC Urban Sound Tag-
ging (SONYC-UST) dataset1, which contains 3068 annotated 10
s recordings from the SONYC acoustic sensor network and which
served as the dataset for the DCASE 2019 Urban Sound Tagging
Challenge2. Each recording has been annotated using a set of 23
“tags”, which was developed in coordination with the New York
City Department of Environmental Protection (DEP) and represents

1Download the data at https://doi.org/10.5281/zenodo.3338310
2http://dcase.community/challenge2019/task-urban-sound-tagging

https://doi.org/10.33682/j5zw-2t88
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Figure 1: Hierarchical taxonomy of the SONYC Urban Sound Tag-
ging (SONYC-UST) dataset. Rectangular and round boxes respec-
tively denote coarse and fine urban sound tags.

many of the frequent causes of noise complaints in New York City.
Existing datasets for urban noise monitoring do not accurately

represent the problem of urban noise monitoring. The freefield1010
[6], UrbanSound [7], UrbanSound8k, [7], and Urban-SED [8]
datasets contain recordings curated from Freesound [9] rather than
recorded in a realistic noise monitoring scenario. In addition, these
datasets are multi-class, in which only the predominant sound class
is labeled. The exception is Urban-SED [8], which does have
strong, multi-label annotations, but it is a synthetic dataset that is not
representative of actual urban soundscapes. The TUT Sound Events
2016 [10, 11, 12] and 2017 [13, 14] datsets consists of audio record-
ings in real urban environments as well as providing strong, multi-
label annotations. However, these datasets have label sets limited to
human presence and traffic, and their spatiotemporal context is lim-
ited to a handful of times and locations. SONYC-UST addresses
these limitations by providing recordings from urban noise sensors
across a variety of times and locations, and by more closely match-
ing the label set to the needs of noise enforcement agencies.

2. SONYC-UST TAXONOMY

Through consultation with the New York Department of Environ-
mental Protection (DEP) and the New York noise code, we con-
structed a small, two-level urban sound taxonomy (see Figure 1)
consisting of 8 coarse-level and 23 fine-level sound categories, e.g.,
the coarse alert signals category contains four fine-level categories:
reverse beeper, car alarm, car horn, siren. Unlike the Urban Sound
Taxonomy [7], this taxonomy is not intended to provide a frame-
work for exhaustive description of urban sounds. Instead, it was
scoped to provide actionable information to the DEP, while also be-
ing understandable and manageable for novice annotators. The cho-
sen sound categories map to categories of interest in the noise code;

they were limited to those that seem likely discernible by novice
annotators; and we kept the number of categories small enough so
that they can all be visible at once in an annotation interface.

3. DATA COLLECTION

The SONYC acoustic sensor network consists of more than 50
acoustic sensors deployed around New York City and has recorded
over 100M 10-second audio clips since its launch in 2016. The
sensors are located in the Manhattan, Brooklyn, and Queens bor-
oughs of New York, with the highest concentration around New
York University’s Manhattan campus. To maintain the privacy of
bystanders’ conversations, the network’s sensors are positioned for
far-field recording, 15–25 feet above the ground, and record audio
clips at random intervals, rather than continuously.

To annotate the sensor recordings, we launched an annotation
campaign on Zooniverse [15, 16], the largest citizen-science plat-
form. In a previous study comparing multiple types of weak an-
notation tasks, we found that full multi-label annotation (i.e., an
annotation task in which all classes are annotated at once by each
annotator) with at least three annotators per recording resulted in
high quality annotations and high throughput with citizen science
volunteers [17]. In another previous study, we found that spectro-
gram visualizations aided annotators in producing high quality an-
notations [18]. Given these findings, we configured the annotation
task as a multi-label, weak annotation (i.e., tagging) task in which
the annotators were presented with a spectrogram visualization of
the audio clip along with the audio playback.

After presenting volunteers with instructions explaining the
task and a field guide describing the SONYC-UST classes, we asked
them to annotate the presence of all of the fine-level classes in a
recording. For every coarse-level class (e.g., alert signal) we also
included a fine-level other/unknown class (e.g., other/unknown alert
signal) with the goal of capturing an annotator’s uncertainty in a
fine-level tag while still annotating the coarse-level class. If an an-
notator marked a sound class as present in the recording, they were
also asked to annotate the proximity of the sound event (near, far,
not sure). Volunteers could annotate as many recordings as were
available.

Manually annotating all 100M+ of the unlabeled sensor record-
ings is not feasible, but annotating a random sample is not efficient
since many of them may not contain sound events of interest. To
address this, we sample sensor recordings that are most similar to
a small set of exemplary clips for each sound class in our taxon-
omy. The exemplary clips were curated from YouTube and selected
based on the presence of the target class in the audio along with vi-
sual confirmation from the video. Similarity to the exemplary clips
was computed using a distance function D, which compares a sen-
sor recording to M exemplary clips for a particular class:

D(X(c),yn) =
∑

m

1

Km

Km∑

k

min
j

d(x
(c)
m,k, yn,j)

2 (1)

where x
(c)
m,k is the kth VGGish [19] embedding frame of the mth

example clip (from class c) with Km frames, X(c) represents the
M exemplary clips from class c, yn,j is the j th VGGish embedding
frame of the nth sensor recording yn, and d is the Euclidean distance
function.

The SONYC-UST dataset contains annotated train, validate,
and test splits (2351 / 443 / 274 recordings respectively). We se-
lected these splits such that recordings from the same sensors would

36



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

Figure 2: SONYC-UST tag distribution normalized for each split, in decreasing order of frequency in the train split. The shades of blue
indicate how many annotators tagged the class in a training set recording, i.e. darker shades of blue indicate higher annotator agreement.

not appear in both the train and validate sets, and such that the distri-
butions of citizen-science-provided labels were similar for both the
train and validate sets (see Figure 2). While doing so, we consid-
ered a class present in a sample if at least one of the three volunteers
annotated it as such. 35 sensors were assigned to the training set and
8 sensors assigned to the validate set. Unlike the train/validate sets,
the test set is not disjoint in terms of sensors, but rather it is disjoint
in time—all recordings in the test set are posterior to those in the
train/validate sets. This allows us to evaluate model generalization
to known locations at unseen times.

In addition to the crowdsourced annotations from Zooniverse,
we include “SONYC-team-verified” labels for both the valida-
tion and test splits. To create verified labels, we first distributed
recordings based on coarse-level sound category to members of the
SONYC research team for labeling. To determine whether a record-
ing belonged to a specific category for the validation process, we
selected those that had been annotated by at least one volunteer.
Next, two members of our team labeled each category indepen-
dently. Once each member had finished labeling their assigned cat-
egories, the two annotators for each class discussed and resolved la-
bel disagreements that occurred during the independent annotation
process. We use these agreed-upon “SONYC-team-verified” labels
as the “ground truth” when evaluating models. We also use these la-
bels to evaluate the annotations from Zooniverse, aggregated using
minority vote, which we have previously shown to be an effective
aggregation strategy in this context [17]. To aggregate with minor-
ity vote, we simply count a positive for a tag if at least one annotator
has labeled the audio clip with that tag. In Table 1, we present anno-
tation accuracy results using the metrics described Section 4. When
examining the class-wise F1 scores, we see that crowdsourced an-
notations score well against the ground-truth for many classes, but it
seems the Zooniverse annotators have difficulty identifying impact
sounds and powered saws, especially when discriminating between
fine-level classes.

In the SONYC-UST dataset, we include the Zooniverse vol-
unteers’ fine-level multi-label class-presence and proximity annota-
tions for all the audio recordings in all three data splits. We also
provide the SONYC-team-verified multi-label class-presence an-

Estimator: Annotators Baseline Model
Split: Validate Test Validate Test
Level: F C F C F C F C
Overall
AUPRC .73 .87 .75 .90 .67 .77 .62 .76
F1@0.5 .68 .83 .68 .84 .50 .70 .43 .67
Class F1@0.5
Engine .64 .94 .64 .94 .37 .79 .29 .76
Mech. imp. .25 .24 .32 .35 .29 .36 .62 .58
Non-mech. imp. .49 .49 .60 .60 .05 .02 .00 .11
Powered saw .47 .70 .28 .62 .30 .66 .45 .66
Alert signal .88 .95 .87 .92 .48 .67 .35 .48
Music .59 .76 .52 .76 .07 .07 .00 .00
Human voice .82 .95 .82 .96 .77 .84 .63 .77
Dog .74 .74 .96 .96 .00 .00 .66 .66

Table 1: The performance of the Zooniverse annotations (using mi-
nority vote aggregation) and the baseline classifier as compared the
the ground-truth annotations for both validate and test splits on the
coarse (C) and fine (F) levels. AUPRC and F1 are both micro-
averaged.

notations and the agreed-upon ground-truth class-presence labels
for the validate and test sets. All annotations also include identi-
fiers for both the annotator and the sensor from which the clip was
recorded. The coarse-level indicators of class presence are also in-
cluded and are computed by logical disjunction over the fine-level
class-presence tags associated with the coarse-level category.

4. MULTILABEL CLASSIFICATION METRICS

Due to the presence of other/unknown tags, SONYC-UST has an
incomplete ground truth at the fine taxonomical level. Such incom-
pleteness poses a problem for evaluating multilabel classifiers. We
propose a pragmatic solution to this problem; the guiding idea be-
hind our solution is to evaluate the prediction at the fine level only
when possible, and fall back to the coarse level if necessary.

Let a coarse-level category contain K fine-level tags. We de-
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note by t1 . . . tK the indicators of presence of these tags in the
ground truth. For k ∈ {1 . . .K}, the integer tk is equal to 1 if
the fine-level tag k is present in the ground truth and equal to 0 oth-
erwise. Furthermore, we denote by t0 the indicator of presence of
the other/unknown tag in the ground truth for the coarse category at
hand. In the following, we adopt the bar notation tk as a shorthand
for the logical negation (1 − tk). Whereas the fine-level composi-
tion of the coarse category cannot be assessed with certainty, taking
the product of all integers t0 . . . tk yields a coarse indicator of cer-
tain absence, equal to 1 if and only if none of the fine-level tags is
present, even the uncertain one. This operation of tag coarsening
allows to evaluate any prediction y against the ground truth t. In
each coarse category, the comparison of y and t results in, either, a
true positive (TP), a false positive (FP), or a false negative (FN):

TPcoarse =

(
1−

K∏

k=0

tk

)
×
(
1−

K∏

k=0

yk

)

FPcoarse =

(
K∏

k=0

tk

)
×
(
1−

K∏

k=0

yk

)

FNcoarse =

(
1−

K∏

k=0

tk

)
×
(

K∏

k=0

yk

)
. (2)

The three numbers above are equal to zero or one, and sum to one
in each coarse category. Although they are resilient to the incom-
pleteness of tags, this comes at the cost of them being insensitive
to permutations of complete fine-level tags within the same coarse
category. Therefore, we propose the alternative definitions below:

TPfine =

(
K∑

k=1

tkyk

)
+ t0 ×

(
1−

K∏

k=1

tkyk

)
×
(
1−

K∏

k=0

yk

)
,

FPfine = t0 ×
(

K∑

k=1

tkyk

)
+ t0y0 ×

(
K∏

k=1

tk

)
×
(
1−

K∏

k=1

yk

)
,

FNfine =

(
K∑

k=1

tkyk

)
+ t0 ×

(
K∏

k=1

tk

)
×
(

K∏

k=0

yk

)
. (3)

In contrast to their coarse counterparts, these counters range from 0
to K. In the simple case where the ground truth is complete (i.e.,
t0 = 0), they boil down to a one-to-one comparison of complete
fine-level predicted tags yk with the complete fine-level ground
truth tags tk, with the incomplete prediction y0 being counted as
a false positive if present. However, if the ground truth contains the
incomplete tag (i.e., t0 = 1), FPfine falls to zero. If, in addition,
no complete fine-level ground truth tag tk matches a complete fine-
level prediction (i.e., tkyk = 0 for all k > 0), then the number of
true positives is set to one if the coarsened predicted tag is present
(i.e., yk = 0 for any k ≥ 0) and zero otherwise. Lastly, if the coars-
ened predicted tag is absent (i.e., yk = 0 for all k ≥ 0) and if the
ground truth does not contain any complete tag (i.e., tk = 0 for all
k > 0), then the number of false negatives is set to t0.

For example, if a small engine is present in the ground truth
and absent in the prediction but an other/unknown engine is pre-
dicted, then it is a true positive in the coarse-grained sense, but a
false negative in the fine-grained sense. However, if a small engine
is absent in the ground truth and present in the prediction, then the
outcome of the evaluation will depend on the completeness of the
ground truth for the coarse category of engines. If this coarse cate-
gory is complete (i.e. if the tag “engine of uncertain size” is absent

from the ground truth), then we may evaluate the small engine tag
at the fine level, and count it as a false positive. Conversely, if the
coarse category of engines is incomplete (i.e. the tag “engine of
uncertain size” is present in the ground truth), then we fall back to
coarse-level evaluation for the sample at hand, and count the small
engine prediction as a true positive, in aggregation with potential
predictions of medium engines and large engines.

In each coarse category, these integer counts can then be trans-
lated into well-known information retrieval metrics: precision, re-
call, F1 score, and area under the precision recall curve (AUPRC).
Furthermore, they can be micro-averaged across coarse categories
to yield an overall F1 score and an overall AUPRC. The repository
of our baseline system contains an open-source implementation of
these metrics, both for “coarse” and “fine” formulas3.

5. BASELINE SYSTEM

For the baseline classifier (cf. footnote 3) we use a multi-label logis-
tic regression model. The model uses VGGish embeddings [19] as
its input representation, which are computed from non-overlapping
0.96-second windows, giving us ten frames of 128-dimensional em-
beddings for each clip in our dataset. We train the model at the
frame-level and use the weak tags from each audio clip as the targets
for each of the 10 frames in a clip. To aggregate the crowdsourced
annotations for training, we count a positive for a tag if at least one
annotator has labeled the audio clip with that tag, i.e. minority vote.

We trained the model using stochastic gradient descent to min-
imize binary cross-entropy loss. To train the model to predict fine-
level tags, the loss is modified such that if “other/unknown” is an-
notated for a particular coarse tag, the loss for the fine tags corre-
sponding to this coarse tag is masked out. We use early stopping
based on the validation set loss to mitigate overfitting. We trained
one model to only predict fine-level tags, and we trained another
model to only predict coarse-level tags.

For clip-level inference, we predict tags at the frame level and
take the average of output tag probabilities as the clip-level tag prob-
abilities. The resulting summary and class-wise metrics are pre-
sented in Table 1. Overall the baseline models achieved an AUPRC
of 0.62 and 0.76 on the test split’s fine and coarse levels respec-
tively, and performed poorly on music and non-machinery impact
sounds, leaving considerable room for improvement.

6. CONCLUSION

SONYC-UST is a multi-label dataset for urban sound tagging,
recorded from an urban acoustic sensor network and annotated by
crowdsourced volunteers. This dataset addresses deficiencies in the
current set of urban sound datasets by providing real-world record-
ings and a label set that more closely matches the needs of city
agencies in charge of noise abatement. In this work, we present the
process used to collect this data; a taxonomy of urban sound tags
informed by the New York City noise code and consultation with
noise enforcement agents; metrics to evaluate tagging systems with
uncertain ground-truth data; and a baseline model demonstrating
that this is a challenging task with considerable room for improve-
ment. We hope this dataset will encourage researchers to focus on
this problem and advance the state of the art in urban sound event
detection, helping build tools to make cities quieter.

3https://github.com/sonyc-project/urban-sound-tagging-baseline
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ABSTRACT 

The main scientific question of this year DCASE challenge, 

Task 4 - Sound Event Detection in Domestic Environments, 

is to investigate the types of data (strongly labeled synthetic 

data, weakly labeled data, unlabeled in domain data) re-

quired to achieve the best performing system. In this paper, 

we proposed a deep learning model that integrates Non-

Negative Matrix Factorization (NMF) with Convolutional 

Neural Network (CNN). The key idea of such integration 

is to use NMF to provide an approximate strong label to the 

weakly labeled data. Such integration was able to achieve 

a higher event-based F1-score as compared to the baseline 

system (Evaluation Dataset: 30.39% vs. 23.7%, Validation 

Dataset: 31% vs. 25.8%). By comparing the validation re-

sults with other participants, the proposed system was 

ranked 8th among 19 teams (inclusive of the baseline sys-

tem) in this year Task 4 challenge. 

Index Terms— Non-negative matrix, convolutional 

neural network, DCASE 2019 

1. INTRODUCTION 

The primary objective of a Sound Event Detection (SED) 

system is to identify the type of sound source present in an 

audio clip or recording and return the onset and offset of the 

identified source. Such a system has great potential in sev-

eral domains, such as activity monitoring, environmental 

context understanding, and multimedia event detection [1], 

[2]. However, there are several challenges associated with 

SED in real-life scenarios.  

Firstly, in real-life scenarios, different sound events can 

coincide [2]. Secondly, the presence of background noise 

could complicate the identification of sound event within a 

particular time frame [3]. This problem is further aggra-

vated when the noise is the prominent sound source result-

ing in a low Signal to Noise Ratio (SNR). Thirdly, each 

event class is made up of different sound sources, e.g., a dog 

 
 This work was supported by the Economic Development Board-Industrial Postgraduate Programme (EDB-IPP) of Singapore under 

Grant BH180750 with Visenti Pte. Ltd. 

bark sound event can be produced from several breeds of 

dogs with different acoustic characteristics [1]. Finally, to 

achieve the best results, SED detection algorithm may re-

quire strongly labeled data where the occurrence of each 

event with its onset and offset are known with certainty dur-

ing the model development phase.  

While such data are useful, collecting them is often 

time-consuming, and sizes of such dataset are often limited 

to minutes or a few hours [3], [4]. In certain scenarios such 

as an approaching vehicle, the onset and offset time is am-

biguous due to the fade in and fade out effect [5] and is sub-

jective to the person labeling the event. 

On the other hand, there exist a substantial amount of 

data known as the weakly labeled data where only the oc-

currence of an event is known without any offset or onset 

annotations. While it seems like the core information is 

missing, previous implementations proposed in the annual 

Detection and Classification of Acoustic Scenes and Events 

(DCASE) challenge that utilized only weakly labeled data 

had achieved a certain level of success [6]-[8]. Although a 

large number of different SED systems  were proposed in 

the past, a majority of them were mainly based on Gaussian 

Mixture Model (GMM) [9], Hidden Markov Model (HMM) 

[10] or the use of dictionaries constructed using NMF [11-

13]. However, due to the rising success of deep learning in 

other domains [14-17], deep learning for SED development 

is now a norm and has been shown to perform slightly better 

than established methods [1]. Riding on the success of deep 

learning, this paper proposes a deep learning model that in-

tegrates NMF and CNN which can provide an approximate 

strong label to the weakly labeled data. Results have shown 

that the proposed system achieved a much higher event 

based F1-score as compared to the baseline system (Evalu-

ation Dataset: 30.39% vs. 23.7%, Validation Dataset: 31% 

vs. 25.8%) and by comparing the validation results with 

other participants, the proposed system was ranked 8th 

among 19 teams (inclusive of the baseline system) in this 

year Task 4 challenge. 

https://doi.org/10.33682/50ef-dx29
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2. RELATED WORK 

In recent years, SED development has been overwhelmed 

with the use of deep learning algorithms particularly the use 

of CNN or Convolutional Recurrent Neural Network 

(CRNN). This phenomenon was also reflected in the 2018 

and 2019 DCASE Task 4 challenge, where a large group of 

participants proposed the use of CRNN. As discussed in [1], 

CNN has the benefit of learning filters that are shifted in 

both time and frequency while Recurrent Neural Network 

(RNN) has a benefit of integrating information from the ear-

lier time windows. Thus, a combined architecture has the 

potential to benefit from two different approaches that sug-

gest its popularity.  

The CRNN architecture proposed by Cakir et al. [1] 

first extracted features through multiple convolutional lay-

ers (with small filters spanning both time and frequency) 

and pooling in the frequency domain. The features were 

then fed to recurrent layers, whose features were used to ob-

tain event activity probabilities through a feedforward fully 

connected layer. Evaluation over four different datasets had 

also shown that such a method has a better performance as 

compared to CNN, RNN and other established SED system. 

However, such a system would require a large amount of 

annotated data for training.  

Lu [8] proposed the use of a Mean Teacher Convolu-

tion System that won the DCASE Task 4 challenge with an 

F1 score of 32.4%. In their system, context gating was used 

to emphasize the important parts of audio features in frames 

axis. Mean-Teacher semi-supervised method was then ap-

plied to exploit the availability of unlabeled data to average 

the model weights over training steps. Although this system 

won the 2018 challenge, there is still a large room for im-

provement. 

3. SYSTEM OVERVIEW 

3.1. Audio Processing 

In this system, training inputs are mel-frequency scaled. 

This is because they can provide a reasonably good repre-

sentation of the signal’s spectral properties. At the same 

time, they also provide reasonably high inter-class variabil-

ity to allow class discrimination by many different machine 

learning approaches [18]. 

In this paper, audio clips were first resampled to 32 kHz 

that were suggested to contain the most energies [19]. 

Moreover, segments containing higher frequency may not 

be useful for event detection in daily life [8].  

A short-time fast Fourier transform with a Hanning 

window size of 1024 samples (32 ms) and a hop size of 500 

samples (15.6 ms) was used to tabulate the spectrogram. Af-

ter that, a mel filter bank of 64 and bandpass filter of 50 Hz 

to 14 kHz was applied to obtain the mel spectrogram. Fi-

nally, a logarithm operation was applied to obtain the log-

mel spectrogram to use be used as input to the training 

model..  

3.2. Non-Negative Matrix Factorization 

The NMF popularized by Lee and Seung [20] is an effective 

method to decompose a non-negative L N matrix M into 

two non-negative matrices, W and H of sizes L R and

R N respectively where R is the number of components. 

The linear combination of W and H produces an approxi-

mated M and can be represented as 

M WH                            (1)       

𝑊  can be interpreted as the dictionary matrix and 𝐻 

can be interpreted as the activation matrix. These two ma-

trices can be randomly initialized and updated through the 

multiplicative rule given as [20] to produce an optimized set 

of W and H . The updating procedure can be terminated 

when any further updating produces no improvement or 

when the difference of M   and WH is below a user-de-

fined threshold. 

1

T

T

M
W

WHW W
W

                               (2) 

1

T

T

M
H

WHH H
H

                              (3) 

 
W is commonly extracted on isolated events to form a 

dictionary and SED is performed by applying a threshold 

on the activation matrix obtained from the decomposition 

of the test data [12]. Since NMF only works on non-nega-

tive matrix, it was applied on the mel spectrogram prior to 

the logarithm operation. Thus, M  represents the mel spec-

trogram with L as the number of mel bins and N as the 

number of frames. In this paper, instead of consolidating 
W  to form the dictionary, we find the H to indicate which 

frames of each audio clip are activated (above a pre-defined 

threshold) to label the weakly labeled data so that the 

weakly labeled data becomes an approximated strongly la-

beled data. If the clip contains multiple events, then those 

activated frames are deemed to contain all the sound 

events. 

3.3. Convolutional Neural Network 

The CNN used in this system is modified based on the one 

proposed in [19]. Kong et al. [19] proposed four different 

CNN with a different number of layers and pooling opera-

tors and found that the 9 layers CNN with max-pooling op-

erator achieved the best performance. In this paper, we are 

interested in finding out whether with the inclusion of NMF, 

will a shallower CNN produce a comparable or even a better 

41



Detection and Classification of Acoustic Scenes and Events 2019  25-26 October 2019, New York, NY, USA
  

 

result. In this paper, a 5 layers CNN with max-pooling op-

erator is proposed. In this architecture, the 5 layers consist 

of 1 input layer and 4 convolutional layers of kernel size 5 

x 5 with a padding size of 2 x 2 and strides 1 x 1. This ar-

chitecture is similar to Kong et al. [19] except for the kernel 

size and the number of layers as shown in Table 1.  

Table 1. CNN architectures 

Proposed Kong [19] 

Input : log-mel spectrogram 

5 5@64

,BN ReLU

 
 
 

  
3 3@64

2
,BN ReLU

 
 

 
 

2 x 2 Max Pooling 

5 5@128

,BN ReLU

 
 
 

 
3 3@128

2
,BN ReLU

 
 

 
 

2 x 2 Max Pooling 

5 5@ 256

,BN ReLU

 
 
 

 
3 3@ 256

2
,BN ReLU

 
 

 
 

2 x 2 Max Pooling 

5 5@512

,BN ReLU

 
 
 

 
3 3@512

2
,BN ReLU

 
 

 
 

For both architectures, Binary Cross Entropy is adopted 

as the loss function which is similar to the loss function 

adopted in [19] given as  

( , )

1

[ ln( ) (1 ) ln(1 )]

K

BCE p y k k k k

k

l y p y p

=

= + − −                 (4) 

3.4. System Flow 

 

Fig. 1. Flowchart of proposed architecture 

In this year DCASE challenge, Task 4 - Sound Event De-

tection In Domestic Environments, is specifically orga-

nized to investigate the types of data (strongly labeled syn-

thetic data, weakly labeled data, unlabeled in domain data) 

required to achieve the best performing system. Therefore, 

the flow of the proposed system depends on the types of 

data used as seen in Fig. 1. While strongly labeled and 

weakly labeled data can be used readily, unlabeled data re-

quire a model to be trained in advance so that its content 

can be tagged and be used as training data. Example, if the 

user is keen to use all the data given, NMF will be applied 

to weakly labeled data to produce an approximated strongly 

labeled data. The log-mel spectrograms tabulated from 

both the approximated strongly labeled data and the actual 

strongly labeled data will be combined and used as input to 

the CNN. The model trained will be used to tag the events 

in the unlabeled data. Similar to weakly labeled data, NMF 

is applied to tagged unlabeled data prior to the calculation 

of log-mel spectrogram. These newly calculated log-mel 

spectrogram will be combined with previous calculated 

log-mel spectrograms and used as input to train a new 

model. 

4. RESULTS AND DISCUSSION 

Based on the proposed system flow, we tested the accuracy 

of our proposed architecture using the different combina-

tion of data on the given evaluation dataset that is a mixture 

of DCASE 2018 task 4 test set, and evaluation set consist-

ing of 1168 audio clips with 4093 events.  

Based on the results shown in Table 2, the model 

trained using both weakly labeled data and synthetic data 

achieved the highest accuracy as compared to using other 

combinations of data. It is surprising to find that strongly 

labeled synthetic data was not able to achieve higher accu-

racy than weakly labeled data. Whereas, a combination of 

data can increase the accuracy of the model.  

On the other hand, results have shown that using only 

unlabeled in domain data or training a model with the in-

clusion of unlabeled in domain data labeled using different 

models, accuracy decreases. Furthermore, by comparing 

the proposed model results with Kong et al. [19] model and 

baseline model, it shows that although the proposed model 

can achieve a better event based F1 score, it has a lower 

segment based F1-score as compared to Kong et al. [19]. 

These two phenomenon could be due to the way how NMF 

was utilized. In this system, NMF was used to find H that 

indicates when the event was activated for the calculated H 

of certain frames were above a predefined threshold. How-

ever, if the clip contains multiple events, then NMF will 

indicate that those frames above a predefined threshold be-

long to all the events present in the audio. As such, it af-

fected the quality of unlabeled data being labeled which re-

sulted in a decrease in accuracy when unlabeled data is in-

cluded and also resulted in a lower segment accuracy. 

Therefore, it may be worthwhile to investigate the use of 

source separation before the application of NMF. 

The best four models (trained using C1, C3, C5, C7 as 

described in Table 2) were submitted to the challenge where  
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the validation dataset is made up of audio clips extracted 

from YouTube and Vimeo videos. The best performing was 

the model trained using C3 which achieved an F1-score of 

31%. By comparing the validation results with other partic-

ipants, the proposed system was ranked 8th among 19 teams  

(inclusive of the baseline system) in this year Task 4 chal-

lenge.   

The system proposed by Lin and Wang [22] come in 

first place which achieved an accuracy of 42.7% while the 

system proposed by Yang et al. [23] took the last place 

which achieved an accuracy of 6.7%. On the other hand, 

the median accuracy for this challenge was at 29.25%. 

While this system can be considered as an above-aver-

age system, there is still a large room of improvement as 

compared to the top 3 models which achieved F1-score of 

above 40%. One of the common features adopted by the top 

3 models [22], [24], [25] was the use of mean teacher model 

which was also part of the winning model in 2018 [8] ([22] 

used a variant of mean teacher model called the professional 

teacher model). The idea of the mean teacher model was to 

average the model weights over training steps instead of la-

bel predictions and at the same time bringing the benefits of 

improved accuracy with fewer training labels [26] and this 

has become the new frontier in SED as seen in DCASE 

2018 and 2019 challenge. However, it should be noted that 

virtual adversarial training as proposed by Agnone and 

Altaf [27] can be promising as well where it achieved an 

accuracy of 59.57% on the evaluation dataset although it 

only achieved an accuracy of 25% on the validation dataset. 

It was mentioned in [26] that both methods are compatible 

and their combination may produce better outcomes. 

5. CONCLUSION 

In this paper, a five layers CNN with the use of NMF was 

proposed for DCASE 2019 task 4. The proposed system 

was able to achieve a higher event based F1-score as com-

pared to the baseline model. However, there is still room 

for improvement, particularly in the aspect of source sepa-

ration that may very well helps in the accuracy of sound 

event detection. Future work may also consider the integra-

tion of mean teacher model virtual adversarial training 

which may produce an even better outcome. 
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ABSTRACT

In this paper, we present an acoustic scene classification framework
based on a large-margin factorized convolutional neural network
(CNN). We adopt the factorized CNN to learn the patterns in the
time-frequency domain by factorizing the 2D kernel into two sepa-
rate 1D kernels. The factorized kernel leads to learn the main com-
ponent of two patterns: the long-term ambient and short-term event
sounds which are the key patterns of the audio scene classification.
In training our model, we consider the loss function based on the
triplet sampling such that the same audio scene samples from dif-
ferent environments are minimized, and simultaneously the differ-
ent audio scene samples are maximized. With this loss function,
the samples from the same audio scene are clustered independently
of the environment, and thus we can get the classifier with bet-
ter generalization ability in an unseen environment. We evaluated
our audio scene classification framework using the dataset of the
DCASE challenge 2019 task1A. Experimental results show that the
proposed algorithm improves the performance of the baseline net-
work and reduces the number of parameters to one third. Further-
more, the performance gain is higher on unseen data, and it shows
that the proposed algorithm has better generalization ability.

Index Terms— Acoustic scene classification, Factorized con-
volutional neural network, Triplet sampling

1. INTRODUCTION

The interest of acoustic scene classification (ASC) has been contin-
uously increasing in the last few years and is becoming an important
research in the fields of acoustic signal processing. The ASC aims
to identify different environments given the sounds they produce [1]
and has various applications in context-awareness and surveillance
[2, 3, 4]: e.g. the device which recognizes the environmental sound
by analyzing the surrounded audio information. With the release of
large scale datasets and challenge tasks by Detection and Classifi-
cation of Acoustic Scenes and Events (DCASE) [5, 6], the ASC has
become a very popular research topic in audio signal processing.
We have an increasing number of research centers, companies, and
universities participating in the DCASE challenge and workshop
every year.

In the past decade, deep learning has accomplished many
achievements in audio, image, and natural language processing.
Especially, the algorithms based on the convolutional neural net-
work (CNN) are dominant in ASC [7, 1, 8, 9] tasks. In [2], a
simple CNN with 2 layers was adopted, and many attempts were
tried to solve the overfitting problem in improving the ASC perfor-
mance by increasing the model complexity: e.g. number of layers

∗Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

in CNN. In [7], SubSpectralNet method was introduced to capture
more enhanced features with a convolutional layer by splitting the
time-frequency features into sub-spectrograms. In [8], a simple pre-
processing method was adopted to emphasize the different aspects
of the acoustic scene. In [10, 11, 12], an ensemble of various acous-
tic features such as MFCC, HPSS, i-vector and the technique that
independently learns the classifiers of each feature was proposed.
However, the method is heuristic and requires a lot of computation
in the front-end step before CNN inference step.

In order to solve the problems of the above-mentioned conven-
tional methods, we propose an algorithm that uses only one feature
and does not increase the model complexity of CNN. The pattern
of each acoustic scene in the time-frequency domain can be rep-
resented as a low-rank matrix, thus we consider designing a 2D
convolution layer as two consecutive convolution layers with 1D
kernels. Also, we consider a loss function such that the samples
from the same audio scene are clustered independently of the envi-
ronment to be robust to unseen environment. In short, our proposed
ASC framework is based on the Sub-Spectral Net [7], and the kernel
factorization and loss function are applied to reduce the computa-
tional complexity and increase the generalization ability on unseen
environment. We evaluated our ASC framework using the dataset
of DCASE task1A, and all experimental results show that the pro-
posed algorithm with the data augmentation techniques [13, 14] sig-
nificantly improves the accuracy.

The rest of the paper is organized as follows. Section 2 formu-
lates the problem of ASC. Section 3 describes the proposed algo-
rithm including our factorized CNN structure and novel loss func-
tion. Section 4 presents the experimental results and analysis. Fi-
nally, Section 5 concludes.

2. ACOUSTIC SCENE CLASSIFICATION

Audio scene classification, the task1A of the DCASE 2019 chal-
lenge [6], is a process of predicting a label y∗ given an input audio
clip x as:

y∗ = argmax
y∈Y

p(y|fx; θ) (1)

where p(y|fx; θ) is the audio scene posterior given the feature map
fx with the network parameter θ, and Y is the entire set of scene la-
bels. The input audio clip x contains only one audio scene, and the
feature map of x, fx, can be obtained using various algorithms such
as deep audio embeddings [15, 16], log-mel [17, 18, 10, 12], ampli-
tude modulation filter bank [19, 20], and perceptual weighted power
spectrogram [11]. In this paper, we use the 40 log-mel, fx ∈ Ra,
since recently many approaches [10, 12] adopt the log-mel feature
and show good performances in audio scene classification task. The

https://doi.org/10.33682/8xh4-jm46
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Figure 1: Examples of two audio scene samples (red, blue) from
different cities (Triangle, rectangle, circle, hexagon). Given an au-
dio scene, the audio scene from the same city are more clustered
than from different cities. For the better generalization ability on
unseen city, we apply a loss such that the samples are clustered in-
dependently of the cities.

posterior p(y|fx; θ) is the probabilistic score of the audio scene la-
bel y using the softmax:

p(y|fx; θ) = exp(My(fx))∑
υ∈Y exp(Mυ(fx))

(2)

whereMv∈Y(fx) is the output of fx obtained from the final layer of
the audio scene classification network M .

The dataset of task1A consists of the audio scene samples
recorded in a number of cities: i.e. samples of an audio scene (e.g.
airport) were recorded in a number of locations (e.g. Amsterdam,
London, Helsinki). In real applications, the audio scene classifier
can be trained to classifyN audio scenes using the dataset recorded
in a limited number of cities, and the classifier may be deployed to
the test environments which are unseen cities in the training dataset.
In such cases, the test samples can be misclassified since the classi-
fication boundary may not accurately separate the audio scene sam-
ples from unseen cities. This is illustrated in Fig. 1. In this example,
there are two audio scene feature points (red, blue) from three dif-
ferent cities (triangle, circle, rectangle). And, given an audio scene,
it’s highly probable that the samples from the same city are more
clustered than from different cities. The black dashed line is the
classification boundary trained with the audio scene data from three
different cities. Here, we may have the test samples from unseen
city (gray hexagon) which can be presented in the other region near
the classification boundary. In this case, some of the test samples
will be misclassified. In contrast to the left-side of the Fig. 1, if
the audio scene features are clustered independently of the cities,
and the within-class distances are minimized, then we can have the
classifier with more generalization ability especially when there are
audio scene samples from unseen cities as shown in the right-side
of the Fig. 1.

3. PROPOSED ALGORITHM

The block diagram of our proposed algorithm is illustrated in Fig.
2. The overall structure is based on Sub-Spectral Net [7] which
assumes that the key patterns of each class are concentrated on

Figure 2: Block diagram of proposed acoustic scene classification
algorithm.

the specific frequency bins, and those key patterns are effectively
learned by dividing the input mel-spectrogram into the multiple
sub-bands and using the CNN classifier for each sub-band inde-
pendently. By dividing the input mel-spectrogram into the multiple
sub-bands and learning the CNN classifier of each sub-band inde-
pendently, the key patterns of specific frequency bins are effectively
learned. The CNN classifiers consist of two convolution layers and
one fully connected network as in the baseline network of DCASE
2019. The outputs of all FCN layers are concatenated, and they are
used as the input of the global classifier.

3.1. Factorized CNN

Recently, the CNN-based algorithms have shown great performance
and the state-of-the-art result in various areas such as image classi-
fication, audio/speech processing, speech recognition, and speaker
verification [21, 22]. As CNN-based algorithms are also a popu-
lar trend in the ASC task, most of the algorithms submitted to the
DCASE 2018 are based on CNN [10, 11, 12]. The mel-spectrogram
feature of audio data can be regarded as an image, and the CNN-
based algorithm can be used to recognize the audio characteristics
such as the phoneme and human voices.

When we train a CNN-based model for acoustic scene classi-
fication, the over-fitting problem can be occurred due to the limi-
tation of the data even when we use simple 2-layer CNN structure
is used, while learned convolution filters had a noisy pattern that
was difficult to analyze. The CNN model tends to memorize all
training audio scenes including the noise components which do not
help classification, and it may cause the poor generalization perfor-
mance.

To resolve the above-mentioned problem, we propose the fac-
torized CNN based on low-rank matrix factorization. Low-rank ma-
trix factorization is also widely used technique in audio signal sepa-
ration [23, 24], and it is based on that the mel-spectrogram of audio
signal can be represented as the summation of a small number of
rank 1 matrices. This leads to classify the acoustic scene with a
small number of parameters for the ASC network.

In the classification of acoustic scenes, we can consider the fol-
lowing two audio elements: one is the ambient signal over a long
period of time, and the other is an event signal with short period
such as bird sound in a park and car horn in the road. As shown
in Fig. 3, the ambient signals for each acoustic scene show faint
stripes of horizontal lines in mel-spectrogram due to the statistical
stationarity over time. Also, many audio examples for this kind of
event signals show the pattern with the horizontal stripe, and this
can be represented as a rank-1 matrix.
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Figure 3: The mel-spectrograms of the sound of a bird in a park and
the horn of a car. (Top left) Mel-spectrogram of ”park-stockholm-
102-2895-a.wav” in the development dataset (Bottom left) Zoom-
up of top left (Top right) Mel-spectrogram of ”street traffic-london-
271-8255-a.wav” (Bottom right) Zoom-up of top right

The detail specification of each layer is described in Figure
4. Rather than using a single conv2D layer which has rectangu-
lar (k, k) kernel, we use two consecutive conv2D layers. These two
conv2D layers have 1 dimensional kernels (k, 1) and (1, k). When
the rectangular (k, k) kernel is a rank-1 matrix and can be factorized
into (k, 1) and (1, k) vectors, conv2D with (k, k) kernel becomes
equivalent to conv2D with (k, 1) and conv2D with (1, k). So, this
network is equivalent to conv2D layer with a rank-1 matrix kernel.
With the convolution kernel of rank-1 matrix, we can reduce the
over-fitting of learning noisy patterns from training data. Also, the
number of model parameters can be reduced since two 1-dim ker-
nels need 2k while the square kernel needs k2 parameters.the square
kernel needs k2 parameters.

The factorized CNN originally proposed in this paper is differ-
ent from the network in [25] where it factorized the 3D convolution
layer as a single intra-channel convolution and a linear channel pro-
jection.

3.2. Large-margin loss function

As the acoustic scene classification is the multi-class classification
problem, which maximizes the probability of the correct label and
minimizes that of all the others, most of the algorithms are using
the cross-entropy loss function. The cross entropy between the true
label y and recognized output ŷ is given as

LCE = −
∑

y

y log(ŷ). (3)

However, the cross-entropy loss only focuses on fitting or clas-
sifying the training data accurately; it does not explicitly encourage
a large decision margin for classification [26]. Even when training
the simple CNN classifier which has only 2 layers with the cross en-
tropy loss, we can observe that the training loss converges to zero,
while the test loss does not converge.

In this context, we consider a loss function similar to the triplet
loss but slightly different. Triplet loss function is widely used
loss function in many machine learning tasks such as person re-
identification, face clustering, and speaker embedding [27, 22]. It
enforces the positive pairs to be closer, and the negative pairs to be

Figure 4: The detail specifications of each block.

further and can be expressed as

Ltriplet = max
(
‖xa − xp‖2 − ‖xa − xn‖2 + α, 0

)
, (4)

where x indicates the embedding vector which is the output of the
final convolution layer before entering the fully connected layer,
and xa, xp, and xn are anchor, positive, and negative embedding
vectors, respectively. α indicates the triplet loss margin parameter.
The anchor and positive pair should come from the same class, and
the anchor and negative pair should come from the different classes.
In our case, we modified the sampling: we choose the positive sam-
ple from the same class but different environment (city) to cluster
the samples independently of the environment as shown in Fig. 1.
Finally, we combine the cross-entropy and triplet losses as

LASC = LCE + γLtriplet (5)

where γ is the hyper-parameter which should be tuned.
To reduce the triplet loss effectively, we should choose a distant

anchor-positive pair and a close anchor-negative pair, however, it is
very inefficient to figure out the distance of all pairs for choosing
efficient pairs. Fortunately, the additional label which describes the
city of each acoustic scene is given in DCASE 2019 dataset. The
sound signals of the same acoustic scene and city is more similar
than that of the same acoustic scene and different city, therefore we
choose all anchor-positive pairs from the same acoustic scene and
different city and all anchor-negative pairs randomly.

3.3. Data augmentation

Since the number of training data is limited in the development
dataset, it is necessary to perform data augmentation to increase the
performance of unknown data. Most of the algorithms participat-
ing in the DCASE challenge are using a deep neural network-based
algorithm with high model complexity, so they are using data aug-
mentation and it improves the performance.

We used mix-up [13] and spec-augment [14] for the data aug-
mentation. Mix-up is one of the most popular method in past
DCASE 2018 challenge. It creates a new training sample by mix-
ing a pair of two randomly chosen training samples. Spec-augment
is an effective approach which shows significant performance im-
provement in acoustic speech recognition recently. It replaces val-
ues by zeros in randomly chosen time-frequency bands. It is also
effective in acoustic scene classification task, and applied in most
of the algorithms submitted in DCASE 2019 challenge.
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Validation dataset Overall Unseen city
Feature (Logmel number) 40 200 40 200
SubSpectralNet [7] 68.93 73.44 58.29 68.71
FCNN 71.15 75.97 59.89 70.32
FCNN-mixup 71.57 76.25 62.19 68.70
FCNN-spec 71.85 76.44 63.9 71.74
FCNN-mixup-spec 72.76 75.97 62.62 70.40
FCNN-triplet 72.67 76.61 63.07 70.24
FCNN-triplet-spec 73.14 77.19 64.23 72.38
DCASE 2019 Rank 1 [28] 85.10 -

Table 1: Classification accuracies (%) of the proposed algorithm
with different settings and the baseline CNN algorithm.

4. EXPERIMENT

4.1. Dataset

The dataset for this task is the TAU Urban Acoustic Scenes 2019
dataset, consisting of recordings from various acoustic scenes in
ten large European cities. For each recording location, there are
5-6 minutes of audio. The original recordings were split into seg-
ments with a length of 10 seconds that are provided in individual
files. The dataset includes 10 scenes such as ’airport’ and ’shopping
mall’. TAU Urban Acoustic Scenes 2019 development dataset con-
tains 40 hours of data with total of 14400 segments. Here, we used
9185 segments as a training dataset and 4185 segments as an evalu-
ation dataset, and this split is given in the first fold of the validation
set. For evaluation of unseen city, we used 1440 segments which is
recorded in Milan and not appeared in the training dataset.

4.2. Setup

Our source code is implemented as python script using Torch library
and our experiment is conducted on a GeForce GTX TITAN X GPU
having 12Gb RAM. As the stereo audio segments whose length is
10 seconds are sampled as 48kHz in DCASE 2019 development
dataset, we used 40 and 200 logmel features of the stereo channel
without down-sampling as the input of CNN. Also, we set the sub-
spectrogram size as 20 and overlap as 10 as the same setting in [7].
The input/output channel sizes of CNN structure is assumed to be
C1
in = 2, C1

out = 64, C2
in = 64, C2

out = 64 for 40 logmel case and
C1
in = 2, C1

out = 32, C2
in = 32, C2

out = 64 for 200 logmel case.
The kernel size parameter is set to be k = 7 for all logmel cases.
All of the convolution filters and weight matrices in dense layers
are initialized by kaiming normal and xavier normal functions in
pyTorch, respectively. The learning rate is set to 0.001 with Adam
optimizer. Here, the hyper-parameters of triplet loss margin, and
the balance coefficient between the cross-entropy and triplet losses
are respectively given as α = 0.2, and γ = 10.

4.3. Result

The DCASE 2019 development dataset includes recordings from
ten cities, and the training subset contains only 9 cities excepting
for Milan as unseen city. By checking the performance of unseen
city, we can measure the generalization ability of the learned model.
Therefore, we measured not only the accuracy of overall validation
dataset but also the accuracy of the dataset only containing unseen
city.

Input feature Network # of param

Logmel 40
DCASE baseline 117K

SubSpectralNet [7] 331K
Proposed FCNN 113K

Logmel 200 SubSpectralNet [7] 2,541K
Proposed FCNN 871K

DCASE 2019 Rank 1 [28] 48M

Table 2: The number of parameters for the DCASE baseline, Sub-
SpectralNet, and our proposed FCNN

Experimental results are enumerated in Table 1. Since the clas-
sification accuracy of the evaluation set is saturated before the 100-
th epoch, we trained all models for 200 epochs and averaged the
accuracies of last 10 epochs. For each evaluation of the algorithms,
the model training is conducted twice and the accuracies are also
averaged.

For the overall dataset, the factorized CNN (FCNN) improves
the performance of the baseline network by 2.22% and 2.53% for
40 and 200 logmel cases, respectively. Further improvement is con-
firmed when using the mix-up and spec-augment data augmenta-
tion. By adopting the proposed loss function combined the triplet
loss also improves the performance of the FCNN by 1.52% and
0.64%. When the spec-augment is applied to the FCNN with the
proposed loss function, the best performance which improves the
baseline network by 4.21% and 3.75% is obtained. Here, mix-up
cannot be used with triplet loss since the labels of augmented data
using mix-up are not discrete. For the only evaluation of unseen
city, the performance trends are similar to the overall dataset, and
the quantity of the performance enhancement is increased. The total
increase in performance of unseen city is 5.94% and 3.67%. For 40
logmel case, the performance increase is relatively 41% more than
the increase of the overall dataset, and it supports that the proposed
algorithm is robust against unseen data. Note that the performance
comparison with DCASE 2019 Challenge Rank 1 system [28] is
unfair since the system characteristics such as the number of input
features, model size, usage of ensemble and so on are different from
ours, but we enumerated it as a reference.

As the number of parameters in CNN is one of the main criteria,
we briefly compared the number of model parameters. As enumer-
ated in Table 2, the number of proposed FCNN parameters is about
one-third of SubSpectralNet, and it is almost the same as DCASE
baseline network.

5. CONCLUSION

In this paper, an acoustic scene classification algorithm based on a
large-margin factorized CNN is proposed. The motivation of a fac-
torized CNN is that the most key patterns in the mel-spectrogram
including the long-term ambient and short-term event sounds are
low-rank, and the factorized CNN can effectively learn these key
patterns with reducing the number of model parameters. To increase
the generalization performance of the learned model, the triplet loss
is combined with the cross-entropy loss function. Experimental re-
sults show that our proposed algorithm outperforms a conventional
simple CNN-based algorithm with decreasing the model complex-
ity. Further improvement on unseen data is also shown and it sup-
ports that the proposed algorithm has better generalization perfor-
mance.
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ABSTRACT

This paper details our approach to Task 3 of the DCASE’19 Chal-
lenge, namely sound event localization and detection (SELD).
Our system is based on multi-channel convolutional neural net-
works (CNNs), combined with data augmentation and ensembling.
Specifically, it follows a hierarchical approach that first determines
adaptive thresholds for the multi-label sound event detection (SED)
problem, based on a CNN operating on spectrograms over long-
duration windows. It then exploits the derived thresholds in an en-
semble of CNNs operating on raw waveforms over shorter-duration
sliding windows to provide event segmentation and labeling. Fi-
nally, it employs event localization CNNs to yield direction-of-
arrival (DOA) source estimates of the detected sound events. The
system is developed and evaluated on the microphone-array set of
Task 3. Compared to the baseline of the Challenge organizers, on
the development set it achieves relative improvements of 12% in
SED error, 2% in F-score, 36% in DOA error, and 3% in the com-
bined SELD metric, but trails significantly in frame-recall, whereas
on the evaluation set it achieves relative improvements of 3% in
SED, 51% in DOA, and 4% in SELD errors. Overall though, the
system lags significantly behind the best Task 3 submission, achiev-
ing a combined SELD error of 0.2033 against 0.044 of the latter.

Index Terms— Sound event detection and localization, convo-
lutional neural networks, DCASE19

1. INTRODUCTION

Sound event detection (SED) constitutes an active research area
with many applications, such as medical telemonitoring [1] and
surveillance [2]. Not surprisingly, SED has been the subject of mul-
tiple evaluation campaigns in the literature, including the recent and
well-established DCASE Challenges [3–5]. Moreover, alongside
SED, in many applications [6, 7] it is also crucial to determine the
location or, more coarsely, the direction of arrival (DOA) of each
detected sound event source. Thus, in Task 3 of the 2019 DCASE
Challenge [8], both problems are considered jointly (SED and DOA
estimation of the detected events). The task is referred to as sound
event localization and detection (SELD), and it is addressed in an
indoors scenario given multi-channel audio.

In this paper, we present our developed SELD system for Task
3 of the 2019 DCASE Challenge [8]. As deep-learning based meth-
ods are well-established, outperforming traditional machine learn-
ing ones in both SED [9–12] and DOA estimation [13,14], we adopt
a deep-learning approach. In particular, we employ convolutional
neural networks (CNNs) to first address SED, i.e., determine the
existence of each class at each time-frame, and to subsequently es-
timate the DOA for each of the audio segments predicted to exist.

Notably, for SED we follow a hierarchical approach, where, first, a
CNN operating over long-duration audio windows determines adap-
tive thresholds indicating how likely it is for each class to exist, and,
subsequently, an ensemble of CNNs operating over shorter-duration
windows determines the exact moments each class occurs.

The remainder of the paper is organized as follows: Section 2
overviews the Challenge dataset; Section 3 focuses on the devel-
oped SELD system; Section 4 details its evaluation on the Chal-
lenge data; and, finally, Section 5 concludes the paper.

2. CHALLENGE DATASET

Task 3 of the 2019 DCASE Challenge provides two datasets of
the same indoors sound scene: “Microphone Array” and “Am-
bisonic” [15]. In this paper, the “Microphone Array” set is em-
ployed, containing four-channel directional microphone recordings
from a tetrahedral array configuration. The development dataset
consists of 400 1-min long recordings sampled at 48 kHz, divided
into four cross-validation splits. For the purposes of the Challenge,
the given cross-validation split should be used during system devel-
opment, and the use of external data is not allowed. In addition, the
evaluation dataset consists of 100 1-min long recordings. Note also
that, in our system, all audio data are downsampled to 16 kHz.

There exist 11 sound event classes, taken from Task 2 of the
2016 DCASE Challenge [4]. The duration of each event segment
in the development set ranges from 205ms to 3.335s, and there can
be at most two overlapping sounds at any given time. The number
of segments is almost the same for all classes, however there exists
significant variation in their total durations (see also Fig. 1).

Each segment is associated with an elevation and an azimuth
value. Elevation values lie within the [-40◦, 40◦] range, while az-
imuth values are within [-180◦, 170◦], both at a resolution of 10◦.
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Figure 1: Class total durations in the four development set splits.

3. SYSTEM DESCRIPTION

In our method, we first address the SED sub-task and then the DOA
one. Specifically, we develop a hierarchical approach to the for-

https://doi.org/10.33682/c6q0-wv87
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Figure 2: Overview diagram of the developed system for Task 3 of DCASE’19 (CNNs are drawn using the PlotNeuralNet software [16]).

mer, determining the existence of each sound event class at each
time-frame. For this purpose, first a “long SED model” estimates
adaptive thresholds for each class, also taking into account the class
prior probabilities. Then, an ensemble of “short SED models” deter-
mines the exact time-frames each class exists, exploiting the afore-
mentioned thresholds. Following SED, we utilize a DOA model to
localize the source of each detected event, estimating its elevation
and azimuth values. All models are multi-channel CNNs, operating
on raw waveforms or spectrograms over sliding windows of differ-
ent durations. A schematic of the system is provided in Fig. 2.

3.1. Short SED models

We create an ensemble of multi-channel CNNs (12 in total, as ex-
plained in the next paragraph), all with the architecture of Table 1.
These operate on raw audio waveforms over short-duration win-
dows of 100ms or 200ms, with these values determined after ex-
perimenting with various window lengths on the development set.
We do not apply any preprocessing to the four channels (other than
their downsampling to 16 kHz), and we use all four microphone
data streams as input to the CNNs. The output layers of the models
have 11 neurons (same as the number of sound event classes), each
providing the probability of its corresponding class, following sig-
moid activation. Note that, during training, windows with no sound
events are kept, and windows with overlapping events are assigned
to all occurring events inside them (maximum of two), while they
slide in steps equal to half their duration, i.e. by 50 or 100ms. All
CNNs are trained with a binary cross-entropy objective using the
Adam optimizer and early stopping to prevent overfitting, employ-
ing the Keras API for development [17].

In order to have more segments with overlapping sounds, we
employ data augmentation as follows: we add segments, each be-
longing to only one class, two at a time. Concerning the Challenge
evaluation metrics, we observed that datasets with more overlap-
ping segments tend to yield better frame-recall results, while data
with less overlapping segments tend to perform better in terms of
SED error and F-score. As we wish to improve all three metrics si-
multaneously, we choose to create different models, trained on data
with various degrees of artificial overlap, and then ensemble them.
Thus, we create six datasets, having 0%, 5%, 10%, 20%, 30%, and
40% extra overlapping segments, and we train two different CNNs
on each (i.e. with input window sizes of 100ms and 200ms length),
thus resulting to 12 models. The process is repeated for each of the
four given development data splits.

3.2. Long SED model

A major issue in multi-label problems concerns the choice of class
thresholds, used to decide if a class exists or not. A simple ap-
proach is to set all thresholds to 0.5, as in the Challenge baseline
system [18], however their careful tuning may yield significant im-
provements. For example, in [9] exhaustive search is utilized to
yield a single optimal threshold for all classes, whereas in [10, 11]
separate thresholds are employed for each class, found by exhaus-
tive search. Nevertheless, both approaches may be prone to overfit-
ting due to the exhaustive search used.

To prevent overfitting, we opt to create a SED model operat-
ing on longer-duration data windows. Our motivation stems from
the expectation that such a model will provide a “bigger picture”
concerning class existence, and thus can help in determining class
thresholds adaptively. These can then be utilized in conjunction
with the outputs of the short SED models to predict the exact time-
frames in which each sound event occurs.

For this purpose, we create a multi-channel CNN that operates
on power spectrograms over signal windows of one-second duration
(sliding in 100ms steps during training), with 128×32-dimensional
spectrograms generated by libROSA [19] under its default param-
eters. We use all available channels, ending up with four spectro-
grams as input. For data augmentation, we consider all permuta-
tions of the four channels, resulting in 24 times more training data.
Details of the long SED model architecture are provided in Table 2.

3.3. Adaptive thresholds and SED predictions

To determine the class thresholds, we work with a time-resolution
of 20ms, exploiting the long SED model predictions. These
fine-resolution predictions are obtained by averaging the coarser-
resolution probabilities of each class over all 1s-long windows that
contain the given 20ms time-frame, while sliding by 200ms.

A first approach is to simply set the desired thresholds to

θ t
c = 1− lpt

c , (1)

where lpt
c denotes the long SED model prediction (probability) of

class c at time-frame t , and θ t
c is the corresponding threshold. In

general, however, we do not wish the thresholds to be too close to
1, in order to guard against false negatives of the long SED model.
Thus, we choose to smooth (1) by multiplying the thresholds with
a number within the [0.6, 0.9] range. This number is different for
each class, and it is based on its total duration in the training data
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Input (4 x segment size)

100 filters, Conv 1x10, ReLU
MaxPool 1x5

200 filters, Conv 1x10, ReLU
MaxPool 1x6

300 filters, Conv 1x10, ReLU
MaxPool 1x7

500 filters, Conv 4x1, ReLU

Flatten
Dropout 0.6

1000 neurons, Dense, ReLU
Dropout 0.3

11 neurons, Dense, sigmoid

Table 1: Architecture of the short SED
models. Segment sizes are 1600 for 100ms
windows and 3200 for 200ms ones.

Input (4x128x32)

40 filters, Conv 1x6x1, ReLU
MaxPool 1x3x1

60 filters, Conv 1x1x6, ReLU
MaxPool 1x1x3

80 filters, Conv 1x6x6, ReLU
MaxPool 1x3x3

Flatten
Dropout 0.5

500 neurons, Dense, ReLU
Dropout 0.3

11 neurons, Dense, sigmoid

Table 2: Long SED model architecture.

Input (4 x segment size)

100 filters, Conv 4x10 (same padding), ReLU
MaxPool 1x3

200 filters, Conv 4x10 (same padding), ReLU
MaxPool 1x5

300 filters, Conv 4x10 (same padding), ReLU
MaxPool 1x5

400 filters, Conv 4x10 (same padding), ReLU
MaxPool 1x5

500 filters, Conv 4x1 (same padding), ReLU

Flatten
Dropout 0.5

1000 neurons, Dense, ReLU
Dropout 0.3

22 neurons, Dense, linear

Table 3: Architecture of the DOA models.

(class prior), meaning that less frequent classes tend to have lower
thresholds. The resulting thresholds are given by

θ t
c =

(
1− lpt

c

)(
0.6 + 0.3

pc − pmin

pmax − pmin

)
, (2)

where pc denotes the prior of class c (based on duration), while
pmin and pmax are the minimum and maximum of all class priors.

The desired SED results are finally derived at a time-resolution
of 20ms, by employing the ensemble of the 12 short SED models
of Section 3.2 and the adaptive thresholds of (2). Specifically, let
spt

c denote the combined short model prediction of class c at time-
frame t . This is estimated for each of the 12 CNNs by averaging
the class probabilities over all windows (of length 100 or 200ms,
depending on the model) that contain the given 20ms time-frame,
while sliding by a 20ms step. The resulting estimates are then av-
eraged over all 12 models of the CNN ensemble to yield spt

c . As a
final step, class c is detected at time-frame t , whenever spt

c ≥ θ t
c .

3.4. DOA models

Following SED, we proceed to the DOA sub-task. For this purpose,
and similarly to the short SED models, we create short models for
DOA estimation that provide 22 numbers at their output layer, i.e.
the elevation and azimuth for each of the 11 classes. The goal is,
given a raw multi-channel audio segment of short duration, to pre-
dict the DOA of each class, no matter if it exists or not (SED results
will determine what to keep). Specifically, we create two CNNs,
with their architecture detailed in Table 3. The CNNs operate on
four channels of raw audio over windows of 100ms or 200ms in du-
ration that, during model training, slide at steps of 50ms or 100ms,
respectively. For training the two networks, we use the same data
as in the SED sub-task, but exclude audio with no sound events, as
such data are not associated with DOA values. We employ the mean
squared error loss as training objective, but slightly modified, as we
calculate it only in the 2 (in the case of one class) or the 4 (for two
overlapping classes) output neurons of interest. As before, we use
the Adam optimizer and early stopping to prevent overfitting.

DOA estimation occurs at a time resolution of 20ms, first by
averaging the elevation and azimuth predictions for the 20ms time-
frame of interest within the model sliding windows, and subse-
quently averaging the predictions across the two models. A prob-
lem arises in this approach towards the boundaries of each segment.
To prevent noisy DOA estimates there, these are smoothed by set-
ting predictions for the first and last 300ms of each segment to the
minimum or maximum of that sub-segment (depending on the rel-
ative position to the zero), thus preventing steep DOA ascents or
descents. An example of this process is depicted in Fig. 3.

3.5. Submitted systems

Following the above process, we create a total of four SELD sys-
tems, each trained on one of the four given cross-validation develop-
ment data splits. We then combine these four systems in two ways,
thus providing two submissions to the Challenge, resulting from:
(a) their average; and (b) their weighted average. In both cases, av-
eraging occurs at the sub-component level across the four systems
(e.g., each short SED CNN is averaged across the four systems first,
before model ensembling). Particularly in the weighted averaging
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Figure 3: Example of DOA (here, azimuth) estimate smoothing at
segment edges: (top) before smoothing; (bottom) after smoothing.
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Figure 4: Evaluation of design choices of the proposed system components on the Challenge development set, namely of various: (a) short
SED model window durations; (b) class threshold estimation approaches; (c) DOA model window durations with or without smoothing.

case, the performance of the four systems on the corresponding fold
test-set is taken into account, based on the appropriate metrics (i.e.,
the average of the three SED metrics or the DOA error).

4. RESULTS

4.1. Development set results

We first present in Table 4 (top) our system performance on the de-
velopment set (over its four data splits, thus there is a single result
according to the evaluation paradigm), in terms of the four Chal-
lenge metrics and their combination (SELD score). We can read-
ily observe that, compared to the Challenge baseline, our system
achieves a 3% relative reduction in the SELD score (from 0.22 to
0.213). In terms of the individual metrics, the system yields relative
improvements of 12% in SED error, 2% in F-score, 36% in DOA er-
ror (from 30.8◦to 19.8◦), but trails significantly in the frame-recall
metric, where it achieves only 75.3% vs. 84.0% for the baseline.

In Fig. 4 we present results to highlight performance differences
between the various design choices of our developed system com-
ponents. First, in Fig. 4(a) we depict performance of the short SED
models of Section 3.1 and their ensembles in terms of SED error,
F-score, and frame-recall (difference from 1 is shown for the latter
two). We also depict results for additional window sizes, namely
300ms and 400ms. Each bar shows results of the ensemble of six
models, trained on various data augmented sets (from 0% to 40%,
as discussed in Section 3.1), with the error bars indicating the range
of the individual model results. Note that the 12-model ensemble
results are also shown (“100+200 ensemble”). We observe that
shorter window sizes (100ms) yield the best results in frame-recall,
mainly because two sounds may overlap for very short periods of
time, but have much worse results in SED error and F-score, be-

se
t system

SED
F-score

frame- DOA SELD
error recall error score

de
v proposed 0.309 81.2% 75.3% 19.8◦ 0.213

baseline ∗ 0.350 80.1% 84.0% 30.8◦ 0.220

ev
al

proposed (a) 0.29 82.4% 75.6% 18.6◦ 0.2033
proposed (b) 0.29 82.3% 75.7% 18.7◦ 0.2034
baseline ∗ 0.30 83.2% 83.4% 38.1◦ 0.2114
best 0.08 94.7% 96.8% 3.7◦ 0.044

Table 4: Comparison of our system on the development (dev) and
evaluation set (eval) of DCASE’19 Task 3 against the Challenge
baseline (∗: on Microphone Array data), in terms of the five task
metrics. Performance of the best-scoring submission is also shown.

cause short windows may not carry adequate class information. On
the other hand, medium window sizes (200ms) yield the best results
in SED error and F-score, but worse frame-recall as they may fail
to detect very short segments. Combining the two window sizes by
model ensembling exploits the relative advantages of both, improv-
ing SED error and F-score significantly, but at minor detriment in
frame-recall. Longer windows (e.g. 300ms or 400ms sizes) signifi-
cantly degrade frame-recall, thus are not used in our system. Next,
in Fig. 4(b) we examine the effect of class thresholds to SED per-
formance. Thresholds fixed to 0.5 for all classes perform the worst,
whereas adaptive thresholds estimated by means of (1) – labeled as
“long” in the graph, perform better in all three metrics (SED error,
F-score, and frame-recall). Results further improve when adaptive
thresholds are computed by (2) – labeled as “long and prior” in
the bar-plot. Finally, in Fig. 4(c) we consider the DOA estimation
component. There, we can readily observe the importance of DOA
estimate smoothing, as systems “without” smoothing perform sig-
nificantly worse than systems “with” it. Also DOA models operat-
ing on windows of 100ms or 200ms in duration outperform systems
built on 300ms windows. The ensemble of both 100ms and 200ms
systems performs even better in terms of the DOA error metric.

4.2. Evaluation set results

Finally, in Table 4 (bottom) we present our system performance on
the Challenge evaluation set. Both system variants of Section 4.2
are shown: (a) averaging; and (b) weighted averaging. They per-
form similarly, with variant (a) being slightly superior. Compared
to the baseline, it yields a slight 4% relative reduction in the SELD
metric (from 0.2114 to 0.2033), with the greatest improvement in
the DOA error metric (51% relative reduction, from 38.1◦to 18.6◦).
It should be noted however that the proposed system lags signifi-
cantly behind the best overall submission in Task 3 in all metrics.

5. CONCLUSIONS

We presented a SELD system for Task 3 of the DCASE’19 Chal-
lenge using CNNs only, separately addressing SED and DOA esti-
mation, while making no explicit assumptions about the maximum
possible number of overlapping segments. We followed a hierar-
chical approach to SED, first determining adaptive class thresholds
based on a CNN operating over longer windows, which we then uti-
lized in an ensemble of CNNs operating on shorter waveforms, also
exploiting data augmentation in their training. Our system outper-
formed the baseline, particularly in DOA error, exhibiting consis-
tent performance across development and evaluation sets, but trailed
the best Challenge submission considerably.
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ABSTRACT

In this work, we show a simultaneous sound event localization and
detection (SELD) system, with enhanced acoustic features, in which
we propose using the well-known Generalized Cross Correlation
(GCC) PATH algorithm, to augment the magnitude and phase regu-
lar Fourier spectra features at each frame. GCC-PHAT has already
been used for some time to calculate the Time Difference of Arrival
(TDoA) in simultaneous audio signals, in moderately reverberant
environments, using classic signal processing techniques, and can
assist audio source localization in current deep learning machines.
The neural net architecture we used is a Convolutional Recurrent
Neural Network (CRNN), and is tested using the sound database
prepared for the Task 3 of the 2019 DCASE Challenge. In the chal-
lenge results, our proposed system was able to achieve 20.8 of di-
rection of arrival error, 85.6% frame recall, 86.5% F-score and 0.22
error rate detection in evaluation samples.

Index Terms— GCC-PHAT, SELD, Polyphonic event detec-
tion, Sound source localization, CRNN, Sound event detection.

1. INTRODUCTION

Sound event detection (SED) or Audio Classification, refers to the
task of automatically recognizing the type of sound that is being de-
tected into some previously specified classes (like human voice, ve-
hicle moving, music, etc.). Meanwhile, Sound Source Localization,
or Sound Direction of Arrival (DoA) detection determines the loca-
tion of the sound in some coordinate system, and in this task we use
elevation and azimuth angles as its proxy. In most current published
work, these two tasks have been approached as separate problems.
However, there are many applications in which the simultaneous lo-
cation and identification of the sound can be very useful, like detec-
tion of an intended user, observation and understanding of human
activities, audio surveillance, autonomous agent navigation, among
others[1]. In most of this real-life applications, it is reasonable to
assume that sources sometimes will overlap in time. A detection
pipeline of this kind of audio events is proposed in [1], and named
as polyphonic SED. Such work proposes an interesting CRNN ar-
chitecture to perform the task, and in this work, we present a system
based in that architecture, but with additional features based in the
Generalized Cross Correlation (GCC), and provide measurements
of the benefits obtained.

2. SOUND EVENT DETECTION

In current literature, Convolutional Neural Networks (CNNs) have
been proven to be very effective for image classification tasks. A
natural next step was to use CNNs or similar systems for audio
classification, providing audio features that resemble images, usu-
ally Fourier-based spectrograms, or similar representations. This
approach has also been met with relative success[2], and in re-
cent DCASE acoustic scene classification tasks, top submissions
are mostly CNN-based or related[3].

2.1. Sound source localization

Estimating the location of a sound source is definitely not a new en-
gineering problem. In classical signal-processing systems, source
location is calculated from the Time Difference of Arrival (TDoA)
of the signal in each element of a microphone array. Then, an an-
alytic, regression formula, or a machine learning (ML) technique
can be used to produce the source location. For the first step, reg-
ular cross-correlation can detect the time delay of two signals that
contain little auto-correlation (i.e. low reverberation, rich frequency
content sounds). In that sense, generalized cross-correlation with
phase transform (GCC-PHAT) algorithm, developed in 1976 by
Knapp and Carter [4], can reduce the effects of the auto-correlation
of a signal, and make the system more robust to reverberation.

However, new machine learning techniques usually do not rely
on mapping TDoA to spatial location. Instead, the trend is to
directly relate some features of the audio signals to the source
location[5, 6, 7]. In our work, we aim to get the best of both worlds:
the tractability of a classical signal processing as feature, and the
high accuracy and noise robustness of neural nets.

3. AUDIO FEATURE EXTRACTION

3.1. Development data set

For all this work, training and testing was performed using the de-
velopment data set made available by the 2019 DCASE Challenge
for the task 3[8], consisting of 400 recordings of roughly 60 sec-
onds each. In order to identify the acoustic characteristics of the
recordings, the average spectrum of all the development audio sam-
ples was calculated, and the result can be seen in Fig. 1. It can be
noticed that there is practically no audio information above the 15.8
kHz frequency, even when the sample frequency (48 kHz) allows up

https://doi.org/10.33682/3re4-nd65
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Figure 1: Average magnitude spectrum of all the database audio
samples. Notice that there is practically no frequency content above
15.8 kHz.

to 24 kHz. Therefore, in all our feature extraction, we only include
data information of frequency bins of up to 15.8 kHz.

The inputs of the feature extraction routine are 4-channel,
48kHz sample frequency, audio recordings. The signals are seg-
mented in time frames, for which a time hop of 20ms is used, pro-
ducing 3000 samples per each 60-second audio sample. The devel-
opment data set consists of pre-defined four cross-validation splits
of 200 one-minute samples for training, 100 samples for validation,
and 100 for testing. The metrics shown in the results section refer
to the average of all folds models in their corresponding testing set.
The recordings include audio of 11 different classes, that can be lo-
cated in azimuth angles of -180 to 170 degrees in 10 intervals, and
elevations of -40 to 40 in 10 intervals. In preparation for the train-
ing routine, all the audio samples were padded or clipped to even
out their run time to 60 seconds.

The first feature obtained from each time frame is the GCC-
PHAT vector from each signal combination. Usually, the vector ob-
tained from two signals from a microphone array shows a delta-like
response close to the vector center, in which the maximum value
of the vector has an offset from the center numerically equal to the
amount of delay samples between the two time domain signals[4].
Therefore, it is the middle part of the vector which contains most
of the useful information. We proposed to segment it, to generate
time matrices we call GCC-grams, as an analogous name to spec-
trograms. An scheme of this process can be seen in Fig. 2.

We propose GCC-grams as an additional input feature, in which
all the GCC-grams obtained from all channel combinations (6 in to-
tal, for the case of 4 input channels) are concatenated in one single
feature matrix in which all the time frames are aligned. Our hypoth-
esis is that this additional pre-processing of audio data can directly
improve DoA detection performance. However, in order to keep all
input information available for the system, we also feed the mag-
nitude and phase spectra per each channel, properly synchronized.
An scheme of this process can be seen in Fig. 3.

For the magnitude and phase spectrograms, the discrete Fourier
transform was applied to time frames of 2048 samples, using a
Hann window (these numbers were used also for the GCC vec-
tor calculation). From the positive frequencies of the output spec-
tra (1024 samples), only the samples corresponding to frequen-
cies below 15.8 kHz were extracted, which produced a vector of
1024⇥ (15.8kHz/24kHz) = 672 samples per each time frame.

In order to keep the same dimensions, the concatenated GCC-

gram was fixed to have 672 samples wide too. Therefore, the middle
section size of each of the six individual GCC-grams was set up to
672/6 = 112 samples wide, which was large enough to contain the
maximum value of the GCC vector in all recordings. Therefore, per
each 1-minute recording, the feature extraction routine produces a
3-D tensor of 3000 time frames, by 672 frequency bins, by 9 com-
ponents: 1 concatenated GCC-gram, 4 phase spectrograms, and 4
magnitude spectrograms. As a final step, all this 2D matrices were
individually normalized.

To gather additional insight in the benefits of our proposed fea-
ture extraction technique, additional tests were performed in which
only the GGC-grams, or only the magnitude and phase spectro-
grams, were fed into the proposed CRNN.

4. PROPOSED SYSTEM

4.1. CRNN Architecture

The CRNN architecture we used is based directly in the work pro-
posed by S. Adavanne et al in [1], with some minimal modifica-
tions, as our approach was mainly focused on enhancing feature
extraction. This architecture is characterized by taking a sequence
of features in consecutive frames as input and predicting the sound
event classes that are active for each of the input frames along with
their respective spatial location (defined as a couple of output an-
gles, azimuth and elevation), producing the temporal activity and
DOA related information for each sound event class in parallel. An
illustration of the final architecture proposed can be seen in Fig. 4.

The input of the neural network is composed of multiple 2D
CNN layers. Each CNN layer has 64 filters of 3 ⇥ 3 ⇥ 9 receptive
fields with a ReLU activation function. After each CNN layer, the
outputs are normalized using batch normalization, and the dimen-
sions a reduced with average-pooling (MPi) along the frequency
axis. We preferred average-pooling over max-pooling on the hy-
pothesis that average pooling carries more information from the
whole kernel, in this case, the spectrograms and GCC-grams. The
output after the final CNN is of dimension T ⇥ 2⇥ 64, in which T
is the number of input time frames.

The output is reshaped to a T frame sequence of 128 feature
vectors, fed to two GRU bidirectional layers of 128 nodes, followed
by three identical branches of fully connected (FC) layers in paral-
lel, one for SED, one for azimuth and other for elevation detection.
The first FC layer consists of 256 input nodes with linear activa-
tion, followed by a Dropout layer, a SELU layer, and and finally a
linear layer with 12 outputs, one per each audio class, plus an ad-
ditional ”garbage” class for the frames in which there is no audio
event present.

4.2. Training parameters

In each frame, one-hot encoding target values were used for each of
the active sound events in the event detection branch output. Since
sound events can be overlapping in time, it is possible to have mul-
tiple ones at each time step. Similarly, for the azimuth and eleva-
tion branches, a 12 element vector is produced as output in which
the active class (according with the event detection output) contains
the numeric value of the angle in degrees, and the rest of the vec-
tor contains the garbage value of -181. A multi-classification hinge
(margin-based) loss is used between the event detection predictions
of our system and the reference sound class activities, while a mean
square error (MSE) loss is used for both the azimuth and elevation
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Figure 2: Scheme of the process in which a GCC-gram is produced
from the audio signals.

Figure 3: Scheme of the complete contents of the audio features
extracted from the 4-channel signal.

outputs, for the whole matrices (including the garbage values). An
additional MSE loss value was calculated for both angles, in which
the garbage values were ”masked out” of the MSE difference, using
the target matrices. After some tests, the best result were obtained
with a weighted sum of these three loss values. Additionally, we
used spherical coordinates in all our calculations.

Training was performed by 150 epochs using Adam optimizer
with batch size of 8 training samples, drop out rate of 0.5, and initial
learning rate of 0.0001, using a cosine annealing scheduler. Early
stopping is used to control the network from over-fitting to training
split. The network was implemented using Pytorch.

5. RESULTS

5.1. In house tests on DCASE development data

As established in the DCASE Task 3 web page, four different met-
rics are taken onto account to assess the SELD system performance.
Two are directly related with event detection: F-score and error rate
(ER). The other two are related with DOA detection: DOA error and
frame recall[9]. It must be highlighted that an ideal SELD method
will have an error rate of 0, F-score of 100%, DOA error of 0 and
frame recall of 100%. Also, as suggested in the page, the four cross-
validation folds are to be treated as a single experiment, meaning
that metrics are calculated only after training and testing all folds.
The results are then compared with those from the baseline SELD
system proposed by S. Adavanne et al[1], and the results of using
only a part of the input features (GCC-gram only and magnitude-
and-phase spectrums only). Such comparison of system results can

Figure 4: Overview of the architecture of the proposed sound event
localization and detection (SELD) system

be seen in Table 1.

Model ER F-score DOA
error

Frame
recall

Baseline
(mic.) 0.35 80.0% 30.8 84.0%

GCC-Gram
only 0.31 78.6% 29.9 80.9%

Spectrums
only 0.25 83.8% 30.8 84.8%

Our system 0.20 87.1% 20.4 86.4%
Table 1: Results from the in-house tests.

As can be seen, using only GCC-grams or magnitude-and-
phase spectrums as input features produce results in which the four
metrics are very close to the baseline (with some slight improve-
ment in the ER metric, that could be attributed to the small changes
in the network architecture). However, it is only when the two fea-
ture types are fused in the input that the best results are obtained in
all metrics. The best improvements over the baseline are present in
the error rate (-0.15) and DOA error (-10.4). Then, we can attribute
part of this performance jump to the additional prepossessing of au-
dio events provided by GCC-grams.

5.2. Submission to the Task 3 of the DCASE Challenge with
evaluation data

For the task 3 DCASE challenge, two sets were submitted, one with
a CRNN trained with the fold with the best results in development
data, and another with a fusion of the four folds. Table 2 shows
the official results obtained in the four metrics considered, and the
absolute ranking of each submission, in comparison with the two
baseline options, and the best performing system.
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Model ER F-
score

DOA
error

Frame
recall

Rank

Baseline
(mic.) 0.30 83.2% 38.1 83.4 58

Baseline
(FOA) 0.28 85.4% 24.6 85.7 48

Our system
(1-fold) 0.22 86.3% 19.9 85.6 46

Our system
(fusion) 0.22 86.5% 20.8 85.7 45

Best system 0.08 94.7% 3.7 96.8% 1
Table 2: Results from the DCASE Challenge (Task 3).

These results ranked us in the 16th best out of 24 participating
teams.

6. CONCLUSIONS

In this work we describe a system for the simultaneous audio event
classification and location, based in the use of regular Fourier spec-
trograms and our proposed GCC-grams, in order to improve detec-
tion and localization performance over a previous baseline. Some
additional changes in the CRNN architecture are also included, with
the hypothesis of improved robustness over the baseline system.
However, the main differentiation of our approach is clearly on the
feature extraction side. The results obtained from the cross vali-
dation results show that our system performs better than the base-
line in all the metrics proposed by the DCASE Challenge coordina-
tion team, which suggests that the additional processing at the fea-
ture extraction stage we proposed can produce significant additional
benefits over an already properly functioning NN architecture.
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ABSTRACT

A sound event detection (SED) method typically takes as an input a
sequence of audio frames and predicts the activities of sound events
in each frame. In real-life recordings, the sound events exhibit some
temporal structure: for instance, a “car horn” will likely be followed
by a “car passing by”. While this temporal structure is widely ex-
ploited in sequence prediction tasks (e.g., in machine translation),
where language models (LM) are exploited, it is not satisfactorily
modeled in SED. In this work we propose a method which allows a
recurrent neural network (RNN) to learn an LM for the SED task.
The method conditions the input of the RNN with the activities of
classes at the previous time step. We evaluate our method using F1

score and error rate (ER) over three different and publicly available
datasets; the TUT-SED Synthetic 2016 and the TUT Sound Events
2016 and 2017 datasets. The obtained results show an increase of
6% and 3% at the F1 (higher is better) and a decrease of 3% and
2% at ER (lower is better) for the TUT Sound Events 2016 and
2017 datasets, respectively, when using our method. On the con-
trary, with our method there is a decrease of 10% at F1 score and
an increase of 11% atER for the TUT-SED Synthetic 2016 dataset.

Index Terms— sound event detection, language modelling, se-
quence modelling, teacher forcing, scheduled sampling

1. INTRODUCTION

Sound event detection (SED) consists in detecting the activity of
classes (onset and offset times) in an audio signal, where the classes
correspond to different sound events. (e.g., “baby cry”, “glass shat-
ter”). This task finds applications in many areas related to ma-
chine listening, such as audio surveillance for smart industries and
cities [1, 2], smart meeting room devices for enhanced telecom-
munications [3, 4], or bio-diversity monitoring in natural environ-
ments [5, 6]. SED is a challenging research task since the sound
events are of very diverse nature, which might be unknown a pri-
ori in real-life recordings. Besides, they often overlap in time, a
problem termed as polyphonic SED. Significant advances in SED
were made recently thanks to the advent of deep learning [7]. The
recurrent neural network (RNN) have proven particularly promis-
ing [8, 9] as they are able to model the temporal discriminant repre-
sentations for sound events. More recently, these have been stacked
with convolutional layers, resulting in convolutional recurrent neu-
ral networks (CRNN) which yield state-of-the-art results [10, 11].

In real-life recordings, the various sound events likely tempo-
ral structures within and across events. For instance, a “footsteps”
event might be repeated with pauses in between (intra-event struc-
ture). On the other hand, “car horn” is likely to follow or precede
the “car passing by” sound event (inter-events structure). Although

these temporal structures vary with the acoustic scene and the ac-
tual sound events classes, they exist and can be exploited in the
SED task. Some previous studies focus on exploiting these tempo-
ral structures. For example, in [9], the authors propose to use hidden
Markov models (HMMs) to control the duration of each sound event
predicted with a deep neural network (DNN). Although the results
show some improvement with the usage of HMMs, the approach is
a hybrid one and it requires a post processing step, which might be
limited compared to an non-hybrid, DNN-based approach. In [12]
and [13], the connectionist temporal classification (CTC) [14] loss
function is used for SED: the output of the DNN is modified in or-
der to be used with the CTC. Although the usage of CTC seems
to be promising, CTC needs modification in order to be used for
SED, it is a complicated criterion to employ, and it was developed
to solve the problem where there is no frame-to-frame alignment
between the input and output sequences [14]. Thus, there might be
the case that using a different method for SED language modelling
could provide better results than CTC. Finally, in [13], the authors
also employ N-grams, which require pre and post processing stages,
and use the class activities as extra input features. However, the lat-
ter approach did not perform better than a baseline which did not
employ any language model.

In this paper we propose an RNN-based method for SED that
exploit the temporal structures within and across events of audio
scenes without the aforementioned drawbacks of the previous ap-
proaches. This method is based on established practices from other
scientific disciplines that deal with sequential data (e.g., machine
translation, natural language processing, speech recognition). It
consists in using the output of the classifier as an extra input to
the RNN in order to learn a model of the temporal structures of the
output sequence (referred to as language model), a technique called
teacher forcing [15]. Besides, this extra input of the RNN is chosen
as a combination of the ground truth and predicted classes. This
strategy, known as schedule sampling [16], consists in first using
the ground truth activities and further replacing them by the pre-
dictions. This allows the RNN to learn a robust language model
from clean labels, without introducing any mismatch between the
training and inference processes.

The rest of the paper is organized as follows. In Section 2 we
present our method. Section 3 details the experimental protocol and
Section 4 presents the results. Section 5 concludes the paper.

2. PROPOSED METHOD

We propose a system that consists of a DNN acting as a feature
extractor, an RNN that learns the temporal structures withing and
across events (i.e. a language model), and a feed-forward neural
network (FNN) acting as a classifier. Since we focus on designing

https://doi.org/10.33682/1dze-8739
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an RNN that is able to learn a language model over the sound events,
the RNN takes as inputs the outputs of both the DNN and the FNN.
The code for our method can be found online1.

2.1. Baseline system

The DNN takes as an input a time-frequency representation of an
audio signal denoted X ∈ RT×F≥0 , where T and F respectively de-
note the number of time frames and features. It outputs a latent
representation:

H = DNN(X), (1)

where H ∈ RT×F
′

is the learned representation with F ′ features.
Then, the RNN operates over the rows of H as

h′t = RNN(ht,h
′
t−1), (2)

where t = 1, 2, . . . , T , h′0 = {0}F ′′
, h′t ∈ [−1, 1]F ′′

, and F ′′

is the amount of features that the RNN outputs at each time-step.
Finally, the FNN takes h′t as an input and outputs the prediction ŷt
for the time-step t as:

ŷt = σ(FNN(h′t)), (3)

where σ is the sigmoid function, and ŷt ∈ [0, 1]C is the predicted
activity of each of the C classes.

The DNN, the RNN, and the FNN are simultaneously opti-
mized by minimizing the loss L(Ŷ,Y) =

∑
t Lt(ŷt,yt) with:

Lt(ŷt,yt) =
C∑

c=1

yt,c log(ŷt,c) + (1− yt,c) log(1− ŷt,c), (4)

where yt,c and ŷt,c are the ground truth and predicted activities,
respectively, of the c-th class at the t-th time-step.

2.2. Teacher forcing

The modeling in Eq. (2) shows that the RNN learns according to
its input and its previous state [15, 16]. In order to allow the RNN
to learn a language model over the output (i.e. the sound events),
we propose to inform the RNN of the activities of the classes of the
sound events at the time step t− 1. That is, we condition the input
to the RNN as:

h′t = RNN(ht,h
′
t−1,y

′
t−1), (5)

where y′t−1 is the vector with the activities of the classes of the
sound events at time step t− 1, and y′0 = {0}C . This technique is
termed as teacher forcing [15], and is widely employed in sequence
prediction/generation tasks where the output sequence has an in-
herent temporal model/structure (e.g., machine translation, image
captioning, speech recognition) [17, 18, 19]. By using this condi-
tioning of the RNN, the RNN can learn a language model over the
output tokens of the classifier [15, 16]. In SED, this results in letting
the RNN learn a language model over the sound events, e.g., which
sound events are more likely to happen together and/or in sequence,
or how likely is a sound event to keep being active, given the pre-
vious activity of the sound events. Teacher forcing is different from
what was proposed in [13], as the latter approach conditioned the
DNN (not the RNN) with the class activities: such an approach
yielded poor results, intuitively explained by having y′t−1 domi-
nated by the information in X through the sequence of the CNN
blocks.

1https://github.com/dr-costas/SEDLM

RNN

FNN

Figure 1: Proposed method of teacher forcing with scheduled sam-
pling.

2.3. Scheduled sampling

The activity vector y′t−1 can be either the ground truth data (i.e.,
yt−1), or the predictions of the classifier (i.e., ŷt−1). In the for-
mer case, the RNN is likely to start learning the desired language
model from the first updates of the weights. At each time step t, the
RNN will take as input the ground truth activities of the classes, thus
being able to exploit this information from the very first weight up-
dates. However, these ground truth values are not available at the in-
ference stage: these would be replaced by the estimates ŷt−1, which
would create a mismatch between the training and testing processes.
Besides, an RNN trained using only the true class activities is very
likely to be sensitive to the prediction errors in ŷt−1. Finally, we
empirically observed that using yt−1 with the SED datasets, which
are of relatively small size, results in a very poor generalization of
the SED method.

A countermeasure to the above is to use the predictions ŷt−1

as y′t−1, which allows the RNN to compensate for the prediction
errors. However, during the first weight updates, the predicted ŷt−1

is very noisy and any error created at a time step t is propagated over
time, which results in accumulating more errors down the line of the
output sequence. This makes the training process very unstable and
is likely to yield a poor SED performance.

To exploit the best of both approaches, we propose to use the
scheduled sampling strategy [16]: the ground truth class activities
are used during the initial epochs, and they are further gradually
replaced by the predicted class activities. This gradual replacement
is based on a probability pTF of picking yt−1 over ŷt−1 as y′t−1

that decreases over epochs. Different functions can be used for the
calculation of pTF (e.g., exponential, sigmoid, linear). Here, we
employ a model of exponential decrease of pTF:

pTF = min(pmax, 1−min(1− pmin,
2

1 + eβ
− 1)), (6)

where β = −iγN−1
b , i is the index of the weight update (i.e., how

many weight updates have been performed), Nb is the amount of
batches in one epoch, and pmax, pmin, and γ are hyper-parameters
to be tuned. pmax and pmin are the maximum and minimum prob-
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abilities of selecting ŷt, and γ controls the slope of the curve of
pTF for a given Nb and as i increases. We use a minimum prob-
ability pmin because we experimentally observed that if we solely
use yt−1 as y′t−1 even in the first initial weight updates, then the
SED method overfits. The usage of pmin counters this fact. On the
other hand, we use a maximum probability pmax in order to allow
the usage of yt−1 as y′t−1 at the later stages of the learning process.
We do this because the length of a sequence in SED is usually over
1000 time-steps and any error in ŷt is accumulated in this very long
sequence, resulting in hampering the learning process. The usage
of pmax offers a counter measure to this, by allowing the usage of
ground truth values yt instead of predicted and noisy values. This
method is illustrated in Figure 1.

3. EVALUATION

We evaluate our method using the CRNN from [10], and we employ
synthetic and real-life recordings datasets to illustrate the impact of
the language model learned by our method.

3.1. Data and feature extraction

The synthetic dataset is the TUT-SED Synthetic 2016, used in [10],
and consisting of 100 audio files which are synthetically created
out of isolated sound events of 16 different classes. These classes
are: alarms and sirens, baby crying, bird singing, bus, cat meow-
ing, crowd applause, crowd cheering, dog barking, footsteps, glass
smash, gun shot, horse walk, mixer, motorcycle, rain, and thunder.
Each audio file contains a maximum of N number of randomly se-
lected target classes, where N is sampled from the discrete uniform
distribution U(4, 9), and the maximum number of simultaneously
active (polyphony) sound events is 5. The audio files do not con-
tain any background noise. The audio files amount to a total of 566
minutes of audio material, and according to the splits introduced
by [10], roughly 60% of the data are dedicated to training, 20% to
validation, and 20% to testing split. More information about the
dataset can be found online2.

We employ two real-life recording datasets, which were part
of the Detection and Classification of Acoustic Scenes and Events
(DCASE) challenge datasets for SED in real life audio task: the
TUT Sound Events 2016 and the TUT Sound Events 2017 [20]. The
TUT Sound Events 2016 dataset contains sound events recorded in
two environments: home (indoor), which contains 11 classes, and
residential area (outdoor), which contains 7 classes. The classes for
the home environment are: (object) rustling, (object) snapping, cup-
board, cutlery, dishes, drawer, glass jingling, object impact, people
walking, washing dishes, and water tap running. The classes for
the residential area environment are: (object) banging, bird singing,
car passing by, children shouting, people speaking, people walking,
and wind blowing. The TUT Sound Events 2017 dataset contains
recordings in a street environment and contains 6 different classes.
These classes are: brakes squeaking, car, children, large vehicle,
people speaking, and people walking. For both datasets, we use the
cross-fold validation split proposed in the DCASE 2016 and 2017
challenges. More information about the classes, the cross-fold set-
ting, and the recordings of the datasets can be found online3,4.

2http://www.cs.tut.fi/sgn/arg/taslp2017-crnn-
sed/tut-sed-synthetic-2016

3http://www.cs.tut.fi/sgn/arg/dcase2016
4http://www.cs.tut.fi/sgn/arg/dcase2017/
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Figure 2: The value of pTF with consecutive weight updates with
pmin = 0.05, pmax = 0.95, and Nb = 44. The vertical dashed
lines indicate steps of 25 epochs (i.e. 25, 50, 75 epochs).

The synthetic dataset has randomly selected and placed sound
events, therefore not exhibiting any underlying temporal structure
of sound events. We thus expect the performance of our method to
be similar to a method without language modeling on the synthetic
dataset. Contrarily, the real-life recording datasets exhibit some un-
derlying temporal structures in the sound events, therefore we ex-
pect our method to perform better than a method without language
modelling on these datasets.

As input features X we use non-overlapping sequences of
T = 1024 feature vectors. These consist of F = 40 log mel-bands,
extracted using a short-time Fourier transform using a 22 ms Ham-
ming window, 50% overlap and no zero padding. We normalize the
extracted feature vectors from each dataset to have zero mean and
unit variance, employing statistics calculated on the training split of
each corresponding dataset.

3.2. System and hyper-parameters

As our DNN we use the three convolutional neural network (CNN)
blocks from the system in [10], each consisting of a CNN, a batch
normalization function, a max-pooling operation, a dropout func-
tion, and a rectified linear unit (ReLU). The kernels of the CNNs
are square with a width of 5, a stride of 1, and a padding of 2 in
both directions. There are 128 filters for each CNN. The kernel and
the stride for the first max-pooling operation are {1, 5}, for the sec-
ond {1, 4}, and for the third {1, 2}. These result in F ′ = 128 for
H. All CNN blocks use a dropout of 25% at their input, and the last
CNN block also uses a dropout of 25% at its output. As our RNN
we use a gated recurrent unit (GRU) with F ′′ = 128 and our FNN
is a single-layer feed-forward network with the output size defined
according to the amount of classes in each dataset: C = 16 for
TUT-SED Synthetic 2016, C = 11 and C = 7 for the home and
residential area scenes of the TUT Sound Events 2016, and C = 6
for the TUT Sound Events 2017. To optimize the weights we em-
ployed the Adam optimizer [21] with default values. We employ a
batch size of 8 and we stop the training when the loss for the vali-
dation data is not decreasing for 50 consecutive epochs. Finally, we
set the hyper-parameters for pTF at γ = 12−1, pmin = 0.05, and
pmax = 0.9. In Figure 2 is the value of pTF for consecutive weight
updates of Nb = 44 and for 100 epochs.

Empirically we observed that when using the TUT Sound
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Events 2017, there are some irregular spikes of relatively high gra-
dients in different batches during training. To alleviate this issue, we
clipped the `2-norm of the gradient of all weights in each layer of
our system to a value of 0.5. Additionally, we also observed that for
the TUT Sound Events 2017 and TUT-SED Synthetic 2016 datasets,
our method performed significantly better when we decreased the
learning rate of the optimizer to 5e − 4. Therefore, we employed
the above mentioned gradient clipping and modified learning rate
for our method, when using the aforementioned datasets. Finally,
for the TUT Sound Events 2016, we employed a binarized version
of y′ denoted y′′, such that y′′t,c = 1 if y′t,c ≥ 0.5, and y′′t,c = 0
otherwise.

All the above hyper-parameters were tuned using the cross val-
idation set up for the TUT Sound Events 2016 and 2017 datasets
provided by DCASE challenges, and the validation split provided
in [10] for the TUT-SED Synthetic 2016 dataset.

3.3. Metrics

We measure the performance of our method using the frame based
F1 score and the error rate (ER), according to previous studies and
the DCASE Challenge directions [10, 13]. For the real-life datasets,
the F1 and ER are the averages among the provided folds (and
among the different acoustic scenes for the 2016 dataset), while for
the synthetic dataset theF1 andER are obtained on the testing split.
Finally, we repeat four times the training and testing process for all
datasets, in order to obtain a mean and standard deviation (STD) for
F1 and ER.

3.4. Baseline

As a baseline we employ the system presented in [10], that does
not exploit any language model. We do not apply any data augmen-
tation technique during training and we use the hyper-parameters
presented in the corresponding paper. This system is referred to as
“Baseline”.

When using our method with the TUT Sound Events 2017 and
TUT-SED Synthetic 2016 datasets, we employ a modified learning
rate for the optimizer and we clip the `2-norm of the gradient for
all weights. To obtain a thorough and fair assessment of the perfor-
mance of our method, we utilize a second baseline for this dataset:
we use again the system presented in [10], but we employ the above-
mentioned gradient clipping and modified learning rate. We denote
this modified baseline as “modBaseline”.

Finally, we compare our method to the best results presented
in [13] which are obtained by employing N-grams as a post-
processing to learn a language model. We report the results of this
method on the TUT Sound Events 2016 datasets, as these are the
only ones in the corresponding paper that are based on a publicly
available dataset. It must be noted that in [13] was proposed the
usage of y′t−1 as extra input features and the usage of CTC, but
the results were inferior to the N-grams approach. Specifically, the
per frame F1 score was 0.02 and 0.04 lower and ER was 0.02 and
0.15 higher with the usage of y′t−1 as an extra input feature and the
usage of CTC, respectively, compared to the N-grams approach.

4. RESULTS & DISCUSSION

In Table 1 are the obtained results for all the employed datasets. We
remark that using the proposed language model improves the per-
formance of SED in the real-life datasets. Specifically, for the TUT

Table 1: Mean and STD (Mean/STD) of F1 (higher is better) and
ER (lower is better). For the method [13] only the mean is avail-
able.

Baseline modBaseline [13] Proposed
TUT Sound Events 2016 dataset

F1 0.28/0.01 – 0.29 0.37/0.02
ER 0.86/0.02 – 0.94 0.79/0.01

TUT Sound Events 2017 dataset
F1 0.48/0.01 0.49/0.01 – 0.50/0.02
ER 0.72/0.01 0.70/0.01 – 0.70/0.01

TUT-SED Synthetic 2016 dataset
F1 0.58/0.01 0.62/0.01 – 0.54/0.01
ER 0.54/0.01 0.49/0.01 – 0.61/0.02

Sound Events 2016 dataset there is an improvement of 0.09 in the
F1 score and 0.07 for the ER. For the TUT Sound Events 2017,
there is a 0.02 improvement in F1 and 0.02 improvement in ER.
These results clearly show that the employment of language mod-
elling was beneficial for the SED method, when a real life datset was
used. This is expected, since in a real life scenario the sound events
exhibit temporal relationships. For example, “people speaking” and
“people walking” or “washing dishes” and “water tap running” are
likely to happen together or one after the other.

On the contrary, from Table 1 we observe that there is a
decrease in performance with our method on the synthetic data.
Specifically, there is a 0.04 (or 0.08 when compared to modBase-
line) decrease in F1 and 0.07 (or 0.12 when compared to modBase-
line) increase in ER. This clearly indicates that using a language
model has a negative impact when the synthetic dataset is used. The
sound events in the synthetic dataset do not exhibit any temporal re-
lationships and, thus, the language model cannot provide any benefit
to the SED method. We suggest that in such a scenario, the network
focuses on learning a language model that does not exist in the data
instead of solely trying to accurately predict the events on a frame-
wise basis: this explains the drop in performance compared to the
baseline method. Overall, this difference in performance between
the two types of datasets strongly suggests that our method learns a
language model over the activities of the sound events.

Finally, our system significantly outperforms the previous
method [13] on the TUT Sound Events 2016 dataset. This shows
that learning a language model is more powerful than crafting it as
a post-processing.

5. CONCLUSIONS

In this paper we presented a method for learning a language model
for SED. Our method focuses on systems that utilize an RNN before
the the last layer of the SED system, and consists of conditioning
the RNN at a time step t with the activities of sound events at the
time step t − 1. As activities for t − 1 we select the ground truth
early on the training process, and we gradually switch to the predic-
tion of the classifier as the training proceeds over time. We evaluate
our method with three different and publicly available datasets, two
from real life recordings and one synthetic dataset. The obtained re-
sults indicate that with our method, the utilized SED system learned
a language model over the activities of the sound events, which is
beneficial when used on real life datasets.

In future work, we will conduct a more in-depth analysis of the
learned language model and of the SED performance per class.
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ABSTRACT
In this paper we present our audio tagging system for the DCASE
2019 Challenge Task 2. We propose a model consisting of a con-
volutional front end using log-mel-energies as input features, a re-
current neural network sequence encoder and a fully connected
classifier network outputting an activity probability for each of the
80 considered event classes. Due to the recurrent neural network,
which encodes a whole sequence into a single vector, our model is
able to process sequences of varying lengths. The model is trained
with only little manually labeled training data and a larger amount
of automatically labeled web data, which hence suffers from label
noise. To efficiently train the model with the provided data we use
various data augmentation to prevent overfitting and improve gen-
eralization. Our best submitted system achieves a label-weighted
label-ranking average precision (lwlrap) of 75.5% on the private test
set which is an absolute improvement of 21.7% over the baseline.
This system scored the second place in the teams ranking of the
DCASE 2019 Challenge Task 2 and the fifth place in the Kaggle
competition “Freesound Audio Tagging 2019” with more than 400
participants. After the challenge ended we further improved perfor-
mance to 76.5% lwlrap setting a new state-of-the-art on this dataset.

Index Terms— audio tagging, label noise, data augmentation

1. INTRODUCTION
Environmental sound recognition has recently attracted increased
interest, not only in academia. Numerous commercial applications
can benefit from a reliable acoustic scene analysis, such as ambient
assisted living, autonomous driving and various monitoring and di-
arization tasks. Within environmental sound recognition the tasks of
Sound Event Detection (SED), Audio Tagging and Acoustic Scene
Classification (ASC) [1] can be distinguished, which differ in the
level of detail obtained about the acoustic environment. While SED
makes predictions at frame level, Audio Tagging and ASC make
predictions at sequence level.

Because frame level annotations (so-called strong labels) are
difficult and time-consuming to obtain, current large-scale datasets,
such as Google’s AudioSet [2], only provide sequence level la-
bels (weak labels). Further, for many applications frame level pre-
dictions are not required, which, together with the availability of
weakly labeled large-scale datasets, results in an increased popular-
ity of Audio Tagging.

Although weak annotations are easier to obtain than strong
annotations, they still require human annotators. To avoid this
necessity completely, one line of research is devoted to develop

This work has been supported by Deutsche Forschungsgemeinschaft
under contract no. HA 3455/15-1 within the Research Unit FOR 2457
(acoustic sensor networks).

semi-supervised approaches which directly benefit from unlabeled
data [3, 4], which is abundant. However, there are also tremendous
amounts of data coming with other modalities and meta-data, which
can potentially be exploited to derive labels automatically. In the
dataset considered in this contribution, labels had been generated
for the web data using video-level predictions. Note, that those au-
tomatically generated labels certainly contain errors, which is why
they are called noisy labels. Until now there are only few works
addressing the impact of noisy labels for sound recognition [5].

Data augmentation is another common approach to increase the
amount of labeled training data and improve generalization. It has
been shown to improve classifier performance on many tasks, in-
cluding speech recognition [6] and audio classification [7, 8, 9].

In this contribution we tackle the DCASE 2019 Challenge
Task 2 [10], where the main research objective is the following:
How can we train a high performance Audio Tagging system given
relatively little data with reliable labels but a larger amount of mis-
matched data with noisy labels? We primarily tackle this by explor-
ing different methods for data augmentation, while we spend less
time on neural network architecture tuning. We show that frequency
warping and time and frequency masking for data augmentation sig-
nificantly improve performance. Further, our experiments tend to
suggest, that our model is robust against label noise, as it achieves
state-of-the-art performance without any particular treatment of la-
bel noise. While the methods investigated for dealing with label
noise did individually not result in classifier improvements, they
nevertheless increased the diversity of the models trained, resulting
eventually in performance improvement through system combina-
tion. Please note that our system is publicly available on github.1

The rest of the paper is structured as follows. After briefly de-
scribing the considered task in Section 2, we outline our neural net-
work architecture in Section 3. After presenting the data augmenta-
tion methods in Section 4, our training procedure and experiments
are given in Sections 5 and 6, respectively. Conclusions are drawn
in Section 7.

2. TASK DESCRIPTION
The DCASE 2019 Challenge Task 2 “Audio Tagging with noisy
labels and minimal supervision” [10] is a follow-up of the
DCASE 2018 Challenge Task 2 “General-purpose audio tagging
of Freesound content with AudioSet labels” [11]. As in the 2018
edition the challenge was hosted on Kaggle2 with more than 400
participants. The provided dataset “FSDKaggle2019” consists of
two subsets: a small curated set of 4970 manually labeled audio
clips and a noisy set of 19815 audio clips where labels were au-
tomatically derived from video-level predictions from a variety of

1https://github.com/fgnt/upb_audio_tagging_2019
2https://www.kaggle.com/c/freesound-audio-tagging-2019

https://doi.org/10.33682/57xx-t679
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pre-trained audio models. A vocabulary of 80 sound events is used
where multiple events can be active at a time resulting in a multi-
label classification problem.

3. MODEL
3.1. Feature Extraction
First, we perform an STFT with a frame length of 40ms (1764
samples) and a hop size of 20ms (882 samples) on the provided
44.1 kHz audio signals without resampling. For each frame we
then extract 128 log-mel-band-energy features with fmin=50Hz
and fmax=16kHz. Lastly, we substract the global mean of each
feature and then divide by the global standard deviation over all
features.

3.2. Neural Network Architecture
Our proposed deep learning based model is outlined in Table 1. The
neural network consists of a convolutional (conv.), a recurrent, and
a fully connected module. We expect a four dimensional input to
our model of shape B×C×F×Nm with B,C, F,Nm being the
mini-batch size, number of channels, number of features and num-
ber of frames in them-th input signal, respectively, whereC=1 and
F=128 are fix. In the following the signal index m is neglected.

The convolutional module combines a 2d CNN and a 1d CNN.
The 2d CNN consists of five conv. blocks, with each block compris-
ing one or two conv. layers and a max pooling layer. While the first
four blocks have two conv. layers the last block only has a single
one. In each block the number of channels is doubled starting from
16 while the number of features are halfed by max pooling. The
number of time steps are also halfed in the first three blocks while
being unchanged in the last two blocks. This results in an output of
shape B×C′×F ′×N ′ with C′=256, F ′=4 and N ′ =

⌈
N
8

⌉
. Each

2d conv. layer uses a kernel size of 3×3 and is followed by batch
normalization and ReLU activation.

While the 2d CNN is meant to extract high-level feature
maps from the log-mel-band-energy spectrogram, the 1d CNN (or
TDNN) is meant to provide holistic representations by jointly pro-
cessing all frequencies and channels of adjacent frames. Therefore
it takes the reshaped output (B × C′·F ′ × N ′) of the 2d CNN as
input and applies three 1d conv. layers with 256 hidden channels
each. Each 1d conv. layer uses a kernel size of 3 and is followed by
batch normalization and ReLU activation.

The output of the CNN is then fed into a recurrent sequence
encoder. We use two layers of Gated Recurrent Units (GRUs) with
256 units per layer. Only the last output vector of each sequence in
a batch is forwarded to the classification network.

The fully connected classification network conists of one hid-
den layer with 256 hidden units and ReLU activation function
and the final classification layer with Sigmoid activation outputting
scores between 0 and 1 for each of the 80 target event classes.

4. DATA AUGMENTATION
Because there is only little data available, efficient data augmen-
tation is crucial to prevent overfitting and improve generalization
capabilities of the system. In the following we outline the data
augmentation methods that we combined during model training.
All augmentation methods are performed on the fly during training
yielding an extremely large number of possible training samples.

4.1. Mixup
Mixup [12] is a data augmentation technique originating from clas-
sification tasks where a new training sample is generated as a

Table 1: Convolutional Recurrent Neural Network for Audio Tag-
ging with output shapes of each block. Each ConvXd uses a kernel
size of three and a stride of one and includes BatchNorm and ReLU.

Block output shape
LogMel(128) B×1×128×N
GlobalNorm B×1×128×N

2×Conv2d(16) B×16×128×N
Pool2d(2×2) B×16×64×dN/2e

2×Conv2d(32) B×32×64×dN/2e
Pool2d(2×2) B×32×32×dN/4e

2×Conv2d(64) B×64×32×dN/4e
Pool2d(2×2) B×64×16×dN/8e

2×Conv2d(128) B×128×16×dN/8e
Pool2d(2×1) B×128×8×dN/8e
Conv2d(256) B×256×8×dN/8e
Pool2d(2×1) B×256×4×dN/8e

Reshape B×1024×dN/8e
3×Conv1d(256) B×256×dN/8e

2×GRU(256) B×256
fcReLU(256) B×256
fcSigmoid(80) B×80

weighted average of two samples from the dataset:

x̃i = λxi + (1− λ)xj , λ ∈ [0, 1].

Similarly their one-hot encoded targets are combined to a soft target
vector:

ỹi = λyi + (1− λ)yj .

Although for classification tasks mixup results in ambiguous sam-
ples (which probably wouldn’t make a lot of sense to a human ei-
ther) it has shown to improve generalization and robustness of the
trained classifier networks. Mixup has successfully been used for
general purpose audio tagging, e.g., in [9] in the DCASE 2018 Chal-
lenge.

For audio tagging (as opposed to classification) the input audio
may already be a superposition of multiple sources. Thus, mixing
two or more audio signals together yields a new valid audio signal
with an increased number of active events. Therefore, instead of
building a weighted average we superpose two waveforms as fol-
lows:

x̃i(t) = λ0xi(t) + γλ1
max(|xi|)
max(|xj |)

xj(t− τ)

with
γ ∼ B(2/3),
τ ∼ U(max(−Tj , Ti − 30 s),min(Ti, 30 s− Tj)),

Tj ≤ 1.1 · Ti,

λm = a2bm−1
m ; am ∼ U(1, 2); bm ∼ B(1/2); m∈{0, 1}

where B denotes the Bernoulli distribution. Putting this equation
into words we
• perform mixup only with a probability of 2/3,
• only mixup signals which are shorter than 1.1 times the base

signal xi,
• allow mixup to lengthen the signal as long as it does not exceed

the maximum length of 30 s,
• normalize signals to the maximum value of the base signal xi,
• attenuate or amplify each normalized signal by a random fac-

tor.
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We also do not build a weighted average of the individual tar-
gets, but simply combine all tags into a single n-hot encoded tar-
get ỹi.

4.2. Frequency Warping
Recently, SpecAugment [13] was introduced as a simple yet effi-
cient augmentation method of log-mel spectrograms for automatic
speech recognition. It uses three different distortions namely time
warping, frequency masking, and time masking. In our experi-
ments, however, we found that for audio tagging warping the spec-
trogram on the frequency axis yielded better performance than time
warping. Hence, we exchange the time warping by frequency warp-
ing in our version of SpecAugment which is explained in this and
the following two sections.

We consider the log-mel spectrogram as an image here with
width T and height F . Warping the vertical (frequency) axis of the
image is controlled by the cutoff frequency

fc ∼ E(0.5 · F ),

where E denotes the exponential distribution parameterized by the
scale β = 0.5 · F , and by the warping factor

α = (1 + u)2s−1; u ∼ E(0.07); s ∼ B(1/2).
Fig. 1 shows the resulting piece-wise linear warping function.
Note that fc can be larger than F , which results in pure stretch-
ing/compressing the whole spectrogram.

It is worth noting that the frequency warping performed here is
very similar to Vocal Tract Length Pertubation [14].

forig

fscaled

fc F

α

Figure 1: piece-wise linear frequency warping function.

4.3. Frequency Masking
We randomly mask H consecutive mel frequencies in the range
[f0, f0+H], whereH and f0 are drawn from uniform distributions

H ∼ U(0, Hmax)

f0 ∼ U(0, F −H)

with Hmax = 16.

4.4. Time Masking
We randomly mask W consecutive time frames in the range
[n0, n0 + W ], where W and n0 are drawn from uniform distri-
butions

W ∼ U(0,min(Wmax, p ·N))

n0 ∼ U(0, T −W )

with Wmax = 70 and p = 0.2.

5. TRAINING
5.1. Data
For training we use both the data with curated labels as well as the
data with noisy labels.

As the provided train portion with noisy labels primarily con-
tains audio signals of length 15 s and our model processes whole
sequences, there is a bias towards sequences with a length of 15 s.
To overcome this bias, we generate, before starting training, new
audio excerpts of varying lengths by randomly splitting each of the
audio signals with noisy labels into two at length rm · Tm with Tm

being the length of the m-th signal and rm ∼ U(0.1, 0.9). This
results in audio excerpt lengths which are approximately uniformly
distributed between 1 s and 13.5 s. As mixup data augmentation
may lengthen audio signals, mixup of the noisy excerpts yields sig-
nals distributed between 1 s and 27 s. Each audio excerpt copies the
event tags of the original audio, which results in some additional
label noise. The random splitting is performed three times result-
ing in three different datasets which we refer to as splits 0-2 in the
following3.

We mixup curated only data which we refer to as the curated
portion in the following as well as we mixup combined curated and
noisy data which we refer to as the noisy portion in the following.
In each training epoch the curated portion is repeated an integer
number of times to prevent training from being dominated by noisy
labels. The ratio of noisy labels to the total number of labels in one
epoch is referred to as R=Mnoisy

Mtotal
.

5.2. Optimization
The training criterion is the binary cross entropy between the model
predictions ŷ and the n-hot target vector ỹ:

L(ŷ, ỹ) = −
K−1∑

k=0

(
ỹk log(ŷk) + (1− ỹk) log(1− ŷk)

)

with K = 80 denoting the number of target event classes.
We randomly sample mini batches of size 16 from the training

data such that
1. no signal in the mini batch is padded by more than 20%,
2. no example in the mini batch includes the same events as

another example in the same minibatch,
and compute gradients of the average loss in the mini batch. We clip
gradients at a threshold of 15. Adam [15] was used for optimization.
Training is performed for 200K iterations with a learning rate of
3 · 10−4 .

We perform Stochastic Weight Averaging (SWA) [16] for the
last 50K iterations with a frequency of 1K iterations. At the end of
training we exchange the model weights for the averaged weights.
Finally we update the statistics of all batch normalization layers by
making a forward pass on our (unaugmented) training data using
the SWA model. SWA has shown to improve generalization and
hence performance on unseen data [16]. Another advantage is that
with SWA there is no need for held-out data to determine the best
performing checkpoint.

6. EXPERIMENTS
In the following we evaluate the usefulness of the proposed data
augmentation techniques and different methods for label noise han-
dling. While Section 6.1 and Section 6.2 only report the perfor-
mance of single model systems (which were trained on split 0),

3The generated splits are available at https://github.com/fgnt/
upb_audio_tagging_2019
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Section 6.3 presents performance of ensembles combining models
trained on different splits.

System performance is measured in terms of label-weighted
label-ranking average precision (lwlrap) evaluated on the private
test set. The lwlrap metric measures the capablity of the model to
rank active events over non-active events (see [10] for details). The
reported scores are one-shot results and were obtained from (late)
submissions on the Kaggle competition website.

6.1. Data Augmentation
To evaluate the different data augmentation methods we trained sin-
gle model systems using curated and noisy labeled data using the
provided labels. In this section, all models were trained with a noisy
label rate of R=0.56. Table 2 shows the performance gains due to
adding the proposed data augmentation methods. It can be seen that
each augmentation method significantly increases the model perfor-
mance in terms of lwlrap on the private test set.

Table 2: Performance when gradually adding data augmentation
methods.

Data Augmentation lwlrap
- 0.611
Mixup 0.665
+ Freq. Warp. 0.701
+ Freq. & Time Mask. 0.721

6.2. Label Noise Handling
In this Section we evaluate different methods for dealing with label
noise when using all proposed data augmentation techniques. While
for our challenge submission we used relabeling, which is explained
first, we adopted Multi Task Learning [17] from the winning team
after the challenge has ended, which is explained second.

6.2.1. Relabeling
For each of the three splits (as explained in Section 5.1) we trained
models on five different folds using a noisy label rate of R = 0.5.
This results in a total of 15 different models which were all com-
bined into an ensemble to make predictions for the noisy excerpts
from all three splits. Here the event scores of the individual models
were averaged to obtain the ensemble output scores.

For each event we then determined the decision threshold yield-
ing the best error rate jointly evaluated on the set of all noisy ex-
cerpts from all splits. These decision thresholds were used to re-
label the noisy excerpts, where excerpts without any active event
were discarded.

We then used the whole relabeled data of a split for training a
new model as we do not need held-out data to determine the best
checkpoint due to SWA.

6.2.2. Multi Task Learning
The winning team of the DCASE 2019 Challenge Task 2 proposed
Multi Task Learning (MTL) to deal with noisy labels [17]. Here
different classifier layers are used during training to predict cu-
rated and noisy labels, respectively. After the challenge ended we
adopted this approach for our model, i.e., we trained different fully
connected layers (the last two layers in Table 1) for curated and
noisy labels. At test time only the classifier layers trained on the
curated labels were used to make predictions.

6.2.3. Results
Results for the different methods of label noise handling are shown
in Table 3. It can be seen that using the noisy labels results in a
significant performance gain. However, using relabeling and MTL
yield only small improvement of the lwlrap. In the next section
these methods are further evaluated when performing ensembling.

Table 3: Performance for different treatments of label noise.
Method R lwlrap

Curated only 0.00 0.687
Provided labels 0.56 0.721

Relabeled 0.62 0.722
MTL 0.56 0.724

6.3. Ensembling
Finally, we evaluate ensembles of different models. In particular,
we combine models trained on different splits and with different
noisy label rates. System combination is achieved by averaging the
output scores of the contributing systems. Each row in Table 4-6
adds three models which were trained on the three different splits.
The results marked by an asterisk in Table 5 represent our submis-
sions to the challenge. It can be seen that neither relabeling nor
multi-task learning individually improve performance over the pro-
vided labels. Combining all the models from Tables 4-6 into a large
ensemble of 27 models, however, raises performance to 76.5% lwl-
rap, setting a new state-of-the-art for this task as shown in Table 7.
Do note that this ensemble has a total excecution time < 2 h using
CPU, which meets the challenge constraints.

Table 4: Provided labels
#models R lwlrap

3 0.56 -
+3 0.64 -
+3 0.75 0.759

Table 5: Relabeled
#models R lwlrap

3 0.62 0.746∗

+3 0.77 0.755∗

+3 0.53 0.757

Table 6: MTL
#models R lwlrap

3 0.56 -
+3 0.64 -
+3 0.75 0.759

Table 7: System Comparison

System lwlrap
Baseline [10] 0.537

DCASE winner [17] 0.758
Kaggle winner4 0.760

Our best subm. [18] 0.755
Our best late subm. 0.765

7. CONCLUSIONS

In this paper we presented our system for the DCASE 2019 Chal-
lenge Task 2. Our experiments carried out on the “FSDKag-
gle2019” data highlight the importance of data augmentation tech-
niques for achieving high classification performance. On the other
hand, particular consideration of the label noise did not prove effec-
tive in our case. Furthermore, performance was boosted by system
combination raising the performance from 0.724 lwlrap of our best
single model system to 0.765 by combining a total of 27 models,
setting a new state of the art for this task.

4https://www.kaggle.com/c/freesound-audio-tagging-
2019/leaderboard
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ABSTRACT

This paper introduces Task 2 of the DCASE2019 Challenge, titled
“Audio tagging with noisy labels and minimal supervision”. This
task was hosted on the Kaggle platform as “Freesound Audio Tag-
ging 2019”. The task evaluates systems for multi-label audio tag-
ging using a large set of noisy-labeled data, and a much smaller set
of manually-labeled data, under a large vocabulary setting of 80 ev-
eryday sound classes. In addition, the proposed dataset poses an
acoustic mismatch problem between the noisy train set and the test
set due to the fact that they come from different web audio sources.
This can correspond to a realistic scenario given the difficulty of
gathering large amounts of manually labeled data. We present the
task setup, the FSDKaggle2019 dataset prepared for this scientific
evaluation, and a baseline system consisting of a convolutional neu-
ral network. All these resources are freely available.

Index Terms— Audio tagging, sound event classification, au-
dio dataset, label noise, minimal supervision

1. INTRODUCTION

Environmental sound recognition has gained attention in recent
years, encompassing tasks such as acoustic scene classification,
sound event detection or audio tagging [1]. The latter is becoming
a popular task partly due to the various audio tagging tasks in the
DCASE Challenge editions, and its impact on applications such as
automatic description of multimedia, or acoustic monitoring. This
paper describes the characteristics, dataset and baseline system of
DCASE2019 Task 2 “Audio tagging with noisy labels and minimal
supervision”.

Everyday sound tagging consists of identifying the sound
events present in an audio recording. The most common approach to
create sound event taggers relies on supervised learning through la-
beled audio datasets. New released datasets tend to be of increasing
size in order to allow exploitation of data-driven approaches, e.g.,
deep learning. However, manual labeling of large datasets is ex-
pensive and typically a limiting factor in machine listening; hence,
creators are often forced to compromise between dataset size and la-
bel quality. Thus, most recent datasets feature larger sizes [2, 3, 4],
but their labeling is less precise than that of conventional small and
exhaustively labeled datasets [5, 6, 7]. We are, therefore, witness-
ing a transition towards larger datasets that inevitably include some
degree of label noise. Likewise, the current trend is moving towards
general-purpose sound event recognizers, able to recognize a broad
range of everyday sounds. This is favoured by the appearance of the

∗This work is partially supported by the European Union’s Horizon 2020
research and innovation programme under grant agreement No 688382 Au-
dioCommons and a Google Faculty Research Award 2018.
†Equal contribution.

AudioSet Ontology; a hierarchical tree with 627 classes encompass-
ing the most common everyday sounds [2]. This implies that not
only are we interested in recognizing typical sound sources (e.g.,
Bark), but also less usual sound classes (e.g., production mecha-
nisms such as Fill (with liquid)). Further, not only are these classes
less frequent, but also some can be semantically or acoustically sim-
ilar to others (e.g. Trickle, dribble and Fill (with liquid)). Manual
annotation of these more ambiguous categories becomes more dif-
ficult, which makes them more prone to labeling errors. An alter-
native to gathering data for training general-purpose audio taggers
is to retrieve audio and metadata from websites such as Freesound
or Flickr. Labels can be inferred automatically by using automated
heuristics applied to the metadata, or applying pre-trained classi-
fiers on the audio material. This approach supports rapid collection
of large amounts of data, but at the cost of a considerable amount of
label noise.

In this context, label noise arises as a challenge in general-
purpose sound event recognition, including adverse effects such as
performance drop or increased complexity of models [8], and also
hindering proper learning of deep networks [9, 10]. Consequently,
coping with label noise could open the door to better sound event
classifiers, and could allow the exploitation of large amounts of web
audio for training, while reducing manual annotation needs. The
topic of learning with noisy labels is a consolidated research area
in computer vision [11, 12, 13, 14, 15, 16, 17]. However, in sound
recognition it has received little attention, probably due to the con-
ventional paradigm of learning from small and clean datasets; only
a few works directly address the analysis and mitigation of label
noise [4, 18, 19].

In this paper, we propose a task, a dataset and a baseline sys-
tem to foster label noise research in general-purpose sound event
tagging. We follow up on DCASE2018 Task 2 [3], and propose
to investigate the scenario where a small set of manually-labeled
data is available, along with a larger set of noisy-labeled data, in
a multi-label audio tagging setting, and using a vocabulary of 80
classes of everyday sounds. The proposed task addresses two main
research problems. The first problem is how to adequately exploit
a large quantity of noisy labels, many of which are incorrect and/or
incomplete, and how to complement it with the supervision pro-
vided by a much smaller amount of reliable manually-labeled data
(minimal supervision). The second problem is given by the acoustic
mismatch between the noisy train set and the test set. Distribution
shifts between data have been shown to cause substantial perfor-
mance drops in machine learning, both for vision [20] and audio
[21]. In our case, the noisy train set comes from a different web
audio source than the test set, which is sometimes a real-world con-
straint. This paper is organized as follows. Section 2 provides more
details about the task and its experimental setup. Section 3 presents
the dataset prepared for the task, and Section 4 describes a baseline
system. Final remarks are given in Section 5.

https://doi.org/10.33682/w13e-5v06
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2. TASK SETUP

The goal of this task is to predict appropriate labels for each audio
clip in a test set. The predictions are to be done at the clip level, i.e.,
no start/end timestamps for the sound events are required. Some test
clips bear one ground truth label while others bear several labels.
Hence, the task setup is a multi-label classification problem and the
systems to be developed can be denoted as multi-label audio tagging
systems, as illustrated in Fig. 1. This task was hosted on the Kaggle
platform from April 4th to June 10th 2019. The resources associated
to this task (dataset download, submission, and leaderboard) can be
found on the Kaggle competition page.1

Figure 1: Overview of a multi-label tagging system.

As described in Section 3, the audio data for this task consists of
a test set and two train sets: a curated train set and a noisy train set,
that allow to experiment with training data of different levels of re-
liability and coming from different sources. System evaluation was
carried out on Kaggle servers (see Section 2.1) using the test set,
which is further split into two divisions, for the public and private
leaderboards. During the competition, the test subset correspond-
ing to the public leaderboard was used to provide live ranking of all
participants. To compute the final private leaderboard, at the end of
the competition, systems were re-evaluated using the unseen private
test set, of which neither the audio nor the labels were accessible to
participants.

2.1. Evaluation Metric and Competition Rules

The task was evaluated via label-weighted label-ranking average
precision (abbreviated as lωlrap and pronounced “lol wrap”). This
generalizes the mean reciprocal rank (MRR) used in the 2018 chal-
lenge [3] to the case of multiple true labels per test item. Let
Lab(s, r) be the class label at rank r (starting from 1) in test sam-
ple s, and Rank(s, c) be the rank of class label c in that list, i.e.
Lab(s,Rank(s, c)) = c. Then, if the set of ground-truth classes
for sample s is C(s), the label-ranking precision for the list of labels
up to class c (assumed to be in C(s)) is:

Prec(s, c) =
1

Rank(s, c)

Rank(s,c)∑

r=1

1[Lab(s, r) ∈ C(s)] (1)

1https://www.kaggle.com/c/freesound-audio-
tagging-2019
Note that the competition name on Kaggle is abbreviated from the full
DCASE2019 Challenge task name to “Freesound Audio Tagging 2019”.

where 1[·] evaluates to 1 if the argument is true, else zero.
Prec(s, c) is equal to 1 if all the top-ranked labels down to c
are part of C(s), and at worst case equals 1/Rank(s, c) if none
of the higher-ranked labels are correct. In contrast to plain lrap,
which averages precisions within a sample then across samples,
thereby downweighting labels that occur on samples with many la-
bels, lωlrap calculates the precision for each label in the test set,
and gives them all equal contribution to the final metric:

lωlrap =
1∑

s |C(s)|
∑

s

∑

c∈C(s)

Prec(s, c) (2)

where |C(s)| is the number of true class labels for sample s. We use
label weighting because it allows per-class values to be calculated,
while keeping the overall metric as a simple average of the per-class
metrics (weighted by each label’s prior in the test set). A Python
implementation of lωlrap is provided in 2.

This scientific evaluation was set up as a Kaggle Kernels-only
competition. This means that all participants had to submit their
systems as inference models in Kaggle Kernels (similar to Jupyter
Notebooks), to be evaluated on remote servers. In addition, infer-
ence run-time was limited to a maximum of one hour in a Kernel
with one GPU, and memory constraints were also imposed. These
constraints aim to discourage the usage of large model ensembles.
Participants could submit a maximum of two submissions per day,
and select two final submissions to be considered for the private
leaderboard ranking. A detailed description of the task rules can
be found in the Rules section of the competition page;1 the most
important points are summarized in the DCASE Challenge page.3

To complement the leaderboard results of the lωlrap ranking,
the task organizers introduced a complementary Judges’ Award to
promote submissions using novel, problem-specific and efficient ap-
proaches. Details about the Judges’ Award rules can be found in the
Judges’ Award section of 1.

3. DATASET

The dataset used is called FSDKaggle2019, and it employs audio
clips from the following sources:

• Freesound Dataset (FSD): a dataset under development based
on Freesound content organized with the AudioSet Ontology
[2]. Freesound is a sound sharing site hosting over 400,000
clips uploaded by a community of users, who additionally pro-
vide some basic metadata, e.g., tags. [22]. These data are used
to create the curated train set and the test set.

• The soundtracks of a pool of Flickr videos taken from the
Yahoo Flickr Creative Commons 100M (YFCC100M) dataset
[23]. These data are used to create the noisy train set.

FSDKaggle2019 is freely available from the Data section of 1,
all clips are provided as uncompressed PCM 16 bit 44.1 kHz mono
audio files, its ground truth labels are provided at the clip-level (i.e.,
weak labels), and its partitioning is depicted in Fig. 2.

3.1. Curated train set and test set

The first step carried out in the creation of FSDKaggle2019 was the
definition of a vocabulary of 80 classes drawn from the AudioSet

2https://colab.research.google.com/drive/
1AgPdhSp7ttY18O3fEoHOQKlt_3HJDLi8

3http://dcase.community/challenge2019/task-
audio-tagging#task-rules
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YFCC

test set

19,815 clips / 80 hours 4970 / 10.5

noisy train set
curated 
train set

FSD FSD

4481 / 12.9

Figure 2: Data split in FSDKaggle2019, including number of clips
/ duration in hours, and data origin. Colors depict quality of labels:
orange, yellow and green correspond to noisy labels, correct but
potentially incomplete labels, and exhaustive labels, respectively.

Ontology [2]. This vocabulary was chosen based on the follow-
ing criteria: i) we consider leaf nodes of the AudioSet hierarchy
for which there is enough data available in FSD, ii) we aim to en-
compass a diverse range of everyday sounds, and iii) we remove
few clearly isolated classes (those with the weakest semantic re-
lations with any of the rest), thus promoting confounds between
semantically/acoustically similar classes to some extent. The main
sound families (i.e., groups of sound classes) in the resulting vo-
cabulary are, in descending order of prevalence, human sounds, do-
mestic sounds, musical instruments, vehicles, animal sounds, natu-
ral sounds, materials, and mechanisms. The full list of 80 classes is
available in the Data section of 1.

In a second step, we did a mapping of Freesound clips to the
selected 80 class labels. To this end, a set of keywords was defined
connecting the user-provided Freesound tags with the AudioSet la-
bels. Using this mapping, for every class, we retrieved the audio
clips that feature at least one of the defined keywords among their
tags. This process led to a number of automatically-generated can-
didate annotations indicating the potential presence of a sound class
in an audio clip (i.e., weak labels, as timing information is not in-
cluded). Nonetheless, in some audio clips the target signal fills
the clip length almost completely, which can be considered as a
strong label. Subsequently, the candidate annotations were human-
validated using a validation task deployed in Freesound Annota-
tor,4 an online platform for the collaborative creation of open au-
dio datasets [24]. In this task, users verify the presence/absence of
a candidate sound class in an audio clip with a rating mechanism.
The vast majority of provided labels have inter-annotator agreement
but not all of them. The outcome is a set of clips where the corre-
sponding label(s) are correct; nevertheless, it can happen that a few
of these audio clips present additional acoustic material beyond the
provided label(s).

The resulting data were split into a train set and a test set. We
refer to this train set as curated in order to distinguish it from the
noisy set described in Section 3.2. To mitigate train-test contam-
ination, the split was carried out considering the clip uploaders in
Freesound. We allocated all audio clips uploaded from the same
user into either the curated train set or the test set, so that the sets
are disjoint at the Freesound user level. The partition proportion
was defined to limit the supervision provided in the curated train
set, thus promoting approaches to deal with label noise.

Finally, the test set was further annotated using a label gener-
ation tool [25], in which i) pre-existent labels can be re-validated,
and ii) potentially missing labels can be added through exploration

4https://annotator.freesound.org

Table 1: Main stats of the sets in FSDKaggle2019. ∗A few classes
have slightly less than 75 clips.

Aspect curated train noisy train test
Clips/class ∼75∗ 300 ∼ 50 - 150
Total clips 4970 19,815 4481
Labels/clip 1.2 1.2 1.4
Clip length ∼0.3 - 30s ∼15s ∼0.3 - 30s
Total duration ∼10.5h ∼80h ∼12.9h
Labelling correct noisy exhaustive

(inexhaustive)

of the AudioSet Ontology. The outcome is a set of exhaustively
labeled clips where the label(s) are correct and complete consider-
ing the target vocabulary; nonetheless, few clips could still present
additional (unlabeled) acoustic content out of the vocabulary.

The main characteristics of the curated train set, noisy train set
and test set are listed in Table 1. The curated train set consists of
4970 clips with a total of 5752 labels. Labels per clip ranges from
1 to 6 with a mean of 1.2. The test set consists of 4481 clips with a
total of 6250 labels. Labels per clip ranges from 1 to 6 with a mean
of 1.4. Note the increased number of labels per clip with respect to
the curated train set, due to the process of exhaustive labelling. In
both cases, clip length ranges from 0.3s to 30 due to the diversity
of the sound classes and the preferences of Freesound users when
recording/uploading sounds.

3.2. Noisy train set

The noisy train set was prepared using the YFCC100M dataset [23],
which has the advantages of i) being a very large and diverse dataset
that is not correlated with Freesound in acoustics or domain, and ii)
offering permissive Creative Commons licenses that allow ease of
use, modification, and redistribution. The original dataset contained
∼99M photos and ∼793k videos from ∼581K Flickr users. We
dropped videos with licenses that disallowed making derivatives or
commercial use, videos that were no longer available, and videos
with audio decode errors that we could not transcode, leaving us
with ∼201K 44.1 kHz mono WAV files. Video length varied with a
maximum of 20 minutes, and a mean of∼37s and median of∼20s.

The Flickr video metadata (title, description, tags) proved to be
too sparse to meaningfully map to our class vocabulary. Therefore,
we used a content-based approach where we generated video-level
predictions from a variety of pre-trained audio models: a shallow
fully-connected network as well as variants of VGG and ResNet
[26], all of which were trained on a large collection of YouTube
videos using the AudioSet class vocabulary. We generated sliding
windows of ∼1s containing log mel spectrogram patches and ag-
gregated the per-window predictions (using either maximum or av-
erage pooling) to produce a video-level vector of class scores. For
each of our 80 classes, we kept the top 300 videos by predicted
score for that class. We browsed the video labels and selected the
maximum-pooled VGG-like model as producing a balance between
reasonable predictions and a substantial amount of label noise. As
a further source of noise, each final clip was produced by taking a
random slice of a video of length up to 15 seconds (videos shorter
than 15 seconds would be taken in their entirety). Hence, the label
noise can vary widely in amount and type depending on the class,
including in- and out-of-vocabulary noises [4].

As listed in Table 1, the noisy train set consists of 19,815 clips
with a total of 24,000 labels (300 * 80). Labels per clip ranges
from 1 to 7 with a mean of 1.2. Clip length ranges from 1s to
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15s (by construction), with a mean of 14.5s. Therefore, the per-
class training data distribution in FSDKaggle2019 is, for most of
the classes, 300 clips from the noisy set and 75 clips from the cu-
rated set. This means 80% noisy / 20% curated at the clip level,
while at the duration level the proportion is more extreme consider-
ing the variable-length clips. Since most of the train data come from
YFCC, acoustic domain mismatch between the train and test set can
be expected. We conjecture this mismatch comes from a variety of
reasons. For example, through acoustic inspection of a small sam-
ple of both data sources, we find a higher percentage of high quality
recordings in Freesound. In addition, audio clips in Freesound are
typically recorded with the purpose of capturing audio, which is not
necessarily the case in YFCC.

4. BASELINE SYSTEM

4.1. Model Architecture and Training

The baseline system uses a convolutional neural network that takes
log mel spectrogram patches as input and produces predicted scores
for 80 classes. We use an efficient MobileNet v1 [27] architec-
ture which lets us fit comfortably within the inference time limits
of the challenge. Incoming audio (always 44.1 kHz mono) is di-
vided into overlapping windows of size 1s with a hop of 0.5s. These
windows are decomposed with a short-time Fourier transform using
25ms windows every 10ms. The resulting spectrogram is mapped
into 96 mel-spaced frequency bins covering 20 Hz to 20 kHz, and
the magnitude of each bin is log-transformed after adding a small
offset to avoid numerical issues. The model consists of 1 convo-
lutional layer followed by 13 separable convolution layers (which
give MobileNets their compactness) followed by either max or av-
erage pooling, and an 80-way logistic classifier layer. The model
contains∼3.3M weights and, by comparison, is∼8x smaller than a
ResNet-50 while using ∼4x less compute. Detailed documentation
is available in the public release of the baseline system code.5

To combat label noise, we use dropout (inserted before the clas-
sifier layer) as well as label smoothing [28] which replaces each
label’s target value with a hyperparameter-controlled blend of the
original value and 0.5 (representing a uniform probability distribu-
tion). To combat the domain mismatch between the test set and
noisy train set, we use transfer learning by training a model on the
noisy set first to learn a representation, and then use a checkpoint
from that run to warm-start training on the curated train set. In addi-
tion, we used batch normalization, exponential learning rate decay,
and the Adam optimizer. We trained models on the curated data
alone, the noisy data alone, the curated and noisy combined, noisy
first followed by warm-started curated, as well as a weighted ver-
sion of warm-started training that we describe next.

4.2. Results

Table 2 shows the lωlrap values produced by our various baseline
models when evaluated on the entire test set (i.e., including both the
public and private splits). Each row lists the best lωlrap obtained
from a small grid search (using the public test set for evaluation) that
varied maximum vs average pooling, learning rate, label smooth-
ing, dropout, learning rate decay, and whether or not we used batch
normalization. The baseline system that we settled on was “Warm-
started curated”, which achieved a lωlrap of 0.537 on the public

5https://github.com/DCASE-REPO/dcase2019_task2_
baseline

test set (see the publicly released baseline code for hyperparameter
choices).

Table 2: Baseline system results on the entire test set.

Training approach lωlrap
Curated only 0.542
Noisy only 0.312
Curated + Noisy 0.522
Warm-started curated 0.546
Weighted warm-started curated 0.561

Comparing “Noisy only” and “Curated + Noisy” to “Curated
only” shows a considerable domain mismatch where we hurt our
performance when we blindly add more data. A transfer learning
approach of warm-starting the curated training with a noisily trained
model gives us a small boost in performance.

We conducted a class-based analysis of the results in a public
Colab notebook6 where we look at the best and worst classes of each
model. The baseline system attains highest lωlrap values for Bicy-
cle bell (0.894) and Purr (0.873); lowest values occur for Cupboard
open or close (0.219) and Chirp, tweet (0.127).

We also analyse the correlations between various pairs of mod-
els. It becomes evident that, at least for our baseline models, there
are classes where using curated data alone is better while there are
other classes where the noisy data is better. One simple way to
incorporate this in training is to use the ratio of noisy to curated
lωlraps as a per-class weight during noisy training to boost classes
that have value and suppress classes that do not. When we warm-
start with this weighted noisy model, we get a further boost in per-
formance. This optimization is not included in the released baseline.

5. CONCLUSION

In this paper, we have described the task setup, dataset, and base-
line system of DCASE2019 Task 2 “Audio tagging with noisy la-
bels and minimal supervision”. This task was hosted on the Kaggle
platform as “Freesound Audio Tagging 2019”. The goal is to ade-
quately exploit a large set of noisy-labeled data and a small quantity
of manually-labeled data, in a multi-label audio tagging setting with
a vocabulary of 80 everyday sound classes. In addition, the dataset
poses an acoustic mismatch problem between the noisy train set
and the test set due to the fact that they come from different web au-
dio sources. We believe this can correspond to a realistic scenario
given the difficulty in gathering large amounts of manually labeled
data. lωlrap is proposed as evaluation metric. Baseline experiments
indicate that leveraging noisy-labeled data with a distribution shift
for sound event tagging can be challenging. The FSDKaggle2019
dataset and the baseline system proposed are freely available and
not limited for use within the competition.
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ABSTRACT

In this paper we address the problem of detecting previously
unseen novel audio events in the presence of real-life acoustic
backgrounds. Specifically, during training, we learn subspaces
corresponding to each acoustic background, and during testing the
audio frame in question is decomposed into a component that lies
on the mixture of subspaces and a supergaussian outlier component.
Based on the energy in the estimated outlier component a decision
is made, whether or not the current frame is an acoustic novelty.
We compare our proposed method with state of the art auto-
encoder based approaches and also with a traditional supervised
Nonnegative Matrix Factorization (NMF) based method using a
publicly available dataset - A3Novelty. We also present results
using our own dataset created by mixing novel/rare sounds such
as gunshots, glass-breaking and sirens, with normal background
sounds for various event to background ratios (in dB).

1. INTRODUCTION

1.1. Background
Novel audio event detection has a number of important applications.
For example, in surveillance systems, detecting unusual events
using audio can nicely complement video based approaches. This is
especially true in cases where there is not sufficient illumination, or
in the presence of visual occlusions where the performance of video
surveillance is impaired. But novelty detection poses interesting
challenges as well.

One difficulty is that not all potential audio events can be pre-
determined, pre-recorded and labeled. We need to deal with unseen
novel sounds and transients. But most of the current literature we
have seen on audio surveillance systems [1, 2, 3] propose fully
supervised learning methods: along with acoustic background data
they also require labeled audio examples corresponding to audio
events. We have also seen applications of this supervised audio
event detection in consumer products, for example Alexa Guard
1: this feature enables Echo devices to detect specific sounds
that the user selects such as smoke alarm, glass breaking sound,
carbon monoxide alarms etc. But these fully-supervised systems
can not detect unseen novel audio events. Therefore, researchers are
working on unsupervised techniques as well to detect novel audio
events [4, 5, 6, 7, 8].

1.2. Related Work
Even though novelty detection is a relatively new problem in
the audio signal processing community, this topic has been well-

1https://www.cnet.com/news/alexa-guard-goes-live-lets-your-echo-
listen-for-trouble-amazon-home-security/

researched in other data modalities and fields such as medical
diagnosis [9, 10], damage inspection [11, 12] electronic IT
security [13], and video surveillance systems [14]. In [15,
16] authors grouped several novelty detection techniques in two
major categories - statistical approaches and neural network based
approaches.

Statistical approaches depend on properties of the normal
background audio data, and, during training, either fit a model or
a probability distribution function over the data. During testing
they exploit this pre-trained model to determine if a test sample
belongs to the learned distribution or not. These methods have been
well researched and have been applied to several novelty detection
applications successfully such as in handwriting detection, the
recognition of cancer, failure detection in jet engines, and fMRI
analysis. In the context of acoustic novelty detection, in [7],
the authors have introduced Gaussian Mixture Model (GMM) and
Hidden Markov Model (HMM) based methods for detecting audio
novelties in realistic acoustic backgrounds such as in 1) smart-
home environments, 2) ATM settings, and 3) general-purpose
security settings. In [4] authors proposed a one-class Support
Vector Machine (OC-SVM) based unsupervised method for real-
time detection of novel events in the context of audio surveillance.
Recently in [17], the authors proposed a non-negative matrix under-
approximation (NMU) method to perform novel-sound detection
for unhealthy machineries.

Neural network based approaches, specifically autoencoder
based approaches, have recently gained attention for novelty
detection in both audio and in other modalities. The main working
principle of these approaches lies in training an autoencoder using
normal/expected data, and during testing checking if the network
is struggling to encode and decode the test data accurately. I.e., if
the system produces a high reconstruction error compared to some
threshold, it is then considered novel input. In [18], the authors
proposed a denoising autoencoder structure using both feedforward
units and LSTM units for acoustic novelty detection task and
showed significant improvement of performance over both GMM
and OC-SVM based methods.

1.3. Contribution
In this article, we propose a robust non-negative block sparse coding
based technique to detect novel sounds, such as gunshots, glass-
breaking, sirens etc, in different real life acoustic backgrounds,
such as in a bus, cafe, beach, city center, metro station and
grocery store. During training, we learn subspaces corresponding
to each acoustic background using supervised Nonnegative Matrix
Factorization (S-NMF). During testing the audio frame in question
is decomposed into a component that lies on the mixture of
subspaces and a supergaussian outlier component. Because we

https://doi.org/10.33682/pkcj-5s72
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use a separate estimator for the outlier modeled as a supergaussian
random variable, our approach is robust to minor deviations in
learned acoustic backgrounds and also actual backgrounds during
testing unlike in [17], where no such constraint has been imposed
on novel sound estimate. We also create a challenging dataset by
mixing novel sounds with real life acoustic scenes for different
event to background ratios. Finally, we compare the results of
our method, with state-of-the-art methods using a publicly available
dataset: A3Novelty. We also compare them using our own dataset
and show that our proposed method either matches the performance
of the state-of-the-art methods or outperforms them in different
cases.

The rest of the article is organized as follows: In Section 2
the proposed method is presented in detail, in Section 3 a brief
description of both the datasets, that have been used in this article
is given, in Section 4 we present evaluation results of our proposed
method and other competing methods over previously mentioned
two datasets and finally Section 5 concludes the paper and talks
about some future research directions.

2. PROPOSED METHOD

2.1. Training Stage: Learning Background Subspaces

First, an offline training stage is needed to learn the corresponding
dictionaries as subspaces, for D different types of acoustic
backgrounds such as in a bus, in a cafe, in a city center etc., by
solving the following optimization problemD times, for d = 1...D.

WNd ,HNd = arg min
W≥0,H≥0

KL(Nd|WH) + µ|H|1, (1)

where Nd ∈ K(number of bins) × L(number of frames) is
the magnitude of the dth training background sound STFT
representation, and KL(·|·) denotes the KL divergence. This
optimization problem can be solved in an iterative manner using
multiplicative updates [19]. To avoid scaling indeterminacies,
normalization constraint is applied, such that columns of WNd

have unit norm. After the training stage, the mixture of subspaces
corresponding to D different types of acoustic backgrounds can
be represented by the concatenated dictionary matrix, W =
[WN1 , ...,WNd , ...,WND ].

2.2. Testing Stage: Robust Non-negative Sparse Coding
2.2.1. Basic Model

During testing stage, we will decompose the ith test frame STFT
magnitude in the following manner,

vi = Whi + ri, (2)

where, vi ∈ K(number of bins) × 1 is the magnitude of the ith

frame STFT representation, ri ∈ K(number of bins) × 1 is the
outlier term and hi ∈ M (number of bases in W) × 1 is the ith

activation vector.

2.2.2. Structured Sparsity in Activation

Since W is an overcomplete dictionary, a sparseness constraint
over the activation vector hi is typically employed, leading to a
standard sparse coding framework. Since we are operating on STFT
magnitude feature space, non-negativity constraint over hi will
also be employed. During testing, it is reasonable to assume that

the acoustic background is not changing drastically, hence instead
of solving the above mentioned sparse coding problem for every
frame, we will solve for L = 5 frames simultaneously. Hence the
model will become,

V = WH + R (3)

where V,H,R are matrices now with L = 5 columns/ frames.
For our problem in hand, a more structured sparsity constraint

has been identified as useful. Since our acoustic background
dictionary W is essentially a concatenated version of D
subdictionaries, we argue that similar block structure can also
be expected in each frame of the activation matrix, i.e., H(:,l).
Intuitively, this represents the fact that during testing if a basis
vector of a specific subdictionary contributes to represent the testing
frame, the other basis vectors of that specific subdictionary will
also contribute. Hence in the lth activation vector, a block sparsity
structure can be expected. To impose this structural constraint,
following regularization term is included in the cost function,

Ψ(H) =
∑

l=1,..5

∑

gi∈G
log(||H(gi,l)||1 + ε) (4)

where, G = [g1, ..., gD] represents the D background subspaces.
In literature, this regularization term is also known as the log-
`1 measure [20]. We will also assume that since the acoustic
background is not changing within 5 frames the same subdictionary
will be used to explain the data over these 5 frames. Hence,
structured regularizer over the activation matrix will become,

Ψ(H) =
∑

gi∈G
log(||vec(H(gi,:))||1 + ε). (5)

Where, vec(H(gi,:)) is the vectorized format of submatrix H(gi,:).
In our work, we keep the hyperparameter ε = 10−4 fixed for all our
experiments.

2.2.3. Structured Sparsity in Outliers

As discussed above, we employ a supergaussianity/ sparse
constraint on the outlier term R, to capture the novel event.
This intuition of using a supergaussian random variable to model
outliers is motivated from several well known literatures on robust
regression [21, 22, 23], which have used heavytailed/supergaussian
distributions, such as student’s t distribution, to model the outliers
in the data.With the supergaussianity assumption, we make sure the
that the model mismatch error (tends to be smaller) will not get
absorbed in our outlier estimate. For the outlier matrix R, we will
again employ log-`1 regularizer with group sparsity constraint, but
in this case each frame/ column of R will be a group. This can be
interpreted as, if one frame is representing a novel event, all of the
frequency bins of that frame will have the opportunity to be active.
Hence, the regularizer on R is,

Π(R) =
∑

l=1,..,5

log(||R(:,l)||1 + ε). (6)

2.2.4. Derivation of Multiplicative Updates

After combining the model mismatch error, and the two regularizers
on activation matrix and outlier matrix, resulting cost function that
we will minimize is,

Ĥ, R̂ = arg min
H≥0,R≥0

‖V−WH−R‖2F+λΨ(H)+µΠ(R). (7)
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To solve the optimization problem with the non-negativity
constraint on H and R, we follow the block co-ordinate descent
framework based multiplicative update rules proposed in [24] and
derive the following update rules,

Ht+1 = Ht ⊗ WTV

WT (WHt + Rt) + λ
St+ε

, (8)

where, St(gi,l) = ||vec(Ht
(gi,:)

)||1, for l = 1, ..., 5 number of
frames.

Rt+1 = Rt ⊗ V

WHt+1 + Rt + µ
Pt+ε

, (9)

where, Pt
(k,l) = ||Rt

(:,l)||1, for k = 1, ....,K and l = 1, ..., 5
number of frames.

These multiplicative updates are performed for 100 iterations,
and the estimated value of the outlier matrix R is further used for
an adaptive thresholding based decision function, discussed in the
next subsection. We refer to our proposed approach as Robust Non-
negative Block Sparse Coding (RNBSC) in later sections.

A similar robust NMF formulation has been considered before
in [25], where the authors used a similar framework to learn robust
subspaces for a face recognition task. But they did not consider any
sparsity on the activation matrix H and furthermore, no structured
sparsity constraint was considered on outlier matrix R.

2.3. Adaptive Thresholding

For the adaptive thresholding step, we compute outlier estimate
and model mismatch error estimate for each frame, i.e. for ith

frame, outlier estimate r(i) = ‖R(:, i)‖2 and model mismatch
error, e(i) = ‖V(:, i) −WH(:, i) − R(:, i)‖2. We also perform
causal moving average of both e and r over previous 10 frames to
smoothen the estimates.

Since the background level can vary a lot, instead of using a
single value as the outlier threshold, we use an adaptive threshold
concept, where θ = β×median(e(1 : N)) is the threshold for each
audio clip, whereN is the total number of frames in each audio clip
during evaluation. Finally, threshold θ is applied over time series
of outlier estimate r, to obtain a binary signal, i.e. novelty or no
novelty.

3. DATASETS

3.1. A3Novelty Database
The A3Novelty corpus2 consists of 56 hours of recording and
was recorded in a laboratory of the Univerita Politecnica delle
Marche. These recordings were performed during both day and
night time to account for different acoustic backgrounds. A variety
of novel sounds, such as screams, falls, alarms, breakages of objects
etc., were played back randomly using a loudspeaker during these
recordings to generate backgrounds with novel sounds.

In the original A3Novelty database the audio recordings were
segmented in sequences of 30 seconds. Authors of [8], randomly
selected 300 sequences from the background material to construct
the training set (150 minutes) and 180 sequences from background
with novel sounds to compose the evaluation set (90 minutes). We
have used the same database for our evaluation purposes which is
publicly available3.

2http://www.a3lab.dii.univpm.it/research/a3novelty
3http://a3lab.dii.univpm.it/webdav/audio/

3.2. Own Evaluation Database (OED)
Since the A3Novelty database was recorded indoors, it does not
account for highly non-stationary acoustic backgrounds, hence,
detecting impulsive novel sounds from a stationary acoustic
background becomes comparatively easier. To tackle this issue,
we created our own database by mixing novel audio events
i.e. gunshots, glass breaking and sirens (obtained from publicly
available resources4) with acoustic background audio recordings
obtained from DCASE 2016 challenge [26], which has 6 different
acoustic backgrounds: beach, bus, cafe, grocery store, city center
and metro station. In our application, Event to Background ratio
(EBR) is defined globally, i.e., the gain is computed from the
average energy over the whole background (10 secs clip) and the
event signal, to raise a global EBR. As discussed in [4], by using
this approach we created signals which are good representative of
real life audio events. We created these mixtures for different EBRs:
0, 5, 10, 15, 20 dB.

For each of the acoustic background (total: 6) we created 60
audio clips with 3 different type of novel sounds (gunshot, glass
breaking, siren). Each clip is of length 10 s, resulting in total
of 60 mins of test audio for each EBR. We also included 300
audio clips (each of 10 s) of just acoustic background. During
mixing of the audio events, we generated the true labels where
the resolution is 1 s, i.e., for each 10 s long clip we generate a 10
dimensional vector as true label. Along with the evaluation set,
for training purposes we randomly selected segments of acoustic
background recordings (disjoint of evaluation set) from the same
DCASE challenge recordings, totaling to 90 mins of training data.

4. EXPERIMENTAL RESULTS

4.1. Competing Methods
In [18, 8], it has been shown that recently proposed Autoencoder
(AE) based approaches perform significantly better than previously
proposed statistical model based approaches such as GMM [7],
HMM [7], and OC-SVM [4]. Hence, we choose to compare our
proposed method with two AE based methods. We also compare
against S-NMF based approach to illustrate the usefulness of robust
outlier term in Equation 3. Since methods, that use any look ahead
information will not be feasible for real time novelty detection
application, we don’t compare with structures with BLSTM units.

• DAE-MLP: Denoising AE with Feed Forward structure 257-
512-257 and input is corrupted with Gaussian noise (std: 0.1).

• DAE-LSTM: Denoising AE with LSTM units in hidden layer
(257-512-257) and input is corrupted with Gaussian noise (std:
0.1).

• S-NMF: Supervised NMF based approach, where the
thresholding is done on mismatch error, i.e., e(i) = ‖V(:
, i)−WH(:, i)‖2.

• RNBSC: Proposed approach.

For a fair comparison, same adaptive thresholding approach has
been employed for all competing algorithms.

4.2. Setup
We use Short Time Fourier Transform (STFT) based time-
frequency representation of the audio clips and operate on STFT

4https://freesound.org/
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Table 1: Results over A3Novelty Dataset (1 sec)
Methods Precision (%) Recall (%) F Score (%)
DAE-MLP 95.00 97.43 96.20
DAE-LSTM 97.49 100 98.73
S-NMF 97.22 89.74 93.33
RNBSC (Proposed) 100 97.43 98.70

Table 2: Results over OED (10 secs)
Methods Precision (%) Recall (%) F Score (%)
DAE-MLP 80.00 82.22 81.09
DAE-LSTM 74.29 80.27 77.17
S-NMF 78.51 76.11 77.29
RNBSC (Proposed) 84.34 85.28 84.81

magnitude spectra feature space. For OED we use frame size of 32
ms and a frame step 8 ms. All the audio materials have sampling
fequency of 16 KHz. We use FFT size of 512, hence our feature
space is 512

2
+ 1 = 257 dimensional. For A3Novelty database

following [8], 30 ms frame length and frame step of 10 ms are used.
For AE based approaches we have also tried Compression AE

structures i.e., with less number of hidden units than input units.
But we found out that Denoising AE structures perform better than
traditional AEs, supporting results presented in [8]. Hence we only
include results for DAEs. For our proposed method RNBSC, all the
hyper parameters have been chosen empirically by maximizing F-
score over a small held out dev set (10 % of test set) and they are
as follows: λ = 0.001, µ = 0.01, β = 4. For each subdictionary,
representing one acoustic background, 50 basis vectors was used.

For all our experiments we use segment based performance
metrics i.e., Precision, Recall and F-score, following the standard
scoring techniques to evaluate sound event detection systems
presented in [27]. For A3Novelty database, we use segment size
of 1 s to evaluate all the algorithms, whereas for OED we use both
1 s segment and 10 s segment to score the system outputs. We
found out that for EBR higher than 0 dB, recall of all the systems
significantly improves. Further tuning/ increasing of β is required
for those cases to reduce the false positives (increase precision). For
that reason for evaluations on OED we only include testing material
of 0 dB EBR. Proposed method and the competing methods have
been trained separately for two datasets.

4.3. Results
In Table 1, we report the evaluation results of all competing
algorithms over A3Novelty corpus. As discussed above, the lack
of variability in acoustic background makes this corpus relatively
easier to detect novelties, hence all the competing algorithms
produce F-score over 90%. DAE-LSTM and our proposed method
RNBSC performs the best among 4 methods (DAE-LSTM does
slightly better (0.03%) than the proposed method). Our results
using DAE-LSTM is also comparable (our reported result is better)
to what was reported in [18] using DAE-LSTM structure for this
corpus.

In Table 2 and Table 3 we report evaluation results over OED
for all competing methods using 10 s segment and 1 s segment
respectively. For both the cases, our proposed approach RNBSC
performs the best and outperforms AE based approaches. We
also report results using S-NMF and show the usefulness of the
robustness, i.e., the extra supergaussian outlier term.

Fig. 1 shows the outlier estimate (r) and model mismatch error
(e) for an audio clip with cafe acoustic background, and a novel
gunshot sound. We highlight in Fig. 1, the position of the gun

Table 3: Results over OED (1 sec)
Methods Precision (%) Recall (%) F Score (%)
DAE-MLP 72.31 74.72 73.49
DAE-LSTM 70.95 70.55 70.75
S-NMF 75.08 67.78 71.24
RNBSC (Proposed) 77.17 81.67 79.35

shot in the spectrogram. In the bottom figure of Fig. 1, we clearly
see that the novel sound is being captured in the outlier estimate
and not leaking in to the model mismatch error. Because of the
supergaussian/sparse constraint, for all other times energy of the
outlier term is close to zero.

Figure 1: Spectrogram (top), Outlier and Mismatch Error estimate
using RNBSC (Bottom) for an audio clip in cafe with Gunshot
(novel sound)

Figure 2: F Score using RNBSC over OED (1 sec) for different
EBR

Finally in Fig. 2, we show F score measures of our proposed
method for different Event to Background Ratio.

5. CONCLUSION

We have presented a novel unsupervised approach for acoustic
novelty detection, using robust non-negative block sparse coding.
Previous state-of-the-art autoencoder based approaches solve the
problem by modeling only the normal acoustic background, and
they detect novel sounds only when the reconstruction/ model
mismatch error is above a certain threshold. Our approach on the
other hand explicitly models the novel sound using a supergaussian
random variable and thresholds on the energy of the expected value
of that random variable to detect acoustic novelties. This makes
our system much more robust in highly non-stationary acoustic
backgrounds, as shown by our empirical results over OED, which
has 6 different acoustic backgrounds.
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[4] S. Lecomte, R. Lengellé, C. Richard, F. Capman, and
B. Ravera, “Abnormal events detection using unsupervised
one-class svm-application to audio surveillance and
evaluation,” in Advanced Video and Signal-Based
Surveillance (AVSS), 2011 8th IEEE International Conference
on, pp. 124–129, IEEE, 2011.

[5] F. Aurino, M. Folla, F. Gargiulo, V. Moscato, A. Picariello,
and C. Sansone, “One-class svm based approach for
detecting anomalous audio events,” in Intelligent Networking
and Collaborative Systems (INCoS), 2014 International
Conference on, pp. 145–151, IEEE, 2014.

[6] R. Bardeli and D. Stein, “Uninformed abnormal event
detection on audio,” in Speech Communication; 10. ITG
Symposium; Proceedings of, pp. 1–4, VDE, 2012.

[7] S. Ntalampiras, I. Potamitis, and N. Fakotakis, “Probabilistic
novelty detection for acoustic surveillance under real-world
conditions,” IEEE Transactions on Multimedia, vol. 13, no. 4,
pp. 713–719, 2011.

[8] E. Marchi, F. Vesperini, F. Eyben, S. Squartini, and
B. Schuller, “A novel approach for automatic acoustic novelty
detection using a denoising autoencoder with bidirectional
lstm neural networks,” in Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International Conference
on, pp. 1996–2000, IEEE, 2015.

[9] L. Tarassenko, P. Hayton, N. Cerneaz, and M. Brady, “Novelty
detection for the identification of masses in mammograms,”
1995.

[10] L. Clifton, D. A. Clifton, P. J. Watkinson, and L. Tarassenko,
“Identification of patient deterioration in vital-sign data using
one-class support vector machines,” in Computer Science and
Information Systems (FedCSIS), 2011 Federated Conference
on, pp. 125–131, Citeseer, 2011.

[11] Y.-H. Liu, Y.-C. Liu, and Y.-J. Chen, “Fast support vector
data descriptions for novelty detection,” IEEE Transactions
on Neural Networks, vol. 21, no. 8, pp. 1296–1313, 2010.

[12] C. Surace and K. Worden, “Novelty detection in a changing
environment: a negative selection approach,” Mechanical
Systems and Signal Processing, vol. 24, no. 4, pp. 1114–1128,
2010.

[13] A. Patcha and J.-M. Park, “An overview of anomaly detection
techniques: Existing solutions and latest technological
trends,” Computer networks, vol. 51, no. 12, pp. 3448–3470,
2007.

[14] M. Markou and S. Singh, “A neural network-based novelty
detector for image sequence analysis,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 28, no. 10,
pp. 1664–1677, 2006.

[15] M. Markou and S. Singh, “Novelty detection: a review—part
1: statistical approaches,” Signal processing, vol. 83, no. 12,
pp. 2481–2497, 2003.

[16] M. Markou and S. Singh, “Novelty detection: a review—part
2:: neural network based approaches,” Signal processing,
vol. 83, no. 12, pp. 2499–2521, 2003.

[17] Y. Kawaguchi, T. Endo, K. Ichige, and Hamada, “Non-
negative novelty extraction: A new non-negativity constraint
for nmf,” in Acoustic Signal Enhancement (IWAENC), 2018
IEEE International Workshop on, IEEE, 2018.

[18] E. Marchi, F. Vesperini, S. Squartini, and B. Schuller,
“Deep recurrent neural network-based autoencoders for
acoustic novelty detection,” Computational intelligence and
neuroscience, vol. 2017, 2017.

[19] J. Le Roux, F. J. Weninger, and J. R. Hershey, “Sparse nmf–
half-baked or well done?,” Mitsubishi Electric Research Labs
(MERL), Cambridge, MA, USA, Tech. Rep., no. TR2015-023,
2015.

[20] A. Lefevre, F. Bach, and C. Févotte, “Itakura-saito
nonnegative matrix factorization with group sparsity,” in
Acoustics, Speech and Signal Processing (ICASSP), 2011
IEEE International Conference on, pp. 21–24, IEEE, 2011.

[21] D. E. Tyler, “Robust statistics: Theory and methods,” 2008.

[22] K. L. Lange, R. J. Little, and J. M. Taylor, “Robust statistical
modeling using the t distribution,” Journal of the American
Statistical Association, vol. 84, no. 408, pp. 881–896, 1989.

[23] Y. Jin and B. D. Rao, “Algorithms for robust linear regression
by exploiting the connection to sparse signal recovery,” in
Acoustics Speech and Signal Processing (ICASSP), 2010
IEEE International Conference on, pp. 3830–3833, IEEE,
2010.

[24] D. D. Lee and H. S. Seung, “Algorithms for non-negative
matrix factorization,” in Advances in neural information
processing systems, pp. 556–562, 2001.

[25] R. Zhao and V. Y. Tan, “Online nonnegative matrix
factorization with outliers,” in Acoustics, Speech and Signal
Processing (ICASSP), 2016 IEEE International Conference
on, pp. 2662–2666, IEEE, 2016.

[26] A. Mesaros, T. Heittola, and T. Virtanen, “Tut database
for acoustic scene classification and sound event detection,”
in Signal Processing Conference (EUSIPCO), 2016 24th
European, pp. 1128–1132, IEEE, 2016.

[27] A. Mesaros, T. Heittola, and T. Virtanen, “Metrics for
polyphonic sound event detection,” Applied Sciences, vol. 6,
no. 6, p. 162, 2016.

78



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

SOUND SOURCE LOCALISATION IN AMBISONIC AUDIO USING PEAK CLUSTERING
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ABSTRACT

Accurate sound source direction-of-arrival and trajectory estimation
in 3D is a key component of acoustic scene analysis for many appli-
cations, including as part of polyphonic sound event detection sys-
tems. Recently, a number of systems have been proposed which per-
form this function with first-order Ambisonic audio and can work
well, though typically performance drops when the polyphony is
increased. This paper introduces a novel system for source localisa-
tion using spherical harmonic beamforming and unsupervised peak
clustering. The performance of the system is investigated using syn-
thetic scenes in first to fourth order Ambisonics and featuring up to
three overlapping sounds. It is shown that use of second-order Am-
bisonics results in significantly increased performance relative to
first-order. Using third and fourth-order Ambisonics also results in
improvements, though these are not so pronounced.

Index Terms— sound source localisation, direction of arrival,
spatial audio, beamforming, steered-response power, DBSCAN

1. INTRODUCTION

Sound Event Localisation and Detection (SELD) is the act of de-
tecting and tracking individual sounds in an acoustic scene consist-
ing of a mixture of sources, typically recorded or monitored using a
microphone array. Such a system has applications including audio
surveillance [1], vehicle tracking for the military [2], localisation of
targets in robotics [3], and as a stage in source separation that has
been proposed for use in evaluation of environmental soundscapes
[4, 5]. Previous work involving SELD in Ambisonics is limited to
FOA [6, 7]. These systems tend to work well when localising a
single source, but performance drops when the complexity of the
scene is increased by adding multiple sources overlapping in time.
Higher-order Ambisonic (HOA) audio has much higher spatial res-
olution than FOA, and there are now several portable HOA micro-
phones commercially available, including the second-order Core-
Sound OctoMic [8] and fourth-order mh Acoustics Eigenmike [9],
making it simple to gather high-order Ambisonic recordings.

The EigenScape database of acoustic scenes [10] was recorded
in HOA using the Eigenmike. Analysis of this database has shown
that spatial audio features can be useful in acoustic scene classifica-
tion [10, 11], indicating that use of spatial audio could be a fruitful
area of investigation in future work on soundscape analysis. Us-
ing spatial audio to consider individual sources will require a robust
method for SELD.

In this paper we introduce a new method for estimation of on-
set/offset times and the DOA of active sound sources (covering the

Funding was provided by a UK Engineering and Physical Sciences Re-
search Council (EPSRC) Doctoral Training Award, an Audio Engineering
Society (AES) Educational Foundation grant, and the Department of Elec-
tronic Engineering at the University of York. Thanks to Sharath Adavanne
and the team at TUNI Audio Research Group for assistance with the dataset.

first two stages of SELD as defined in [6]) in Ambisonic recordings
of acoustic scenes using spherical harmonic beamforming and un-
supervised clustering of power peaks by the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm [12].
An unsupervised approach such as that presented here could be es-
pecially useful when the amount of data available for training is
small. The paper is organised as follows: Section 2 provides a de-
tailed description of the different stages involved in the system, in-
cluding beamforming, peak-finding, clustering and regression. Sec-
tion 3 describes the evaluation procedure, including the data used
to test the system and the metrics used for assessment and optimi-
sation. Section 4 presents the results of the study, with Section 5
providing discussion. Section 6 concludes the paper.

2. METHOD

Our system uses four main steps that will be described in detail
in this section. First, spherical harmonic beamforming is used to
create steered-response power (SRP) maps. These maps are then
analysed to extract a list of peak power positions. DBSCAN is used
to create clusters from these peaks, which correspond to identified
sound sources. Finally, regression models are fit to each cluster for
smoothed trajectory estimates.

2.1. Steered-Response Power Map

The first stage of the system is the creation of a series of power
maps describing how the sound power varies in the scene over time.
Spherical harmonic beamforming is used to create an SRP map [13]
for each frame of audio as follows:

Z(θ, φ) =
∑

k

N∑

n=0

1

bn(k)

n∑

m=−n

Wnm(θ, φ)Pnm(k) (1)

where output power Z for azimuth θ and elevation φ is calculated
as the product of the spherical harmonic-wavenumber domain sig-
nals P for spherical harmonic order n, degree m and wavenumber
k, and a weighting functionW that determines the look direction of
the beam. This calculation is repeated and summed across all n and
m [14], and across k for a map describing power in all frequency
bands. The bn(k) term is required to compensate for scattering of
sound induced by the presence of the recording array [13, 14], here
set to 1 as the system was tested using synthetic sound scenes. In
this work, the simplest spherical harmonic beamformer was used,
where the weights are simply substituted for the spherical harmon-
ics for the given look direction, a process also known as plane-wave
decomposition [15].

To create the SRP map, the beam must be steered in multiple
directions to sample the 3D space. We used the Fibonacci spiral
[16] to distribute 600 points in a nearly-uniform spherical pattern.

https://doi.org/10.33682/05my-4306
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This distribution was chosen as it can generate any number of points
with the only major irregularities in spacing occurring near the poles
[17], which are uncommon positions for sound sources. A map was
generated for each frame of audio, describing how the sound power
impacting on the measurement position changed over time. We split
our audio into frames of 256 samples, using rectangular windows
and no overlap.

2.2. Peak-finding

The series of SRP maps is then passed to a peak-finding algorithm.
Peak-finding in a spherical function presents a challenge in that the
wraparound of the sphere at the edges of the data i.e. f(2π, φ) =
f(0, φ) has to be taken into account, along with the fact that the
sphere has not been sampled with a regular grid.

We used the peak-finding function from the dipy Python library
[18]. Originally designed for analysis of MRI data, this peak-finder
overcomes these issues by requiring the sampling directions as input
as well as the power map. There are two parameters that govern the
behaviour of the function. The first, rel pk, is used to calculate a
threshold below which to discard peaks by:

threshold = ∧+ rel pk ·R (2)

where R is the range of the data and ∧ is either the minimum of the
data or 0 if the minimum is negative. The second factor is min sep,
an angular distance that governs the minimum separation allowed
between peaks. This helps avoid groups by discarding peaks that
are found within this distance of each other - only the largest peak is
retained. The algorithm returns an indeterminate number of peaks,
so we allocated enough memory for a maximum of 20 per frame.
This could easily be extended if the application demanded it, but in
practise this limit was rarely approached. The output of this stage
is a list of vectors containing the angle of the detected peaks along
with the time in seconds.

2.3. Clustering

In order to estimate coherent sound sources, we used the DBSCAN
algorithm [12] to intelligently cluster sets of peaks proximal in
space and time. DBSCAN is an unsupervised algorithm that groups
data into clusters based on their proximity, with points in low-
density regions (having fewer neighbours) designated as outliers.
This algorithm is very useful in terms of estimating which peaks
belong to the same source sounds. Onset and offset times for each
source can be predicted by considering the first and last-occurring
peak points grouped into each cluster.

To once again avoid the problems mentioned in Section 2.2
involving spherical wraparound points, the spherical co-ordinate
component of each peak vector is converted to Cartesian co-
ordinates. Each peak is therefore mapped from 3D (t, θ, φ) to 4D
(t, x, y, z), similar to the approach used in [6]. Without this pro-
cess, there would be a disconnect in the clusters identified by DB-
SCAN as sources moved across or near to the spherical co-ordinate
boundaries.

The spatial dimensions of the data were normalised, as is stan-
dard in machine learning, to zero mean and unit variance. The time
dimension was not collapsed, as in testing this resulted in clusters
being made of peaks occurring in similar spatial locations but sep-
arated by large amounts of time. There are two main input parame-
ters for the DBSCAN algorithm:

• ε - The largest distance between two adjacent points before the
algorithm considers assigning the points to different clusters.

• MinPts - The number of data points required within ε of a given
point for that point to be considered a ‘core’ point. This affects
how dense groups need to be in order to be clustered.

2.4. Regression

Each cluster is used to train a set of Support Vector Regressors
(SVRs) [19], which create models of source trajectories. Since the
clusters are labelled by the DBSCAN stage, this stage of learning
is supervised. A separate regressor is trained for each spatial di-
mension, modelling x, y, and z separately against t, and the outputs
of these three models are combined for a final 4D trajectory. The
regressors serve to smooth the raw data, which can exhibit a cer-
tain amount of ‘jitter’ as adjacent sample points are instantaneously
identified as peaks in a given frame. The model can also be used to
fill in missing points in the cluster, as there might not necessarily be
a peak identified in the cluster for every time step. In this way we
provide some mitigation for interference.

The salient input parameter for the SVR algorithm in terms of
this study is C, which is the cost associated with the distance of
input data from the regression line. A higher value of C causes
overfitting as the cost associated with points not coinciding with
the line is high. In this study we determined experimentally to use
1× 10−3 as the value forC, as this ensured smoother predicted tra-
jectories with minimal jitter. The output of these regressors is calcu-
lated for every frame between the first and last points of each cluster.
The predictions are then re-scaled back to the original spatial ranges
and the Cartesian co-ordinates are converted back to spherical co-
ordinates, giving the final output of the system.

3. EVALUATION

3.1. Dataset

The system was tested using an expanded version of the TUT Sound
Events 2018 Ambisonic Anechoic Dataset [20]. This dataset fea-
tures synthetic Ambisonic scenes with sounds at static locations in
the full range of θ and at φ between±60◦, with a resolution of 10◦.
Scenes are included with three levels of polyphony, up to a maxi-
mum of one, two or three simultaneous sounds active (denoted OV1
to OV3). Using synthetic data, the level of polyphony, position, and
movement of sounds is controllable and can therefore be precisely
known. Real recordings would have to be labelled manually and
this would be very labour-intensive. Indeed, it is not clear how one
would go about labelling real recordings for DOA in a way that
would be at all reliable.

Since the original dataset is only available in FOA, we re-
synthesised it in fourth-order HOA using the original scene descrip-
tion files and source sounds from the DCASE 2016 task 2 dataset
[21], which contains a variety of everyday sounds. See [7] for more
detail on the method for synthesising the data. The dataset features
240 training examples and 60 testing examples for each OV. Our
system has no need of training, so we used only the testing exam-
ples. The examples were all resampled to 16 kHz, as would be
necessary with real-world Eigenmike recordings in order to avoid
spatial aliasing artefacts due to the geometry of the array [22].
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3.2. Metrics

To assess the system we employ the two frame-wise DOA metrics
used in the DCASE 2019 Task 3 challenge [6, 7, 23]. The first is
DOA error, defined as:

DOA error =
1∑T

t=1D
t
E

T∑

t=1

H(DOAt
R,DOAt

E) (3)

where DOAt
R and DOAt

E are lists of reference and estimated
DOAs, respectively, in frame t. Dt

E is the number of estimates
in DOAt

E , and H is the Hungarian algorithm [24], used to assign
predicted angles to reference angles based on optimising pair-wise
costs using angular distances. This metric gives the average error
between predicted and actual DOA angles.

The second metric is frame recall (FR), formally defined for
DCASE 2019 as [23]:

FR =
1

T

T∑

t=1

1(Dt
R = Dt

E) (4)

whereDt
R is the ground-truth number of sources present in frame t,

and 1 is an indicator function which outputs one where the brack-
eted condition is met, otherwise returning zero. FR indicates the
proportion of frames where the estimated and reference number of
active sounds are equal. A perfect system would have a FR of 1 and
a DOA error of 0.

3.3. Optimisation

To assess the system, we ran it on all 60 test files for each order
of Ambisonics from first to fourth-order (denoted N1 to N4) and
each level of polyphony available in the dataset. Metrics were cal-
culated for each file, with their means calculated to characterise the
system’s performance across the whole dataset.

To find the best possible performance for each N and OV, we
used the hyperopt library [25] to run 1000 iterations using vari-
ous combinations of hyperparameters, optimising for FR. Follow-
ing preliminary tests to find appropriate ranges, we set the search
space as follows:

• {ε ∈ R | 0.1 ≤ ε ≤ 1.25}
• {MinPts ∈ Z | 3 ≤ MinPts ≤ 10}
• {rel pk ∈ R | 0.0 ≤ rel pk ≤ 1.0}
• {min sep ∈ Z | 0 < min sep < 90}

Hyperopt uses the Tree Parzen Estimator (TPE) algorithm [26] to
focus on optimal values over time. This enables more fine-tuning
of the system’s performance compared to the same number of iter-
ations in a random search.

4. RESULTS

4.1. Optimised Systems

Figure 1 shows the performance metrics recorded for each level of
overlap and Ambisonic order from systems optimised for maximum
FR, along with results from SELDnet reported in [6], as a compari-
son. It can be seen that performance on OV1 audio is very good re-
gardless of N, with almost perfect FR and low DOA error of around
3◦. For OV2 there is a clear pattern of improvement in performance
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Figure 1: Plot of DOA Error against FR for systems using parame-
ters maximising FR, as well as reported SELDnet results [6].

with increase of N. OV2/N4 yields FR of 0.85 with DOA error of
2.9◦, with OV2/N2 yielding FR of 0.81 with a DOA error of 4.2◦,
remarkably close to the OV2/N4 performance. There is a larger gap
between OV2/N1 and OV2/N2 results than between the other or-
ders. This pattern of performance difference across N appears to
be more pronounced as OV increases. For OV3/N1 the DOA error
is a relatively poor 19.7◦, with a FR of 0.55. OV3/N2 reduces the
DOA error to 5.7◦, an improvement of 14◦, whilst the gap between
OV3/N2 and OV3/N4 is just 2.5◦. FR also increases with N, though
the difference is not so marked as that of DOA error.

The results achieved for OV1 are very closely aligned with those
achieved by SELDnet. DOA error for OV2 is smaller than the
SELDnet result in all orders, but FR does not begin to approach the
SELDnet result until higher orders are used. SELDnet outperforms
this system for OV3/N1, but is outperformed in terms of DOA error
for OV3 using all higher orders. Again, the FR achieved by SELD-
net is only approached using higher orders.

4.2. Performance Variance

Figure 2 shows the distribution of results returned by all 1000 it-
erations of the system using various hyperparameters. It should be
noted that due to the use of the TPE algorithm these results will be
skewed, with more data on performance with hyperparameters set
close to optimal values. This accounts for the large number of visi-
ble outliers, although they represent only a small proportion of the
1000 iterations.

It can clearly be seen in Figure 2(a) that increasing the order of
the beamformer decreases the median and variance of DOA Error
for OV2, and to an ever greater degree for OV3. Similarly to the
pattern of results in Figure 1, the largest reduction in both is be-
tween N1 and N2, with higher orders yielding diminishing returns
in this regard. The comparatively low variance in systems using N2
or above indicates a degree of robustness to varying hyperparame-
ters, at least within a certain range. This could be a benefit when
using the system on real-world audio in which the precise number
of sources would usually be unknown.

Returning attention to the outliers, it can be seen that there are
iterations of the system that achieved very low DOA error values.
These are not, however, the results shown in Figure 1, as achieving
this low DOA error incurs a trade-off whereby FR becomes poor.
Further investigation indicated that these metrics were recorded on
iterations where both peak-finding parameters discussed in Section
2.2 were set very low. This results in clusters of peaks being identi-
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Figure 2: Distributions of DOA Error and Frame Recall system per-
formance metrics across all 1000 hyperopt iterations.

fied in the directions of the sound sources, as opposed to the single
peaks enabled when the parameters are set more appropriately. The
presence of these clusters may enable the regression stage to inter-
polate and find a truer DOA for the source lying in the centre of
these peaks. Unfortunately, lowering these hyperparameters also
results in an increase of spurious peaks, leading to greatly reduced
FR. Despite these considerations, in a context where precise DOA
measurement was of greater importance than an exact number of
active sources, such optimisation for DOA error might be desirable.

The distributions of FR values are shown in Figure 2(b). Once
again, higher Ambisonic orders tend to have better performance
both in median and maximum values. There is once again a larger
increase in performance between N1 and N2 than for other orders,
though this is not as pronounced as with DOA error values. Un-
like DOA error, FR declines consistently given increasing levels of
sound overlap. The variance in FR for OV1 decreases between N1
and N2, but this pattern is not repeated for OV2, where variance re-
mains consistent regardless of N, or OV3, where variance actually
increases between N1 and N2.

5. DISCUSSION

Results indicate, in terms of best performance as well as average
performance and variance, that there is a larger gap between N1
and N2 than between N2 and N3 or N4. Increasing N increases
the computational complexity of the beamforming stage, as well as
the amount of storage space required for the recorded data and the
number of microphone capsules required to capture real-world au-

dio. Since this increases cost at all stages, we have an incentive to
keep N low. The jump in performance between N1 and N2 indicates
that N2 may be worth the increased cost, yet limited performance
gains at higher orders suggests that second-order Ambisonics might
mark a good compromise point for this application. On the other
hand, the results do show that the improvements in performance
with increased N become more pronounced as OV increases. Since
real-world acoustic scenes are far more complex than the synthe-
sised scenes tested here, use of higher orders may still be useful
dependent on context. It is interesting to note that the lowest DOA
error achieved at each OV in the optimised systems shown in Fig-
ure 1 are very similar, at around 3◦. This corresponds closely to
the average angular distance between pairs of adjacent points in the
600-point Fibonacci spiral, which is 2.72◦, indicating that the sys-
tem could achieve even lower DOA values if a finer grid pattern or
some method of interpolation were employed (though this would
complicate the peak-finding stage).

The fact that FR appears to decrease linearly with increasing
OV is interesting, especially given that the synthetic scenes used
here are anechoic. The diminishing returns in terms of improve-
ments with increasing Ambisonic order indicate a trend towards a
maximum performance level which is clearly less than perfect. The
best results achieved here are very closely aligned with the results
from SELDnet, which provides some evidence there may be a ceil-
ing inherent in either the dataset used or more fundamentally with
this type of approach. Increasing N will likely result in smaller and
smaller improvements whilst at the same time increasing computa-
tional complexity exponentially. This indicates that improvements
to FR will probably require an improved or alternative method for
producing the power map than the plane-wave decomposition SRP
method used here or the neural network-generated spatial pseudo-
spectrum used in [6, 7]. It is also possible that given dynamic
scenes with multiple moving sources that when the trajectories of
two or more sources intersect, the DBSCAN algorithm used here
would link them together, thus causing the regression stage to pro-
duce wildly erroneous DOA estimates. One potential solution to
this could be utilising the different frequency bands present in the
power map calculation (e.g. not summing over k in Equation 1)
to add another dimension that would make it less likely for over-
lapping sounds to be clustered provided they remained in different
frequency ranges (ω-disjoint orthogonality [4]).

6. CONCLUSION

In this paper, we have specified and tested a system using spherical
harmonic beamforming and unsupervised peak clustering for con-
ducting sound event localisation in Ambisonic recordings of acous-
tic scenes. The system has been tested on synthetic scenes it has
been shown that performance given a single active source is con-
sistently very good across all Ambisonic orders, with reductions in
performance occurring as the number of concurrent sources is in-
creased. Increasing Ambisonic order improves performance, espe-
cially between first and second-order.

Future work on this system could seek to improve frame recall
by using an alternative method for calculating the power map. DOA
error performance could be improved by introducing interpolation
to the peak-finding stage. Apart from these improvements, the ob-
vious next step would be to add a labelling stage, making this a
fully-fledged SELD system.
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ABSTRACT
This paper proposes sound event localization and detection meth-
ods from multichannel recording. The proposed system is based
on two Convolutional Recurrent Neural Networks (CRNNs) to per-
form sound event detection (SED) and time difference of arrival
(TDOA) estimation on each pair of microphones in a microphone
array. In this paper, the system is evaluated with a four-microphone
array, and thus combines the results from six pairs of microphones
to provide a final classification and a 3-D direction of arrival (DOA)
estimate. Results demonstrate that the proposed approach outper-
forms the DCASE 2019 baseline system.

Index Terms— Sound event detection, sound source localiza-
tion, time difference of arrival, neural network

1. INTRODUCTION

Sound Event Detection (SED) is an important machine listening
task, which aims to automatically recognize, label, and estimate
the position in time of sound events in a continuous audio signal.
This is a popular research topic, due to the number of real-world
applications for SED such as home-care [1], surveillance [2], envi-
ronmental monitoring [3] or urban traffic control [4], to name just
a few. Successful Detection and Classification of Acoustic Scenes
and Events (DCASE) challenges [5, 6] now provide the community
with datasets and baselines for a number of tasks related to SED.
However, most of the effort so far has concentrated on classification
and detection of the sound events in time only, with little work done
to perform robust localization of sound event in space.

Early approaches for SED are strongly inspired by speech
recognition systems, using mel frequency cepstral coefficients
(MFCCs) with Gaussian Mixture Models (GMMs) combined with
Hidden Markov Models (HMM) [7, 8]. Methods based on dictio-
nary learning, mainly Non-negative Matrix Factorization (NMF),
are also considered as prominent solutions for the SED task [9, 10,
11]. With the recent advancements in machine learning, deep learn-
ing methods now provide state of the art results for this task [12, 13].
The prevailing architectures used for SED are Convolutional Neural
Networks (CNNs) [14], which are particularly successful in com-
puter vision tasks. Other common approaches try to model time re-
lations in audio signal by using recurrent neural networks (RNNs)

∗This work was funded in part by Signify.
†The research leading to these results has received funding from the Eu-

ropean Union’s H2020 Framework Programme (H2020-MSCA-ITN-2014)
under grant agreement n 642685 MacSeNet. MDP is also supported by EP-
SRC grant EP/N014111/1.

[12]. Both can be combined in a Convolutional Recurrent Neural
Network (CRNN), which achieves state of the art results on several
machine listening tasks [15, 16, 17].

On the other hand, sound source localization (SSL) refers to es-
timating the direction of arrival (DOA) of multiple sound sources.
There are two popular categories of SSL methods: 1) high reso-
lution and 2) steered-response techniques. High resolution meth-
ods include Multiple Signal Classification (MUSIC) [18] and Es-
timation of Signal Parameters via Rotational Invariance Technique
(ESPRIT) [19]. These approaches, although initially designed for
narrowband signals, can be adapted to broadband signals such as
speech [20, 21, 22, 23, 24]. Alternatively, the Steered-Response
Power Phase Transform (SRP-PHAT) robustly estimates the di-
rection of arrival of speech and other broadband sources [25].
SRP-PHAT relies on the Generalized Cross-Correlation with Phase
Transform (GCC-PHAT) between each pair of microphones of
a microphone array. It is therefore convenient to estimate the
time difference of arrival (TDOA) values for each pair, and com-
bine these results to estimate the direction of arrival for a source
[26, 27, 28, 29, 30], which is the approach we choose for this chal-
lenge.

In this paper we propose a system for sound event detec-
tion and localization (SELD), which we submitted to Task3 of the
DCASE2019 Challenge [31]. Motivated by the results obtained by
[32], we propose a CRNN architecture that uses both the spec-
trogram and GCC-PHAT features to perform SED and estimate
TDOA. However, since TDOA and SED have different cost func-
tions, we believe they are distinct tasks with different optimal solu-
tions, and we propose to use two separate neural networks for each
of these two tasks. The results are then combined together to gen-
erate a final SED decision and estimate the DOA.

2. SOUND EVENT LOCALIZATION AND DETECTION

The goal of sound event localization and detection (SELD) is to out-
put all instances of the sound events in the recording, its respective
onset-offset times, and spatial locations in azimuth and elevation
angles, given a multichannel audio input. An example of such a
setup has been provided in Task 3 of the DCASE 2019 Challenge
[31]. Our system uses the TAU Spatial Sound Events - Microphone
Array dataset, which provides four-channel directional microphone
recordings from a tetrahedral array configuration. A detailed de-
scription of the dataset and the recording procedure may be found
in [17]. In our approach, we propose to predict events and TDOAs
for each pair of microphones, which leads to a total six pairs.

https://doi.org/10.33682/4v2a-7q02
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3. PROPOSED METHOD

We propose a method based on a combination of two convolutional
recurrent neural networks (CRNNs), that share a similar front-end
architecture. The first network, CRNNSED , is trained to detect,
label and estimate onset and offsets of sound events from a pair
of microphones. The second network, CRNNTDOA, estimates the
TDOA for each pair of microphones and each class of sound events.
The SED results of all pairs are then combined together and a
threshold is applied to make a final decision regarding sound detec-
tion for each class. The TDOAs are also combined together for all
pairs of microphones and a DOA is generated for each class. To ob-
tain a DOA from the TDOA values, each potential DOA is assigned
a set of target TDOAs, which are found during a initial calibration
procedure. Figure 1 shows the overall architecture of the proposed
system. The following subsections describe in details each building
block of the system.

Cross-spectrum
per pair

GCC-PHAT
per pair

Events
per pair

TDOAs
per pair

CRNNSED

CRNNTDOA

Final
decision

×6

Parameters obtained
during calibration

Events

DOAs

Figure 1: Architecture of the proposed system.

3.1. Calibration

The search space around the microphone array is discretized into
Q DOAs, which are indexed by q ∈ Q = {1, 2, . . . , Q}. Each
DOA q is associated to an azimuth and an elevation, denoted by
(φq, θq), where φq ∈ {−180◦,−170◦, . . . ,+170◦} and θq ∈
{−40◦,−30◦, . . . ,+40◦}, which corresponds to the discrete an-
gles used when recording the DCASE dataset [31]. The num-
ber of microphones corresponds to M ∈ N, and the number of
pairs to P ∈ N, where P = M(M − 1)/2. Each DOA q
also corresponds to a vector τ q ∈ DP of TDOA values, where
D = {−τmax, . . . ,+τmax} and the cardinality |D| = G. The ex-
pressions τmax ∈ R+ and G ∈ N stand for the maximum TDOA
and the number of discrete TDOA values, respectively. Assum-
ing free field propagation of sound, the microphone array geome-
try and the speed of sound provide enough information to estimate
the TDOA values of each DOA. However, the free field assumption
becomes inaccurate when dealing with a closed microphone array
(e.g. when microphones are installed around a filled support), and
thus calibration based on the recorded signals is needed and is per-
formed offline.

The expression Xt
m[k] ∈ C stands for the Short-Time Fourier

Transform (STFT) coefficient at frame index t ∈ N, microphone
index m ∈ M = {1, 2, . . . ,M} and bin index k ∈ K =
{Kmin,Kmin + 1, . . . ,Kmax}, where K = Kmax −Kmin stands
for the total number of frequency bins used. The frame size and
hop size correspond to N ∈ N and ∆N ∈ N, respectively,
and the spectral content thus spans frequencies in the interval
[KminfS/N,KmaxfS/N ] Hz, where fS ∈ R+ stands for the sam-
ple rate in samples/sec. The complex cross-spectrum Xt

i,j [k] for
each microphone pair (i, j) ∈ P = {(x, y) ∈ M2 : x < y}

corresponds to:

X
q,Tq
i,j [k] =

∑

t∈Tq
Xt
i [k]Xt

j [k]∗ (1)

where Tq is a set that contains all the frame indexes where a sin-
gle source is active at DOA q, and (. . . )∗ stands for the complex
conjugate operator. The Generalized Cross-Correlation with Phase
Transform (GCC-PHAT) is then computed as follows:

x
q,Tq
i,j [τ ] =

∑

k∈K
Wi,j [τ, k]

X
q,Tq
i,j [k]

|Xq,Tq
i,j [k]|

(2)

where Wi,j [τ, k] = exp(2π
√
−1τk/N), with τ ∈ D.

The TDOA value for the pair (i, j) and DOA q is then estimated
as:

τ̄ qi,j = arg max
τ∈D

{xq,Tqi,j [τ ]}. (3)

Since there is a limited amount of sound events per DOA in the
training dataset, the estimated TDOAs τ̄ qi,j ∀ (i, j) ∈ P, ∀ q ∈ Q
can be noisy. To cope with this limitation, we apply a poly-
nomial fitting method with an order of 27 (found empirically).
For each discrete elevation angle θ ∈ {−40◦,−30◦, . . . ,+40◦},
there are 36 azimuths φ ∈ {−180◦,−170◦, . . . ,+170◦}, and the
TDOAs associated to these azimuths vary smoothly. Therefore,
for each pair (i, j) and elevation θ, we concatenate the estimated
TDOAs three times to create a signal that spans over the azimuths
φ ∈ {−540◦,−530◦, . . . ,+540◦} and avoids the discontinuities
observed at −180◦ and 170◦ within the initial range. A first poly-
nomial fitting is then performed, and the outliers are removed prior
to performing a second fitting, which finally provides the estimated
TDOA τ qi,j for each DOA q for the pair (i, j):

τ qi,j = polyfit(τ̄ qi,j , 27). (4)

Figure 2 shows an example of the proposed method and how it
deals effectively with outliers. Note that once the polynomial coef-
ficients are obtained, the TDOAs are only estimated in the region of
interest, which is in the range φ ∈ {−180◦,−170◦, . . . ,+170◦}.

Figure 2: Calibration model for DOA estimation. First polynomial
fit is shown as a dashed line, and the second one after removing the
outliers is a solid line.
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Figure 3: Architecture of CRNNSED and CRNNTDOA

3.2. Neural network architecture

The main building block of our system are two CRNNs that share a
similar front-end architecture, as shown in Fig. 3.

The network consists of two branches. This first is a series
of convolutional layers (CNN), that process the log amplitude and
phase of the instantaneous complex cross-spectrum input spectro-
grams (as in (1)) between microphones i and j. In parallel, GCC-
PHAT features (as in (2), but for a single frame t) are fed into a
branch of a network that consists of two feed-forward layers. The
outputs of two branches are concatenated and passed to a Bidirec-
tional Gated Recurrent Unit (Bi-GRU) layer. The resultant vector
is considered as a task dependent embedding of the input data. The
embedding is passed to two feed forward layers, followed by an
activation function, which depends on the task of the network.

CRNNSED is trained in a supervised manner using SED labels,
i.e. information about the onset, offset and label of a sound event.
As SED task may be pinned down to a multi-label classification of

time frames, we use binary cross entropy as a loss function of the
network. A Sigmoid activation function outputs the probabilities
between 0 and 1 of each class for each time frame.

CRNNTDOA is trained on TDOA labels for each pair of micro-
phones. The problem of TDOA estimation is defined in a regression
framework. Hence, Mean Squared Error (MSE) loss is used to train
the network. Similarly to the CRNNSED , the network consists of
CNNs and GRU, followed by an activation function, Hyperbolic
Tangent (tanh) in this case, scaled by τmax as the TDOA value lies
in the range [−τmax,+τmax]. Note that the TDOA is only estimated
over segments (i.e. audio samples for a given time interval) where
the corresponding sound event is active according to the reference
labels, as proposed in [32].

Both networks are trained separately on all pairs of micro-
phones, using segments of 3 seconds selected randomly amongst
the training dataset, and using the Adam optimizer with a learning
rate of 10−3 and a batch size of 16. We stopped training the network
when no further improvement is observed on the validation set, that
is after 120,000 segments for CRNNSED and 160,000 segments for
CRNNTDOA.

3.3. Event detection

CRNNSED returns a value eti,j [c] ∈ [0, 1] for each pair of mi-
crophones (i, j) and class c ∈ {1, 2, . . . , C}. These values are
summed up for all pairs and each class, and normalized by the num-
ber of pairs, which leads to a new expression et[c] ∈ [0, 1]:

et[c] =
1

P

M∑

i=1

M∑

j=i+1

etij [c]. (5)

An event from class c is then considered to be detected at frame t if
et[c] exceeds a threshold, which is class specific:

Et[c] =

{
1 et[c] ≥ ε[c]
0 et[c] < ε[c]

. (6)

A post-filter method finally ensures that each sound event lasts a
minimum amount of frames (denoted by γ) to avoid false detec-
tion of sporadic events. For evaluation purpose, the event activity
is usually defined for a given segment l, where T l = {tL, tL +
1, . . . , t(L + 1) − 1} holds the L frames that belong to segment l.
The estimated event activity EventlE [c] is then said to be active if
at least one frames within the interval indicates the event is active.

3.4. DOA estimation

Similarly to CRNNSED , CRNNTDOA returns an estimated TDOA
τ̂ ti,j [c] for each class c and pair of microphone (i, j) at frame t. For
each DOA at index q, the estimated TDOAs τ̂ ti,j [c] are compared to
the theoretical values τ qi,j obtained from polynomial fitting during
the calibration step. A Gaussian kernel with a variance of σ2 then
generates a value close to 1 when both TDOAs are close to each
other, whereas this value goes to zero when the difference increases.
All DOAs are scanned for each class, and the one that returns the
maximum sum corresponds to the estimated DOA index qt[c]∗:

qt[c] = arg max
q∈Q

M∑

i=1

M∑

j=i+1

exp

[(
τ̂ tij [c]− τ qij

)2

2σ2

]
. (7)

The estimated DOAs are then concatenated in DOAt
E :

DOAt
E = {(φqt[c], θqt[c])} ∀ c where Êt[c] = 1. (8)
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4. RESULTS

The proposed system is evaluated on the DCASE 2019 develop-
ment dataset. This set is divided into 4 cross-validation splits of
100 one-minute recordings each, as described in [17]. Table 1 lists
the parameters used in the experiments. The sample rate fS and
the number of microphones M match the DCASE dataset param-
eters. The frame size N corresponds to 43 msecs, which allows a
good trade-off between time and frequency resolutions. The hop
size ∆N provides a spacing of 20 msecs between frames, which
corresponds to the hop length for evaluation in the actual challenge.
The values of Kmin and Kmax are set to provide a frequency range
that goes up to 12 kHz (and exclude the DC component), which
is where most of the sound event energy lies. The parameter γ is
chosen to ensure a minimum sound event duration of 100 msecs,
and the standard deviation σ is found empirically to provide a good
DOA resolution with G TDOA values. The maximum value for a
TDOA is set such that this includes all possible TDOA values for the
actual array geometry. Finally, the neural network hyperparameters
B, F , O, H and D are found empirically from observed perfor-
mances with the validation set. Also note that the event thresholds
ε[c] are found empirically by scanning values between 0 and 1 and
selecting thresholds that lead to the best event detection metrics on
the validation set.

Param. Value Param. Value Param. Value
fS 48000 Kmin 1 B 3
M 4 Kmax 513 F 64
N 2048 γ 5 O 4

∆N 960 σ 2.0 H 512
τmax 20.0 G 101 D 256

Table 1: Parameters of the proposed system

To evaluate the performance of the system, events are defined
for segments of 1 sec (L = 50). We define the number of true
positives (TP l) for segment l as the number of correctly estimated
events with respect to the reference events activity (EventlR[c]):

TP l =

C∑

c=1

EventlE [c] · EventlR[c]. (9)

Similarly, the number of false negatives (FN l) and false positives
(FP l) are given by:

FN l =

C∑

c=1

EventlE [c] · (1− EventlR[c]) (10)

FP l =

C∑

c=1

(1− EventlE [c]) · EventlR[c]. (11)

Finally the total number of active events corresponds to:

N l =

C∑

c=1

EventlR[c]. (12)

We then define substitutions (Sl), deletions (Dl) and insertions (Il)
are defined as:

Sl = min {FN l, FP l} (13)

Dl = max {0, FN l − FP l} (14)

Il = max {0, FP l − FN l}. (15)

This leads to the event rate (ER) and F1-score (F) metrics [33]:

ER =

∑
l S

l +
∑
lD

l +
∑
l I
l

∑
lN

l
(16)

F =
2
∑
l TP

l

2
∑
l TP

l +
∑
l FN

l +
∑
l FP

l
. (17)

The DOA metrics consist of the DOA error (DOAE) and frame re-
call (FR) [16]. The DOAE is obtained as follows:

DOAE =

(
T∑

t=1

Dt
E

)−1 T∑

t=1

H(DOAt
R,DOAt

E) (18)

where Dt
E denotes the number of estimated events, H(. . . ) stands

for Hungarian algorithm [16] and DOAt
R represents the reference

DOA. The pair-wise costs between individual predicted and refer-
ence DOAs corresponds to:

h = arccos (sinφE sinφR + cosφE cosφR cos (θR − θE))
(19)

where φE and φR stand for the azimuth of the estimated and refer-
ence DOA, respectively, and θE and θR stand for the elevation of
the estimated and reference DOA, respectively.

Finally, the frame recall corresponds to the following expres-
sion, whereDt

R denotes the number of reference events, and 1(. . . )
stands for the indicator function that generates an output one if the
condition (Dt

R = Dt
E) is met, or zero otherwise:

FR =
1

T

T∑

t=1

1(Dt
R = Dt

E). (20)

Table 2 summarizes the results for the baseline and the proposed
method. This shows that the proposed system outperforms the base-
line for all metrics, and improves particularly the accuracy of the
estimated DOA.

Method Dataset ER F DOAE FR

Baseline Dev. 0.35 80.0% 30.8◦ 84.0%
Eval. 0.28 85.4% 24.6◦ 85.7%

Proposed Dev. 0.21 87.2% 6.8◦ 84.7%
Eval. 0.14 92.2% 7.4◦ 87.5%

Table 2: Performances in terms of Error Rate (ER – less is better),
F score (F – more is better), Direction of Arrival Error (DOA – less
is better) and Frame Recall (FR – more is better).

5. CONCLUSION

In this paper, we propose a system to detect sound events and es-
timate their TDOA for each pair of microphones, which then com-
bines them to detect sound events and estimate their DOA for a four-
microphone array. The proposed method outperforms the DCASE
2019 baseline system.

In future work, additional neural networks architecture should
be investigated for SELD. Moreover, making the system work on-
line (by using unidirectional GRU layers for instance) would make
the method appealing for real-world applications.
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ABSTRACT

In this paper, we describe our system for the Task 2 of Detection
and Classification of Acoustic Scenes and Events (DCASE)
2019 Challenge: Audio tagging with noisy labels and minimal
supervision. This task provides a small amount of verified data
(curated data) and a larger quantity of unverified data (noisy data) as
training data. Each audio clip contains one or more sound events,
so it can be considered as a multi-label audio classification task.
To tackle this problem, we mainly use four strategies. The first is a
sigmoid-softmax activation to deal with so-called sparse multi-label
classification. The second is a staged training strategy to learn from
noisy data. The third is a post-processing method that normalizes
output scores for each sound class. The last is an ensemble method
that averages models learned with multiple neural networks and
various acoustic features. All of the above strategies contribute to
our system significantly. Our final system achieved labelweighted
label-ranking average precision (lwlrap) scores of 0.758 on the
private test dataset and 0.742 on the public test dataset, winning
the 2nd place in DCASE 2019 Challenge Task 2.

Index Terms— Audio tagging, noisy label, model ensemble,
DCASE

1. INTRODUCTION

The Detection and Classification of Acoustic Scenes and Events (D-
CASE) Challenge is gaining increasing interests among researchers
with academic and industrial backgrounds. DCASE 2019 is the
fifth edition of this challenge and has been held to support the
development of computational scene and event analysis methods.
This paper describes the methods we adopted to participate in the
task 2 of DCASE 2019 Challenge.

The second task of this year’s challenge is Audio tagging
with noisy labels and minimal supervision [1]. It provides public
dataset [2] with baseline and aims to develop competitive audio
classification systems using a small set of manually-labeled data
and a larger set of noisy-labeled data.

State-of-the-art methods are based on deep neural networks,
including Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN) and Convolutional Recurrent Neural Network
(CRNN). We follow this trend and use two types of neural network
architectures: a CRNN and a variant of CNN (DenseNet).

∗The first two authors contributed equally.
†This work was supported by the National Natural Science Foundation of

China under Grant No. U1836219. The corresponding author is Wei-Qiang
Zhang.

Data augmentation has been widely utilized in recent DCASE
Challenges. Mixup [3] strategy was adopted by top teams [4, 5]
in DCASE 2018 Challenge. Besides, a new augmentation method
named SpecAugment [6] has been proposed recently. In our work,
we used the combination of both methods.

Although this is a multi-label classification problem, most
audio clips contain only one sound event. For this reason, we
call it a “sparse multi-label classification” problem, and propose a
sigmoid-softmax activation structure to deal with this problem.

In this task, how to use noisy data is the key to achieving
competitive performance. We designed a staged training strategy
to select the most convincing samples from noisy data and train our
model using both verified data and convincing unverified data. This
new training strategy will be illustrated in the following sections.

Additionally, we did some explorations about post-processing
and found an effective way of score normalization.

The rest of this paper is organized as follows: we describe our
methods in detail in Section 2; we present our experiments and
results in Section 3; finally we conclude our work in Section 4.

2. METHODS

2.1. Feature Extraction

We used two types of acoustic features, including log-mel energies
and perceptual Constant-Q transform (p-CQT). And we also used
different parameters, such as frame length, hop length, frequency
range, mel bins. As shown in Table 1, we used three feature
configurations in total. All features are extracted using librosa [7].

Table 1: Configurations of acoustic features

Type A Type B Type C

Feature log-mel log-mel CQT
Window length 1764 2048 —

Hop length 882 511 512
Low Frequency 0 Hz 0 Hz 55 Hz
High Frequency 22050 Hz 16000 Hz —

Feature dim 80 128 128
bins per octave — — 16

2.2. Data Preprocessing

Raw feature data needs further preprocessing before being input to
neural networks. The data preprocessing procedures used in our
work include sound activity detection (SAD) and data padding.

https://doi.org/10.33682/r7nr-v396
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Batch Normalization

Conv layer (3×3, 64)

Average-pooling (2×2)

Conv layer (3×3, 64)

Dropout (0.3)

…
…

Conv block × 4
Conv filters = {64, 128, 256, 512}

Average-pooling (8×1)

Bi-directional GRU (128×2)

Global Average-pooling

RuLU

Global Max-pooling

Concat

Dense layer (128,  LeakyRelu)

Dropout (0.1)

Dense layer (80,  sigmoid)

Conv block

Conv block

Conv block

Batch Normalization

RuLU

Figure 1: The architecture of CRNN. It consists of 4 convolutional
blocks, a bi-GRU and two dense layers. Each convolutional block
contains 2 convolutional layers. After bi-GRU, global average
pooling and global max pooling operations are applied to aggregate
temporal information, and the results are concatenated together
before being input to dense layers.

SAD has shown powerful performance in previous work [5].
We mainly used two kinds of SAD methods: 1) We ignore the silent
frames at the beginning and end of each audio. 2) We ignore the
silent frames through the whole audio.

To deal with the variable lengths of acoustic features, we set
a maximum padding length. All features shorter than the padding
length will be repeated to the padding length. And longer features
will be downsampled to align with the padding length. In our work,
the padding length is set 2000. During training, we randomly select
continuous 512 frames to feed into the neural network. For test, the
whole 2000 frames are used to get predictions.

2.3. Data Augmentation

As mentioned above, we combined mixup [3] and SpecAugment
[6] for data augmentation.

In mixup, we randomly select a pair of samples from training
data. Let x1, x2 be the features, and y1, y2 be the one-hot labels
respectively, the data is mixed as follows:

x = λx1 + (1− λ)x2 (1)

y = λy1 + (1− λ)y2 (2)

where the parameter λ is a random variable with Beta distribution
B(0.4, 0.4).

SpecAugment is implemented by time warping, frequency
masking and time masking. Detail is available in [6].

2.4. Neural Network

2.4.1. CRNN architecture

The architecture of CRNN is illustrated in Figure 1. It begins with
four convolutional blocks. Each block contains two convolutional
layers, followed by batch normalization [8], ReLU, dropout [9] and
average pooling. Next, an average pooling is adopted on frequency
axis to squeeze the frequency dimension to 1. And a bi-directional

Batch Normalization

Concat

ReLU

Conv layer (1×1, 16)

Batch Normalization

ReLU

Conv layer (3×3, 16)

Global Average-pooling

Dense layer (8, ReLU)

Dense layer (16,  sigmoid)

Multiply

Concat

…
…

Max-pooling (2×2, same padding)

Global Max-pooling

Dense layer (256,  LeakyReLU)

Dropout (0.1)

Dense layer (80,  sigmoid)

Dropout (0.2)

DenseNet block × 8
Conv filters = {16, 32, 64, 128, 256, 512, 512, 512}
Dense units (ReLU) = {8, 16, 32, 64, 128, 256, 256, 256}
Dense units (sigmoid) = {16, 32, 64, 128, 256, 512, 512, 512}

DenseNet block

DenseNet block

DenseNet block

Conv layer (3×3, 15)

Figure 2: The architecture of DenseNet. Batch normalization is
applied to the input acoustic feature, followed by a convolutional
layer. The input and output of this convolutional layer are
concatenated along channels, followed by 8 DenseNet blocks.
Then, global max pooling is applied, and 2 dense layers are utilized
to output final predictions. The configuration of DenseNet block is
illustrated in the dotted box.

Table 2: The number of positive labels in training dataset

#positive labels train curated train noisy

1 4269 16566
2 627 2558
3 69 504
4 4 141
5 0 38
6 1 4
7 0 4

average #positive labels 1.157 1.211
percentage of single label 85.9% 83.6%

gated recurrent unit (Bi-GRU) is used to capture temporal context.
Then, global max pooling and global average pooling are used
on time axis to maintain various information and concatenated
together. Finally, two dense layers are applied to output prediction
scores for each class.

2.4.2. DenseNet architecture

The architecture of DenseNet is shown in Figure 2. Our module
is similar to that in [4]. In this module, the feature maps
of previous layers can propagate to later layers, which can
effectively alleviate the vanishing-gradient problem and encourage
feature reuse. In each DenseNet block, we use Squeeze-and-
Excitation Network [10], which can adaptively recalibrate channel-
wise feature responses by explicitly modelling interdependencies
between channels.

2.4.3. Choice of final activation

Since this is a multi-label and multi-class classification task,
sigmoid is naturally the primary choice of the activation in final
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Embedding

Dense Layer (80,  sigmoid) Dense Layer (80,  softmax)

Binary crossentropy Categorical crossentropy

Figure 3: Combination of sigmoid and softmax activation.

layer. However, as shown in Table 2, the average number of positive
labels in training dataset is very close to 1, and single-label data
takes up the majority. So we call this task a “sparse multi-label
classification” problem. In this condition, softmax is also a good
option.

In order to combine the advantages of both sigmoid and
softmax, we design a new structure named sigmoid-softmax
activation. In this structure, the output embedding before the final
layer will pass through two dense layers. As shown in Figure 3, one
dense layer with sigmoid activation will be optimized with binary
crossentropy loss, and the other dense layer with softmax activation
will be optimized with categorical crossentropy loss. The outputs
of both dense layers are ensembled to get final prediction.

2.5. Staged Training Strategy for Noisy Data

In this task, only a small amount of data is manually labeled, and
a large quantity of data contains noisy label. Since the noisy data
is not verified to have groundtruth label, we attempt to use only
the most convincing noisy data. Inspired by the batch-wise loss
masking in [4], we propose a staged training strategy to learn from
noisy data.

To make it specific, we firstly use the verified data to train
our system for several epochs. Then, we use both the verified and
unverified data. However, in order to use only the most convincing
noisy data, we adopt a loss masking similar to the work in [4]. The
difference is that we ignore the noisy samples with the top k loss
in a batch rather than set a threshold value and ignore samples with
higher loss. Finally, after training for more epochs, we abandon the
noisy data and finetune our model with only the verified data. Our
staged training strategy has made huge improvements according to
our experiments.

2.6. Score Normalization

For inference, we use score normalization strategy for further
improvements. Let xi,j be the prediction score for the i-th class
in the j-th sample. We normalize the prediction scores for each
class. The normalization procedure goes as follows:

xi =

∑N
j=1 xi,j

N
, (3)

x̂i,j =
xi,j − xi√

1
N

∑N
j=1 (xi,j − xi)

2 + ε
(4)

x̃i,j =
x̂i,j −minj x̂i,j

maxj x̂i,j −minj x̂i,j + ε
(5)

where N is the total number of samples in evaluation dataset, ε is a
sufficiently small value to avoid division by zero. For each class in
evaluation dataset, we normalize the prediction scores to zero mean
and unit variance. Then, we set min and max zoom to keep the
scores between 0 and 1. According to experimental results, score
normalization can raise the evaluation metric by approximately
0.002 on average in cross-validation and 0.007 in private test data.

3. EXPERIMENTS

3.1. Experiment Setup

Adam optimizer [11] is used for gradient based optimization. The
learning rate is 0.001 and batch size is 64. We split our training
dataset into four folds. Then we train four models using any three
folds for training and the other fold for validation.

As for the staged training, we design a data generator to
generate different proportions of training data during different
stages. In the first stage, all data comes from curated dataset. In
the second stage, the proportion of curated dataset is equal to noisy
dataset. In the third stage, only curated dataset is used. In the second
stage, the top k samples with the highest loss on noisy dataset would
be masked. In our experiments, k is 10.

For CRNN architecture, the first stage runs for 8k iterations,
the second stage runs for 12k iterations, and the third stage runs
for 3k iterations. For DenseNet architecture, the first stage runs for
5k iterations, the second stage runs for 8k iterations, and the third
stage runs for 2k iterations. The models with the best validation
performance on each fold are selected.

3.2. Evaluation Metric

The primary competition metric is label-weighted label-ranking
average precision (lwlrap). This measures the average precision
of retrieving a ranked list of relevant labels for each test clip (i.e.,
the system ranks all the available labels, then the precisions of
the ranked lists down to each true label are averaged). LRAP is
calculated as follows, and lwlrap is the macro-average of per-class
LRAP. [12]

LRAP(y, f̂) =
1

n samples

n samples −1∑

i=0

1

‖yi‖0
∑

j:yij=1

|Lij |
rankij

(6)

where Lij =
{
k : yik = 1, f̂ik ≥ f̂ij

}
, rankij =∣∣∣

{
k : f̂ik ≥ f̂ij

}∣∣∣, | · | computes the cardinality of the set,

and ‖ · ‖0 computes the number of nonzero elements in a vector.

3.3. Model Ensemble and Submissions

Model ensemble is successful in boosting the system’s perfor-
mance. We ensemble our models using geometric average as
follows:

yensemble = exp
1

N

∑

n

wn log yn (7)

whereN is the number of subsystems, yn is the output score of each
subsystem, and wn is the weight coefficient for each subsystem.

We submitted two prediction results using different weights:
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Table 3: Lwlrap scores of multiple configurations, on both cross-fold validation and private evaluation dataset. The score on cross-fold
validation dataset are the average of scores on four folds. “sig-soft” is the abbreviation of sigmoid-softmax activation structure.

Cross-fold Validation Private Evaluation
Type A Type B Type C Type A Type B Type C

CRNN sigmoid 0.8512 0.8547 0.8413 0.7253 0.7290 0.7140
CRNN softmax 0.8437 0.8479 0.8362 0.7208 0.7176 0.7094
CRNN sig-soft 0.8561 0.8613 0.8502 0.7388 0.7334 0.7203

DenseNet sigmoid 0.8219 0.8357 0.8321 0.7053 0.7017 0.6923
DenseNet softmax 0.8143 0.8235 0.8249 0.7014 0.7043 0.6837
DenseNet sig-soft 0.8246 0.8378 0.8412 0.7146 0.7141 0.7074

Table 4: The performance of systems using curated data only
and systems using both curated and noisy data. We use CRNN
architecture with three different activation functions on both
cross-fold validation and private evaluation dataset. The relative
improvement of adding noisy data using staged training strategy is
shown in the parenthesis. Type A feature is used in experiments.

Curated data Curated and noisy data

Cross-fold
Validation

sigmoid 0.8417 0.8512 (1.13% ↑)
softmax 0.8278 0.8437 (1.92% ↑)
sig-soft 0.8376 0.8561 (2.21% ↑)

Private
Evaluation

sigmoid 0.7155 0.7253 (1.37% ↑)
softmax 0.7142 0.7208 (0.92% ↑)
sig-soft 0.7207 0.7388 (2.51% ↑)

1) Zhang THU task2 1.output.csv: achieved our highest lwlrap
score of 0.742 on public leaderboard in Kaggle.

2) Zhang THU task2 2.output.csv: achieved our highest local
lwlrap scores in each cross-fold validation, with a lwlrap score of
0.739 on public leaderboard in Kaggle.

3.4. Experimental Results

In order to investigate more about proposed methods, we conducted
further experiments on private evaluation dataset after submitting to
DCASE Challenge. Our experiments were conducted on two neural
network architectures (CRNN and DenseNet), three activation
functions (sigmoid, softmax, and sigmoid-softmax activation
structure), and three acoustic features (Type A, B, C as mentioned
in subsection 2.1).

The lwlrap scores of multiple configurations, on both cross-fold
validation and private evaluation dataset, are shown in Table 3. The
score on cross-fold validation dataset is the average of scores on
four folds. As shown in Table 3, CRNN architecture with sigmoid-
softmax activation structure can achieve the best performance in
all types of features on both validation and evaluation dataset.
Besides, sigmoid-softmax activation structure can outperform
single sigmoid or softmax activation in all feature types and neural
networks. We can draw a conclusion that proposed sigmoid-
softmax can demonstrate remarkable performance in “sparse multi-
label classification” problems.

To examine the performance of proposed staged training
strategy, we also conducted some comparative experiments using
curated data only. We compare the performance of systems using
curated data only and systems using both curated and noisy data in

Table 5: Comparison of several systems, on both public leaderboard
and private leaderboard.

Lwlrap
(public LB)

Lwlrap
(private LB)

Ensemble-1 0.7423 0.7575
Ensemble-2 0.7392 0.7577
Ensemble-3 *** 0.7508
Ensemble-4 *** 0.7500

OUmed 0.7474 0.7579
Ebbers 0.7305 0.7552

Table 4. We use Type A feature as acoustic feature and CRNN as
classifier. Three types of activations are applied to verify the effects
of staged training strategy. The results show that proposed method
can make good use of noisy data to enhance the classification and
generalization capability of our models.

Furthermore, we compare the following systems in Table 5:
- Ensemble-1: the architecture generating aforementioned

Zhang THU task2 1.output.csv.
- Ensemble-2: the architecture generating aforementioned

Zhang THU task2 2.output.csv.
- Ensemble-3: the same architecture with Ensemble-1, but

without score normalization processing.
- Ensemble-4: the same architecture with Ensemble-2, but

without score normalization processing.
- OUmed: the 1st place in DCASE Challenge. [13]
- Ebbers: the 3rd place in DCASE Challenge. [14]

It can be concluded that proposed score normalization strategy
can increase lwlrap score by approximately 0.007. Compared with
other teams, our system is also very competitive.

4. CONCLUSION

In this paper, we describe our methods and techniques used in
the task 2 of DCASE 2019 Challenge. We adopted mixup and
SpecAugment for data augmentation and applied two types of deep
learning model including CRNN and DenseNet. Besides, a staged
training strategy is applied to learn from both curated and noisy
data and a sigmoid-softmax activation structure is proposed to solve
sparse multi-label classification problems. Using model ensemble
and score normalization strategies, our final system ranked the 2nd
place in DCASE 2019 Challenge.
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ABSTRACT
In our submission to the DCASE 2019 Task 1a, we have explored
the use of four different deep learning based neural networks archi-
tectures: Vgg12, ResNet50, AclNet, and AclSincNet. In order to
improve performance, these four network architectures were pre-
trained with Audioset data, and then fine-tuned over the develop-
ment set for the task. The outputs produced by these networks, due
to the diversity of feature front-end and of architecture differences,
proved to be complementary when fused together. The ensemble
of these models’ outputs improved from best single model accuracy
of 77.9% to 83.0% on the validation set, trained with the challenge
default’s development split. For the challenge’s evaluation set, our
best ensemble resulted in 81.3% of classification accuracy.

Index Terms— DCASE, Acoustic Scene Classification, Deep
Learning, Neural Networks, Transfer Learning, End-to-End archi-
tectures, Ensemble Averaging.

1. INTRODUCTION

In the Detection and Classification of Acoustic Scenes and Events
2019 challenge (DCASE 2019), acoustic data were provided to
solve different audio related tasks [1]. Task 1 refers to the challenge
of building a model to classify different recordings into predefined
classes corresponding to recordings of different environment set-
tings in several large European cities.

Following the guidelines provided by the challenge in the Task
1 subtask a (Task 1a), we experimented with four different deep
learning (DL) neural network architectures: Vgg12, ResNet50,
AclNet, and AclSincNet (Figure 1). The Vgg12 and ResNet50 ar-
chitectures are adaptations of well-known computer vision CNNs
adapted to the audio classification task, with 12 and 50 layers, re-
spectively; they both take Mel-filterbank of 64 spectral dimensions
as input features. On the other hand, AclNet is an end-to-end (e2e)
architecture that takes raw audio input into two layers of 1D CNNs,
followed by a VGG-like 2D CNN. AclSincNet is similarly an e2e
approach, with the difference in the 1D convolution layers; the 1D
convolution layers are essentially combinations of sinc functions,
or equivalently band-pass filters, whose cut-off frequencies are the
learnable parameters in the model training process.

2. METHODOLOGY

In this section, we describe in detail the experimentation we fol-
lowed for our submission to the DCASE 2019 Task1a.

2.1. Data Processing

The DCASE 2019 Task 1a dataset consists of 10-second audio
recordings obtained at 10 different acoustic scenes: airport, indoor
shopping mall, metro station, pedestrian sreet, public square, street
with medium level of traffic, traveling by tram, traveling by bus,
traveling by and underground metro, and urban park , recorded at
12 major European cities [2].

The challenge provides as part of this task a 1-fold arrangement
for development, i.e. training and validation data splits. In addi-
tion to the 1-fold defined, we also experimented with 5-fold random
splits over all available data (training/validation), and city held-out
validation sets resulting in 10 training/validation splits (only data
from 10 cities were available in the development set). Additionally,
through the development stage we used Google Audioset data [3] to
pre-train all of our implemented DL architectures.

For the development of e2e DL architectures, the two binaural
channels were averaged into a single one, and the resulting signal
was down sampled from its original 48 kHz to 16 kHz. For the
development of spectral based DL architectures, audio data from
each channel were processed to generate Mel-filterbank represen-
tations with 64 filter bands over a time window of 25 milliseconds
and overlaps of 10 milliseconds, resulting in two Log-Mel filterbank
channels (Figure 1). Because our early experiments of using mul-
tiple channels did not yield improvement over single channel, we
opted to use a randomly selected channel in the training process,
and channel 0 in the testing.

2.2. Neural Network Architectures

2.2.1. AclNet

AclNet is an e2e CNN architecture, which takes a raw time-domain
input waveform as opposed to the more popular technique of us-
ing spectral features like Mel-filterbank or Mel-frequency cepstral
coefficients (MFCC). One of the advantages of e2e architectures
like this is that the front-end feature makes no assumptions of the
frequency response. Its feature representation is learned in a data-
driven manner, thus its features are optimized for the task at hand
as long as there is sufficient training data. We followed the specific
settings corresponding to the AclNet work described in [4], with a
width multplier of 1.0 and conventional convolutions.

The AclNet architecture we developed for this work was pre-
trained with Audioset that resulted in 527 outputs, which in turn
were used as embeddings to train a fully-connected layer classifier
with ReLU activation functions in a transfer learning manner. Raw

https://doi.org/10.33682/8rd2-g787
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Figure 1: Development of our proposed deep learning architectures for audio scene classification in the DCASE 2019 Task 1a.

audio data at 16 kHz form the DCASE 2019 challenge was fed to
the pre-trained AclNet, and embeddings were used to train the clas-
sifier.

We performed a search for the optimal parameters of this DL
model. We experimented with different values and configurations,
and ended with the best performing model when using the hyper
parameters described in Table 2; cosine annealing for the learning
rate schedule, and the use of mixup for data augmentation [5] were
considered, but it was observed that they did not improve the clas-
sification performance. During the training, 1-second of audio was
randomly selected from mini-batches of 64 training clips. At test
time, we run the inference on 1-second non-overlapping consecu-
tive audio segments, and then average the outputs over the length of
the test audio. The experimental results obtained by this e2e archi-
tecture can be seen in Table 3.

2.2.2. AclSincNet

The AclSincNet architecture consists of two building blocks of the
network: a low-level Spectral like features (SLF), and a high-level
features (HLF).

The SLF is a set of features designed to be similar to the spectral
features used in conventional audio processing. It can be viewed as
a replacement of the spectral feature, but it is fully differentiable and
can be trained with backward propagation. The front-end is inspired
by SincNet [6]. We used the same setup as suggested in the original
work but with a stride length of 16 milliseconds; the authors of
SincNet treat the output of the SincNet layer as a replacement of the
FFT filter bank, and feed it directly into the subsequent CNN layer.
We took a different route, aiming to replicate the output of Mel-
filterbank calculation more closely. We first compute the square of
the output before average pooling over multiple time steps, and then
follow up by the log operation to make the filterbank output less
sensitive to amplitude variations. With the time-domain waveform
as input, the SLF layer produces an output of 256 channels at feature
frame rate of 10 milliseconds after the average pool layer. In our
setup, a 1.280-second input produces an output tensor of dimension
(256, 1, 128).

Taking the output from the SLF block, the high level feature

Table 1: SLF Architecture used in AclSincNet

Layer Description

Sincnet1D kernel size 251, stride length 16
BatchNorm
Calculate energy spectrum x = x2

Average pooling 100ms window with 50ms stride
Clamp the min x = x.clamp(min=1e-12)
Calculate log() x = log(x)

layer treats it as a 2D image (e.g. a 256x128 image for the 1.28-
second input) and applies standard VGG-like 2D CNN. The archi-
tecture of the HLF is similar to typical image classification CNNs.
We experimented with a number of different architectures, and
found that a VGG-like architecture provides good classification per-
formance and well-understood building blocks. In our case, each of
the conv layers are a standard building block that comprises a 2D
convolution layer, batch normalization, and PReLU activation.

We did not use fully connected layers as in standard VGG; in-
stead, we simply apply average pooling to output the scores. The
final layers of the AclSincNet is a 1x1 convolution that reduces
the number of channels to the number of classes (10 classes in the
DCASE 2019 challenge). Before the input to the 1x1 convolution
layer, we add a dropout layer for regularization. We found a dropout
probability of 0.9 to work well on this task. Each of the 10 chan-
nels are then average pooled and output directly after SoftMax. The
advantage of these final two layers is that our architecture can incor-
porate arbitrary length inputs for both training and testing, without
any need to modify the number of hidden units of a the fully con-
nected layers.

We pre-trained this model with AudioSet [3] and then fine tuned
it with the DCASE 2019 Task 1a data. During fine-tuning, we use
6-seconds audio data (random crop from each of the 10-second sam-
ple) for training, and 10-second data (the complete clip) for testing.
We experimented with different number of layers, number of chan-
nels, and kernel size on the data set. While the total number of the
parameter is rather big (Table 3), we noticed that the network scales
quite well when we shrink the layer, channel, and kernel size. We
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observed experimentally that the accuracy only drops 1 to 2% when
a network with 18M parameters is used. However, we decided to
stick to the larger network for this challenge.

2.2.3. Vgg12

The Vgg12 model is an adaptation of the well-known VGG archi-
tecture [7]. It has a total of 12 convolutional layers, with the first
one having 64 channel output, and the last one 512 outputs. At the
output of each conv layer, we apply batch normalization followed
by ReLU activation. Through the conv layers, there are 5 max-pool
layers with kernel size of 2. A key architectural difference is that
the network is designed for variable input size (e.g. 64 spectral di-
mensions and arbitrary number of time steps). The output of the
last convolutional layer is average pooled, to always produce a vec-
tor length of 512 values. This vector is then followed up by a fully
connected layer to produce the 10-class output defined by the chal-
lenge.

During the training phase, 5-seconds of audio are randomly se-
lected from the training clip. At test time, we run the inference on
1-second non-overlapping segments, and then average the outputs
over the length of the test audio.

2.2.4. ResNet50

Our audio ResNet50 has exactly the same convolutional layers as
the architecture in the original ResNet paper [8]. Again, we made
the same adaptations as in Vgg12 described in 2.2.3, to take a
variable length input Mel-filterbank spectra into a single 10-class
output. We also used the training and testing sequence selection
scheme applied for the Vgg12.

During the training, we used SpecAugment [9] as a data aug-
mentation scheme. This data augmentation works by masking out
random time and spectral bands of randomly selected width. We
opted to mask only spectral bands, at random positions with width
uniformly sampled from [0, 20] Mel bands. We found that this aug-
mentation gave a 1% improvement over the same network without
SpecAugment.

2.3. Training Strategy

In addition to the default train/validation split provided by DCASE
2019 Task 1a, we used two strategies to train our models for score
averaging: 5-fold cross-validation and leave-one-city-out cross val-
idation. In both cases, we merged the development and validation
data set together and re-split all the labelled data set with the above
two strategies to train models accordingly.

With the 5-fold cross-validation method, all the labelled data
were split into 5 folds with random shuffle, i.e. 4/5 of the data set
is used for training and 1/5 of the data set is used as validation set.
Five models are trained and their scores are averaged as the final
score. i.e. the final output is essentially the ensemble average of 5
individually trained models.

Similarly, the leave-one-city-out method was done in the same
way with a different split methodology. Instead of random split, the
split is done by city. i.e. 9 cities are used for training and 1 city is
held out and used as the validation set. Therefore, 10 models are
trained and their scores are averaged as the final output.

All four architectures were trained with the Adam optimizer.
The training hyper parameters (learning rate LR, LR schedule, num-
ber of epochs E, drop out rate DO, and weight decay WD) of each
of the architectures are listed in Table 2. During the fine-tuning

Table 2: Training setup values for the four deep learning architec-
tures proposed. The values displayed are the learning rate, learning
rate schedule, number of epochs, weight decay, and drop out rate,
respectively.

Architecture LR Schedule E WD DO

AclNet 1e-4 No schedule 330 2e-4 0.2
AcLSincNet 1e-3 Cosine annealing 50 1e-6 0.9
Vgg12 1e-3 Cosine annealing 40 1e-5 0.8
ResNet50 1e-3 Cosine annealing 40 1e-5 0.5

Table 3: Classification results over the validation set obtained by
the individual deep learning based neural network architectures ex-
plored in this work.

Architecture Params Accuracy

AclNet 19.3M 0.7481
AclSincNet 52.2M 0.7608
Vgg12 12.8M 0.7744
ResNet50 24.5M 0.7787

process, we kept the part of the corresponding Audioset pre-trained
network with a LR value that is 1/10th of the LR as the rest of the
network. The validation set were used for model selection, i.e. the
best performing model on the validation set were saved and used for
inference.

2.4. Ensemble Averaging

In order to reduce individual variance of each of the developed DL
models described in the previous subsections, we applied ensemble
averaging technique, which is one of the simplest ensemble learning
methodologies used in machine learning to improve the prediction
performance [10]. This approach consists on the averaging of the
prediction scores obtained by different models, as seen in Figure 2.

By combining the prediction scores from different DL models
that performed above the reported challenge baseline, the intention
is to add a bias that counters the variance of a single trained model.
Having a diversity of DL models helps to achieve this intention. In
our experiments, we have extensively explored different combina-
tion sets of our DL models in order to find the ones that better gen-
eralize over the validation data set. Experimental results obtained
for some of the most obvious combinations are shown in the next
section.

3. RESULTS

The experimental results obtained for our developed DL models
over the validation data set are shown in Table 3. These are the best
experimental validation accuracy results achieved by our individu-
ally trained DL models at the time of the DCASE 2019 submission
deadline. For each one of the developed models, the number of
trainable parameters is listed also in Table 3 to present an idea of
the size of the DL architectures used.

In Table 4, the results from the best combinations of two, three,
and four DL models that were obtained through ensemble averaging
of their output scores. All outputs were defined as softmax scores in
order to have compatible values for averaging across the ensemble.
It can be observed how the experimental results over the validation
set yield into higher accuracy (Table 4) when compared to individ-
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Table 4: Classification results over the validation set obtained from
the ensemble averaging combination of two, three, and four deep
learning based neural networks architectures.

Architecture Params Accuracy

AclSincNet+ResNet50 76.8M 0.8127
Vgg12+AclSincNet+ResNet50 89.7M 0.8184
AclNet+Vgg12+AclSincNet+ResNet50 109.0M 0.8301

ual models results (Table 3). These results support the idea that
utilizing the combination of predictions from different DL models
results in a reduction of variance, and in more accurate predictions
[10].

For our four allowed submissions to DCASE 2019 Task 1a, we
experimented with the DL architectures described above, developed
with different types of data splits, and combining their output pre-
dictions through ensemble averaging. In the next section we pro-
vide a detailed description of the combinations used as part of our
complete final submission.

4. SUBMISSIONS TO DCASE 2019 TASK 1A

Our four submissions to the DCASE 2019 Task 1a consists of the
ensemble averaging of different predicted scores from different DL
architectures. Below is a detailed description list of the ensemble
models used to generate the submission labels on the evaluation
data set provided:

1. Ensemble averaging obtained from a combination of 40 individ-
ually trained DL architectures: 1 Vgg12, trained with the default
data split defined by the challenge; 10 Vgg12, each trained with
1 of the 10 leave-one-city-out splits; 5 AclSincNet, trained with
5 different random splits; 10 AclSincNet, each trained with 1 of
the 10 leave-one-city-out splits; 3 Resnet50, each trained with
three different data splits; 10 ResNet50, each trained with 1 of
the leave-one-city-out splits; and 1 AclNet, trained with the de-
fault data split defined by the challenge. Considering each one of
the 40 DL architectures combined, the total number of trainable
parameters resulted in 1,264.4M.

2. Ensemble averaging obtained from a combination of 31 in-
dividually trained DL architectures: 10 Vgg12, each trained
with 1 of the 10 leave-one-city-out splits; 10 AclSincNet, each
trained with 1 of the 10 leave-one-city-out splits; 10 ResNet50,
each trained with 1 of the 10 leave-one-city-out splits; and 1

Figure 2: Ensemble averaging of n independently trained deep
learning models.

Table 5: Classification results over the evaluation set obtained from
four different ensemble averaging combinations of deep learning
architectures, submitted to the DCASE 2019 challenge Task 1a.

Architecture Params Accuracy Challenge Rank

Ensemble 1 1,264.4M 0.8050 15
Ensemble 2 921.7M 0.8110 12
Ensemble 3 798.6M 0.8130 10
Ensemble 4 374.7M 0.7950 22

Resnet50, trained with 1 data split. Considering each one of the
31 DL architectures combined, the total number of trainable pa-
rameters resulted in 921.7M.

3. Ensemble averaging obtained from a combination of 26 individ-
ually trained DL architectures: 10 Vgg12, each trained with 1
of the 10 leave-one-city-out splits; 5 AclSincNet, trained with
5 different random splits; 10 ResNet50, each trained with 1 of
the 10 leave-one-city-out splits; and 1 Resnet50, trained with
1 data split. Considering each one of the 26 DL architectures
combined, the total number of trainable parameters resulted in
798.6M.

4. Ensemble averaging obtained from a combination of 20 individ-
ually trained DL architectures: 10 Vgg12, each trained with 1 of
the 10 leave-one-city-out splits; and 10 ResNet50, each trained
with 1 of the 10 leave-one-city-out splits. Considering each one
of the 20 DL architectures combined, the total number of train-
able parameters resulted in 374.7M.

The final Task 1a challenge results obtained from these four en-
sembles over the evaluation set are shown in Table 5. The best result
obtained of 81.3% ranked 10th across all submissions, and 5th by
team submissions. Our submission consisted on simple ensemble
averaging; part of our ongoing efforts consists of exploring other
ensemble methodologies, e.g. stacking, to increase the predictive
force of the classifiers.

5. CONCLUSIONS

Starting from individually trained DL models, we were able to
achieve above the baseline results as reported in the DCASE 2019
Task 1a challenge. From these, we were able to increase the perfor-
mance of the audio scene classification by combining the prediction
scores of different DL models through ensemble averaging. By do-
ing this ensemble, we obtained significantly higher classification
results over the validation set than the ones obtained by individual
DL models, i.e. 83.0% Vs 77.9% , respectively. Our best ensemble
model resulted in a 81.3% classification accuracy over the evalua-
tion set provided by the challenge.
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ABSTRACT

We propose an audio captioning system that describes non-speech
audio signals in the form of natural language. Unlike existing sys-
tems, this system can generate a sentence describing sounds, rather
than an object label or onomatopoeia. This allows the description to
include more information, such as how the sound is heard and how
the tone or volume changes over time, and can accommodate un-
known sounds. A major problem in realizing this capability is that
the validity of the description depends not only on the sound itself
but also on the situation or context. To address this problem, a con-
ditional sequence-to-sequence model is proposed. In this model, a
parameter called “specificity” is introduced as a condition to control
the amount of information contained in the output text and generate
an appropriate description. Experiments show that the model works
effectively.

Index Terms— audio captioning, unknown sounds, sequence-
to-sequence model, cross-modal embedding

1. INTRODUCTION

Sound plays an important role in our daily life. It helps us to under-
stand the events around us. In the realm of computational auditory
scene analysis, the major topics have been sound source separation,
acoustic event detection, and its classification [1]. For example,
studies on environmental sounds include the detection or classifi-
cation of acoustic events [2, 3], acoustic scene classification [4],
and abnormal sound detection [5, 6]. However, little work has been
done regarding detailed description of sounds.

Against this background, here we address audio captioning for
non-speech audio signals. Audio captioning here means generating
texts describing sounds given an audio signal as an input. Such cap-
tions can include more information than just an acoustic event label
can, such as how the sound is heard and how the tone or volume
changes over time.

An audio caption is a way to visualize acoustic information so
that we can understand what is happening at a glance, even without
actually hearing the sound. Therefore, it will be useful for multi-
media content search, sound effect search, abnormality search, and
closed captioning systems that can describe non-speech sounds. To
the best of our knowledge, no work has been reported regarding
automatic audio captioning systems that can generate a sound de-
scription in the form of a full sentence.

This paper is organized as follows. Section 2 details the audio
captioning problem. Section 3 describes the proposed audio cap-
tioning models: the basic model and the conditional model. Section
4 explains the experimental results, which show the effectiveness of
the proposed model. Section 5 concludes the paper.

2. PROBLEM OF AUDIO CAPTIONING

2.1. Related Works

Recently, an onomatopoeia generation system has been proposed
[7, 8]. Here, onomatopoeia means a word or a sequence of
phonemes that directly imitates a sound. Based on an encoder-
decoder model, the system produces valid onomatopoeias for var-
ious input sounds. Onomatopoeia generation can be viewed as a
kind of natural language generation for sounds. However, an au-
dio caption is a sequence of words rather than phonemes, and the
correspondence to the input sound is highly indirect. Whether such
an indirect sequence conversion is possible or not has been an open
problem.

Another related task is image captioning. Compared to object
recognition, image captioning produces not only a list of the object
labels contained in an image but also sentences that may include
their attributes or the relationships among them. Recently, systems
based on the encoder-decoder model [9, 10] have achieved reason-
ably good accuracy [11, 12]. In those studies, conditional neural
networks (CNN) pre-trained for an image classification task were
employed as the encoder, and the recurrent language model (RLM)
[13] was used for caption generation based on a fixed size vector.
Video captioning has also been addressed, and the long short-term
memory (LSTM) was shown to effectively deal with an input with
variable length [14].

However, information contained in audio signals can be much
more ambiguous than that in images. In fact, it is often difficult
even for humans to accurately recognize the objects in an audio sig-
nal. Moreover, how to decide the best description is not obvious
for given audio because the validity of the description generally de-
pends on the situation or context as well as the sound itself. For
example, a short warning may be more appropriate than a long de-
scription and vice versa. It is important to note that such problems
particularly come to light in the audio captioning task.

2.2. Specificity Conditioning

To deal with the avobe-mentioned nature of the audio captioning
problem, we introduce a specificity measure of the output text based
on the amount of information that the text carries.

Let pw be the probability of appearance of a word w in a lan-
guage. The amount of information carried by a word w is defined
as a negative logarithm of its probability:

Iw ≡ − log pw (1)

Given an arbitrary natural language corpus, or a dataset of audio
captions, we can estimate pw by pw = Nw/N , where Nw is the

https://doi.org/10.33682/7bay-bj41
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Figure 1: Block diagram of SCG.

number of appearances of w, and N is the total number of words in
a language corpus or training dataset.

We consider Iw as specificity ofw, and define Is, the specificity
of an audio caption s consisting of words w1, w2, . . . , wn, by the
sum of the information values with respect to the words in s:

Is ≡
n∑

t=1

Iwt (2)

Obviously, Is becomes high when infrequent words are contained
in the caption or the caption is long in terms of the number of words.

In the audio captioning, more (or less) specificity is not always
better, and therefore, the ability to control the text specificity is
essential in generating a valid output text. In the following sec-
tion, we first propose a caption generator based on a plain encoder-
decoder model, and then we extend it to a conditional encoder-
decoder model where the specificity is treated as a condition for
caption generation.

3. PROPOSED MODEL

3.1. Sequence-to-Sequence Caption Generator

Figure 1 shows the audio caption generator with the plain sequence-
to-sequence caption generator (SCG).

A series of acoustic features x is input to the encoder consist-
ing of recurrent neural network (RNN) and embedded within a fixed
length vector z, which is a latent variable that serves as latent fea-
tures of the input acoustic signal. Then, the decoder is initialized
based on the derived latent variable. The decoder serves as an RLM,
which calculates estimated probabilities of every word in each step
and chooses the word with the highest probability wt as input for
the next step. The generated audio caption ŝ = (w1, w2, . . .) is the
series of the chosen words. The input in the first step is “BOS (be-
ginning of the sentence)”, and the generation of the audio caption
finishes in a step when “EOS (end of the sentence)” is chosen.

The SCG can be viewed as an approximation of the generative
model for the following optimal audio caption s̄:

s̄ = arg max
s

p(s | z), z = f(x), (3)

where f is a mapping to derive latent variables from acoustic signals
and corresponds to the encoder in the model. p(s | z) is a probabil-
ity distribution in which each audio caption is generated when the
latent variable is given. The decoder is expected to generate audio
captions with the highest probability.

Pairs comprising an acoustic signal and audio caption for the
signal are used for learning this model. Given an acoustic signal as

Figure 2: Block diagram of CSCG. Specificity condition c is given
to the decoder, so that the resulting output sentence has the speci-
ficity close to the value of c.

input, the model calculates cross entropy between the output layer
of the decoder and the corresponding word of the target audio cap-
tion in each step of the decoder. Summation of all the cross entropy
values is used as a loss function Lgen., which is viewed as the loss
of the audio caption generation. Let ot be the vector provided by
the output layer in step t, yt be the one-hot vector representing wt,
the tth word in the current training sentence, and n be the number
of words in the sentence. The error function is then expressed as
follows:

Lgen. ≡
n∑

t=1

cross entropy(ot,yt) (4)

=

n∑

t=1

− log(p̂t(wt)) (5)

Then, the model is optimized by backpropagation based on Lgen..

3.2. Conditional Sequence-to-Sequence Caption Generator

Inspired by the conditional generative models that have been suc-
cessfully applied in various works [15, 16, 17, 18, 19], here we pro-
pose a conditional sequence-to-sequence caption generator (CSCG)
to control the specificity of the generated audio captions.

As illustrated in Figure 2, the encoder of the CSCG works in the
same manner as that of the SCG. In addition, specificity condition c
is given to the decoder in addition to the latent variable derived from
the audio signal. The CSCG is trained to generate the following
optimal audio caption s̄:

s̄ = arg max
s

p(s | z, c) (6)

We expect s̄ to have a specificity close to c and, at the same time,
correctly correspond to the input acoustic signal.

We can train the CSCG by alternatively performing the follow-
ing two steps. In the first step, audio caption generation and the
specificity are learned simultaneously. The pairs of acoustic signals
and audio captions are used for the learning. The specificity of an
audio caption of these pairs, Is, is input to the decoder as the speci-
ficity condition, and the model is trained by backpropagation. To
control the specificity of the generated captions, we introduce the
specificity loss Lsp.. The total loss function in this step, LSC-1, is
defined as the weighted sum of Lgen. and Lsp.:

LSC-1 ≡ Lgen. + λLsp., (7)
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Figure 3: Estimation of specificity of a generated caption and speci-
ficity loss. Each value at the output unit, pt(w), denotes the esti-
mated probability for the corresponding word w at step t.

where λ is a hyperparameter to balance the two loss values. Audio
captioning is an ill-posed problem with potentially multiple solu-
tions, and the second term has the role of regularization to deter-
mine the unique solution by adding constraints to the specificity of
the generated caption.

The text generation with the decoder includes a discrete pro-
cess to choose one word in each step, and that makes it impos-
sible to backpropagate the losses. To solve this problem, we ap-
proximate the specificity of generated captions without discrete pro-
cesses. Figure 3 illustrates the estimation process. The expectation
of the amount of information of ŵt corresponding to the tth step
of the decoder can be calculated using its output layer, each unit of
which encodes the probability of corresponding words.

E[Iŵt ] =
∑

w

p̂t(w)Iw . (8)

The summation of E[Iŵt ] for all steps is Îŝ, which is the estimated
value of the specificity of the generated caption ŝ.

Îŝ =

n∑

t=1

E[Iŵt ] (9)

Here, we define specificity loss Lsp. as follows:

Lsp. ≡ (Îŝ − c)2 . (10)

We can optimize the model by backpropagation using Lsp, because
it is calculated from the vectors obtained from the output layer of
the decoder by using multiplication and addition only.

The second step is introduced to alleviate overfitting with re-
spect to specificity. In this step, the decoder is trained only with
texts rather than audio-text pairs. First, a latent variable z is ex-
tracted in advance from an audio signal by using the encoder with
the current parameter. This means that we sampled z from real
audio signals, rather than using random vectors, but signals not as-
sociated with any audio captions can be used here. Then, the speci-
ficity condition c is generated randomly. As training sentences, any
captions with the closest specificity value to c can be used. We train
only the decoder using backpropagation based on the following loss
function LSC-2:

LSC-2 ≡ λ′Lgen. + λLsp. (11)

Hyperparameter λ′ smaller than 1 is chosen. Even when the audio
caption for calculating Lgen. does not correspond to the input signal,
the first term has the role of regularization to suppress the generation
of unnatural sentences.

Table 1: Experimental conditions.
Decoder LSTM layers 3
LSTM cells 512
Latent variable dimensions 256
Output word labels 1177
Normalization of c division (max(Is)→ 2.0)
Batchsize 200
Total epoch 400
Hyper-parameter λ 2.0× 10−2

Hyper-parameter λ′ 1.0× 10−2

Optimizer ADAM [20]
MFCC dimensions 80
FFT window (MFCC) 2048 samples
FFT shift (MFCC) 512 samples

4. EVALUATION

To evaluate the effectiveness of the proposed model, we performed
objective and subjective experiments.

4.1. Dataset

We used a part of the audio signals contained in Free Sound Dataset
Kaggle 2018 [21], which is a subset of FSD [22] and includes vari-
ous sound samples digitized at 44.1 kHz with linear PCM of 16 bit
accuracy. We chose 392 signals for the training set and 29 for the
test set. These signals are not longer than 6 s in length and include
various everyday sounds.

To build the training set, audio captions were collected from
human listeners. All the collected captions were in Japanese. Since
one audio signal can correspond to various captions with various
specificity values, multiple audio captions were attached to each
audio signal. To accomplish this, 72 Japanese speakers were asked
to describe the sound in Japanese text. We associated one to four
audio captions for each training signal, and five audio captions for
each test signal. The total numbers of captions were 1,113 in the
training dataset and 145 in the test dataset. Then, the captions for
the training signals were augmented to be expanded to 21,726, by
manually deleting or replacing the words.

4.2. Conditions

Table 1 lists the experimental conditions. We used a series of mel-
frequency cepstral coefficients (MFCC) and f0 as the input. The
vocabulary size for the system was 1,440, as there were 1,437 kinds
of words in the audio captions for training, and three special sym-
bols “BOS”, “EOS”, and “UNK” (unknown word).

4.3. Examples

Table 2 shows some examples of the captions generated from the
test signals. They were manually translated from the Japanese out-
put.

4.4. Controllability of Specificity

Table 3 lists the averages and the standard deviations of the speci-
ficities for generated captions. Since the SCG does not deal with the
specificity, the standard deviation is relatively large. On the other
hand, the specificity values with the CSCG on average are quite
close to the conditioned input c. This shows that the proposed con-
ditioning mechanism works effectively.
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Table 2: Examples of generated audio captions (English translation).
Sound source Methods c Generated captions

Bell

SCG A high-pitched metallic sound echoes.

CSCG

20 A loud sound.
50 A high sound like friction of metals.
80 A metal bell is hit only once and makes loud, high and sustained sound.
110 A high-pitched sound sounds as if a metal is hit, first loudly and then gradually fades out.

Bass drum

SCG A low sound rings for a moment.

CSCG

20 A low sound sounds for a moment.
50 A light and low-pitched sound as if something is dashed on the mat for a moment.
80 A drum is uninterestedly played, making a faint, very low-pitched sound only once.
110 A faint, low-pitched sound sounds as if something is hit dully, and it soon disappears.

Glass

SCG High-pitched sounds continue as if a metal is rolling

CSCG

20 Glass is broken.
50 A dry sound of breaking glass sounds once a little loudly.
80 A high-pitched sound as if glass is breaking diminishes in a moment.
110 A high, cold sound as if glass is breaking is heard for one or two seconds.

Table 3: Specificity of the generated captions.
Methods c Average SD

SCG 38.0 21.2

CSCG

20 21.7 2.4
50 57.7 5.0
80 90.5 9.5
110 107.2 20.6

Figure 4: Comparisons of SCG and CSCG. The “BEST c” bar
shows the results obtained by using the best c value (among the
four) for each signal. The numbers in the bars show the percentage.

4.5. Objective Scores

Table 4 shows the BLEU scores. The CSCG with c = 50 marks the
best BLEU, 17.01%, but it is still lower than that of human captions.
Note that BLEU has a penalty for short sentences, which adversely
affected the BLEU of the CSCG with low c values.

Table 4: BLEU Scores.
Methods c BLEU [%]

SCG 13.02

CSCG

20 5.83
50 17.01
80 12.52
110 11.21

Human 22.35

4.6. Subjective Evaluation

We evaluated the proposed methods with two kinds of subjective
evaluations.

Evaluation 1 investigated acceptability for the generated cap-
tions. The test audio signals and corresponding generated captions

Table 5: Acceptability scores.
Methods c Average SD

SCG 1.45 1.13

CSCG

20 1.69 1.17
50 1.29 1.11
80 1.14 1.16
110 1.07 1.07

Human 2.11 0.87

were presented to 41 subjects who understand Japanese. The sub-
jects evaluated the captions in four levels: “very suitable”, “suit-
able”, “partly suitable” and “unsuitable”. These answers were con-
verted to points of 3, 2, 1 and 0, and the values of the average were
the metric of acceptability. The captions given by humans were
also evaluated for comparison. All the subjects responded to the 29
sound sources, for a total of 1,189 responses. Table 5 shows the
results. The average scores of all methods are over 1.0, which is
higher than the point of “partly suitable”. The CSCG with c = 20
has the best acceptability within the proposed method.

Evaluation 2 compared the SCG and the CSCG models. The
subjects were presented with one audio signal and two audio cap-
tions, “A” and “B.” They were then asked to choose one of the five
options: “A is much better”, “A is better”, “Neutral”, “B is better”,
or “B is much better”. Either “A” or “B” (randomly selected) was
the audio caption generated with the SCG and the other was the one
generated with the CSCG. Figure 4 shows the results. With an ap-
propriate choice of c, CSCG outperformed SCG for about 2/3 of the
test samples. That is, if the optimal c value is known somehow in
advance, CSCG can produce better captions compared with SCG.

5. CONCLUSION

This paper proposed a neural audio captioning system for audio sig-
nals. The experiments showed that two versions of the proposed
method, SCG and CSCG, work effectively and that the conditional
version (CSCG) can successfully control the amount of information
contained in the output sentence. It was also shown that CSCG gen-
erated subjectively better captions than SCG when we could choose
the best specificity value for each signal. Unlike the existing au-
dio classification systems, the proposed system does not solve the
classification problem but performs sentence generation using the
learned vocabulary, as in machine translation. For this reason, it
tends to perform reasonably well even for unknown or ambiguous
sounds. In our future work, we will investigate a specificity adapta-
tion method for individual sounds, situations, and applications.
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ABSTRACT

Acoustic scene analysis has seen extensive development recently
because it is used in applications such as monitoring, surveillance,
life-logging, and advanced multimedia retrieval systems. Acoustic
sensors, such as those used in smartphones, wearable devices, and
surveillance cameras, have recently rapidly increased in number.
The simultaneous use of these acoustic sensors will enable a more
reliable analysis of acoustic scenes because they can be utilized
for the extraction of spatial information or application of ensem-
ble techniques. However, there are only a few datasets for acoustic
scene analysis that make use of multichannel acoustic sensors, and
to the best of our knowledge, no large-scale open datasets recorded
with multichannel acoustic sensors composed of different devices.
In this paper, we thus introduce a new publicly available dataset for
acoustic scene analysis, which was recorded by distributed micro-
phones with various characteristics. The dataset is freely available
from https://www.ksuke.net/dataset.

Index Terms— Distributed microphone array, acoustic scene
classification, publicly available dataset

1. INTRODUCTION

Acoustic scene classification (ASC), which associates a sound with
a related scene, has recently attracted much attention because of
its many useful applications such as those in monitoring systems
for elderly people or infants [1, 2], automatic surveillance systems
[3, 4, 5, 6], automatic life-logging systems [7, 8, 9], and advanced
multimedia retrieval [10, 11, 12, 13].

Many approaches to ASC are based on machine learning
techniques, especially deep neural network (DNN)-based meth-
ods [14, 15, 16, 17, 18, 19, 20, 21]. For instance, Valenti et al.
have proposed a method based on convolutional neural networks
(CNNs) [17], which allows robust feature extraction of acoustic
scenes against time and frequency shifts in the spectrogram do-
main. More sophisticated models such as VGG [22], ResNet [23],
and Xception [24], which achieve reasonable performance in im-
age recognition, have also been applied to acoustic scene analysis
[18, 19, 20]. Ren et al. have applied the attention mechanism to
CNN-based acoustic scene classification [21]. These DNN-based
approaches for ASC require a large-scale dataset; thus, the large-
scale datasets that are publicly available have contributed to related
research and development. Moreover, evaluation using a publicly
available dataset is an impartial means of assessing a method under
development. There are some open datasets for ASC, such as the
LITIS dataset [25], TUT Acoustic Scenes 2016 [26] and 2017 [27],
and TUT Urban Acoustic Scenes 2018 [28], which were recorded
with a single or stereo microphone(s). There are also other publicly

available datasets for detecting sound events that occur in a domes-
tic environment, such as the CHiME-Home dataset [29].

On the other hand, acoustic sensors that are easily accessi-
ble, such as those in smartphones, smart speakers, IoT devices,
and surveillance cameras, have rapidly increased in number. By
making use of these microphones simultaneously, we obtain spa-
tial information, which will help to recognize acoustic scenes
[30, 31, 32, 33]. For instance, an acoustic scene “cooking” and
related sounds tend to occur in a kitchen, whereas an acoustic
scene “shaving” and related sounds are likely to occur in a pow-
der room. There are also datasets for ASC or sound event classi-
fication based on multichannel observation, such as ITC-Irst AED
Database [34], FINCA Multi-channel Acoustic Event Dataset [35],
and SINS Database [36]. For example, ITC-Irst AED Database con-
sists of sound recordings including 16 types of acoustic events, such
as “door knock,” “cough,” and “keyboard.” Eight T-shaped micro-
phone arrays, each of which had four microphones, were used for
the recording. SINS Database consists of sound recordings includ-
ing 16 different activities in the home, such as “cooking,” “vac-
uuming,” and “phone call.” The recording was conducted using
13 microphone arrays, all of which were composed of four Sonion
N8AC03 MEMS microphones.

Considering that a large microphone array is constructed by
combining microphones that are mounted on smartphones, smart
speakers, IoT devices, and surveillance cameras, some microphones
often have a mismatch under acoustic conditions, such as the sam-
pling rate, frequency response, sensitivity, and/or noise level. This
condition mismatch often has a detrimental effect on the classifi-
cation performance of acoustic scenes and needs to be addressed.
However, there are no open datasets for ASC that were recorded in
a home environment using multiple microphones with various prop-
erties. In this paper, we thus introduce a dataset for ASC named Rit-
sumeikan University (RU) Multichannel Domestic Acoustic Scenes
2019, which was recorded by distributed microphones with vari-
ous properties. The characteristics of RU Multichannel Domestic
Acoustic Scenes 2019 are as follows:

• The dataset consists of 21 kinds of acoustic scenes including an
“absent” scene and high-privacy scenes such as “toilet,” “sleep-
ing,” and “taking a bath/shower.”

• The dataset was recorded using 42 distributed microphones
with various characteristics.

• The dataset consists of a total of 1,995.8 h of sounds (47.5 h
× 42 ch.), which can be divided into about 11,400 segments of
15 s sounds for each channel.

• The dataset can be utilized for evaluating ASC methods using
spatial information, ensemble techniques, or domain adapta-

https://doi.org/10.33682/hy6p-g607
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Figure 1: Floor plan of recording environment, microphone arrangement, and approximate positions of sound sources

tion techniques (by combining this and another multichannel
dataset such as SINS Database [36]).

• The dataset includes sample videos of most of the sound clips
(for understanding of recording environments and situations)

This dataset is freely available and can be downloaded at [37].
The remainder of this paper is structured as follows. In section

2, we provide an overview of RU Multichannel Domestic Acoustic
Scenes 2019. In section 3, the benchmark evaluation results are
reported. Finally, a conclusion is given in section 4.

2. OVERVIEW OF RU MULTICHANNEL DOMESTIC
ACOUSTIC SCENES 2019

2.1. Recording conditions

The dataset was recorded in an apartment where people actually
live. As shown in Fig. 1, the recording was conducted in six dif-
ferent rooms: a Japanese-style room (washitsu), hall, powder room,
bathroom, water closet, and a combined living room, dining room,
and kitchen. As the recording equipment, three TAMAGO-03 mi-
crophone arrays [38] (8ch × 3), 16 Shure MX150B/O microphones
(1ch × 16), one iPhone SE (1ch × 1), and one iPhone XR (1ch
× 1) were used. Each TAMAGO-03 array consisted of eight mi-
crophones mounted on a circle of a 36.5 mm radius at 45◦ inter-
vals, as shown in Fig. 2-(a). The sampling rate and bit depth of
the TAMAGO-03 microphones were 16 kHz and 16, respectively.
The Shure MX150B/O microphones were arranged in pairs with
50.0 mm intervals. As the microphone amplifier and AD converter
for the MX150B/O microphones, we used two MOTU 8Ms [39].
The sampling rate and bit depth of the MX150B/O microphones
[40], iPhone XR, and iPhone SE were 48 kHz and 16, respec-
tively. The microphones were synchronized between microphones
in each TAMAGO-03 array and 16ch MX150B/O microphones, re-

Table 1: Recorded acoustic scenes and their durations

Acoustic scene # clips Duration (min)
Absent 26 125.3
Changing clothes 67 119.8
Chatting 23 121.5
Cooking 14 228.0
Dishwashing 36 122.8
Eating 24 129.3
Ironing 25 129.6
Laundering 10 138.0
Moving 30 122.0
Nail clipping 37 121.1
Operating PC 22 123.3
Playing with toys 21 127.5
Reading newspaper/magazine 25 121.5
Shaving 59 146.5
Sleeping 23 144.0
Taking a bath/shower 18 181.5
Toilet 101 134.6
Toothbrushing 42 132.5
Vacuuming 29 122.8
Watching TV 28 128.4
Writing 18 131.2

spectively, but not between different devices. The recording condi-
tions are given in detail in [37].

2.2. Recorded acoustic scenes and recording procedure

We recorded 21 acoustic scenes that frequently occur in daily ac-
tivities at home. Table 1 lists the recorded acoustic scenes, which
include “absent” and high-privacy scenes such as “toilet,” “chang-
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Figure 2: Detailed microphone arrangements

ing clothes,” “taking a bath/shower,” and “sleeping.” Each sound
clip includes all the sounds derived from a series of actions in one
scene, for instance, a sound clip of “toothbrushing” includes sounds
derived from “picking up toothbrush,” “putting toothpaste on tooth-
brush,” “brushing teeth,” and “rinsing mouth.” The approximate
position of the sound source in each acoustic scene is also shown
in Fig. 1, except for the acoustic scenes “absent,” “moving,” and
“vacuuming,” in which the sound may occur over the entire apart-
ment. Each recording was started with a cue, which was an im-
pulsive sound, but detailed scenarios and recording times were not
directed.

To ensure the diversity of recorded sounds, we used various
household commodities and electronic devices such as four differ-
ent kitchen sponges, two irons, three nail clippers, three PCs, four
computer mouses, three electric shavers, five toothbrushes, and two
vacuum cleaners. Figure 3 shows these household commodities and
electronic devices.

2.3. Postprocessing

Since the microphones were not synchronized between different de-
vices, after recordings, we simply synchronized the sound clips us-
ing the cross-correlation between the nearest microphone pair. The
procedure for the synchronization and reshaping of recorded sig-
nals is shown in Fig. 4. We first selected the nearest microphone
pair from the unsynchronized microphones, and we then synchro-
nized the acoustic signals recorded by the microphone pair using
the cross-correlation all over the signals. Since the sampling rates
of the TAMAGO-03 microphones and the other microphones were
16 kHz and 48 kHz, respectively, the recorded sound at 48 kHz was
downsampled to 16 kHz when synchronizing. After that, we cut
the acoustic signals to remove cue sounds, which are irrelevant to
recorded scenes. Note that we did not take an arrival time difference
of sounds between channels, which is a significant cue for extract-
ing spatial information, into account; thus, sound clips needs to be
resynchronized accurately using blind compensation techniques for
distributed microphone array [41, 42] if we extract spatial informa-
tion using conventional methods of microphone array processing.

Figure 3: Household commodities and electronic devices used for
recording

Shure MX150B/O

TAMAGO03

② Synchronize using
cross-correlation

③ Cut signals between start and end cues

Start cue End cue

3
#7 #8

① Select nearest
microphone pair

Figure 4: Synchronization procedure between unsynchronized mi-
crophones

Moreover, the different devices have sampling frequency mismatch;
however we did not compensate the mismatch between devices.

Although the length of the sound differs from sound clip to
sound clip, we suppose that each sound clip will be divided into
10 or 15 s segments, which are the units of analysis. A manipula-
tion tool that divides each sound clip into shorter segments is also
included in the dataset.

2.4. Contents of RU Multichannel Domestic Acoustic Scenes
2019

RU Multichannel Domestic Acoustic Scenes 2019 includes the fol-
lowing contents:

• Sound files in wav format (RIFF waveform audio format)

• Impulse responses at each microphone position (RIFF wave-
form audio format)

• Documents of recording conditions and postprocessing proce-
dures

• Sample videos (for understanding of recording environments
and situations)

• Tools for manipulating sound files

Each sound file is stored in the wave format, and 42-channel sound
files obtained in each recording are stored in one directory. The
dataset also contains impulse responses from some sound source
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Table 2: Experimental conditions

# total microphones 42
Sound clip length 15 s
Frame length 40 ms
Frame shift 20 ms
Network structure 3 conv. & 3 FC layers
Pooling in CNN layers 3 × 3 max pooling
Activation function ReLU, softmax (output layer)
# channels of CNN 42, 32, 16
# units of FC layers 128, 64, 32
Dropout ratio in FC layer 0.5
# epoch 150

locations to all microphone positions. Documents providing the de-
tails of recording conditions, postprocessing procedures, and pho-
tographs of recording environments are also included in the dataset.
We provide some sample videos for understanding of the recording
environments and useful tools for manipulating sound files (e.g., a
tool for dividing sound clips into segments of 10 or 15 s length).

3. BENCHMARK OF ACOUSTIC SCENE
CLASSIFICATION TASK

3.1. Experimental conditions

As the benchmark system in ASC, we evaluated the performance
of a CNN-based method using RU Multichannel Domestic Acous-
tic Scenes 2019. In this experiment, we cut sound files into 15 s
sounds. We then resampled the sound files to 44.1 kHz and ex-
tracted the 64-dimensional mel-band energies, which were calcu-
lated for each 40 ms time frame with 50% overlap. The imple-
mented system was based on [17]; the detailed network structure
and the parameter settings of the networks were determined with
reference to [32]. Forty-two acoustic feature maps extracted from
42-channel recordings were input to different channels in the first
CNN layer. The network was trained using the Adam optimizer
with a learning rate of 0.001. The other experimental conditions
are listed in Table 2. The evaluation was conducted using a four-
fold cross-validation setup, where each fold had roughly the same
number of sound clips with respect to each acoustic scene.

3.2. Experimental results

The performance of ASC using the CNN-based method was 58.3%
the average F-score for all acoustic scenes. This result indicates that
the ASC task using RU Multichannel Domestic Acoustic Scenes
2019 is still difficult even using the CNN architecture, which en-
ables scene classification with reasonable performance. Thus, we
consider that this dataset is suitable for evaluating ASC perfor-
mance with more sophisticated acoustic features based on spatial
information and/or models based on neural networks. More detailed
experimental results are given in [37].

4. CONCLUSION

In this paper, we introduced the RU Multichannel Domestic Acous-
tic Scenes 2019 dataset, which was recorded by multichannel dis-
tributed microphones with various devices. This dataset consists of

over 45 h × 42 channels of sounds recorded in a home environ-
ment in which people actually live. We hope that RU Multichannel
Domestic Acoustic Scenes 2019 will be widely used for evaluating
methods of ASC utilizing spatial information, ensemble techniques,
and domain adaptation techniques.
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ABSTRACT
Smart speakers have been recently adopted and widely

used in consumer homes, largely as a communication inter-
face between human and machines. In addition, these speak-
ers can be used to monitor sounds other than human voice,
for example, to watch over elderly people living alone, and
to notify if there are changes in their usual activities that may
affect their health. In this paper, we focus on the sound clas-
sification using machine learning, which usually requires a
lot of training data to achieve good accuracy. Our main con-
tribution is a data augmentation technique that generates new
sound by shuffling and mixing two existing sounds of the
same class in the dataset. This technique creates new vari-
ations on both the temporal sequence and the density of the
sound events. We show in DCASE 2018 Task 5 that the pro-
posed data augmentation method with our proposed convolu-
tional neural network (CNN) achieves an average of macro-
averaged F1 score of 89.95% over 4 folds of the development
dataset. This is a significant improvement from the baseline
result of 84.50%. In addition, we also verify that our pro-
posed data augmentation technique can improve the classifi-
cation performance on the Urban Sound 8K dataset.

Index Terms— Domestic Activities, Data Augmenta-
tion, Deep Learning, Convolutional Neural Network

1. INTRODUCTION

In recent years, there is an increasing popularity in installing
smart speakers in a home environment due to its capability
to interact and activate home appliances through its voice in-
terface. The low cost of these smart speakers encourages
the use of more than one device to cover a larger area of a
home. The technology in smart speakers, Micro Electro Me-
chanical Systems (MEMS) array microphones, can be addi-
tionally used for monitoring sounds other than human voice.
The smart speaker capability can be adapted through ma-
chine learning to monitor and detect human activities in daily
life routine [1, 2].

We consider human activity monitoring and detection
as a multi-class classification problem [3]. The task is to

identify acoustic scenes and events using environmental
sounds [4]. A supervised machine learning technique, deep
learning based on convolutional neural networks (CNNs)
to be specific, is used as a classifier. CNNs have been
widely used in acoustic scene classification tasks due to their
promising performance [5, 6, 7, 8, 9].

It is well-known that deep learning requires a large
amount of data to train an accurate model. To increase
the amount of training data and reduce overfitting, numerous
data augmentation methods have been studied in the acoustic
literature. Some musically inspired deformations such as
pitch shifting and time stretching are adopted to augment
training sound data [6, 10]. Jaitly and Hinton [11] showed
that the data augmentation based on vocal tract length per-
turbation (VTLP) is effective to improve the performance of
automatic speech recognition (ASR). Takahashi et al. [12]
mixed two sound sources within the same class to generate
a new sound. Tokozume et al. [13] proposed a method to
mix two sound sources from different classes. Both labels
and sounds are mixed and referred to as between-class data.
They train the model solely using the generated data without
using the original data. Zhang et al. [14] proposed a similar
approach to use between-class data, but they also use mixing
of sounds from the same class in the training.

In these previous works, the temporal order of the sound
events is kept and does not generate new variations on the
sound sequence. In addition, mixing by linearly combin-
ing two sounds [12, 13, 14] usually increases the number of
sound events (event density) which could introduce bias in
the model.

In contrast to the existing approaches mentioned above,
we propose a method that increases the variation in the train-
ing samples on both the temporal sequence and event density
(the number of the sound events in a time period) of the sound
events. Our proposed method can both increase and decrease
the density of sound events, while keeping the overall aver-
age density of events the same as in the original sound and
thus introducing no bias to the model. Our proposed method
augments input acoustic data by combining sounds from two
sound sources of the same class. Each sound source is di-
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vided into multiple segments, and the new sound is generated
by shuffling and mixing these segments of two sounds from
different sound sources. This is based on our observation that
environmental sound is generally composed of background
sound and events; each event often occurs discretely in a
sound sequence without any temporal relation with others.
The fact that mixing is randomized keeps the overall average
event density the same as in the original sounds.

We conduct experiments with two acoustic datasets.
First, we applied the proposed method to DCASE 2018
Task 5 dataset [3, 15], which includes sounds in a home
environment. Our proposed method alleviates the effect of
unbalanced classes in the dataset, and significantly increases
the classification performance (F1 score) and is a main in-
gredient in building the system [16] that won the challenge1.
Second, the proposed method is applied to Urban Sound
8K dataset [17], where the results show that our proposed
method produces comparable results to other data augmen-
tation techniques that are designed for this dataset.

This paper starts by describing the proposed data aug-
mentation technique in Section 2. Experimental results on
two datasets are described in Section 3. Finally, the conclu-
sion is given in Section 4.

2. SHUFFLING AND MIXING DATA
AUGMENTATION

In this section, we introduce the shuffling and mixing data
augmentation to increase variation of training samples for
training a deep learning model. We augment sound data
based on two assumptions.

First, based on our observation, we assume that environ-
mental sound is generally composed of background sounds
and foreground event sound. The foreground events often
occur discretely and have no temporal relation with each
other. For example, let us consider eating sounds as shown
in Fig. 1. Foreground event sounds can be caused by the
sound of dishes or kitchen utensils; however, these events
are temporally independent of each other. In other words,
even when the order of these sound events is swapped, the
sound can still be categorized as eating. Therefore, it is
possible to generate a new sound clip by shuffling the order
of sound segments. Second, we assume that mixing two
sound sources within the same class results in a new sound
in the same category. This assumption has been also used in
previous works [12, 14].

Based on these two assumptions, we propose a simple but
effective data augmentation technique, which is comprised
of two steps: (a) shuffling, and (b) mixing two sounds of
the same class, as shown in Fig. 2. To simplify the explana-
tion, let us consider two sound clips of the same class and the

1http://dcase.community/challenge2018/task-monitoring-domestic-
activities-results

Sound events caused

by dish and kitchen utensils.

Swapped sound event sequence can be categorized as “eating” class

Swap order of sound events

(a) Original sound in “eating” class

(b) Generated new sound

Figure 1: Swapping the order of sound events creates a sound
in the same class.
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Figure 2: Generating new data based on shuffling and mix-
ing.

same length of 10 seconds. We divide them into segments.
The length of each segment can be arbitrary and is consid-
ered as a hyper-parameter that represents an estimated length
of sound that contains at least one atomic foreground event.
In the above example, the length of each segment is 2 sec-
onds. We define two arrays to keep sequence IDs and sound
IDs respectively and shuffle them as shown in Fig. 2(a). The
sequence ID represents the order of sound segments, that is,
when a sequence ID array is shuffled from (1, 2, 3, 4, 5) to
(4, 5, 2, 1, 3), it means that the forth segment of the origi-
nal sound is used as the first segment of the new sound, the
fifth segment is used as the second segment and so on. The
sound ID represents sound source from two sounds, Sound-0
or Sound-1, and how to mix them. For example, a sound ID
(0, 0, 0, 1, 1) represents a 60% Sound-0 mixing ratio, which
is also a hyper-parameter of the method. When the sound ID
is shuffled to (1, 0, 1, 0, 0), the first segment of the new sound
is picked from Sound-1 and the second segment is picked
from Sound-0, and so on. We mix two sounds of the same
class based on the shuffled sequence/sound IDs as shown in
Fig. 2(b).

Generating new training samples in this way results in
more variations of the temporal event location in the sound
source. It also creates more variation in the number of sound
events in a time period (event density). If the new sound
is composed of multiple segments each containing a small
number of sound events, it results in a decrease of event den-
sity. Similarly, if it is composed of multiple segments each
containing a large number of sound events, the new sound
will have higher event density. This is in contrast to the pre-
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vious methods [12, 14] that mix the two sound sources by
overlaying on top of each other, where the resulting sound
keeps the same event order and tends to have higher event
density than the original sound.

3. EXPERIMENTS

In this section, we evaluate our proposed data augmenta-
tion technique on two datasets with different characteristics.
DCASE 2018 Task 5 dataset [15] is based on continuous
recording sounds of a single person living in a vacation home
over a period of one week [3]. It is composed of nine sound
classes. Most of the sounds are created by one particular per-
son and are relatively low volume except for vacuum clean-
ing. On the other hand, Urban Sound 8K dataset is cre-
ated by downloading sounds from an online sound reposi-
tory, Freesound.org. The recorded sounds come from various
sound sources, containing ten classes of urban environmental
sounds. Most of the sounds are quite noisy compared to the
sounds in DCASE 2018 Task 5 dataset.

3.1. DCASE 2018 Task 5 dataset

The DCASE 2018 Task 5 dataset contains sound data cap-
tured in the living room. Each individual sound data is
recorded using a single microphone array (with four micro-
phones). There are microphone arrays at seven undisclosed
locations. The dataset is divided into a development dataset
and evaluation dataset. We focus on the development dataset
in this paper. Each sound is 10 seconds long consisting of
4-channel 16-bit data sampled at 16 kHz. There are unequal
numbers of samples in different classes, which possibly re-
flects the frequency of activities in real life. The amount of
data in the following six classes: cooking, dishwashing, eat-
ing, other, social activity, and vacuum cleaning, is extremely
small compared to the other three classes: absence, watching
TV, and working.

The proposed data augmentation approach is used to in-
crease the training data of the six classes to create a more
balanced training set. Each sound data is divided into five
segments with two seconds in length and mixed with 3-to-2
(60%) mixing ratio. Fig. 3 illustrates the amount of data in
each class before and after applying our shuffling and mixing
augmentation on Fold 1 of the development dataset.

As shown in Fig. 3, 30% of the training data is selected
as validation data. All sounds recorded in the same session
are only in either the training or validation data. This cor-
responds to how it is done in the baseline system. We con-
verted the 10 second sound waveform into log-scaled mel-
spectrogram (logmel) of size 40 × 501 matrix and used as
the input to the deep learning model. More details of pre-
processing are in our technical report of the DCASE 2018
challenge [16].
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Figure 3: Number of data before and after data augmentation
in Fold 1 of the development dataset. The augmentation is
conducted on training data only.

Table 1: Proposed network architecture.

Layer Output size
Input 40 × 501 × 1

Conv(7 × 1, 64) + BN + ReLU 40 × 501 × 64
Max pooling(4 × 1) + Dropout(0.2) 10 × 501 × 64
Conv(10 × 1, 128) + BN + ReLU 1 × 501 × 128
Conv(1 × 7, 256) + BN + ReLU 1 × 501 × 256

Global max pooling + Dropout(0.5) 256
Dense 128

Softmax output 9

In addition to data augmentation, we designed a new deep
neural network architecture, where the main characteristics
is that it starts with multiple convolutional layers across fre-
quency axis where the kernel size on the time axis is fixed
to one and then it followed by a convolutional layer across
time where the kernel size on the frequency axis is fixed to
one. This allows the network to look for local patterns across
frequency bands and also the short-connected temporal com-
ponents which represent sound events in the input data. In
addition, the network also maintains the size of the time axis
of the logmel until the final pooling layer. The complete net-
work architecture and parameters are shown in Table 1.

In the dataset, one test sample has 4-channels. Sound in
each channel is pre-processed and passed through the clas-
sifier independently. We average these four softmax predic-
tions of each channel to calculate the final probability predic-
tion for each test sample.

The experiments are carried out using the 4-fold cross
validation setting of the development dataset. This corre-
sponds to the test protocol of the DCASE 2018 Challenge.
The model is trained with Adam optimizer [18] and an initial
learning rate of 0.0001. We use a batch size of 256 sam-
ples and train the classifier for 500 epochs. The network
weights which result in the best accuracy on the validation
data is used to evaluate the test data. We examine the fol-
lowing configurations and compare the result with the base-
line system: i) proposed CNN without data augmentation,
ii) baseline CNN with proposed data augmentation, and iii)
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proposed CNN with proposed data augmentation.
Fig. 4 shows the overall F1 scores and also for each class

separately. We can see that the proposed network architec-
ture and data augmentation approach each improves the clas-
sification performance and the combination of them gives the
best performance. The overall F1 score by the proposed sys-
tem is 89.95%, while the overall F1 score by the baseline
is 84.50%. The proposed system improves F1 scores in all
classes, especially the F1 score of other class.

3.2. Urban Sound 8K dataset

Urban Sound 8K dataset contains 10 sound classes of urban
environmental sounds and has been widely used in acoustic
classification literatures. Salamon and Bello [6] has investi-
gated the effect of various data augmentation techniques and
could be considered as a command baseline in this dataset.
This experiment aims to compare an effect of those tech-
niques the proposed shuffling and mixing data augmentation.

In the previous work [6], the details of how to augment
each sound data is provided; however, implementation of the
model and training procedure is not given. We attempted to
replicate the result and our implementation achieved a mean
accuracy of 71.6% across 10 folds for a baseline without data
augmentation. Additional details are listed below: (a) We
padded all sound data to 4 seconds by repeating the sound
(self-concatenating) if required. During training, a 3 second
segment is randomly chosen for each data sample in each
epoch. However, during inference on a test sample, we slice
a 3 second window with 1-frame hop in temporal axis of log-
mel, pass them through the network, and ensemble the prob-
ability by averaging. (b) We replicated SB-CNN, use glorot
uniform initialization for all layers and add batch normaliza-
tion after each CNN layer [19]. (c) Model is trained for 50
epochs, with a minibatch of 100 samples. In each epoch, all
sounds are considered in the training while undersampling
method is applied to balance the number of data between all
class. The model weights that performed best on the vali-
dation set are chosen for the final weights. (d) We strictly
followed 10-fold cross-validation protocol3. During testing

3https://urbansounddataset.weebly.com/urbansound8k.html
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the N th fold, the (N − 1)th fold is used as validation.
We applied the proposed shuffling and mixing augmen-

tation to the data by dividing each sound clip into 2 segments
with 2 seconds in length and mixed them with 1-to-1 (50%)
mixing ratio. Fig. 5 shows the difference for each class in
the classification accuracy when adding each data augmen-
tation compared to using only the original training set. Our
proposed technique improves the accuracy compared to the
baseline, although pitch shifting gives the best result for this
dataset. The suitability of different data augmentation tech-
niques to different datasets is worth studying in the future.

4. CONCLUSIONS

We have proposed a data augmentation technique that shuf-
fles and mixes two sounds of the same class in training
datasets. This data augmentation can generate new variations
on both the sequence and the density of sound events. The
proposed method is applied to DCASE 2018 Task 5 dataset
and the Urban Sound 8K dataset. In general, the method
improves classification results in both datasets. Specifically,
it is a part of the system that won the DCASE 2018 Task 5
challenge and it also shows comparable results to other data
augmentation techniques in the Urban Sound 8K dataset.
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ABSTRACT
Different acoustic scenes that share common properties are one of
the main obstacles that hinder successful acoustic scene classifica-
tion. Top two most confusing pairs of acoustic scenes, ‘airport-
shopping mall’ and ‘metro-tram’ have occupied more than half of
the total misclassified audio segments, demonstrating the need for
consideration of these pairs. In this study, we exploited two special-
ist models in addition to a baseline model and applied the knowl-
edge distillation framework from those three models into a single
deep neural network. A specialist model refers to a model that con-
centrates on discriminating a pair of two similar scenes. We hypoth-
esized that knowledge distillation from multiple specialist models
and a pre-trained baseline model into a single model could gather
the superiority of each specialist model and achieve similar effect
to an ensemble of these models. In the results of the Detection and
Classification of Acoustic Scenes and Events 2019 challenge, the
distilled single model showed a classification accuracy of 81.2 %,
equivalent to the performance of an ensemble of the baseline and
two specialist models.

Index Terms— Acoustic scene classification, Specialist mod-
els, Knowledge distillation, Teacher-student learning, Deep neural
networks

1. INTRODUCTION

Recently, various studies on acoustic scene classification (ASC)
systems have been being conducted upon increasing demand from
several different industries. The Detection and Classification of
Acoustic Scenes and Events (DCASE) challenge is providing a
common platform for various studies to compare and examine pro-
posed methods [1, 2]. Based on the efforts of the organizers of the
challenge, many different types of research have been conducted to
improve the performances of ASC systems. In [3], a sophisticated
training procedure for an ASC system was proposed. Other stud-
ies have focused mainly on investigating feature extraction and data
augmentation techniques for ASC tasks [4, 5]. With such studies
and the annual DCASE challenge, the performance of ASC systems
has incrementally increased each year. However, to our knowledge,
there have been few studies that have analyzed errors that occur
due to the characteristics of the ASC task. We believe that such an
analysis of the task errors is necessary in addition to designing an
elaborate system.

In ASC tasks, common acoustic properties among the differ-
ent acoustic scenes are a known obstacle that degrade the perfor-

∗Equal contribution.
† Corresponding author.
This research was supported by Basic Science Research Program

through the National Research Foundation of Korea(NRF) funded by the
Ministry of Science, ICT & Future Planning(2017R1A2B4011609)

(a)

(b)

Figure 1: (a) The proportion of each class among the total errors of
the baseline model (b) Illustration of the confusion matrix from the
baseline model.

mance of developed systems [6]. These acoustic properties evoke a
few frequently misclassified pairs of acoustic scenes. For more de-
tails, Figure 1 (a) shows the proportion of each class among the total
misclassified audio segments that use the baseline ASC system. In
this figure, we verified that the three most difficult classes to iden-
tify occupy more than half of the total error. In addition, Figure 1
(b) shows that most of the errors from the frequently misclassified
classes are due to a certain confusing pair. For example, most of the
errors from the two classes ‘public square’ and ‘street pedestrian,’
which were frequently misclassified classes, were caused by the

https://doi.org/10.33682/gqpj-ac63
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confusion between each other.
The phenomenon of a few misclassified acoustic scenes

severely degrading the overall performance has been alleviated by
adopting a knowledge distillation scheme with a ‘soft-label’ that
models the common properties of acoustic scenes [6]. In this study,
we further alleviated this problematic phenomenon by using a ‘spe-
cialist’ scheme. A specialist model refers to a model that concen-
trates more on a specific pair of frequently misclassified classes.
However, when adopting specialist models, there are still some is-
sues, such as the growing number of parameters (model capacity)
and the number of required specialists. To overcome these issues,
we further utilized the knowledge distillation scheme combined
with the specialist models.

The scheme used in this study distilled the knowledge from the
baseline model and two specialist models into a student model. In
this scheme, the number of parameters in the distilled model was
identical to that in the baseline model. Experimental results on the
DCASE 2019 task 1 competition demonstrated that one distilled
models shows a performance equal to that of the ensemble of all
other models. The main contributions of this paper can be summa-
rized as follows:

1. Adoption of specialist models for frequently misclassified
pairs of acoustic scenes.

2. Application of knowledge distillation from a baseline model
and two specialist models into one single distilled model in
acoustic scene classification.

The rest of this paper is organized as follows: the knowledge
distillation (also referred to as teacherstudent learning) framework
is introduced in Section 2. Section 3 describes the specialist mod-
els and how it is used in this study. The experimental settings and
results are detailed in Sections 4 and 5, respectively, and the paper
is concluded in Section 6.

2. KNOWLEDGE DISTILLATION IN THE ASC TASK

Knowledge distillation (KD) is a framework where the ‘soft-label’
extracted from a DNN is used to train the other DNN (this frame-
work is also referred to as the teacher-student framework) [7, 8]. We
refer to the DNN that provides the soft-label as the teacher DNN,
and the DNN that is trained using the soft-label is referred to as the
student DNN for clarity throughout this paper.

The KD framework was conducted with the following steps.
First, a teacher DNN was trained using the categorical cross-entropy
(CCE) objective function. After training of the teacher DNN was
complete, its parameters were frozen, and only used for providing
soft-labels, which were used to train the student DNN. Note that we
initialized the student DNN using the parameters from the teacher
DNN. The KD framework has been successfully applied to many
tasks [9, 10]. It is important to design the teacher DNN to be supe-
rior by considering the work flow of the KD framework that trains
the student DNN using the output of the teacher DNN. For example,
a larger capacity for a model compression task [8], or close talk ut-
terance input for far-field compensation [10] make the teacher DNN
superior.

In the ASC task, Heo et al. [6] first adopted the KD frame-
work to model the common properties among different acoustic
scenes using soft-labels. For example, babbling sounds that occur in
both shopping mall and airport (pre-defined acoustic scenes of the
DCASE 2019 challenge) are sometimes labeled as shopping mall
but labeled as airport at other times using a hard-label scheme.

Using the KD framework, soft-labels were hypothesized to model
these correlations between pre-defined labels based on their com-
mon acoustic properties. This approach was successful in that not
only was the overall classification accuracy increased but also the
number of misclassified audio segments in the most frequently mis-
classified pair of scenes significantly decreased.

3. KNOWLEDGE DISTILLATION WITH
SPECIALIST MODELS

3.1. Specialist Knowledge Distillation

In the KD framework that involves specialist models [7], soft-labels
extracted from multiple teacher DNNs were exploited to train a stu-
dent DNN. In this framework, multiple teacher DNNs comprise one
baseline model and a defined number of specialist models. Here, the
specialist model refers to a DNN that classifies a subset of classes
assigned by a clustering algorithm (e.g. in [7], 300 detailed classes
that are in the bird category were set to a specialist model among a
total of 15000 categories from Google’s internal dataset).

The training process of specialist knowledge distillation is as
follows. First, we train the baseline model using a CCE objective
function. Next, a defined number of specialist models are initialized
using the weight parameters of the baseline model (DNN architec-
ture is identical except for the output layer). Each specialist model
is then trained using the CCE objective function with defined sub-
set labels. Finally, the student DNN is trained using multiple soft-
labels each extracted from the baseline and specialist models. The
loss function LKD for the training of the student DNN model can
be defined as follows:

LKD(θ; θb, S)

= −
N∑

i=1

M∑

j=1

logQ(j|xi; θ)[Q(j|xi; θb) +
∑

θs∈S
Q(j|xi; θs)],

(1)

Q(j|x; θ) = exp(zj/T )∑
i

exp(zi/T )
, (2)

where N and M denote the size of the mini-batch and the acoustic
scenes in the training set, respectively, each input audio segment is
referred to as xi, Q(j|xi, θ) denotes the posterior probability for
the j′th acoustic scene using the concept of temperature T [7], θb
is the set of parameters in the baseline model, θs is the parameter
set of specialist model s, and S is the set of specialist models. The
function Q(j|xi, θ), defined in Eq. (2), has the role of smoothing
the results of applying the softmax function to the output z of the
DNN. A loss function, LKD , has been proposed to train the single
model that can achieve the same as the ensemble of models that
have different characteristics [7, 8].

3.2. Specialist Knowledge Distillation for the ASC Task

In this sub-section, we introduce the modifications we make on the
knowledge distillation framework with specialists to suit the ASC
task. First, we fixed the number of classes to classify rather than
selecting a subset of classes. In Hinton et al. [7], the number of
total classes was too large, making selection of a subset of classes
necessary. However, the DCASE 2019 challenge dataset defines ten
classes.

Second, in our configuration, one specialist model concentrated
on classifying one pair of frequently misclassified acoustic scenes.
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Figure 2: Workflow of the training procedure.

Figure 3: Illustration of the performance analysis based on confusion matrices (right: baseline model, middle: first specialist model, right:
student model).

We use two specialist models, where the pair of acoustic scenes to
concentrate on is decided based on the confusion matrix of the base-
line model; the top two most confusing pairs of acoustic scenes are
dealt with two specialist models, respectively. This configuration
is based on the analysis that few frequently misclassified acoustic
scenes occupy the majority of misclassified samples (see Figure 1).
To train the specialist model, we construct half of the mini-batch
with target pairs to concentrate on, and the other half with pairs of
randomly selected samples from other classes.

After training the specialist models, we train the student model
using an objective function composed of the function defined in Eq.
(1) and the CCE function, as follows:

L = λCLCCE + λKLKD, (3)
where λC and λK are the weights of LCCE and LKD , respectively.
The CCE function defined by the true label is used to correct er-
rors that may occur in the teacher models. The values of the two
weight coefficients were fixed based on the validation results on the
DCASE2019 fold-1 configuration.

The overall training process for the framework used in our study
is illustrated in Figure 2.

By applying knowledge distillation using the specialist mod-
els, we expect two results. First, class-wise accuracy of the top
misclassified acoustic scenes should decrease. Second, the supe-
riority of each specialist model regarding a target pair of acoustic
scenes should be well distilled into a single student DNN. To ob-
serve whether this objective is successfully achieved, we analyze

not only the overall accuracy but also the class-wise accuracies and
the number of misclassified samples between each pair of target
acoustic scenes that the specialist focused on.

4. EXPERIMENTAL SETTINGS

We conducted all experiments using PyTorch, a deep learning li-
brary written in Python [11]1.

We used the Detection and Classification of Acoustic Scenes
and Events Challenge Task 1-a dataset for all our experiments.
This dataset comprises audio segments that were 10 s and were
recorded at 48 kHz with 24-bit resolution; each stereo segment was
labelled as one of the pre-defined ten acoustic scenes. The dataset
was divided into a development and an evaluation set, where the
development set comprised 14400 labelled audio segments, and
the evaluation set was not revealed. We constructed a four-fold
cross-validation setup using all the data and independently trained
four systems. The first fold followed the configuration from the
DCASE2019 challenge organizer, and the remaining folds were
constructed, taking into account the city where each audio segment
was recorded.

We built two separate DNNs for each configuration, where one
input raw waveforms and the other input log Mel-energy features.
In particular, the model for the raw waveform inputs was con-

1Codes used for experiments are available at
https://github.com/Jungjee/dcase2019specialistkd
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structed following the ResNet architecture based on 1-D convolu-
tional layers, and the model for Mel-energy was constructed fol-
lowing the ResNet architecture based on 2-D convolutional layers
[12, 13]. We exploited a score-level ensemble in which one uses
a CNN that inputs raw waveforms and the other uses a CNN that
inputs log Mel-energy features. For data augmentation, we applied
a mix-up technique [14] defined as

x̂ = λxi + (1− λ)xj , (4)

ŷ = λyi + (1− λ)yj , (5)

λ = B(α, α), (6)

where the pair of xi and yi represent a set of randomly se-
lected input utterances and the corresponding label, respectively,
and B(α, α) is the beta distribution with coefficient α [14]. Label
yi is defined by the true label when training with the CCE function
and is referred to the output of the teacher DNN when applying the
KD framework.

Refer to the authors’ technical report [15] for other details re-
garding the input features, model architectures, and training proce-
dures2.

5. RESULTS ANALYSIS

Figure 3 depicts the change of mis-classified samples regarding the
most confusing pair (‘shopping mall’ and ‘airport’) in three confu-
sion matrices of the baseline, first specialist, and the student (dis-
tilled) model. The number of mis-classified samples of the most
confusing pair in these three models was 148, 130, and 121 respec-
tively. Comparing the baseline and the specialist, this result first
demonstrates that the mis-classified number of audio segments in
target confusing pair decrease in the specialist model than the base-
line. However, the overall classification accuracy was similar (for
Mel-energy, baseline was 74.33 % and the specialist1 was 74.12 %).
Comparing the specialist and the student model, the result of mis-
classified samples from 130 to 121 shows that not only the overall
accuracy increases, but the knowledge of the specialist model is
successfully distilled.

To verify whether the superiority of each specialist model was
actually distilled to the student DNN, we analyzed the accuracy of
the overall and top two most frequently confusing pairs of acoustic
scenes. Figure 4 shows the results. Note that these results were from
the fold-1 and Mel-energy configuration. We found that the overall
accuracy of the student DNN was actually higher than those of all
other models. Additionally, we confirmed that for each specialist
model the class-wise accuracy of the concentrated pairs increased
while the accuracies of other pairs decreased, resulting in similar
overall accuracy. The class-wise accuracy of the most confusing
pairs in the student model is equal to or higher to those that were
the focus of each specialist model. According to this result, we
concluded that the designed superiority of each specialist was well
distilled to the student DNN. The additional results on the fold-1
configuration are demonstrated in Table 1.

The success of the knowledge distillation is further addressed in
Table 2, which reports overall classification accuracies on the eval-
uation set. This table shows the performances on the evaluation set
according to the score-level ensemble methods. The ensemble of
‘B+S1+S2+St’ means combining the outputs from 32 models (four

2http://dcase.community/documents/challenge2019/
technical_reports/DCASE2019_Jung_98.pdf

Table 1: Performances of various systems with the fold-1 configura-
tion according to their accuracies (%) (B: baseline model, S1: 1′th
specialist model, S2: 2′nd specialist model, St: student model).

System B S1 S2 St
Raw waveform 73.71 74.89 74.53 75.81

Mel-energy 74.33 74.12 74.48 76.15

Table 2: Performances of various systems with the evaluation con-
figuration according to their accuracies (%) (B: baseline model,
S1: 1′th specialist model, S2: 2′nd specialist model, St: student
model).

Systems B+S1+S2+St St
Accuracy (%) 81.2 81.2

kinds of models× two fold configurations× two types of input fea-
tures), and the ensemble of ‘St’ refers to combining the outputs from
eight models. The performance of the student DNN was the same
as that of the ensemble of the baseline and two specialist models.
This result also verifies that the student DNN trained with special-
ist knowledge distillation better conducted the ASC task with less
number of parameters.

Figure 4: Illustration of the performance analysis based on the mean
accuracy of the two classes from the most confusing pairs.

6. CONCLUSION

In this study, we observed that a few pairs of frequently misclassi-
fied acoustic scenes occupy more than half of the total misclassi-
fied audio segments in an ASC task. For addressing the issue, we
adopted the concept of the specialist model, which was designed to
concentrate on specific subsets of a task. We modified and trained
the specialist models to suit the ASC task. The results show that the
specialist model could have not only the superiority that reduces er-
rors for certain confusing pairs but also the inferiority that decreases
the discriminative power for other classes. We hypothesized that the
KD framework could achieve the identical effect with the ensemble
of multiple models by combining superiority into a single model,
excluding the inferiority of individual models. The experimental re-
sults demonstrated that the KD framework was successful, coherent
to our hypothesis and it resulted in overall performance improve-
ments for the ASC system.
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ABSTRACT

In this paper, we describe our method for DCASE2019 task 3:
Sound Event Localization and Detection (SELD). We use four
CRNN SELDnet-like single output models which run in a consecu-
tive manner to recover all possible information of occurring events.
We decompose the SELD task into estimating number of active
sources, estimating direction of arrival of a single source, estimat-
ing direction of arrival of the second source where the direction of
the first one is known and a multi-label classification task. We use
custom consecutive ensemble to predict events’ onset, offset, direc-
tion of arrival and class. The proposed approach is evaluated on the
TAU Spatial Sound Events 2019 - Ambisonic and it is compared
with other participants’ submissions.

Index Terms— DCASE 2019, Sound Event Localization and
Detection, CRNN, Ambisonics

1. INTRODUCTION

Sound Event Localization and Detection (SELD) is a complex
task which naturally appears when one wants to develop a sys-
tem that possesses spatial awareness of the surrounding world us-
ing multi-channel audio signals. This year, the task 3 from the
IEEE AASP Challenge on Detection and Classification of Acoustic
Scenes and Events (DCASE 2019) [1] concerned the SELD prob-
lem. SELDnet introduced in [2] is a single system of a good quality
designed for the SELD task, and the slight modification of SELDnet
was set as the baseline system [3] during the DCASE 2019 Chal-
lenge. Solely based on [2] and [3], we develop a novel system de-
signed for the task 3 from the DCASE 2019 Challenge.

In our work, we follow the philosophy that if a complex prob-
lem can be split into simpler ones, one should do so. Thus we de-
compose the SELD task with up to 2 active sound sources into the
following subtasks:

• estimating the number of active sources (noas),
• estimating the direction of arrival of a sound event when there

is one active sound source (doa1),
• estimating the direction of arrival of a sound event when there

are two active sound sources and we posses the knowledge of
the direction of arrival of one of these sound events, which we
will call an associated event (doa2),

• multi-label classification of sound events (class).

∗Corresponding author.

Figure 1: An example of the normalised amplitude spectrogram in
the decibel scale and the normalised phase spectrogram obtained
from the first foa channel from some randomly selected recording.
The horizontal and vertical axes denote frame numbers and frequen-
cies respectively obtained from the STFT. Note that the values from
the legends on the right are dimensionless due to the normalization
used in the preprocessing.

For each of this subtasks, we develop a SELDnet-like convolutional
recurrent neural network (CRNN) with a single output. We discuss
it in detail in section 3. Given such models, we develop a custom
consecutive ensemble of these models. This allows us to predict the
events’ onset, offset, direction of arrival and class, which we discuss
in detail in section 4. Due to the sequential nature of generating pre-
dictions in our system, errors in models’ predictions may cascade,
and thus an overall error may cumulate. Despite this drawback, our
system acquire very good results on the TAU Spatial Sound Events
2019 - Ambisonic database. We discuss the results in detail in sec-
tion 5.

2. FEATURES

The DCASE 2019 task 3 provides two formats of the TAU Spa-
tial Sound Events 2019 dataset: first order ambisonic (foa) and 4
channels from a microphone array (mic) [3]. In our method we only
use the ambisonic format.

https://doi.org/10.33682/9f2t-ab23
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Each recording is approximately 1 minute long with sampling
rate of 48k. We use the short time Fourier transform (STFT) with
Hann window. We use the window of length 0.4s and hop of length
0.2s in STFT to transform a raw audio associated to each foa chan-
nel into the complex spectrogram of size 3000x1024. If audio is
longer than 1 minute, we truncate spectrograms. If an audio is
shorter than 1 minute, we pad them with zeros.

From each complex spectrogram we extract its module and
phase point-wise, that is amplitude and phase spectrograms, re-
spectively. We transform amplitude spectrograms to the decibel
scale. Finally, we standardize all spectrograms frequency-wise to
zero mean and unit variance, to obtain spectrograms as in Figure 1.

In summary, from each recording we acquire 4 standardized
amplitude spectrograms in the decibel scale and 4 standardized
phase spectrograms corresponding to 4 foa channels.

3. ARCHITECTURE

As mentioned in the introduction, each of the subtasks (noas,
doa1, doa2 and class) has its own SELDnet-like CRNN. Each of
these models is a copy of a single SELDnet node with just minor
adjustments so that it fits to the specific subtask and for the regular-
ization purpose.

Each of these models takes as an input a fixed length subse-
quence of decibel scale amplitude spectrograms (in case of noas
and class subtasks) or both decibel scale amplitude and phase spec-
trograms (in case of doa1 and doa2 subtasks) from all 4 channels.

In each case, the input layers are followed by 3 convolutional
layer blocks. Each block is made of a convolutional layer, batch
norm, relu activation, maxpool and dropout. The output from the
last convolutional block is reshaped so that it forms a multivari-
ate sequence of a fixed length. In the case of doa2, we addition-
aly concatenate directions of arrivals of associated events with this
multivariate sequence. Next, there are two recurrent layers (GRU
or LSTM) with 128 units each with dropout and recurrent dropout.
Next layer is a time distributed dense layer with dropout and with
the number of units depending on subtask.

Lastly, depending on a subtask, the model has a different out-
put. For noas, the model has just a single time distributed output that
corresponds to the number of active sources (0, 1 or 2). For doa1
and doa2, the models have 3 time distributed outputs that corre-
sponds to cartesian xyz coordinates as in [2]. Cartesian coordinates
are advantageous over spherical coordinates in this task due to their
continuity. Lastly, for class, the model has 11 time distributed out-
puts corresponding to 11 possible classes. We present the detailed
architecture in Table 1.

Depending on a subtask, we feed the network with the whole
recordings or just their parts. For noas, we feed all the data. For
doa1, we extract only those parts of the recordings where there is
just one sound source active. For doa2, we extract only those parts
of the recordings where there are exactly two active sound sources.
For class, we extract those parts of the recordings where there are
at least one active source.

As for the learning process, we used mean square error loss for
the noas, doa1, doa2 subtasks and binary cross-entropy loss for the
class subtask. For all subtasks we initialised learning process using
Adam optimizer with default parameters [4]. The noas and class
subtasks were learned for 500 epochs with exponential learning rate
decay; every 5 epochs the learning rate were multiplied by 0.95. In
doa1 and doa2 subtasks, we run learning process for 1000 epochs
without changing the initial learning rate.

As for complexity, the noas, doa1, doa2 and class have
572,129, 753,603, 591,555 and 572,299 parameters respectively,
making total of 2,651,634 parameters.

4. CONSECUTIVE ENSEMBLE

In this section, we introduce and describe the idea of the con-
secutive ensemble which is the core of our approach. This custom
binding of our four models allows us to predict the events’ onset,
offset, direction of arrival and class.

4.1. The algorithm

We assume that recordings have at most 2 active sound sources
at once and the sound events occur on a 10 degrees resolution grid.
In our setting, the audios after feature extraction have exactly 3000
vectors corresponding to the time dimension. Henceforth we will
call these vectors as frames. The algorithm itself goes as follows:

1. We feed the features to the noas network to predict the num-
ber of active sources (NOAS) in each frame.

2. We transform the predicted NOAS so that each recording
starts and ends with no sound sources and the difference of NOAS
between each frames is no greater than 1.

3. From the predicted NOAS we deduce the number of events,
their onsets and the list of possible offsets for each event. If NOAS
in two consecutive frames increases, then we predict that a new
event happened at the second frame. If in two consecutive frames
NOAS decreases, then we append the first frame to all events since
last time NOAS was 0 as a possible offset.

4. In order to determine which offset corresponds to which
event we use the doa1 network. We extract chunks (intervals of
equal NOAS) of audio where the predicted NOAS equals 1 and we
feed it to doa1 network. For each chunk where NOAS was 1 we
predict the average azimuth and elevation, and we round it to the
closest multiple of 10. If two consecutive chunks have the same
azimuth and elevation then we conclude that the first event covered
two chunks and the second event started and ended between those
chunks. If two consecutive chunks have a different azimuth or ele-
vation, then we conclude that the first event ended when the second
chunk started and the second event continued in the second chunk.

5. To determine the remaining information about angles we
need to predict the direction of arrival (DOA) of events that start and
end while the associated event is happening. We feed the chunks
where NOAS is 2 to the doa2 network with the second input being
DOA of the associated event in cartesian xyz coordinates. Similarly
as in step 4, we average the predicted results from chunks and round
it to the closest multiple of 10.

6. Lastly, we predict the events’ classes. If an event has chunks
where the event is happening in an isolation (NOAS = 1), then all
such chunks are feed to the class network and the most probable
class (using soft voting among frames) is taken as a predicted class.
If an event has no such chunks, i.e. the event is only happening
with an associated event, then such chunk (NOAS = 2) is fed to the
network and two most probable classes are extracted. We choose the
first one which does not equal to the class of the associated event.

4.2. An example

The algorithm itself may seem quite complex at first glance.
Hence, we investigate here a concrete example.
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Table 1: The architecture and the parameters of the networks

Layer Type Parameters noas doa1 doa2 class

Input Shape 256× 1024× 4 128× 1024× 8 128× 1024× 8 128× 1024× 4
ConvBlock* Pool 8 8 8 8
ConvBlock* Pool 8 8 8 8
ConvBlock* Pool 4 4 4 4
Reshape Sequence length × features 256×−1 128×−1 128×−1 128×−1
Doa2 input Is used False False True False
Concatenate Is used False False True False
RecBlock** Unit type GRU LSTM GRU GRU
RecBlock** Unit type GRU LSTM GRU GRU
TD Dense Number of units 16 128 128 16
Dropout Dropout rate 0.2 0.2 0.2 0.2
TD Dense Number of units 1 3 3 11
Activation Function linear linear linear sigmoid

*ConvBlock(P )

Conv2D 64 filters, 3× 3 kernel, 1× 1 stride, same padding
BatchNorm —
Activation ReLu function
MaxPooling2D 1× P pooling
Dropout 0.2 dropout rate

**RecBlock(U)

Recurrent 128 recurrent units of type U , 0.2 recurrent dropout rate
Activation tanh function
Dropout 0.2 dropout rate

Figure 2: The plot visualising the predicted number of active
sources for some randomly selected recording.

Given a recording constituting of 3000 vectors, we predict its
NOAS in each frame as in Figure 2. For the sake of clarity we
constrain only to a part of the recording. Consider a block with
predicted NOAS as in the top plot from Figure 3. According to the
step 3 from the algorithm, we predict that 3 events happened here:
E1, E2, E3 with 3 corresponding onsets On1, On2, On3. Events
E1 and E2 may end at Off1, Off2 or Off3 and event E3 may end
at Off2 or Off3 (see the bottom plot from Figure 3). According
to the step 4 from the algorithm, we predict DOA using doa1 in
chunks from On1 to On2, from Off1 to On3 and from Off2 to
Off3. Based on that we deduce the events’ offsets as in Figure 3.
Based on step 5 from the algorithm, we predict the DOA of chunk
from On3 to Off2 using doa2 where the associated DOA is the
DOA of E2. Lastly we deduce classes of the events E1, E2 and
E3. According to the step 6 form the algorithm, we predict class
of E1 based on the chunk from On1 to On2, predict the class of
E2 based on chunks from Off1 to On3 and from Off2 to Off3.
Finally, we predict the class of E3 based on the chunk from On3

to Off2. If the predicted class of E3 is the same as the class of
E2 then we predict it to be the second most probable class from the
class network.

Table 2: The average results from all 4 splits.
Error rate F-score DOA error Frame recall Seld score

Train 0.03 0.98 2.71 0.98 0.02
Val. 0.15 0.89 4.81 0.95 0.08
Test 0.14 0.90 4.75 0.95 0.08
Baseline 0.34 0.80 28.5 0.85 0.22

5. RESULTS

We evaluate our results on TAU Spatial Sound Events 2019 -
Ambisonic dataset. This dataset constitutes of two parts: the devel-
opment and evaluation sets. The development part consists of 400
recordings with predefined 4-fold cross-validation and the evalua-
tion part consists of 100 recordings. The results from this section
relate to our submission Kapka_SRPOL_task3_2.

5.1. Development phase

As for the development part, we used 2 splits out of 4 for train-
ing for every fold using the suggested cross-validation even though
validation splits do not influence the training process.

We show in Table 2 the averaged metrics from all folds for our
setting and metrics for the baseline [3]. In order to demonstrate the
variance among folds, we present in Table 3 the detailed results on
the test splits from each fold. The development set provides the
distinction for the files where there is up to 1 active sound source at
once (ov1) and where there are up to 2 (ov2). In Table 4 we compare
metrics for the ov1 and ov2 subsets.
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Figure 3: Given the predicted NOAS from the part of some recording as in the top plot, we deduce that there are 3 events E1, E2 and E3 with
corresponding onsets denoted by the green lines in the bottom plot. Based on the predicted DOA, which we placed in the top plot above the
segments, we deduce the events’ offsets denoted by the red lines in the bottom plot.

Table 3: The results on the test splits from each fold.
Error rate F-score DOA error Frame recall Seld score

Split 1 0.13 0.91 6.01 0.95 0.07
Split 2 0.16 0.88 6.01 0.95 0.09
Split 3 0.11 0.93 4.93 0.96 0.06
Split 4 0.17 0.86 5.89 0.96 0.10

Table 4: The results on the ov1 and ov2 subsets.
Error rate F-score DOA error Frame recall Seld score

ov1 0.07 0.94 1.28 0.99 0.04
ov2 0.18 0.87 7.96 0.93 0.11

5.2. Official results

For the evaluation part, we used all 4 splits for training from
the development set. We compare our final results with the selected
submissions in Table 5.

The idea of decomposing the SELD task into simpler ones
proved to be a very popular idea among contestants. The recent
two-stage approach to SELD introduced in [5] was used and devel-
oped further by many. The best submission using two-step approach
Cao_Surrey_task3_4 [6] obtained results very similar to ours.
He_THU_task3_2 [7] and Chang_HYU_task3_3 [8] outper-
form our submission in SED metrics and DOA error respectively.
However, our approach based on estimating NOAS first allows us
to outperform all contestants in frame recall.

6. SUBMISSIONS

Overall, we created 4 submissions for the competition:

• ConseqFOA (Kapka_SRPOL_task3_2),
• ConseqFOA1 (Kapka_SRPOL_task3_3),
• ConseqFOAb (Kapka_SRPOL_task3_4),
• MLDcT32019 (Lewandowski_SRPOL_task3_1).

Table 5: The comparison of the selected submissions.
Rank Submission name Error rate F-score DOA error Frame recall
1 Kapka_SRPOL_task3_2 0.08 94.7 3.7 96.8
4 Cao_Surrey_task3_4 0.08 95.5 5.5 92.2
6 He_THU_task3_2 0.06 96.7 22.4 94.1
19 Chang_HYU_task3_3 0.14 91.9 2.7 90.8
48 DCASE2019_FOA_baseline 0.28 85.4 24.6 85.7

The first three submissions use the approach described in the
above sections. The only difference is that ConseqFOA is trained
on all four splits from development dataset. ConseqFOA1 is trained
on splits 2,3,4. ConseqFOAb is trained on all splits but the classifier
in this version was trained using categorical cross-entropy instead
of binary cross-entropy loss.

Our MLDcT32019 submission uses a different approach. It
works in the same way as the original SELDnet architecture but
with the following differences:

• We implemented the Squeeze-and-Excitation block [9] after
the last convolutional block. We pass the output from the last
convolutional block through two densely connected neural lay-
ers with respectively 1 and 4 neurons, we multiply it with the
output of the last convolutional block and we pass it further to
recurrent layers.

• We set all dropout rates to 0.2.
• We used SpecAugment [10] as an augmentation technique to

double the training dataset.
• We replaced recurrent layer GRU units with LSTM units.

7. CONCLUSION

We conclude that decomposing the SELD problem into simpler
tasks is instinctive and efficient. However, we are aware that our
solution has some serious limitations and it fails when one wants to
consider a more general setup. For example when there are more
than 2 active sources at once or when the grid resolution is more
refined. Thus, we claim that the pursuit for universal and efficient
SELD solutions is still open.
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ABSTRACT

Acoustic scene classification and related tasks have been domi-
nated by Convolutional Neural Networks (CNNs) [2–10]. Top-
performing CNNs use mainly audio spectograms as input and bor-
row their architectural design primarily from computer vision. A
recent study [1] has shown that restricting the receptive field (RF)
of CNNs in appropriate ways is crucial for their performance, ro-
bustness and generalization in audio tasks. One side effect of re-
stricting the RF of CNNs is that more frequency information is lost.
In this paper, we perform a systematic investigation of different RF
configuration for various CNN architectures on the DCASE 2019
Task 1.A dataset. Second, we introduce Frequency Aware CNNs to
compensate for the lack of frequency information caused by the re-
stricted RF, and experimentally determine if and in what RF ranges
they yield additional improvement. The result of these investiga-
tions are several well-performing submissions to different tasks in
the DCASE 2019 Challenge.

Index Terms— Acoustic Scene Classification, Frequency-
Aware CNNs, Receptive Field Regularization

1. INTRODUCTION

Convolutional Neural Networks (CNNs) have shown great promise
as end-to-end classifiers in many tasks such as image classifica-
tion [11, 12] and acoustic scene classification [5, 13]. Although ev-
ery year new architectures are proposed that achieve better image
recognition performance, we showed in a recent study [1] that these
performance gains do not seem to translate to the audio domain.
As a solution, we proposed regularizing the receptive field (RF) of
such CNN architectures in specific ways. The method was applied
to several state-of-the-art image recognition architectures, and the
resulting models were shown to then achieve state-of-the-art per-
formance in audio classification tasks [1].

Although CNNs can learn their own features and build internal
representations from data, the details of how they actually function
is crucial to their success in a specific task. In the image recognition
domain, a recent study [14] shed light on the decision making pro-
cedure of CNNs and showed that using occurrences of small local
image features without taking into account their spatial ordering,
CNNs can still achieve state-of-the-art results. However, while spa-
tial ordering and local neighboring relations might not be crucial for
object recognition in images, this is not the case in audio represen-
tations such as spectrograms. A local pattern in lower frequencies
does not represent the same acoustic event as the same pattern ap-
pearing in higher frequencies. Since CNNs with limited receptive
fields1 are only capable of capturing local features and unlike mod-

1as shown in [1], large RFs result in overfitting in audio classification.

els such as capsule networks [15], they are unable to find spatial re-
lations between these local patterns. As convolution is equivariant,
each filter is applied to the input to generate an output activation,
but the output of the network does not know where exactly each
filter is. This means that if a specific pattern appears in lower fre-
quencies, and a very similar pattern appears in higher frequencies,
later convolutional layers cannot distinguish between the two, and
this can result in vulnerabilities in such cases.

In [16], Liu et al. analyzed a generic inability of CNNs to map a
pixel in a 2D space, to its exact cartesian coordinate. They address
this problem by adding an additional channel to the convolutional
layers that contains only the pixel coordinates. Inspired by this so-
lution, we propose a new convolutional layer for audio processing –
the Frequency-aware Convolutional Layer – to cope with the afore-
mentioned problems in CNNs. We use an additional channel in
the convolutional layer that only contains the frequency informa-
tion which connects each filter to the frequency bin it is applied to.

In this paper, we extend our previous work [1] by modi-
fying the receptive field (RF) of various new architectures such
as Resnet [11], PreAct ResNet [17, 18], Shake-shake [18, 19],
Densenet [12], and our new frequency-aware FAResNet according
to the guidelines provided in [1], aiming at pushing the performance
of these models on acoustic scene classification tasks. Systematic
experiments permit us to determine optimal RF ranges for various
architectures on the DCASE 2019 datasets. We show that configur-
ing CNNs to have a receptive field in these ranges has a significant
impact on their performance. Based on these insights, we config-
ured network classifiers that achieved a number of top results in sev-
eral DCASE 2019 challenge tasks [13], as will be briefly reported
in Section 4.3.

2. REGULARIZING CNN ARCHITECTURES AND
INTRODUCING FREQUENCY AWARENESS

As shown in our previous work [1], the size of the receptive field
(RF) is crucial when applying CNNs to audio recognition tasks.
Following the guidelines in [1], we adapted various ResNet and
DenseNet variants. Using the provided development set for Task
1.A [20], we performed a grid search on the RF of the various
ResNet architectures and show the performance of different CNNs
under different RF setups. The goal of this investigation, reported
in Section 2.1.1, is to introduce a method to systematically push
the performance of a single CNN architecture for acoustic scene
classification. We base on this method our submissions [13] to the
DCASE 2019 challenge [21], especially our top performing single
architecture submission for Task 1.A (cp resnet).

Furthermore, in Section 2.2 we introduce Frequency-aware
CNNs to address the possible shortcomings of models with a smaller

https://doi.org/10.33682/cjd9-kc43
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Table 1: Modified ResNet architectures

RB Number RB Config
Input 5× 5 stride=2

1 3× 3, 1× 1, P
2 x1 × x1, x2 × x2, P
3 x3 × x3, x4 × x4
4 x5 × x5, x6 × x6, P
5 x7 × x7, x8 × x8
6 x9 × x9, x10 × x10
7 x11 × x11, x12 × x12
8 x13 × x13, x14 × x14
9 x15 × x15, x16 × x16

10 x17 × x17, x18 × x18
11 x19 × x19, x20 × x20
12 x21 × x21, x22 × x22

RB: Residual Block, P: 2× 2 max pooling after the block.
xk ∈ {1, 3}: hyper parameter we use to control the RF
of the network. Number of channelds per RB:
128 for RBs 1-4; 256 for RBs 5-8; 512 for RBs 9-12.

Table 2: Mapping ρ values to the maximum RF of ResNet variants
(networks configured as in Table 1). ρ controls the maximum RF
by setting the xk as explained in Eq. (1).

ρ value Max RF ρ value Max RF
0 23× 23 1 31× 31
2 39× 39 3 55× 55
4 71× 71 5 87× 87
6 103× 103 7 135× 135
8 167× 167 9 199× 199

10 231× 231 11 263× 263
12 295× 295 13 327× 327
14 359× 359 15 391× 391
16 423× 423 17 455× 455
18 487× 487 19 519× 519
20 551× 551 21 583× 583

receptive field. Systematic experiments will then show whether, or
in what cases, this actually helps improve the results.

2.1. Adapting the Receptive Field of CNNs

2.1.1. ResNet

ResNet [11] and its variants (such as preact-ResNet [17]) achieve
state-of-the-art results in image recognition. As we show in our
recent study [1], such architectures can be adapted to audio tasks
using RF regularization. We adapt the RF of the ResNet in a sim-
ilar fashion to [1] as explained below. The resulting network ar-
chitectures are detailed in Table 1. We use the hyper-parameters
xk ∈ {1, 3}, corresponding to filter sizes at different CNN levels
(see Fig. 1), to control the RF of the network. In order to simplify
the process of adjusting the RF of the network, we introduce a new

hyper-parameter ρ. We use ρ to control xk as explained in (1).

xk =

{
3 if k ≤ ρ
1 if k > ρ

(1)

For example, setting ρ = 5 will result in a ResNet configured as
in Table 1 with xk = 3 for k ∈ [1, 5] and xk = 1 otherwise. The
resulting ResNet has a RF of 87× 87. Table 2 maps ρ values to the
maximum RF of the resulting network2.

Networks with larger receptive fields degrade in performance
as shown in [1]. For this reason, we present the results of ρ values
in the range ρ ∈ [1, 12]

2.1.2. PreAct ResNet

PreAct ResNet is a ResNet variant where residual branches are
summed up before applying the non-linearity [17]. We specifically
use PreActBN as explained in [18], since it improves the perfor-
mance of vanilla PreAct ResNet with and without Shake-Shake reg-
ularization for speech emotion recognition.

We control the RF of PreAct ResNets in the same manner as
ResNets (Section 2.1.1). Table 1 and Equation 1 explain the config-
urations of our tested networks.

2.1.3. Shake-Shake ResNet

The Shake-Shake architecture [19] is a variant of ResNet that is
proposed for improved stability and robustness. Each residual block
has 3 branches; an identity map of the input and 2 convolutional
branches, which are summed with random coefficients (in both the
forward and backward pass) [19]. This regularization technique has
shown empirically to improve the performance of CNNs on many
tasks. We also specifically use Shake-Shake regularized PreActBN
from [18]. In Shake-Shake regularized ResNets, each residual block
only has a new branch that is added to the sum. Therefore, the
resulting maximum RF of the network is not changed. In result, we
use the same techniques to control the RF (Section 2.1.1). Table 1
shows the configuration of both branches of the residual blocks.

Although, Shake-Shake ResNet is not performing well in the
classic acoustic scene classification problem (as shown in Sec-
tion 4), it excels in the case of domain mismatch (Task 1.B [20,21])
and noisy datasets (Task 2 [22]) [13].

2.1.4. DenseNet

We adapted DenseNet [12] in a similar fashion to DN1 in [1]. We
report on two DenseNet configurations with maximum RF of 87×
87 and 71× 71 pixels (Section 4).

2.2. Frequency-aware Convolution

In CNNs that have a large enough RF, deeper convolutional lay-
ers can infer the frequency information of their input feature maps.
However, CNNs with large RF degrade in performance and fail to
generalize in acoustic scene classification as shown in [1]. On the
other hand, in high-performing fully convolutional CNNs, learned
CNN filters are agnostic to the frequency range information of the
feature maps. In other words, the spectrograms and feature maps

2We will release the source code used to produce these networks
and replicate the experiments at https://github.com/kkoutini/
cpjku_dcase19
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Figure 1: Testing Loss/Accuracy of the provided development split of Task 1 a dataset, for ResNet variants with different receptive fields over
the input without mix-up.

can be rolled over both the time and frequency dimension with a
minor impact on the network predictions. This is one side effect of
limiting the receptive field of CNNs on spectograms. We propose a
new convolutional layer, which we call Frequency-aware Convolu-
tion, to make filters aware and more specialized in certain frequen-
cies by concatenating a new channel containing the frequency infor-
mation of each spatial pixel to each feature map. This technique is
similar to CoordConv [16], where the network input is padded with
the pixels’ coordinates. In our case, we pad all feature maps with a
real number indicating the frequency context of each pixel.3

The CNN models that incorporate our frequency-aware layer
will be called the Frequency-Aware Convolutional Neural Networks
(FACNNs). Similarly, we call the frequency-aware ResNet FARes-
Net. We denote the value of the pixel with spatial index (f, t) in the
new channel as V (f, t); it is calculated as

V (f, t) = f/F (2)

where F is the size of the frequency dimension of the feature map, f
is the pixel index in the frequency dimension, and t is the pixel index
in the time dimension. This new channel gives the convolutional
filters a frequency context.

Since making CNNs frequency-aware (by adding the new chan-
nel) does not alter the maximum RF of the network, we control the
maximum RF of FAResNets similar to ResNet (Section 2.1.1) by
changing ρ.

3. EXPERIMENTAL SETUP

3.1. Data Preparation and Training

We extracted the input features using a Short Time Fourier Trans-
form (STFT) with a window size of 2048 and 25% overlap. We
perceptually weight the resulting spectrograms and apply a Mel-
scaled filter bank in a similar fashion to Dorfer et al. [5]. This
preprocessing results in 256 Mel frequency bins. The input is first

3In this paper, we used a number between −1 and 1, where −1 repre-
sents the lowest and 1 the highest frequency in the spectrogram. But this
range can be adapted according to the value range of the input.

down-sampled to 22.05 kHz. We process each input channel of the
stereo audio input independently and provide the CNN with a two-
channel-spectrogram input. The input frames are normalized using
the training set mean and standard deviation.

We used Adam [23] with a specific scheduler. We start training
with a learning rate of 1 × 10−4. From epoch 50 until 250, the
learning rate decays linearly from 1× 10−4 to 5× 10−6. We train
for another 100 epochs with the minimum learning rate 5×10−6 in
a setup similar to [1].

3.2. Testing Setup

We use the provided development split of DCASE 2019 task 1A [20,
21]. We train our models on the provided training set and treat the
provided test set as unseen set. In other words, we don’t select best
models based on their performance on the test set. Instead, for each
model, we report the average results of the last 25 training epochs
of two runs on the test set.

3.3. Data Augmentation

Mix-Up: Mix-up [24] is an effective augmentation method that
works by linearly combining two input samples and their targets.
It was shown to have a great impact on the performance and the
generalization of the models.
Spectogram Rolling: We roll the spectograms randomly over the
time dimension.

4. RESULTS

Table 3 shows the ρ and Max RF configuration that achieves the top
accuracy (mean/std over the last 25 epochs) for each architecture,
with and without mix-up. It is also worth noting that the maximum
RF is different from the effective RF as explained in [1, 25]. We
control the maximum RF using ρ, while the effective RF is depen-
dent on the architecture, the initialization and the data [25]. This is
one possible explanation for why different architectures may have a
slightly shifted optimal maximum RF range (for example, PreAct in
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Figure 2: Testing Loss/Accuracy of the provided development split of Task 1 a dataset, for ResNet variants with different receptive fields over
the input with mix-up.

Table 3 and Figure 2). Likewise, using mix-up can alter the optimal
maximum RF range for the networks.

4.1. Without Mix-up

Figure 1 shows the testing loss and accuracy for different archi-
tectures over a range of ρ values and – consequently (see Eq. (1)) –
maximum RF values. The plots summarize the results for the last 25
epochs of 2 runs. We notice that FAResNet excels mostly in smaller
RF networks (ρ < 8) where frequency context is more valuable.
The figure also shows the best-performing maximum RF range for
different architectures to correspond to ρ values in the range [3, 8].
In this range, FAResNet outperforms other ResNet variants.

4.2. With Mix-up

Figure 2 shows the testing loss and accuracy when we use mix-up
data augmentation. We note that when using mix-up, ResNet out-
performs the other variants. Further experiments and investigation
are still needed to fully understand the effect of mix-up on these
architectures. The figure shows that the best-performing maximum
RF range for architectures corresponds to ρ values in the range [3, 5]
for ResNet and FAResNet, and [4, 6] for PreActResnet. Shake-Shake
achieves its best performance for ρ = 4. We see that performance
degrades outside these maximum RF ranges for different architec-
tures, in accordance with [1].

4.3. Performance at DCASE 2019

Our receptive field regularized networks achieved the second
place [13] (team ranking) in Task 1.A of the DCASE 2019 chal-
lenge [20, 21]. We averaged ResNet, PreAct and FAResNet con-
figured with ρ = 5 to achieve 83.8% accuracy on the evaluation
set. Our ResNet configured with ρ = 5 (our single architecture
submission cp resnet) achieved 82.8% accuracy when trained on
the whole development set; we averaged the prediction of the last
training epochs [13]. When instead averaging the predictions of
the same architecture trained on a 4-fold cross-validation of the de-
velopment data, it achieves 83.7% accuracy on the evaluation set.
Furthermore, the submission achieved the highest accuracy on the
unseen cities in the evaluation set (78.1%).

Table 3: Configurations with top accuracy per network architecture
and its corresponding ρ and max RF values with/without mix-up

Network ρ Max RF M/U Accuracy
ResNet 4 71× 71 3 82.85%± .36
PreAct 5 87× 87 3 82.62%± .37

Shake-Shake 4 71× 71 3 80.47%± .32
FAResNet 4 71× 71 3 82.66%± .27
DenseNet 71× 71 3 81.53%± .26
ResNet 5 87× 87 7 80.97%± .46
PreAct 7 135× 135 7 80.6%± .61

Shake-Shake 5 87× 87 7 79.98%± .27
FAResNet 5 87× 87 7 81.17 % ± .7
DenseNet 87× 87 7 79.9%± .3

M/U: using Mix-Up

The generality and robustness of the proposed RF regulariza-
tion strategy is demonstrated by the fact that our highly-performing
submissions to DCASE 2019 Tasks 1.B and 2 [13] are also based
on these architectures.

5. CONCLUSION

In this paper, we have investigated different configurations of deep
CNN architectures that correspond to different maximum receptive
fields over audio spectograms. We showed that this helps to bet-
ter design deep CNNs for acoustic classification tasks, and to adapt
CNNs performing well in other domains (notably, image recogni-
tion) to acoustic scene classification. The good results achieved
with this basic strategy in several DCASE 2019 tasks suggest that
this is a very general and robust approach that may prove beneficial
in various other audio processing tasks.
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ABSTRACT 

In this paper, we present a method to detect sound events in do-
mestic environments using small weakly labeled data, large unla-
beled data, and strongly labeled synthetic data as proposed in the 
Detection and Classification of Acoustic Scenes and Events 2019 
Challenge task 4. To solve the problem, we use a convolutional 
recurrent neural network composed of stacks of convolutional 
neural networks and bi-directional gated recurrent units. Moreo-
ver, we propose various methods such as SpecAugment, event ac-
tivity detection, multi-median filtering, mean-teacher model, and 
an ensemble of neural networks to improve performance. By com-
bining the proposed methods, sound event detection performance 
can be enhanced, compared with the baseline algorithm. Conse-
quently, performance evaluation shows that the proposed method 
provides detection results of 40.89% for event-based metrics and 
66.17% for segment-based metrics. For the evaluation dataset, the 
performance was 34.4% for event-based metrics and 66.4% for 
segment-based metrics. 

Index Terms— DCASE 2019, Sound event detection, 
CRNN, SpecAugment, Model ensemble 

1. INTRODUCTION 

Sound event detection (SED) is the field of predicting acoustic 
events in audio signals. In recent years, this field has witnessed 
growth owing to the release of large datasets, improvements in al-
gorithms, and improved hardware performance [1, 2]. The Detec-
tion and Classification of Acoustic Scenes and Events (DCASE) 
Challenge has been held for several years with the objective of 
solving the limitations in SED [3-6]. This year, the DCASE Chal-
lenge comprised five tasks, and this study proposed a method to 
solve the DCASE 2019 Challenge task 4. This is the follow-up to 
DCASE 2018 task 4. The goal of this task is to train the model to 
detect sound events using the dataset, which has various types of 
labels, and to find the onset and offset of sound events. According 
to last year’s submissions, various methods have been proposed to 
solve this problem [7-13], and the mean-teacher model has shown 
the best performance [13, 14]. Therefore, the baseline system of 
task 4 in the DCASE 2019 Challenge is based on the idea of the 
best submission of DCASE 2018 task 4. The method used in the 
baseline system is similar to that used in [13], but the proposed 
network architecture has been simplified. 

In this study, a SED system based on a convolutional re-
current neural network (CRNN) is proposed. To improve per-
formance, we perform SpecAugment for data augmentation to 
overcome the small dataset problem, the event activity detection 
(EAD) method to learn the weakly labeled dataset, the multi-me-
dian filtering (MMF) method using a synthetic dataset for more 
accurate post-processing, and the mean-teacher model to utilize 
the unlabeled dataset. 

2. DATASET 

The dataset for the DCASE 2019 Challenge task 4 comprised 10 
s audio clips recorded in an indoor environment or synthesized 
assuming a similar environment. This task also defines 10 sound 
event classes [6]. The details of the dataset are described in Table 
1. First, three types of datasets are provided for training: the 
weakly labeled training set; an unlabeled, in-domain training set; 
and a strongly labeled, synthetic set. The weakly labeled training 
set and the unlabeled in domain training set are based on AudioSet 
[15], and the strongly labeled synthetic sets are synthesized based 
on the dataset proposed in [16] and [17]. A validation set is pro-
vided for verification of SED performance. This dataset is a com-
bination of the DCASE 2018 task 4 test and evaluation sets. The 
evaluation dataset is composed of 13190 audio clips, and the de-
tails will be released later. 

Table 1: Details of DCASE 2019 Challenge task 4 dataset. 

Dataset Descriptions 

D
ev

el
op

m
en

t d
at

as
et

 

Tr
ai

ni
ng

 se
t 

Labeled 
training set 

- 1578 clips  
(2244 class occurrences) 
- w/ weak labels 

Unlabeled  
in domain 
training set 

- 14412 clips 
- w/o labels 

Synthetic 
strongly  
labeled set 

- 2045 clips (6032 events) 
- w/ strong labels 

Validation set - 1168 clips (4093 events) 
- w/ strong labels 

Evaluation dataset - 13190 clips 
- w/ strong labels 

https://doi.org/10.33682/qacg-8m97
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3. PROPOSED METHOD 

3.1. Network structure 

The proposed method uses a CRNN as a basic network structure 
inspired by the DCASE 2019 Challenge task 4 baseline system 
[18]. This network has a more complex structure than the baseline 
system. First, the convolutional neural networks (CNNs) layer is 
composed of the 3×3 kernel on all layers, and the number of fea-
ture maps increases from the low- to high-level layers. It also has 
a gated linear unit (GLU), which was originally proposed in [19], 
and batch normalization. A dropout layer and average pooling 
layer are stacked after each CNN module. Two bi-directional 
gated recurrent units (Bi-GRUs) are stacked after the six CNN 
layers. At the end of the network, strong and weak predictions are 
estimated, and the attention module is used to help with learning. 
The detailed network structure is depicted in Figure 1. 
 

 
Figure 1: Structure of the CRNN used in our proposed method. 

3.2. SpecAugment 

When there is insufficient training data, data augmentation can be 
used to increase the effective size of the existing data, which can 
greatly improve the neural network performance in many tasks. In 
audio processing, the conventional data augmentation method 
transforms waveforms used in learning in the same manner as that 
for adding time stretching, block mixing, pitch shifting, or back-
ground noise. This helps the neural network become more robust 

by forcing multiple augmented versions of the same audio input 
into the neural network, which learns the variance during the 
training process. SpecAugment (SA) is a new data augmentation 
method for speech recognition that modifies the spectrogram by 
masking blocks of consecutive frequency channels and time 
frames [20]. SA applies augmentation directly to the audio spec-
trogram. Therefore, it is simple and computationally efficient. In 
this paper, SA was applied directly to the input spectrogram dur-
ing training. In the frequency domain, the number of masks was 1 
with a masking parameter of 10. In addition, in the time domain, 
the number of masks was 2 with a masking parameter of 50 frames. 
Time warping was not applied. The dataset used in this process is 
the weakly labeled dataset, and its robustness is increased by ran-
domly selecting audio clips whether to be augmented or not to be 
augmented during in each training step.  

3.3. Event activity detection 

A simple way to realize strong labels from weakly labeled data is 
to assign a strong label to all time frames. However, assigning a 
strong label to weakly labeled data is difficult, because there is no 
information about the existence of the event. Therefore, a pseudo-
labeling, created using EAD, was used to learn more accurate la-
bels. A pseudo strong label is assigned when the average frame 
energy is over a threshold value of 0.7. It assumes that there are 
no events in the frame if the energy is small [12]. 

3.4. Multi-median filtering 

The output is post-processed by median filtering. Applying me-
dian filtering of the same length to various sound event classes is 
inadequate, because each sound has statistically different charac-
teristics. Therefore, we selected the length of the MMF using the 
synthetic strongly labeled set. The MMF length for each event 
class was obtained from the metadata of the synthetic strongly la-
beled dataset. After calculating the length of all events, the median 
value of sorted duration was used as the MMF length. 

3.5. Mean-teacher model 

Semi-supervised learning to utilize the unlabeled in domain train-
ing set was done using the mean-teacher model [13, 14]. The 
mean-teacher model was learned with the same two CRNN struc-
tures described in Section 3.1. In the training stage, after the stu-
dent model is updated, the teacher model is updated using the ex-
ponential moving average of the student model weights. 

3.6. Model ensemble 

A reliable approach to improve the performance of neural net-
works is to have an ensemble of several trained models. The en-
semble technique combines weak learners to create a strong 
learner. Therefore, the ensemble approach not only improves 
model diversity but also performance. There are several ap-
proaches to forming an ensemble [21]. Our study tested two meth-
ods. The first method is an ensemble of different checkpoints in a 
single model. This method has generally shown limited success, 
but it is very efficient because it comes from a single training 
model. The second method is to create an ensemble by learning the 
same model with different initializations. This method is time-con-
suming, but simple and powerful. The mean probability of weak 
learners is used to make the output of the ensemble model. 
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4. PERFORMANCE EVALUATION 

For evaluating the performance of the proposed methods, the da-
taset described in Section 2 is used. The weakly labeled training 
set and the synthetic strongly labeled set were used to train the 
basic CRNN model, and the unlabeled in domain training set was 
additionally used to train the mean-teacher student model. The au-
dio input was mono channel with a 44.1 kHz sampling rate. To 
make an input 2D spectrogram, a 10 second audio clip was con-
verted to 64-band log-mel energies with a window size of 2048 
and hop length of 511. Consequently, an image with 864 frames 
and 64 frequency bands was used as a network input. The Adam 
optimizer was used for network learning, and the learning rate was 
0.001. The binary cross-entropy function is used as the criterion 
for comparing the loss between the target and the output. The early 
stopping method was not used because the ensemble model could 
reduce the variance. 

Table 2 shows a comparison of performance when using the 
proposed methods. Training was performed for 500 epochs, and 
the model was tested every 100 epochs from the 200th epoch on-
ward. The experimental result at the 100th epoch was reported for 
comparison with the baseline system, but it was not used for the 
ensemble. The horizontal row denotes the result of the ensemble 
at different checkpoints. The baseline system showed an F-score 
of 23.7%, which is improved to 29.52% by using the ensemble of 
four different checkpoints of a single model. Moreover, when us-
ing the network with a deeper structure than the baseline, such as 
depicted in Figure 1, the performance improved to 32.92%. This 
system has shown an F-score of 34.70% when applying the MMF 
as post-processing. Furthermore, the performance was improved 
to 35.84% by applying EAD, and an F-score of 36.98% was 
achieved by applying SA as a data augmentation method. 

The experimental results of the basic CRNN network which 
contains all proposed methods are listed in Table 3, and the exper-
imental results based on the mean-teacher model are listed in Table 
5. Four experiments (#1-4) were performed for each model for  

reliable results and model ensemble. As listed in Tables 3 and 5, 
the mean-teacher model shows slightly better performance on av-
erage than the basic CRNN model, although there is a deviation 
from each training step. Both models outperform the baseline sys-
tem performance. As previously described, the performance of the 
ensemble of different checkpoints in a single model and the en-
semble of different initializations were evaluated. In Table 3, the 
horizontal row denotes the result of the ensemble of different 
checkpoints and the vertical column is the result of the ensemble 
of different initializations. The ensemble for each row and column 
was the result of four models combined. The ensemble of different 
initializations demonstrated better results, and the ensemble of 
500th checkpoint models demonstrated an F-score of 38.77%. Fi-
nally, the method with an ensemble of 16 models demonstrated the 
best performance: 39.51% for event-based metrics and 67.29% for 
segment-based metrics. The detailed results are listed in Table 4. 
For the evaluation dataset, the performance was 33.2% for event-
based metrics and 69.2% for segment-based metrics. The event-
based score of this system ranked 16th among the 58 systems. In 
particular, the segment-based score ranked 3rd among the 58 sub-
mitted systems in the DCASE 2019 Challenge task 4. 

The results of the mean-teacher model are listed in Table 5. 
In the mean-teacher model, the ensemble of different checkpoints 
is unnecessary, but it shows improved performance. Like the basic 
CRNN model, the ensemble of different initializations shows a 
better performance in the mean-teacher model. This model demon-
strated an F-score of 39.43% when using the ensemble of four 
models at the 500th checkpoint. Finally, when combining the en-
semble composed of 16 models, it showed the best performance: 
40.89% for event-based metrics and 66.17% for segment-based 
metrics. The detailed results are listed in Table 6. The performance 
on the evaluation dataset was 34.4% for event-based metrics and 
66.4% for segment-based metrics. The event-based score of this 
system ranked 14th among the 58 systems and the segment-based 
score ranked 8th among the 58 submitted systems in the DCASE 
2019 Challenge task 4. 

Table 2: Sound event detection performance using proposed methods.  (F-score, %) 
Epoch 

Model ep100 ep200 ep300 ep400 ep500 Ensemble 

Baseline 23.70 - - - - - 
Baseline (Ensemble) 22.66 26.55 28.06 27.40 27.32 29.52 
Proposed CRNN 
(w/o SA, w/o EAD, w/o MMF) 26.28 27.69 29.81 30.86 31.77 32.92 

Proposed CRNN 
(w/o SA, w/o EAD, w/   MMF) 28.77 30.36 32.26 32.94 33.96 34.70 

Proposed CRNN 
(w/o SA, w/   EAD, w/   MMF) 31.32 34.16 33.35 34.66 33.99 35.84 

Proposed CRNN 
(w/   SA, w/o EAD, w/   MMF) 31.39 34.01 34.02 35.88 34.86 36.98 

Table 3: Sound event detection performance using the basic CRNN model and ensemble. (F-score, %) 
Epoch 

Model ep200 ep300 ep400 ep500 Ensemble 

CRNN (# 1) 33.07 34.40 28.94 34.23 36.08 
CRNN (# 2) 33.32 36.10 35.46 33.68 37.43 
CRNN (# 3) 34.91 33.57 32.72 33.75 36.86 
CRNN (# 4) 34.52 34.07 32.75 35.55 36.23 

Ensemble 38.87 39.36 38.68 38.77 
(submission-1) 

39.51 
(submission-2) 
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Table 4: Class-wise result of the basic CRNN model ensemble. (submission-2) 

Event label 
Development dataset (Validation set) Evaluation dataset 

Event-based metrics Segment-based metrics Event-based metrics 
F-score (%) Error rate F-score (%) Error rate F-score (%) 

Alarm/bell/ringing 47.4 0.95 78.6 0.42 26.9 
Blender 30.3 1.34 57.4 0.79 36.7 
Cat 40.2 1.23 59.6 0.81 53.7 
Dishes 19.8 1.30 53.6 0.88 19.3 
Dog 21.0 1.29 66.4 0.66 27.1 
Electric shaver/toothbrush 42.2 1.31 67.9 0.79 14.0 
Frying 39.6 1.36 62.2 0.84 35.9 
Running water 40.4 1.05 69.0 0.56 23.0 
Speech 51.0 0.86 85.7 0.28 52.4 
Vacuum cleaner 63.3 0.78 72.5 0.61 42.9 

macro-average 39.51 1.15 67.29 0.66 33.2 (Segment-based 69.2) 
micro-average 40.87 1.03 72.52 0.45 (not reported) 

Table 5: Sound event detection performance using the mean-teacher model and ensemble. (F-score, %) 

Epoch 
Model ep200 ep300 ep400 ep500 Ensemble 

Mean-Teacher (# 1) 34.17 34.81 34.86 34.74 36.57 
Mean-Teacher (# 2) 33.47 35.59 33.83 34.00 36.29 
Mean-Teacher (# 3) 36.83 36.07 36.38 33.51 37.53 
Mean-Teacher (# 4) 33.56 36.06 35.57 36.87 38.32 

Ensemble 38.92 38.55 39.09 39.43 
(submission-3) 

40.89 
(submission-4) 

Table 6: Class-wise result of the mean-teacher model ensemble. (submission-4) 

Event label 
Development dataset (Validation set) Evaluation dataset 

Event-based metrics Segment-based metrics Event-based metrics 
F-score (%) Error rate F-score (%) Error rate F-score (%) 

Alarm/bell/ringing 47.2 0.92 79.4 0.38 26.2 
Blender 33.5 1.30 61.0 0.76 35.5 
Cat 43.1 1.05 59.4 0.70 57.2 
Dishes 22.7 1.17 46.5 0.87 24.1 
Dog 27.7 1.21 66.3 0.62 33.1 
Electric shaver/toothbrush 42.6 1.32 66.1 0.79 17.4 
Frying 40.6 1.26 61.2 0.83 33.3 
Running water 32.6 1.11 63.2 0.60 21.5 
Speech 57.4 0.80 86.0 0.28 58.5 
Vacuum cleaner 61.4 0.76 72.5 0.52 37.1 

macro-average 40.89 1.08 66.17 0.63 34.4 (Segment-based 66.4) 
micro-average 44.97 0.96 72.12 0.46 (not reported) 

 

5. CONCLUSION 

The goal of this study was to propose methods for SED in domestic 
environments using various types of datasets. In this paper, SED 
performance was improved by using the proposed network struc-
ture and various methods such as SA, EAD, MMF, and a mean-
teacher student model. Moreover, two ensemble methods and its 
combination were tested to verify the effectiveness of the ensem-
ble model. According to the experiment, the proposed system 
achieved an F-score of 40.89% and 66.17% for event-based and 
segment-based metrics, respectively. For the evaluation dataset, 

the final performance was 34.4% for event-based metrics and 66.4% 
for segment-based metrics. In conclusion, the proposed system 
ranked 6th in event-based metrics and 3rd in segment-based metrics 
among the 19 teams that submitted in the DCASE 2019 Challenge 
task 4. 

6. ACKNOWLEDGMENT 

This work was supported by Institute for Information & commu-
nications Technology Promotion (IITP) grant funded by the Korea 
government (MSIT). (No.2017-0-00050, Development of Human 
Enhancement Technology for auditory and muscle support) 

132



Detection and Classification of Acoustic Scenes and Events 2019  25-26 October 2019, New York, NY, USA
  
 

7. REFERENCES 

[1] A. Mesaros, T. Heittola, E. Benetos, P. Foster, M. Lagrange, 
T. Virtanen, and M. D. Plumbley, “Detection and classifica-
tion of acoustic scenes and events: outcome of the DCASE 
2016 Challenge,” IEEE/ACM Transactions on Audio, Speech, 
and Language Processing, 26(2): 379–393, 2018.  

[2] D. Stowell, D. Giannoulis, E. Benetos, M. Lagrange, and M. 
D. Plumbley, “Detection and classification of acoustic scenes 
and events,” IEEE Transactions on Multimedia, 17(10): 
1733–1746, 2015. 

[3] “DCASE2016,” http://www.cs.tut.fi/sgn/arg/dcase2016/. 
[4] “DCASE2017,” http://www.cs.tut.fi/sgn/arg/dcase2017/. 
[5] “DCASE2018,” http://dcase.community/challenge2018/. 
[6] “DCASE2019,” http://dcase.community/challenge2019/.  
[7] R. Serizel, N. Turpault, H. Eghbal-Zadeh, and A. P. Shah, 

“Large-Scale Weakly Labeled Semi-Supervised Sound Event 
Detection in Domestic Environments,” in Proc. Detection and 
Classification of Acoustic Scenes and Events Workshop 
(DCASE), 2018. 

[8] R. Serizel, and N. Turpault, “Sound Event Detection from 
Partially Annotated Data: Trends and Challenges,” IcETRAN 
conference, 2019. 

[9] Y. Liu, J. Yan, Y.  Song and J. Du, “USTC-NELSLIP System 
for DCASE 2018 Challenge task 4,” Technical Report, 
DCASE 2018 Challenge. 

[10] Q. Kong, T. Iqbal, Y. Xu, W. Wang and M. D. Plumbley, 
“DCASE 2018 Challenge baseline with convolutional neural 
networks” Technical Report, DCASE 2018 Challenge. 

[11] S. Kothinti, K. Imoto, D. Chakrabarty, G. Sell, S. Watanabe 
and M. Elhilali, “Joint Acoustic and Class Inference for 
Weakly Supervised Sound Event Detection,” in Proc. IEEE 
International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), 2019. 

[12] W. Lim, S. Suh, and Y. Jeong, “Weakly labeled semi super-
vised sound event detection using CRNN with inception 
module,” in Proc. Detection and Classification of Acoustic 
Scenes and Events Workshop (DCASE), 74-77, 2018. 

[13] L. JiaKai, “Mean teacher convolution system for dcase 2018 
task 4,” Technical Report, DCASE 2018 Challenge. 

[14] A. Tarvainen, and H. Valpola, “Mean teachers are better role 
models: weight-averaged consistency targets improve semi-
supervised deep learning results,” in advances in neural infor-
mation processing systems (NIPS), 1195–1204. 2017. 

[15] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. 
Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio set: 
an ontology and human-labeled dataset for audio events,” in 
Proc. IEEE International Conference on Acoustics, Speech 
and Signal Processing (ICASSP), 776-780, 2017 

[16] E. Fonseca, J. Pons, X. Favory, F. Font, D. Bogdanov, A. Fer-
raro, S. Oramas, A. Porter, and X. Serra. “Freesound datasets: 
a platform for the creation of open audio datasets,” in Proc. 
International Society for Music Information Retrieval Con-
ference (ISMIR), 486-493, 2017. 

[17] G. Dekkers, S. Lauwereins, B. Thoen, M. W. Adhana, H. 
Brouckxon, T. V. Waterschoot, B. Vanrumste, M. Verhelst, 
and P. Karsmakers. “The SINS database for detection of daily 
activities in a home environment using an acoustic sensor net-
work,” in Proc. Detection and Classification of Acoustic 
Scenes and Events Workshop (DCASE), 32–36, 2017. 

[18] N. Turpault, R. Serizel, A. P. Shah, and J. Salamon, “Sound 
event detection in domestic environments with weakly la-
beled data and soundscape synthesis,” HAL preprint: hal-
02160855, 2019. 

[19] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language 
modelling with gated convolutional networks,” arXiv pre-
print arXiv: 1612.08083, 2016. 

[20] D. S. Park, W. Chan, Y. Zhang, C. C. Chiu, B. Zoph, E. D. 
Cubuk, and Q. V. Le, “SpecAugment: A Simple Data Aug-
mentation Method for Automatic Speech Recognition,” 
arXiv preprint arXiv:1904.08779, 2019. 

[21] http://cs231n.github.io/neural-networks-3/#ensemble 

133



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

GUIDED LEARNING CONVOLUTION SYSTEM FOR DCASE 2019 TASK 4

Liwei Lin1,2, Xiangdong Wang1, Hong Liu1, YueLiang Qian1,

1Bejing Key Laboratory of Mobile Computing and Pervasive Device,
Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

2University of Chinese Academy of Sciences, Beijing, China
{linliwei17g, xdwang, hliu, ylqian}@ict.ac.cn

ABSTRACT

In this paper, we describe in detail the system we submitted to
DCASE2019 task 4: sound event detection (SED) in domestic envi-
ronments. We employ a convolutional neural network (CNN) with
an embedding-level attention pooling module to solve it. By consid-
ering the interference caused by the co-occurrence of multiple events
in the unbalanced dataset, we utilize the disentangled feature to raise
the performance of the model. To take advantage of the unlabeled
data, we adopt Guided Learning for semi-supervised learning. A
group of median filters with adaptive window sizes is utilized in
the post-processing of output probabilities of the model. We also
analyze the effect of the synthetic data on the performance of the
model and finally achieve an event-based F-measure of 45.43% on
the validation set and an event-based F-measure of 42.7% on the
test set. The system we submitted to the challenge achieves the best
performance compared to those of other participates.

Index Terms— Sound event detection, weakly supervised learn-
ing, semi-supervised learning, attention, Guided Learning, Disentan-
gled Feature

1. INTRODUCTION

DCASE2019 task 4 is the follow-up to DCASE2018 task 4 [1],
which aims at exploring the possibility of the large-scale sound
event detection using weakly labeled data (without timestamps) and
unlabeled data. Different from DCASE2018 task 4, DCASE2019
task 4 introduces an additional strongly annotated synthetic training
set.

Sound event detection (SED) consists in recognizing the pres-
ence of sound events in the segment of audio and detecting their
onset as well as offset. Due to the high cost of manually labeling
data, it is essential to efficiently utilize weakly-labeled data and unla-
beled data. Simultaneously, the different physical characteristics of
events (such as different duration) and the unbalance of the available
training set also increase the difficulty of the multi-class SED in
domestic environments. For DCASE2019 task4, there are 5 issues
to be resolved:

1) How to learn efficiently with weakly-labeled data?
2) How to learn efficiently with unbalanced training set?
3) How to combine weakly-supervised learning with semi-

supervised learning efficiently using weakly-labeled data and
unlabeled data?

4) How to design a better post-processing method on the output
probabilities of the model to detect more accurate boundaries
according to the characteristics of each event category?

5) Does the strongly annotated synthetic training set help?

In this paper, we present a system to solve all these five issues.
For issue 1 and 2, we utilize convolutional neural network (CNN)
with the embedding-level attention pooling module and disentangled
feature [2] to solve them. For issue 3, we adopt a semi-supervised
learning method named Guided Learning [3]. For issue 4, according
to varied duration of different event categories, we employ a group
of median filters with adaptive window sizes in the post-processing
of output probabilities of the model. For issue 5, we simply regard
the strongly annotated synthetic training set as a weakly annotated
training set and conduct a series of ablation experiments to explore
its effects on weakly-supervised learning and unsupervised learning
separately.

In the rest of this paper, we introduce our methods in Section 2,
describe in detail our experiments in Section 3 and draw conclusions
in Section 4.

2. METHODS

In this section, we discuss the solution for issue 1 in Section 2.1,
the solution for issue 2 in Section 2.2, the solution for issue 3 in
Section 2.3 and the solution for issue 4 in Section 2.4.

2.1. A CNN model with the embedding-level attention pooling
module

In this section, we describe in detail the model we employ. As shown
in Figure 1a, the model comprises 3 parts: a feature encoder, an
embedding-level attention pooling module and a classifier. The fea-
ture encoder encodes the input feature of an audio clip into high-level
feature representations. Assuming that there are C event categories
to detect, then the embedding-level attention pooling module inte-
grates these high-level feature representations into C contextual rep-
resentations. Eventually, the clip-level probabilities can be obtained
by passing this C contextual representations through the classifier.

As shown in Figure 1b, the feature encoder we employs is com-
posed of a Batch normalization layer [4], 3 Max pooling layers and 3
CNN blocks, each of which consists of a CNN layer, a Batch normal-
ization layer and a ReLU activation layer as shown in Figure 1c. And
the classifier for each contextual representation is a fully-connected
layer with a Sigmoid activation layer.

The ability of this model to carry out weakly-supervised learning
attributes to its embedding-level attention pooling module. Let
x = {x1, ..., xT } be the high-level feature representations generated
by the feature encoder and y = {y1, ..., yC} (yc ∈ {0, 1}) be the
groundtruth, where T denotes the number of total frames of the
high-level feature representations.

https://doi.org/10.33682/53ed-z889
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Figure 1: CNN model with the embedding-level attention pooling
module.

Then for each category c, the embedding-level attention pooling
gives different weights ac = {ac1, ..., acT } to the corresponding xt
in x. Then the contextual representation h = {h1, h2, ..., hC} can
be obtained by the following way:

hc =
∑

t

act · xt (1)

Such an ac enables the model to treat each frame differently.
Important frame xt in x with larger act contributes more to hc.
The embedding-level attention pooling module generates ac by the
following way:

act =
exp

(
(wTc xt + bc)/d

)
∑
k exp ((wTc xk + bc)/d)

(2)

where d is equal with the dimension of x, wTc is a trainable vector,
and bc is the trainable bias.

More importantly, act possess the ability to indicate key frames
of an audio and is able to generate frame-level probabilities as ex-
plained in [2]:

p̂ (yc | xt) = σ
(
wTc xt + bc

)
(3)

where σ is Sigmoid function.
Assuming that P̂ (yc | x) is the clip-level probabilities for event

category c, then the clip-level prediction is:

φc (x) =

{
1, P̂ (1 | x) ≥ α
0, otherwise

(4)

The frame-level prediction is:

ϕc (x, t) =

{
1, p̂ (1 | xt) · φc (x) ≥ α
0, otherwise

(5)

Without loss of generality, we set α = 0.5.
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Figure 2: The model architecture of the PT-model.

2.2. Disentangled feature

We take disentangled feature (DF) [2], which re-models the high-
level feature subspace of each event category according to the prior
information without pre-training, to mitigate the effect of the inter-
ference caused by the co-occurrence multiple events.

Assuming that χd (x ⊂ χd) is a d-dimensional space generated
by the feature encoder and ß = {e1, e2, ..., ed} is an orthogonal
basis of χd where the element of ei in ith dimensional is 1. DF
selects specific bases of χd to construct a specific subspace for each
category and the basis of the re-modeled feature space χ

′
c of category

c is
ß
′
c = {e1, e2, ..., ekc} (6)

kc = d((1−m) · fc +m) · de (7)

fc =

C∑

i

ri ·Nci
R

(8)

R = max
c

C∑

i=1

ri ·Nci (9)

where m is a constant to avoid too-small kc and Nci is the number
of clips containing i categories including category c in the training
set. The constant coefficient ri denotes the importance these clips:

ri =

{
1, i = 1
0, otherwise

(10)

2.3. Guided Learning

To combine weakly-supervised learning with semi-supervised learn-
ing, we utilize Guide Learning (GL) proposed in [3] with a more
professional teacher model (PT-model) to guide a more promising
student model (PS-model).

The architecture of the PS-model is consistent with the model
described in Section 2.1 and we show that of the PT-model in Fig-
ure 2. The CNN feature encoder of the PT-model is considered to be
better designed than the PS-model on the audio tagging performance
with larger sequential sampling size and less trainable parameters.
This is because that the larger sequential sampling size allows the
CNN feature encoder of the PT-model to have a larger receptive field
followed by better exploitation of contextual information.

However, the larger sequential sampling size also disables the
PT-model to see finer information due to the compress of sequential
information. Therefore, the PS-model is designed with smaller
sequential sampling size to see finer information and then achieves
better frame-level prediction.

This gap between their ability makes it possible to optimize the
PS-model with the guide of the PT-model using unlabeled data. As
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Algorithm 1 Guided learning pseudocode.

Require: xk = training input with index k
Require: L = set of weakly-labeled training input
Require: U = set of unlabeled training input
Require: yk = label of weakly-labeled input xk ∈ L
Require: Sθ (x) = neural network of the PS-model with trainable

parameters θ
Require: Tθ′ (x) = neural network of the PT-model model with

trainable parameters θ
′

Require: g (x) = stochastic input augmentation function
Require: J (t, z) = loss function
Require: φ(z) = prediction generation function
Ensure: θ, θ

′

for i = 1→ num epoches do
if i > start epoch then
a← 1− γi−start epoch . calculate the weight of
unsupervised loss of the PT-model

else
a← 0

end if
for each minibatch ß do
sk ← Sθ (xk ∈ ß) . the coarse-level predicted probability
of the PS-model
tk ← Tθ′ (g(xk) ∈ ß) . the coarse-level predicted
probability of the PT-model
s̃k ← φ (sk) . convert the predicted probability into 0-1
prediction
t̃k ← φ (tk)
if xk ∈ L then
loss← 1

|ß|

{∑
xk∈J∩ß [J (yk, sk) + J (yk, tk)]

}

end if
if xk ∈ U then
loss← 1

|ß|

{∑
xk∈U∩ß

[
J
(
t̃k, sk

)
+ a · J (s̃k, tk)

]}

end if
update θ, θ

′
. update network parameters

end for
end for

shown in Algorithm 1, an end-to-end process is employed to train
these two models.

2.4. Adaptive post-processing

The median filter is utilized for post-processing of the frame-level
probabilities output by the model. Instead of determining the window
size of the median filter empirically, we adopt a group of median
filters with adaptive window sizes for different event categories by
the following formulation based on the varying length of different
event categories in real life:

Swin = durationave · β (11)

All the frame-level probabilities output by the network are
smoothed by a group of median filters with these adaptive window
sizes. After smoothed, the probabilities are converted into the 0-1
prediction with a threshold of 0.5 as described in Section 2.1. Then
the operation of smoothing is repeated again on the final frame-level
prediction.

Figure 3: The total duration, number of events and average duration
per event category in the synthetic training set.

Figure 4: The class-wise F1 performance

3. EXPERIMENTS

3.1. DCASE 2019 Task 4 Dataset

The dataset [5, 6, 7, 8, 9] of DCASE2019 task 4 is divided into 4
subsets: the weakly annotated training set (1578 clips), the unlabeled
training set (14412 clips), the strongly annotated validation set (1168
clips) and the strongly annotated synthetic training set (2045 clips)
[10]. We integrate the weakly annotated training set, the unlabeled
training set and the strongly annotated synthetic training set (actually
we only use weakly labels during training) into a training set and
take the validation set as our validation set. The average duration of
each event category in the synthetic set is shown in Figure 3.

3.2. Feature exaction and post-processing

We produce 64 log mel-bank magnitudes which are extracted from 40
ms frames with 50% overlap (nFFT = 2048) using librosa package
[11]. All the 10-second audio clips are extracted to feature vectors
with 500 frames. In post-processing, we take β = 1

3
(see details in

Section 2.4) in our experiments and the window sizes for different
events are shown in Table 1.

3.3. Model architecture

The model architectures of the PS-model and PT-model are described
in detail in Section 2. We take m = 0.04 for DF. The dimension of
DF per category is shown in Table 1. The PS-model has about 2.6
times the number of trainable parameters as the PT-model (877380 /
332364). The start epoch for GL is set to 5. The PS-model with only
weakly-supervised learning is named ATP-DF and the co-teaching
of the PS-model and the PT-model is named GL-α-PT in the per-
formance report, where α is a hyper-parameter for GL discussed in
Algorithm 1.

3.4. Training

The Adam optimizer [12] with learning rate of 0.0018 and mini-batch
of 64 10-second patches is utilized to train models. The learning rate
is reduced by 20% per 10 epochs. Training early stop if there is no
more improvement on clip-level macro F1 within 20 epochs. All the
experiments are repeated 30 times and we report the average results.
Event-based measures [13] with a 200ms collar on onsets and a
200ms / 20% of the events length collar on offsets are calculated
over the entire test set.
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Table 1: The dimension of the disentangled feature when m = 0.04
and the window sizes of the median filters when β = 1

3
.

Event DF Window size
dimension (frame)

Alarm/bell/ringing 137 17
Blender 94 42

Cat 134 17
Dishes 69 9

Dog 132 16
Electric shaver/toothbrush 76 74

Frying 34 85
Running water 160 64

Speech 30 18
Vacuum cleaner 113 87

Table 2: The performance of models from top1 and the ensemble of
models.

Model Macro F1 (%)
Event-based Segment-based

Top1 44.47 66.74
Ensemble (Top1-6) 45.28 69.06
Ensemble (Top2-6) 45.43 69.02

3.5. Results

As shown in Table 3, GL-0.99-PT (with synthetic set) achieves the
best average performance on event-based macro F1. The class-wise
F1 performance per event category is shown in Figure 3. As shown
in Table 2, the ensemble of the models (GL-0.99-PT) from top2 to
top6 achieves the best performance, improving the performance by
21.73 percentage points from the baseline. As shown in Table 3,
all the models with semi-supervised learning outperform those only
with weakly-supervised learning significantly and the model with
the best average performance improves the performance by 20.67
percentage points from the weakly-supervised only method. As
shown in Figure 5, the performances of all the models without
disentangled feature or adaptive window sizes are poorer than those
which has.

3.5.1. Does the synthetic training set help?

As shown in Table 3, when learning only with weakly labeled data,
the synthetic training set not only does not help improve the re-
sults but also brings negative effects. But when combining weakly-
supervised learning with semi-supervised learning, the synthetic
training set contributes a lot so that the performance is raised by
about 5-8 percentage points. We argue that the model tends to be
overfitting in the synthetic training set and have difficulty in recog-
nizing the audio clips from the real-life recording since the number
of audio clips in the synthetic training set is almost 1.3 times as
much as that in the weakly annotated training set. However, the large
scale of unlabeled data complements this weakness and enable the
synthetic training set to play a positive role during training.

3.5.2. Challenge results

The model (Ensemble Top1-6) achieves an F-measure of 42.7%
on the test set and won the first price in the challenge, which is 0.6
percentage point ahead of the second place and 0.7 percentage points

Table 3: The performance of models

Model Macro F1 (%)
Event-based Segment-based

baseline 23.7 55.2

without the synthetic training set
ATP-DF 25.95± 3.22 56.82± 1.34
GL-1-PT 35.19± 3.86 61.14± 3.14
GL-0.996-PT 36.50± 3.71 62.03± 3.25
GL-0.99-PT 36.21± 4.63 61.25± 2.77
GL-0.98-PT 33.78± 2.95 57.54± 3.42

with the synthetic training set
ATP-DF 21.65± 2.55 57.02± 1.93
GL-1-PT 41.03± 2.98 65.58± 2.84
GL-0.996-PT 42.02± 3.29 66.62± 1.82
GL-0.99-PT 42.32± 2.21 65.78± 2.63
GL-0.98-PT 41.16± 2.42 63.89± 2.20

Figure 5: The performance of models without the disentangled
feature (without DF) or smoothed by the median filter with a fixed
window size of 27 (without adaptive window size).

ahead of the third place. We note that according to the supplementary
metrics released by challenge official, our model achieves the best
performance on the Youtube dataset but shows a poorer performance
than the second place and the third on the Vimeo dataset. This might
be because most of the audios in the dataset are from Youtube. From
this point, we guess the data augmentation such as pitch shifting and
time stretching might help a lot.

4. CONCLUSIONS

In this paper, we present a system for DCASE2019 task 4. Actually,
we present a complete system for large-scale weakly labeled semi-
supervised sound event detection in domestic environments. We
broke the task down into 4 small sub-problems and came up with
solutions for each. We release the implement to reproduce our system
at https://github.com/Kikyo-16/Sound event detection. We employ
a CNN model with an embedding-level attention module to carry
out weakly-supervised learning and utilize GL to carry out semi-
supervised learning. DF is employed to raise the performance of the
model by reducing the interference caused by the co-occurrence of
multiple event categories. In addition, adaptive post-processing is
proposed to get more accurate detection boundaries. We also analyze
the effect of the synthetic training set. As a result, we achieve state-
of-the-art performance on the dataset of DCASE2019 task4.
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ABSTRACT

Audio captioning is a novel field of multi-modal translation and
it is the task of creating a textual description of the content of an
audio signal (e.g. “people talking in a big room”). The creation
of a dataset for this task requires a considerable amount of work,
rendering the crowdsourcing a very attractive option. In this paper
we present a three-step framework for crowdsourcing an audio cap-
tioning dataset, based on concepts and practises followed for the
creation of widely used image captioning and machine translations
datasets. During the first step initial captions are gathered. A gram-
matically corrected and/or rephrased version of each initial caption
is obtained in the second step. Finally, the initial and edited captions
are rated, keeping the top ones for the produced dataset. We objec-
tively evaluate the impact of our framework during the process of
creating an audio captioning dataset, in terms of diversity and num-
ber of typographical errors in the obtained captions. The obtained
results show that the resulting dataset has fewer typographical er-
rors than the initial captions, and on average each sound in the pro-
duced dataset has captions with a Jaccard similarity of 0.24, roughly
equivalent to two ten-word captions having in common four words
with the same root, indicating that the captions are dissimilar while
they still contain some of the same information.

Index Terms— audio captioning, captioning, amt, crowdsourc-
ing, Amazon Mechanical Turk

1. INTRODUCTION

Multimodal datasets usually have a set of data in one modality and
paired set of data in another modality, creating an association of
two different forms of media. These datasets differ from a typical
classification or regression dataset in the sense that the two modal-
ities convey the same content, but in different form. One example
is the captioning task, where the datasets include a form of media
(e.g. image) and then a textual description of the perceived content
of the media. Two examples of captioning are image [1, 2, 3] and
audio captioning [4], where a textual description, i.e. a caption, is
generated given an image or an audio file, respectively. Caption-
ing tasks largely use deep learning methods [5, 6] where models
are trained and evaluated on datasets, rendering the dataset as an
important factor for the quality of the developed methods. There-
fore, a good captioning dataset should have captions that are able to
represent the differences on the perceived content (i.e. diverse cap-
tions). Also, it should have multiple captions per sample in order
to represent the different ways of writing the same information (i.e.
rephrasing) and allowing for a better assessment of the performance
of the captioning method [7].

Different datasets exist for image captioning [2, 3, 8], consist-
ing of images and multiple captions per image. Most (if not all)

of image captioning datasets are created by employing crowdsourc-
ing and annotators that are located in an English speaking area (e.g.
U.S.A., Australia, U.K., etc). Crowdsourcing provides several ben-
efits, such as having no restrictions on location and the possibility
of simultaneous annotation, and using a ready crowdsourcing plat-
form provides the additional benefit of having an established base
of users, i.e. potential annotators [9]. One example of an image
captioning dataset is the Flickr 8K dataset, which consists of 8092
images with five captions each, and the captions were obtained by
crowdsourcing [8]. The dataset images were hand-selected and they
depict actions and events to encourage full sentence captions. The
annotators were pre-screened (by answering questions regarding
grammar and image captioning), and were required to be located
in the US and to have an approval rate of 95% on previous tasks
on the crowdsourcing platform [10]. Another example of a crow-
sourced image captioning dataset is the Microsoft COCO Caption
dataset, which consists of five captions for over 200 000 images [7].
Annotators captioned the images one at a time and were told to
write captions that contain at least eight words [2]. The restriction
for the eight words encourages describing the image thoroughly and
benefits the diversity of captions.

Audio captioning is a novel recent area of research, introduced
in [4]. The first dataset used for audio captioning in [4] is propri-
etary and consists of textual descriptions of general audio [11]. Re-
cently two other audio captioning datasets have been created, which
are not proprietary; the Audio Caption and the AudioCaps datasets.
The Audio Caption [12] dataset was partially released with 3710
video clips and their audio tracks, annotated with Mandarin Chinese
and English captions. Each video had a duration of about 10 sec-
onds and was annotated with three distinct captions. The video clips
were annotated by Chinese university students. Annotators were in-
structed to focus on the sound of the video clips. The Chinese cap-
tions were then translated to English with Baidu Translation [12].
The AudioCaps [13] dataset was created by crowdsourcing. The au-
dio material consists of 46 000 audio files from 527 audio event cat-
egories from the AudioSet [14] dataset, and each audio file in Au-
dioCaps has been annotated with one caption. The annotators were
pre-screened by discerning those participants who consistently vio-
lated the given instructions, such as transcribing speech in the audio
or describing the visual stimulus instead of the audio. Additionally,
the annotators were required to be located in an English-speaking
area, to have an approval rate of 95% on previous tasks, and to have
at least 1000 approved submissions on the crowdsourcing platform.
Audio clips were selected such that the distribution of their classes
was balanced, while ignoring classes that require visuals to be iden-
tified (for example the category “inside small room”).

There are some considerations regarding the above mentioned
datasets. Sound ambiguity is a known and well exploited property
(for example in foley sounds) and by providing visual stimuli or
word indications there is a high chance of reducing ambiguity and

https://doi.org/10.33682/sezz-vd31
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hampering the diversity of the captions. In both datasets, the di-
versity is hampered by the lack of a minimum number of words in
a caption, while in the case of AudioCaps the diversity is further
hampered by removing informative sounds about spatial relation-
ships (e.g. “inside small room”), and giving the labels from Au-
dioSet to the annotators to guide the caption. Additionally, Audio
Caption is created by annotators who are not located in an English
speaking area, increasing the chance for flaws in the acquired En-
glish captions. Finally, in the AudioCaps the assessment of the au-
dio captioning methods is hindered by having only one caption per
sound.

In this paper we set out to provide a framework for annotat-
ing large sets of audio files with multiple captions, which is struc-
tured in three steps. We have used this framework in preparing a
new and freely available audio captioning dataset, which will be re-
leased during Autumn 2019. We employ the Amazon Mechanical
Turk (AMT) as our crowdsourcing platform which has been used
in numerous previous studies [2, 10, 13, 15, 16]. The rest of the
paper is organized as follows. In Section 2 we describe the pro-
posed framework and in Section 3 we describe how we evaluate the
effectiveness of the structure of our framework. The results of the
evaluation are presented in Section 4. The paper is concluded in
Section 5.

2. PROPOSED FRAMEWORK

Our proposed framework consists of three serially executed steps,
inspired by practices followed in the creation of image captioning
and machine translation datasets [8, 7, 17], and which is imple-
mented on an online crowdsourcing platform. We employ as poten-
tial annotators the registered users of the platform (the total number
of registered users is not fixed and depends on the platform) who are
located in an English speaking area and have at least 3000 and 95%
approved (i.e. total and approval rate) submissions on the platform.
From the potential annotators, annotators are selected for the steps
on a first-come-first-served basis. Again, the number of potential
annotators is not known and depends on the platform used. The as-
signment of audio files and captions to annotators will be explained
in each step. The framework employs a set of Na audio files and
produces a set of Nc captions per file. In the first step we gather Nc

initial audio captions per file and in the second step the initial Nc

captions are edited, resulting to a second set of Nc edited captions
per audio file. In the third step we select the best Nc captions per file
between the initial and the edited ones. After each step, we screen
the answers of the annotators. We permanently exclude annotators
that consistently do not follow the given instructions, and we re-
assign work that is deemed unacceptable in the screening process
to other annotators. The workflow for our proposed framework is
visualized in Figure 1.

In more detail, in the first step we solicit annotators for produc-
ing captions for all Na audio files. An annotator is presented with an
audio file that is randomly selected from the audio files that have not
yet been annotated and asked to write one caption, i.e. a sentence
describing the perceived contents of the audio file without assuming
any information not present in the audio. No other information is
provided to the annotators to aid in describing the audio stimulus
(i.e. no access to the name of the audio file, to any tags, or to any
visual information is given). This way the caption contains only the
perceived information from the audio stimulus and is not based on
any prior knowledge about the audio file. To encourage providing
descriptive captions with adequate information, we set a minimum
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Figure 1: Graph of the task flow of our framework.

caption length of eight words. Additional instructions for annota-
tors in the first task include not to use non-descriptive phrases, such
as “There is”, “I hear”, “sound of”, and “sounds like” in the caption
to reach the limit of eight words. We present each of our audio files
to Nc distinct annotators. From the first step we acquire a set of Nc

initial captions for each of the audio files employed.
Some of the initial captions might include grammatical and/or

typographical errors (e.g. “An car is driving...”), awkward sentence
structures (e.g. “An bird swallow-squelches to itself in an small
branch”), or similar problems that are easier for humans to detect
than for an algorithm. For that reason we introduce a second step
for crowdsourcing the correction of any errors in the initial captions,
where each initial caption is edited once. In this step an annotator is
presented with a random caption that has not yet been edited from
the initial captions (i.e. the annotator does not have access to any
other information but only the caption). The annotator is instructed
to read the given caption and to write an edited caption that fixes
the above mentioned problems (e.g. grammatical errors, awkward
sentence structures, etc) in the initial one. If there are no errors
in the initial caption, the annotator is instructed to only rephrase
the initial caption. With this way we acquire a significant number
of linguistic corrections on the obtained captions and, in the same
time, gather a new set of Nc edited captions per audio file that offer
variations in the structure of sentences and association of words. By
crowdsourcing the task of the correction and rephrasing, we gain
access to significantly large number of workers (i.e. the users of the
platform, compared to a non-crowdsourced solution) and diversity
(because of the all different workers editing others’ captions). It
must be noted that if an annotator in the second step has provided a
caption in the first step, then this annotator is not presented with his
own caption(s) for editing.

After the first two steps each audio file has Nc initial and Nc

edited captions, i.e. a total of 2Nc captions. These captions in-
clude initial captions with or without grammatical errors and edited
captions that fail or succeed to remove errors. To determine which
captions describe the audio most accurately and are grammatically
most correct, we introduce the third step. In this step an annotator is
presented with an audio file that is randomly selected from the au-
dio files that have not yet been annotated with scores and each of the
2Nc captions of that audio file, and is asked to score each caption
separately. The annotator scores each caption based on how accu-
rately the caption describes the audio file (i.e. gives an accuracy
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score to the caption) and how grammatically correct it is (i.e. gives
a fluency score to the caption). The annotator gives both scores on a
scale of 1 to 4, with 1 meaning “Bad” and 4 meaning “Very good”.
All the 2Nc captions of each audio file are scored by Nt annotators.
As in the previous step, annotators are not presented with their own
captions to score. The total accuracy and fluency scores are then
calculated by summing the Nt individual scores. Finally, the 2Nc

captions for each audio file are sorted in a descending fashion, ac-
counting firstly for the total accuracy and then for the total fluency
score. The top Nc captions are selected for each audio file.

3. EVALUATION

We evaluate our framework in the process of creating a new audio
captioning dataset that will be released in Autumn 2019, by objec-
tively assessing the impact of the three steps in terms of grammat-
ical correctness and diversity of the gathered captions. We assess
the grammatical correctness through the number of typographical
errors (the fewer errors, the better) and the diversity by examin-
ing the similarity of the captions (the less similar the captions, the
more diversity). We use Na = 5000 audio files with time dura-
tion ranging from 15 to 30 seconds, and gathered randomly using
the Freesound1 platform. Audio files in the Freesound platform are
tagged, with tags indicating possible categories for the contents of
each file. All Na files do not have tags indicating speech, music,
and/or sound effects (e.g. “bass”, “glitch”, “sci-fi”). All gathered
audio files were post-processed to have a maximum absolute value
of 1. For each audio file we gather Nc = 5 captions and at the third
step, we employ Nt = 3 annotators to rate the 2Nc captions, leading
to a range of scores from 3 (Nt ∗ 1) to 12 (Nt ∗ 4). All annotations
are gathered using the Amazon Mechanical Turk platform and its
registered users as potential annotators. The first, second, and third
steps are annotated by 693, 1033, and 1215 annotators with an av-
erage of 36, 24, and 12 annotations per annotator respectively. We
present the obtained results in Section 4.

We count the typographical errors appearing in the captions for
each audio file separately for each of the Nc initial, edited, final, and
non-selected (in the third step) captions. To determine typographi-
cal errors we use the US and UK libraries of the CyHunspell python
library2, which uses the Hunspell spellchecker3. Having edited cap-
tions with fewer errors than the initial captions measures the impact
of the second step. Additionally, having a set of final selected cap-
tions with fewer typographical errors than the ones which are not
selected, indicates that in the third step the framework provides a
set of final captions that are better (grammatically) than the rest.

To assess the diversity, we use the Jaccard similarity, also
known as intersection over union. The Jaccard similarity of two
sentences a and b is defined as

J(a, b) =
|Wa ∩Wb|
|Wa ∪Wb|

, (1)

where Wa is the set of stemmed words (i.e. words reduced to their
roots, e.g. “cats” to “cat”) in sentence a, Wb is the set of stemmed
words in sentence b, and 0 ≤ J(a, b) ≤ 1. When J(a, b) = 0, then
the sentences a and b have no common (stemmed) words and the
sets Wa and Wb are disjoint. On the contrary, J(a, b) = 1 shows
that Wa and Wb contain exactly the same stemmed words. For word

1https://freesound.org/
2https://pypi.org/project/CyHunspell/
3http://hunspell.github.io/
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Figure 2: The number of typographical errors in the captions by the
normalized frequency of audio files.

stemming (i.e. for finding the roots of words) we use the snowball
stemmer from the NLTK language toolkit [18]. To measure the
amount of rephrasing, we calculate J(a, b) between the initial and
edited captions, using as a each of the initial captions and as b the
corresponding edited caption. A high J(a, b) will reveal almost
no rephrasing and a low one will reveal significant rephrasing. To
measure the diversity of the final Nc captions, we firstly calculate
the mean J(a, b) for each audio file, using as a and b all the pairs
of the final Nc captions. Then, we calculate the mean J across all
audio files. We name the mean of the mean Jaccard similarity across
all audio files as cross-similarity.

Finally, we evaluate the impact of the proposed framework on
the set of words of all captions, that is, the final dictionary or word
corpus that will be formed by all captions. We denote the set of
words appearing in the Nc captions of an audio file by Sa. We
merge all Sa to the multiset (i.e. bag) ST . We count the number of
appearances of each of the words in ST , focusing on the rare words,
i.e. words that appear up to five times in ST . For example, if a
word in ST has a number of appearances equal to two, it means that
this word appears in the captions of exactly two audio files. This
measure is of importance for the final dataset, because an audio file
should not be in both the training and another split (i.e. validation or
testing). This means that rare words that appear once in ST result in
unknown words/tokens to one of the splits. Words that appear twice
in ST result in audio files that can be used in two, different splits.

4. RESULTS & DISCUSSION

Figure 2 illustrates the frequency of audio files with typographical
errors in their captions, for both initial and edited captions. It can
be seen that the edited captions are less likely to contain any typo-
graphical errors than the initial captions. This means that the second
step has a positive impact on the grammatical correctness, manag-
ing to produce captions with fewer typographical errors. In total,
the edited captions have about 45% fewer typographical errors than
the initial captions.

Figure 3 illustrates the histogram of the Jaccard similarities be-
tween the initial and the corresponding edited captions. The average
similarity is 0.62, which corresponds approximately to, e.g., chang-
ing two words in an 8-word caption. Therefore, the second step re-
sults in a reasonable amount of added diversity, roughly calculated
to changing a fourth of the words in a sentence. Because the number
of typographical errors in the edited captions is significantly lower
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Figure 3: Jaccard similarity between initial and edited captions.
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Figure 4: Cross-similarity of selected, non-selected, and initial cap-
tions

than that of the initial captions, high frequencies of similarities in
the high range might be a result of annotators fixing these errors and
therefore not rephrasing the caption.

Figure 4 displays a box plot of the cross-similarity values for the
Nc selected (i.e. the final), the other (i.e. the rest Nc not selected
at the third step), and the Nc initial captions. The cross-similarity
values for the selected, other, and initial captions are 0.24, 0.20,
and 0.14 respectively. From the results it can be inferred that from
the first step of our framework we indeed get a diverse set of initial
captions. Moreover, the results in Figure 4 show that the third step
actually managed to control the increased diversity that the initial
captions have, producing a lower (but still high) diversity for the
captions. The baseline in the figure is calculated by creating random
pairs of sentences, from all captions of all audio files.

Figure 5 depicts the percentage of captions versus the number
of typographical errors, considering also the total fluency score that
is gathered in the third task for each, corresponding caption. It can
be seen that the fluency score is inversely related to the number
of typographical errors. For example, the captions with a fluency
score of 3 have, on average, 18 times more typographical errors
than the captions with a fluency score of 12. These results clearly
indicate that the fluency score successfully differentiated the levels
of fluency within the captions.

Finally, in Figure 6 are the percentages of audio files that have
rare words, with numbers of appearances ranging from 1 to 4. The
plots show that the selected captions are more likely not to contain
any rare words with any number of appearances from one to four.
This fact indicates that the resulting diversity imposed by the pro-
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Figure 5: The number of typographical errors appearing in a caption
by the total fluency score given in the third step.
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Figure 6: The number of rare words with numbers of appearances
of 1 to 4 by the normalized frequency of audio files.

posed framework does not hamper the quality of the resulting word
corpus and the resulting dataset.

5. CONCLUSIONS & FUTURE WORK

In this paper we presented a framework for the creation of an audio
captioning dataset, using a crowdsourcing platform. Our frame-
work is based on three steps of gathering, editing, and scoring the
captions. We objectively evaluated the framework during the pro-
cess of creating a new dataset for audio captioning, and in terms
of grammatical correctness and diversity. The results show that the
first step of our framework gathers a diverse set of initial captions,
the second step gathers a set of edited captions that reduces the num-
ber of typographical errors in the initial captions while introducing
additional diversity, and the third step extracts from the initial and
edited captions a set of final selected captions that maintain a high
diversity without introducing many rare words.

Further development of the framework could include pre-
screening annotators as a way to eliminate manual screening of the
annotations and automated processes for the control of more gram-
matical attributes and the number of rare words.
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ABSTRACT

This paper proposes to perform unsupervised detection of bioacous-
tic events by pooling the magnitudes of spectrogram frames after
per-channel energy normalization (PCEN). Although PCEN was
originally developed for speech recognition, it also has beneficial
effects in enhancing animal vocalizations, despite the presence of
atmospheric absorption and intermittent noise. We prove that PCEN
generalizes logarithm-based spectral flux, yet with a tunable time
scale for background noise estimation. In comparison with point-
wise logarithm, PCEN reduces false alarm rate by 50x in the near
field and 5x in the far field, both on avian and marine bioacoustic
datasets. Such improvements come at moderate computational cost
and require no human intervention, thus heralding a promising future
for PCEN in bioacoustics.

Index Terms— Acoustic noise, acoustic sensors, acoustic signal
detection, spectrogram, underwater acoustics.

1. INTRODUCTION

The deployment of autonomous recording units offers a minimally
invasive sampling of acoustic habitats [1], with numerous applica-
tions in ecology and conservation biology [2]. In this context, there
is an extensive literature on tailoring spectrogram parameters to a
specific task of detection or classification: the effects of window size,
frequency scale, and discretization are now well understood [3, 4].
However, the important topic of loudness mapping, i.e. representing
contrast in the time–frequency domain, has received less attention.

This article investigates the impact of distance between sensor
and source on the time–frequency representation of acoustic events.
In particular, we point out that measuring local contrast by a dif-
ference in pointwise logarithms, as is routinely done in machine
learning for bioacoustics, suffers from numerical instabilities in the
presence of atmospheric attenuation and intermittent noise. To ad-
dress this problem, we propose to employ an adaptive gain control
technique known as per-channel energy normalization (PCEN) [5].

We deliberately err on the side of design simplicity: rather than
training a sophisticated classifier, we apply a constant threshold on
the time series of max-pooled PCEN magnitudes. In doing so, our
goal is not to achieve the lowest possible false alarm rate, but to argue
in favor of replacing the logarithmic mapping of loudness by PCEN
in all systems for long-distance sound event detections, including
more powerful yet opaque ones such as deep neural networks [6, 7].

Section 2 discusses the theoretical benefits of such a replace-
ment: it proves that PCEN extends temporal context beyond a single
temporal frame, thus improving effective detection radius. Sections
3 and 4 present applications to avian and underwater bioacoustics
respectively, thereby revealing complementary issues: while bird
call detection focuses on mitigating atmospheric absorption at high
audible frequencies (1–10 kHz), whale call detection focuses on miti-
gating the interference of amplitude-modulated noise from near-field
passing ships at low audible frequencies (50–500 Hz).

2. SPECTROTEMPORAL MEASURES OF NOVELTY

2.1. Averaged spectral flux

Let E(x)[t, f ] be the magnitude spectrogram of some discrete-time
waveform x[t]. In full generality, the ordinal variable f may either
represent frequency on a linear scale, a mel scale, or a logarithmic
scale. Given E, an implementation of spectral flux composes three
operators: loudness mapping, contrast estimation, and feature aggre-
gation. In its most widespread variant, named averaged spectral flux,
these three operators respectively correspond to pointwise logarithm,
rectified differentiation, and frequential averaging:

SFavg(x)[t] = ∑
f

max
(

logE(x)[t, f ]− logE(x)[t−1, f ],0
)

Nfr
(1)

where Nfr is the number of frequency bands f in E. The motivation
underlying this design choice finds its roots in psychoacoustics, and
notably the Weber-Fechner law, which states that the relationship
between stimulus and sensation is logarithmic [8]. We may also
remark that Equation 1 is invariant to gain. Indeed, multiplying
the waveform x[t] by some constant K 6= 0 incurs a multiplication
by K in each frequency band of E(x), and thus an additive bias of
logK in logE(x), which eventually cancels after first-order differen-
tiation. In the case of a single point source at some distance d, the
relative change in acoustic pressure K caused by a spherical wave
propagation is proportional to 1

d . Therefore, in a lossless medium
without reflections, logarithm-based spectral flux is invariant to ge-
ometric spreading insofar as acoustic sources do not overlap in the
time–frequency domain.

This work is partially supported by NSF awards 1633206 and 1633259,
the Leon Levy Foundation, and the Pinkerton Foundation.

The source code to reproduce experiments and figures is available at:
https://www.github.com/BirdVox/lostanlen2019dcase
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Figure 1: Effect of pointwise logarithm (left) and per-channel energy
normalization (PCEN, right) on the same Common Nighthawk vo-
calization, as recorded from various distances. White dots depict the
time–frequency locations of maximal spectral flux (left) or maximal
PCEN magnitude (right). The spectrogram covers a duration of
700 ms and a frequency range between 2 and 10 kHz.

2.2. Max-pooled spectral flux

The situation is different in an absorbing medium. Indeed, heat con-
duction and shear viscosity, in conjunction with molecular relaxation
processes, attenuate sine waves in quadratic proportion to their fre-
quency [9]. Under standard atmospheric conditions, this attenuation
is below 5 dBkm−1 at 1 kHz, yet of the order of 100 dBkm−1 at
10 kHz. As a result, bird calls spanning multiple octaves lose in
bandwidth as they travel through air. A simple workaround is to
replace the frequential averaging in Equation 1 by a max-pooling
operator. This replacement yields the max-pooled spectral flux

SFmax(x)[t] = max
f

(
logE(x)[t, f ]− logE(x)[t−1, f ]

)
, (2)

which performs differentiation on a single frequency band, and is
thus invariant to the low-pass filtering effect induced by absorption.
However, as illustrated in Figure 1, the definition above suffers from
numerical instabilities. Indeed, SFmax(x) discards all but two scalar
values, corresponding to neighboring time–frequency bins in the
spectrogram E(x).

2.3. Max-pooled per-channel energy normalization

In order to associate invariance and stability, this article proposes
to increase the time scale of contrast estimation beyond a single
spectrogram frame. To this end, we replace both the logarithmic
mapping of loudness and the first-order differentiation by a procedure
of per-channel energy normalization (PCEN). PCEN was recently
introduced as a trainable acoustic frontend for far-field automatic
speech recognition [5]. In full generality, PCEN results from an
equation of the form

PCEN(x)[t, f ] =
1
r

(
E(x)[t, f ](

ε +M(x)[t, f ]
)α +δ

)r

− δ r

r
, (3)

where the gain control matrix M(x) proceeds from E(x) by first-
order IIR filtering:

M(x)[t, f ] = s×E(x)[t−1, f ]+ (1− s)×M(x)[t−1, f ]. (4)

Note that the definition in Equation 3 differs from the original defini-
tion [5] by a factor of 1

r . This is in order to allow the limit case r→ 0
to remain nonzero. Investigating the role of all parameters in PCEN
is beyond the scope of this paper; we refer to the asymptotic analysis
of [10] in this regard. Rather, we focus on the smoothing parameter
0 < s < 1 as striking a tradeoff between numerical stability (s→ 0)
and rapid adaptation to nonstationary in background noise (s→ 1).
The following proposition, proven in Section 6, asserts that PCEN is
essentially a generalization of spectral flux.

Proposition 2.1. At the limit (s,ε,α,r)→ (1,0,1,0) in Equations
3 and 4, and for any finite value of δ , PCEN(x)(t, f ) tends towards

log
(
E(x)[t, f ]+E(x)[t−1, f ]

)
− logE(x)[t−1, f ], (5)

which is a smooth approximation of the summand in Equation 1.

For the sake of simplicity, we adopt the PCEN parametrization
that is prescribed by Proposition 2.1: we set ε = 0, α = 1, δ =
1, and r = 0. Derecursifying the autoregressive dependency in 4
and summarizing across frequencies yields the max-pooled PCEN
detection function

PCENmax(x)[t] = log

(
1+max

f

E(x)[t, f ]
s∑+∞

τ=0(1− s)τ E(x)[t− τ−1, f ]

)
.

(6)
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Figure 2: Detection of Common Nighthawk calls: evolution of
mean time between false alarms at half recall (MTBFA@50) as a
function of distance between sensor of source. Shaded areas denote
interquartile variations across individual birds. See Section 3 for
details.

3. APPLICATION TO AVIAN BIOACOUSTICS

3.1. CONI-Knight dataset of Common Nighthawk calls

We consider the problem of detecting isolated calls from breeding
birds in a moderately cluttered habitat. To this end, we use the
CONI-Knight dataset [11], which contains 64 vocalizations from
five different adult male Common Nighthawks (Chordeiles minor),
as recorded by 11 autonomous recording units in a regenerating
pine forest north of Fort McMurray, AB, CA. The acoustic sensor
network forms a linear transect, in which the distance between each
microphone and the vocalizing individual varies from 30 m to 500 m.
The dataset contains 11×64 = 704 positive audio clips in total, each
lasting 700 ms. These clips were annotated by an expert, as part of a
larger collection of continuous recordings which lasts seven hours
in total. We represent each of these clips by their mel-frequency
magnitude spectrograms, consisting of 128 bands between 2 kHz
and 11.025 kHz, and computed with a Hann window of duration
12 ms (256 samples) and hop 1.5 ms (32 samples). These parame-
ters are identical as in the state-of-the-art deep learning model for
bird species recognition from flight calls [12]. We use the librosa
implementation of PCEN [13] with s = 0.09, i.e. an averaging time
scale of about T = 100ms.

Figure 1 displays the mel-frequency spectrogram of one call at
various distances, after processing them with either pointwise loga-
rithm (left) or PCEN (right). Atmospheric absorption is particularly
noticeable above 200 m, especially in the highest frequencies. Fur-
thermore, we observe that max-pooled spectral flux is numerically
unstable, because it triggers at different time–frequency bins from
one sensor to the next. In comparison, PCEN is more consistent in
reaching maximal magnitude at the onset of the call, and at the same
frequency band.

3.2. Evaluation: mean time between false alarms at half recall

Our evaluation procedure consists in two stages: distance-specific
threshold calibration and estimation of false alarm rate. In the first
stage, we split the dataset of positive clips (i.e. containing one vocal-
ization) into disjoint subsets of increasing average distance; sort the

Figure 3: Detection of North Atlantic Right Whale calls: evolution
of mean time between false alarms at half recall (MTBFA@50) as a
function of distance between sensor of source. Shaded areas denote
interquartile variations across days. See Section 4 for details.

values of the detection function over this subset in decreasing order;
and set the detection threshold at the median value, thus yielding a
detection recall of 50%. In the second stage, we run the detector on
an external dataset of negative recordings, i.e. containing no vocal-
izations from the species of interest; apply the detection thresholds
that were prescribed by the first stage; and count the number of false
alarms, i.e. values of the detection function that are above threshold.
Dividing the total duration of the dataset of negative recordings by
this number of peaks above threshold yields the mean time between
false alarms at half recall (MTBFA@50) of the detector, which
grows in inverse proportion to false alarm rate. We repeat this op-
eration over all available subsets to obtain a curve that decreases
with distance, and which reflects the ability of the detection curve to
generalize from near-field to far-field events.

3.3. Results and discussion

In the case of the Common Nighthawk, we choose the BirdVox-
DCASE-20k dataset [14] as a source of negative recordings. A
derivative of BirdVox-full-night [15], this dataset has been divided
into 20k ten-second soundscapes from six autonomous recording
units in Ithaca, NY, USA, and annotated by an expert for presence
of bird calls. Among these 20k soundscapes, 9983 are guaranteed
to contain no bird call, and a fortiori no Common Nighthawk call.
These 9983 recordings amount to 27 hours of audio, i.e. over 30M
spectrogram frames. For each detection function, we subtract the
minimum value over each 10-second scene to the frame-wise value,
in order to account for the nonstationarity in background noise at the
scale of multiple hours.

Figure 2 summarizes our results. We find that max-pooled PCEN
enjoys a five-fold reduction in false alarm rate with respect to average
spectral flux. In addition, the false alarm rate at 300 m of max-pooled
PCEN is comparable with the false alarm rate of averaged spectral
flux at 30 m. As a post hoc qualitative analysis, we compute novelty
curves for 200 recordings of outdoor noise from the ESC-50 dataset
[16]: geophony (rain, wind), biophony (crickets), and anthropophony
(helicopter, chainsaw). For max-pooled spectral flux, we find that the
main causes of false alarms are pouring water (30% of total amount),
crackling fire (17%), and water drops (10%).
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4. APPLICATION TO MARINE BIOACOUSTICS

4.1. CCB18 dataset of North Atlantic Right Whale calls

We consider the problem of detecting isolated calls from whales in a
noisy environment. To this end, we use the CCB18 dataset, which
contains vocalizations from about 80 North Atlantic Right Whales
(Eubalaena glacialis), as recorded by nine underwater sensors during
five days in Cape Cod Bay, MA, USA. The distance between sensor
and source is estimated by acoustic beamforming, similarly as in
[17]. The dataset contains 40k clips in total, each lasting two seconds.
These clips were annotated by an expert, as part of a larger collection
of continuous recordings which lasts 1k hours in total. We represent
each of these clips by their short-term Fourier transform (STFT)
magnitude spectrograms, consisting of 128 bands between 8 Hz and
1 kHz, and computed with a Hann window of duration 128 ms and
hop of 64 ms. We set s = 0.33, i.e. an averaging time scale of about
T = 1s. We choose the ShipsEar dataset as a source of negative
recordings [18]. This dataset contains 90 ship underwater noise
recordings from vessels of various sizes, most of them acquired at a
distance of 50 m or less. These 90 recordings amount to 189 minutes
of audio, i.e. 177k spectrogram frames.

4.2. Results and discussion

Figure 3 summarizes our results. First, we find that averaged spectral
flux leads to poor false alarm rates, even in the near field. We postu-
late that this is because, in the CCB18 dataset, ship passage events
occasionally introduce high received levels of noise. In other words,
distance sets an upper bound, but no lower bound, on signal-to-noise
ratio. Therefore, achieving 50% recall with averaged spectral flux
requires to employ a low detection threshold, which in turn triggers
numerous false alarms.

Secondly, we find that, across the board, replacing averaged
spectral flux by max-pooled spectral flux allows a two-fold reduction
in false alarm rate. We postulate that this improvement is due to
the fact that whale calls are locally sinusoidal whereas near-field
ship noise is broadband. Indeed, the max-pooled spectral flux of a
chirp is above its averaged spectral flux, with a ratio of the order of
Nfr; whereas the averaged and max-pooled spectral fluxes of a Dirac
impulse are the same. Therefore, maximum pooling is particularly
well suited to the extraction of chirps in noise [19].

Thirdly, we find that, in the near field, replacing spectral flux by
PCEN leads to a 50-fold reduction in false alarm rate. We postulate
that this is because ship noise has rapid amplitude modulations, at
typical periods of 50 to 500 ms (i.e. engine speeds of 120 to 1200 ro-
tations per minute). If this period approaches twice the hop duration
(i.e. 128 ms in our case), short-term magnitudes logE(x)[t − 1, f ]
and E(x)[t, f ] may correspond precisely to intake and expansion in
the two-stroke cycle of the ship, thus eliciting large values of spectral
flux. Nevertheless, in the case of PCEN, the periodic activation
of one every other frame causes M(x)[t, f ] to be of the order of
1
2 E(x)[t, f ], assuming that the parameter T is large enough to encom-
pass multiple periods. Therefore, PCENmax(x)[t] peaks at log( 3

2 ) in
the absence of any transient signal. This peak value is relatively low
in comparison with the max-pooled PCEN of a near- or mid-field
whale call.

Fourthly, we find that the false alarm rate of max-pooled PCEN
increases exponentially with distance, until reaching comparable
values as max-pooled spectral flux at a distance of 12 km. This decay
is due, in part, to geometric spreading, but also to more complex
acoustic phenomena, such as reflections and scattering with the

surface as well as the ocean floor [20]. At these large distances, a
successful detector should not only denoise, but also dereverberate
whale calls. Max-pooled PCEN does not have any mechanism for
dereverberation, and thus falls short of that objective. Thus, an
ad hoc detection function is no longer sufficient, and the resort to
advanced machine learning techniques appears as necessary. We
must note, however, that deep convolutional networks in the time–
frequency domain rely on the same functional blocks as max-pooled
PCEN — i.e. rectified extraction of local contrast and max-pooling —
albeit in a more sophisticated, data-driven fashion. Consequently, we
believe that PCEN, whether parametrized by feature learning or by
domain-specific knowledge, has a promising future in deep learning
for environmental bioacoustics.

5. CONCLUSION

An adequate representation of loudness in the time–frequency do-
main is paramount to efficient sound event detection. This is particu-
larly true in bioacoustic monitoring applications, where the source of
interest may vocalize at a large distance to the microphone. Our ex-
periments on the Common Nighthawk and the North Atlantic Right
Whale demonstrate that, given a simple maximum pooling proce-
dure across frequencies, per-channel energy normalization (PCEN)
outperforms conventional (logarithm-based) spectral flux. Beyond
the direct comparison between ad hoc detection functions at various
distances, this study illustrates the appeal in replacing pointwise
logarithm by PCEN in time–frequency representations of mid- and
far-field audio signals. In the future, PCEN could be used, for exam-
ple, as a similarity measure for spectrotemporal template matching;
as an input to deep convolutional networks in the time–frequency
domain [21]; or as a frequency-dependent acoustic complexity index
for visualizing nonstationary effects in “false color spectrograms”
[22] of open soundscapes.

6. APPENDIX: PROOF OF PROPOSITION 2.1

Proof. Applying Taylor’s theorem to the exponential function yields

δ r

r

[(
1+

E(x)[t, f ])
M(x)[t, f ]

)r
−1

]
≈ δ r log

(
1+

E(x)[t, f ]
M(x)[t, f ]

)
(7)

with an error term proportional to rδ r log(1+ E(x)[t, f ]
M(x)[t, f ] )

2, which
vanishes at the limit r→ 0 as long as M(x)[t, f ] remains nonzero.
On the left-hand side, we recognize PCEN(x)[t, f ] with ε = 0 and
α = 1. On the right-hand side, the finite factor δ r tends towards 1 for
r→ 0. The limit s→ 1 allows to replace M(x)[t, f ] by E(x)[t−1, f ].
We conclude with

log
(

1+
E(x)[t, f ]

E(x)[t−1, f ]

)
= log

(E(x)[t−1, f ]+E(x)[t, f ]
E(x)[t−1, f ]

)

= log
(
E(x)[t, f ]+E(x)[t−1, f ]

)
− logE(x)[t−1, f ]. (8)

Interestingly, the distinction between Equation 1 and Equation 5
mirrors the distinction between the rectified linear unit (ReLU) y 7→
max(y,0) and the softplus y 7→ log(1+exp(y)) in deep learning. �
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ABSTRACT
In this paper, we present the details of our proposed framework and
solution for the DCASE 2019 Task 1A - Acoustic Scene Classi-
fication challenge. We describe the audio pre-processing, feature
extraction steps and the time-frequency (TF) representations em-
ployed for acoustic scene classification using binaural recordings.
We propose two distinct and light-weight architectures of convolu-
tional neural networks (CNNs) for processing the extracted audio
features and classification. The performance of both these archi-
tectures are compared in terms of classification accuracy as well as
model complexity. Using an ensemble of the predictions from the
subset of models based on the above CNNs, we achieved an average
classification accuracy of 79.35% on the test split of the develop-
ment dataset for this task. In the Kaggle’s private leaderboard, our
solution was ranked 4th with a system score of 83.16% — an im-
provement of ≈ 20% over the baseline system.

Index Terms— DCASE 2019, acoustic scene classification,
convolutional neural networks, binaural signals, mixup.

1. INTRODUCTION

Humans perceive their surroundings primarily through the visual
and audio cues presented to their eyes and ears, respectively.
Though visual stimuli provide a substantial amount of information
regarding the scene, it is inarguable that audio cues also play a vital
role in determining the type of the environment we are immersed
in. For example, an immersive experience through virtual reality
(VR) is deemed satisfactory only when the associated audio aligns
with the visual scene. In a simpler scenario, a person standing near
a beach with eyes closed can easily infer that they are near the shore
from the repetitive sound pattern of the waves crashing on the rocks
or from the sound of the seagulls. It is easy to conclude that acoustic
characteristics of certain environments have their own unique sig-
nature, which aids humans in distinguishing an audio scene from
another.

The objective of acoustic scene classification is to empower a
machine to automatically recognize the audio scene from the audio
signals they are provided with. Such “machine listening” tasks fall
under the broader umbrella of computational auditory scene analy-
sis (CASA) [1, 2]. Over the past few years, advancement of deep
learning algorithms along with availability of large datasets and in-
crease in computational power has helped to further push the per-
formance of such machine listening systems.

The Detection and Classification of Acoustic Scenes and Events
(DCASE) challenge, has played a major role in providing common
datasets for development, setting algorithmic benchmarks and fur-
thering the research in deep learning for audio signals, especially for
tasks such as scene classification, event detection and audio tagging.

For the scene classification task introduced in DCASE 2013 chal-
lenge, the best performing algorithm used a machine learning ap-
proach, more specifically, a treebagger classifier using hand-crafted
features extracted from the audio recordings [3]. In the 2016 edi-
tion, most of the solutions involved deep learning approach, with
the top performance achieved by a fusion of convolutional neural
network (CNN) and binaural I-vectors [4]. Continuing a similar
trend from the previous year, the top performing algorithms for the
DCASE 2017 scene classification task employed CNNs for the au-
dio spectrogram representations [5] and used generative adversarial
network (GAN) for data augmentation [6]. In the 2018 edition of
the DCASE challenge, the best performance was achieved by use
of CNNs with adaptive division of multiple spectrogram respresen-
tations [7].

Similar to the previous editions, the DCASE 2019 challenge [8]
consists of separate challenge tasks, with Acoustic Scene Classifi-
cation being one among them. This task is further divided into three
subtasks, wherein we participate in the DCASE 2019 Task 1A. In
this subtask, the development data and evaluation data are obtained
from the same recording device. We built our proposed solution
framework inspired by the success of utilizing 2-D time-frequency
(TF) representations of binaural recordings with CNNs for classifi-
cation. However, instead of using computationally expensive audio
feature extraction steps and CNN models with large number of pa-
rameters, we utilize audio feature extraction with minimal compu-
tation and light-weight CNN models. In addition, we also explore
the effect of using rectangular kernels and non-uniform pooling op-
erations in CNN architecture as opposed to conventional square ker-
nels and uniform pooling for achieving the same task and compare
these distinct architectures in terms of accuracy as well as complex-
ity. We obtain the final prediction by ensembling the outputs from
the best-performing models identified using the test split from the
development set.

We begin this paper by describing our audio pre-processing,
feature extraction and data augmentation steps in Section 2. In Sec-
tion 3, we provide details on the two separate CNN architectures
used in our solution. The details of the database provided for the
challenge, the accuracy achieved by our solution on the test split of
the development dataset as well as the Kaggle’s private leaderboard
are provided in Section 4. Finally, the conclusions are presented in
Section 5.

2. FEATURE EXTRACTION & DATA AUGMENTATION

In this section, we describe the audio pre-processing steps as well as
the binaural audio feature extraction process. The extracted features
are then provided as input to the CNN for predicting the acoustic
scene class. In addition, we also discuss the data augmentation step

https://doi.org/10.33682/6c9z-gd15
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Figure 1: Our overall solution framework consisting of binaural audio representations, feature extraction steps, multiple CNNs & model
ensembling for final prediction of the acoustic scene.

used to improve the model’s generalization to unseen data.

2.1. Binaural audio feature extraction

In our proposed system, we use the originally provided audio
recordings sampled at 48 kHz without down sampling. The time
domain audio signals are then normalized by amplitude and then
converted to the TF representation to extract the temporal and spec-
tral characteristics. As such, we first compute the short-time Fourier
transform (STFT) of the normalized time-domain audio signal. The
frame size for the STFT operation is fixed at 2048, with a frame
overlap of 50% and hanning window. Due to the large dimen-
sion of the linear STFT representation, we further compute the cor-
responding Mel-spectrogram representation using 128 Mel-bands.
The use of Mel-scale is more close to the human auditory system
and provides additional advantage of having smaller dimensional-
ity than conventional linear STFT. As the final step, we compute
the Log(·) of the Mel-spectrogram to reduce the dynamic range of
the values and make the feature space more Gaussian in distribu-
tion as reported in [9]. On the computed Log Mel-spectrograms,
we performed feature normalization to achieve zero mean with unit
variance. This mean and standard deviation was computed using
the training data and the same were used on the validation/test split.

Since the recorded data in this task is binaural in nature, the
Log Mel-spectrograms are computed separately for the Left (L),
Right (R), Mid (M), Side (S) representation. In addition, we also
use the conventional mono representation of the binaural signal for
computing the Log Mel-spectrogram. The MS representation is
obtained from the LR representation as follows

M = (L+R)/2

S = (L−R)/2. (1)

The use of LR,MS & mono representations for audio clas-
sification have been explored in earlier editions of DCASE audio
scene classification task and has been reported to achieve superior
performance [5]. However, our framework differs from [5] in few
aspects. Firstly, we do not split the 10 second audio clips to smaller
audio chunks. In other words, the entire 2-D Log Mel-spectrogram
of size 128×469 per channel is provided as input to the CNN. Sec-
ondly, instead of using each channel as a separate input to the CNN

and concatenating the corresponding CNN layers at a later stage in
the network, we combine the individual channels at the first layer
of convolution itself. Finally, we do not perform the background
subtraction (BS) method as well as the harmonic percussive source
separation (HPSS) on the mono representation used in [5] as they
involve further processing after the downmix operation and are thus
computationally more expensive. The entire framework of our solu-
tion depicting the audio representations, feature extraction, multiple
CNNs and ensembling step is shown in Figure 1.

2.2. Data Augmentation

It is well-known that deep learning algorithms perform well when
they are trained using large amounts of data. However, depending
on the task, the amount of labelled data for training maybe lim-
ited or constrained. As a result, deep learning algorithms may not
fully capture the intra-class and inter-class variations in the data. In
such situations, data augmentation plays a crucial role by increasing
the amount and variance in the training data. For acoustic signals,
conventional augmentation techniques include pitch shifting, time
stretching, adding background noise and dynamic range modula-
tion [10]. Another approach for augmentation is to mix the clips
of same acoustic class by splitting and shuffling [11]. Recently, the
use of GANs for data augmentation has also been explored in [6].

In our proposed method, to ensure a better generalization capa-
bility for the neural network, we perform the augmentation method
proposed in [12], termed as mixup. The use of mixup for improv-
ing the performance of acoustic scene classification task has been
explored in [13, 14]. In mixup, two random training examples
(xi, xj) are weighted and mixed together along with their class la-
bels (yi, yj) to form virtual training examples (x̃, ỹ) as

x̃ = λxi + (1− λ)xj
ỹ = λyi + (1− λ)yj ,

(2)

with λ ∈ [0, 1] acquired by sampling from the β distribution
β(α, α), with α being a hyper parameter.
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Input: 128× 469× 2 or 128× 469× 1

Conv2D (64, {3× 3}), BatchNormalization, ReLU

MaxPooling2D {2× 2}
Conv2D (128, {3× 3}), BatchNormalization, ReLU

MaxPooling2D {2× 2}
Conv2D (256, {3× 3}), BatchNormalization, ReLU

MaxPooling2D {2× 2}
Conv2D (512, {3× 3}), BatchNormalization, ReLU

Conv2D (512, {3× 3}), BatchNormalization, ReLU

GlobalMaxPool2D

Dense(256, ReLU)

Dense(10, Softmax)

Table 1: CNN: Type-1 Architecture. Conv2D(n, {p×q}) represents
2D convolution operation with n filters of kernel size p× q.

3. CNN ARCHITECTURE

The audio features extracted by the pre-processing and data aug-
mentation steps explained in Section 2 are provided as input to a
CNN. In this work, we experimented with two distinct architectures
of CNN. The first CNN architecture is similar to the VGG-style
architecture, which uses a constant {3× 3} square-shaped kernels.
However, we use significantly less number of convolution and dense
layers as compared to the original VGG-16 architecture. In the sec-
ond CNN architecture, we employ rectangular kernels for convolu-
tion and non-uniform pooling operation for the frequency and tem-
poral dimension of the audio spectrogram. CNNs with rectangu-
lar kernels have been previously used for a variety of tasks such as
scene classification [15, 16], keyword spotting [17] and music genre
classification [18, 19]. The use of such rectangular kernels help to
treat the spectral and temporal components of the audio with dif-
ferent context sizes as compared to square-shaped kernels. In the
following subsections, we further elaborate on the above two CNN
architectures.

3.1. CNN: Type-1

This CNN architecture is similar to the VGG-style architecture. It
consists of 5 convolutions with increasing number of filters, i.e.,
(64, 128, 256, 512, 512). The kernel size is chosen as {3× 3} and
is kept constant for all the convolution layers. We also apply batch
normalization [20] and ReLU non-linear activation for each convo-
lution layers. Max pooling {2 × 2} operation is performed at the
first three convolution layers to reduce the dimensionality. Finally
we perform global max pool operation to gather all the components,
which is then connected to a dense layer of 256 units with ReLU ac-
tivation. The output layer consists of 10 units corresponding to the
number of scene classes and undergoes softmax operation to ob-
tain the prediction probabilities. The CNN: Type-1 has ≈ 4 million
parameters.

Input: 128× 469× 2 or 128× 469× 1

Conv2D (64, {3× 7}), BatchNormalization, ReLU

MaxPooling2D {3× 1}
Conv2D (128, {3× 1}), BatchNormalization, ReLU

MaxPooling2D {4× 1}
Conv2D (256, {11× 1}, padding= “valid”)

BatchNormalization, ReLU

Conv2D (512, {1× 7}), BatchNormalization, ReLU

GlobalMaxPool2D

Dense(256, ReLU)

Dense(10, Softmax)

Table 2: CNN: Type-2 Architecture. Note that we use rectangular
kernels and non-uniform pooling operation throughout the network.

3.2. CNN: Type-2

In this CNN architecture, we employ rectangular kernels instead of
square kernels. It consists of 4 convolutions with increasing num-
ber of filters, i.e., (64, 128, 256, 512). For the convolution layer-1,
we apply a kernel of size {3 × 7} for low-level feature extraction,
followed by a max pooling with size {3×1}. After reducing the di-
mension in the frequency axis, convolutions with kernel size {3×1}
is applied in convolution layer-2 to extract frequency patterns for
each time-frame. We further reduce the dimension in the frequency
axis by using {4× 1} max pooling. In the convolution layer-3, we
use a kernel size of {11 × 1} and perform “valid” convolutions.
This step ensures that spectral patterns are learnt with entire fre-
quency dimension being compressed. We do not perform pooling
across time dimension and the last convolution layer uses filter size
of {1 × 7} to learn only the temporal characteristics. Similar to
CNN-1, we apply batch normalization and ReLU non-linear activa-
tion for each convolution layers. After the convolution layers, all
the components are collected using the global max pooling opera-
tion, which is further input to a fully connected layer of 256 units
with ReLU activation. The output layer consists of 10 units cor-
responding to the number of scene classes and undergoes softmax
operation to obtain the prediction probabilities. The CNN: Type-2
uses ≈ 1.4 million parameters. This is 3 times lower number of
parameters as compared to CNN: Type-1 and therefore, a compara-
tively less-complex architecture.

By employing the above distinct architectures of CNNs, we ex-
pect each of them to learn different low-level and high-level features
of the audio spectrogram. While CNN: Type-1 treats the frequency
and temporal dimension equally using square kernels, CNN:Type-2
treats these dimensions with different context sizes using rectangu-
lar kernels. Note that for LR & MS representations, the input size
is 128 × 469 × 2, with each channel arranged back to back and
we combine the individual channels at the first layer of convolu-
tion itself. For the case of mono representation, the input size is
128× 469× 1.
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Methods Mean accuracy (%)
Baseline 62.5

CNN:Type-1 - Mono 73.04

CNN:Type-1 - LR 74.20

CNN:Type-1 - MS 75.19

CNN:Type-2 - Mono 69.86

CNN:Type-2 - LR 69.79

CNN:Type-2 - MS 72.90

Ensemble 79.35

Table 3: Mean accuracy on the test split from the development set
using the baseline system, the proposed CNN architectures for each
representation and after ensembling. For ensembling, the top-4 best
performing models are selected.

4. DATABASE & RESULTS

The TAU Urban Acoustic Scenes 2019 dataset [21] for this task is
the extension of the 2018 TUT Urban Acoustic Dataset, consisting
of binaural audio recordings from various acoustic scenes in differ-
ent cities. The recordings were made using the Soundman OKM II
Klassik/studio A3, electret binaural microphone and a Zoom F8 au-
dio recorder using 48 kHz sampling rate and 24 bit resolution. For
each acoustic scene class, such recordings were collected from dif-
ferent locations in the city. Each original recordings were split into
segments with a length of 10 seconds as development and evalua-
tion set. The audio scenes are namely {“Airport”, “Indoor shopping
mall”, “Metro station”, “Pedestrian street”, “Public square”, “Street
with medium level of traffic”, “Travelling by a tram”, “Travelling
by a bus”, “Travelling by an underground metro” & “Urban park”}.

From the training split of the development set, we use a ran-
dom split of 15% as the hold-out validation set for hyperparameter
tuning. We do not utilize any external data or pre-trained models
for training our system. The optimization is performed using the
Adam optimizer [22], with an initial learning rate of 0.001 and a
maximum epoch of 200 with a batch size of 32 samples. We re-
duce the learning rate by a factor of 0.1 if the validation loss does
not decrease after 5 epochs. We use early stopping method to stop
the training if the validation loss does not decrease after 10 epochs.
The categorical cross-entropy is chosen as the loss function. For
the data augmentation step using mixup, we kept α = 0.3 for all the
models. The baseline system [23] also used a CNN based approach
on Log Mel spectrogram of 40 bands, consisting of two CNN lay-
ers and one fully connected layer. We chose Keras [24] as our deep
learning framework for all experiments.

For the CNN: Type-1, using the mono representation, we get
an average accuracy of 73.04%. In comparison, the MS and LR
representation, we achieve a mean accuracy of 75.19% and 74.2%,
respectively. For CNN: Type-2, the mean accuracy are 69.86%,
72.9% & 69.79% using the mono, MS and LR representation, re-
spectively. From both these results, we conclude that theMS repre-
sentation is best suited for this task. The performance drop in CNN:
Type-2 can be attributed to the low-complex architecture used. We
also note that better tuning of the parameters may be required to en-
able this CNN to better capture the spectral and temporal patterns

Scene Label Baseline system Proposed system
Accuracy (%) Accuracy (%)

Airport 48.4 90.2

Bus 62.3 92.0

Metro 65.1 74.7

Metro station 54.5 80.2

Park 83.1 65.1

Public square 40.7 80.5

Shopping mall 59.4 75.5

Street pedestrian 60.9 87.5

Street traffic 86.7 80.2

Tram 64.0 79.4

Average 62.5 79.3

Table 4: Comparison of class-wise accuracy on the test split from
the development set using the baseline system and the proposed sys-
tem after ensembling.

which can lead to performance improvement as well.
Based on performance on the test split, we select the top-4 best

performing models (CNN: Type-1 : MS, LR, Mono, CNN: Type-
2: MS) for the final ensembling. We ensemble the output predic-
tions from each of the 4 models by computing the geometric mean
of the predictions. The final prediction is done by selecting the class
with maximum probability on the ensembled prediction. After this
ensembing step, we obtain a mean accuracy of 79.35% on the test
split of the development set.

The classification results for all the proposed models and en-
sembled solution compared with the baseline system are shown in
Table 3. The class-wise accuracy of the proposed system after en-
sembling for the test split is compared with the baseline system is
shown in Table 4. It can be seen that the proposed system achieves
better accuracy for all classes except for “Park” and “Street traffic”.
For the evaluation on Kaggle leaderboard set, we used the entire de-
velopment set for training the proposed system. In the Kaggle’s pri-
vate leaderboard [25], the baseline system achieved a system score
of 63.00%. In comparison, our solution was ranked 4th with sys-
tem score of 83.16%, thereby achieving an improvement of≈ 20%
over the baseline system.

5. CONCLUSIONS

In this paper, we provided the details of our solution to the
DCASE2019 Task1A - Acoustic Scene Classification. We de-
scribed the audio pre-processing, feature extraction steps and the
various binaural representations used as input the neural network.
The architecture of two distinct and light-weight CNNs used for the
classification are described. We compared the performance of these
CNNs on each binaural representations in terms of classification ac-
curacy as well as their complexity. After ensembling multiple mod-
els, our system achieves an average accuracy of 79.35% on the test
split from the development set. The solution was ranked 4th with
system score of 83.16% in the Kaggle’s private leaderboard.
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ABSTRACT

In this paper, we propose a novel data augmentation method for
training neural networks for Direction of Arrival (DOA) estima-
tion. This method focuses on expanding the representation of the
DOA subspace of a dataset. Given some input data, it applies a
transformation to it in order to change its DOA information and
simulate new potentially unseen one. Such transformation, in gen-
eral, is a combination of a rotation and a reflection. It is possible
to apply such transformation due to a well-known property of First
Order Ambisonics (FOA). The same transformation is applied also
to the labels, in order to maintain consistency between input data
and target labels. Three methods with different level of generality
are proposed for applying this augmentation principle. Experiments
are conducted on two different DOA networks. Results of both ex-
periments demonstrate the effectiveness of the novel augmentation
strategy by improving the DOA error by around 40%.

Index Terms— First Order Ambisonics, direction of arrival,
deep learning, data augmentation

1. INTRODUCTION

Direction of arrival (DOA) estimation is the task of detecting the
spatial position of a sound source with respect to a listener. The
approaches that has been adopted to solve this problem can be
classified in two main categories: parametric-based methods, like
multiple signal classification (MUSIC) [1] and others [2–4], and
deep neural network (DNN)-based methods [5–17]. DNN-based
models often combine DOA estimation with other tasks such as
sound activity detection (SAD), estimation of number of active
sources and sound event detection (SED) [11–13]. In particular,
Sound Event Localization and Detection was the task 3 of Detec-
tion and Classification of Acoustic Scenes and Events 2019 Chal-
lenge (DCASE2019 Challenge) [18].

In machine learning, data augmentation is an effective strat-
egy to overcome the lack of data in the training set and prevent
overfitting. For example SpecAugment [20], a recently published
augmentation method based on time warping and time and fre-
quency block masking of the spectrogram, achieved state of the art
performance on the Speech recognition task. DCASE2018 Task2
Challenge (about audio tagging) winner [21] used mixup augmen-
tation [22].

While data augmentation is effective for sound event detection
and similar tasks, none of the documented strategies is capable of
effectively increasing the spatial representativeness of a dataset, i.e.
increasing the number of DOAs represented in the dataset. The crit-
ical point of the problem is that when the observed signals are mod-
ified by a data augmentation method, it must be guaranteed that the

relationship between the DOA information carried by the signal and
the corresponding labels is maintained. For example, augmentation
techniques such as SpecAugment, phase-shifting and mixup can in-
deed influence DOA, although it’s hard to analytically compute the
new true DOA labels. In fact, according to the technical reports of
DCASE 2019 task3, SpecAugment has affected adversely for DOA
estimation even though it is effective for SED [19, 23].

In this paper, we propose FOA Domain Spatial Augmentation,
a novel augmentation method based on the well-known rotational
property of First Order Ambisonics (FOA) sound encoding. The ba-
sic idea of the method is to apply some transformations to the FOA
channels (and corresponding labels) to modify and simulate a new
DOA of the recorded sounds in a predictable way. Such transforma-
tions are: channel swapping and inversion, application of a rotation
formula (i.e. Rodrigues’ rotation formula) and multiplication by an
orthonormal matrix, which correspond to rotations and reflections
of the sound sources positions with respect to a reference system
centered on the listener.

2. FIRST ORDER AMBISONICS

First-Order Ambisonic (FOA) is a digital audio encoding which de-
scribes a soundfield [24]. It has origin in the B-Format, which en-
codes the directional information on four channels W,X, Y and
Z [24]. W carries omnidirectional information, while channels
X,Y and Z carry the directional information of the sound field
along the Cartesian axes of a reference system centered on the lis-
tener [24].

Adopting the same notation and convention of the dataset used
for the following experiments [25], the spatial responses (steering
vectors) of the FOA channels are H1 (φ, θ, f) = 1, H2 (φ, θ, f) =√
3 ∗ sinφ ∗ cos θ, H3 (φ, θ, f) =

√
3 ∗ sin θ, and H4 (φ, θ, f) =√

3 ∗ cosφ ∗ cos θ, where φ and θ are the azimuth and eleva-
tion angles of a sound source, f is frequency and ∗ is used for
the multiplication operation. As it is noticeable from the expres-
sions, FOA channels can be seen as the projections of the sound
sources to the three dimensional Cartesian axes, with H1 corre-
sponding to channel W , H2 to channel Y , H3 to channel Z and
H4 to channel X . Thus, indicating with S = {S1, ..., Sn} a
set of sound sources in their STFT domain, FOA channels can
be written as a sum of each source and its steering vector, that is
X = 1

N

∑N
n=1H4(φn, θn, f) ∗ Sn, where N = |S|, and φn and

θn are the azimuth and elevation of Sn, respectively.

3. FOA DOMAIN SPATIAL AUGMENTATION

The goal of the method is, from the audio recordings in the dataset,
to generate new ones with different DOA information. More specif-

https://doi.org/10.33682/3qgs-e216
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ically, the problem consists in simulating a new set of spatial re-
sponses {Hi(φ′n, θ′n, f)}4i=2 corresponding to new DOA labels
{φ′n, θ′n}Nn=1 for the audio recordings by applying a transformation
directly to the FOA channels. It is a known property of FOA that,
since it encodes a soundfield rather than the sources themselves, it
is possible to apply some operations directly to the channels [24],
such as rotations and reflections. There are several ways to apply
these transformations, leading to different augmentation strategies
with different pros and cons. In the following, three strategies are
proposed and compared.

3.1. First method: 16 patterns

The 16 patterns method simply consists in applying to the data one
of the 16 prefixed channel transformations summarized in Table 1,
where← indicates an assignment. The basic operations used in this
method are channel swapping (e.g. X ′ ← Y, Y ′ ← X) and chan-
nel sign inversion (e.g. Z′ ← −Z) or a combination between the
two. Using this set of operations, it is possible to obtain 8 rotations
about the z axis and 2 reflections with respect to the xy : z = 0
plane, for a total of 16 augmentation patterns (i.e. 15 new patterns
plus the original one). The corresponding transformations for the
labels are also reported in Table 1. In particular, the listed transfor-
mations correspond to the translations of +0, +π, +π

2
and −π

2
of

the azimuth angles φ and−φ and to the pair of opposites φ and−φ.
The main advantage of this algorithm, other than it’s simplic-

ity and straightforward implementation, is the possibility of it being
applied to many pre-computed features, such as logmel magnitude
spectrogram or phase spectrogram, since the corresponding trans-
formations in the feature-domain are straightforward to compute
(channel swapping maps to the same channel swapping, channel
sign inversion maps to identity for magnitude and to a 180 degrees
difference for phase). Another advantage is that it is easy to control
that mapped angles remain in the same domain as the original ones.
For example, in the dataset in use for DCASE2019 Challenge task3,
all angles are multiples of 10 degrees and elevation angles range
from −40 to +40 degrees. It is easy to see that the augmented an-
gles maintain the same domain. One more important advantage of
this method is that it can be applied independently on the number
of the maximum number of overlapping sound sources, which is a
complication for the next proposed method.

3.2. Second method: Labels First

In Labels First method, the basic idea is to first decide the target
augmented labels, than to apply a transformation to the data accord-
ingly. The critical aspect of this method is that while for azimuth
this is always possible independently on the number of overlapping
sources, it isn’t the same for elevation. The reason is that when
modifying the azimuth coordinates by a fixed amount by means of
a rotation, z-axis is the common rotational axis for all the sources,
while for modifying only the elevation coordinate by a fixed amount
by means of a rotation, for each source, an appropriate rotation axis
must be selected.

Keeping into consideration this critical aspect, assuming at first
to have sound files with non-overlapping sound events, the proposed
algorithm for this method is follows. For convenience, it is divided
in two steps in which azimuth and elevation are augmented sepa-
rately. In the first step, at first a random angle α is selected and used
to translate, at each time step t with arbitrary range, the azimuth
labels:

α← random(0, 2π)
φ′t ← φt ⊕ α

where ⊕ here indicates an addition with a wrap-around on the do-
main (−π, π), i.e. (φt + α + π) mod 2π − π. At this point, the
rotation matrix around z-axis Rz is computed:

Rz =



cosα − sinα 0
sinα cosα 0
0 0 1


 , (1)

and applied to the channels at each time step t:

v′t = Rzvt, (2)

where vt = (Xt, Yt, Zt)
> denotes original channels and v′t =

(X ′t, Y
′
t , Z

′
t)
> denotes azimuth-augmented channels. In the sec-

ond step, the elevation coordinate is augmented. At first, a random
augmentation angle β is selected. To do so, elevation labels in the
selected time range (e.g. a batch) is inspected and maximum and
minimum values Me and me are extracted. The elevation angle, by
definition, has range

(
−π

2
, π
2

)
, but in some datasets like the one in

use for DCASE2019 Challenge task3, it might have a custom range
(mer,Mer). In order not to go out of this range, the augmentation
angle β is extracted randomly in the range (mer−me,Mer−Me)

1.
At this point, elevation labels are updated:
β ← random(Mer −Me,mer −me)
θ′t ← θt + β

Secondly, at each time step t, the rotation axis for augmenting el-
evation is computed. This axis is defined by the unit vector per-
pendicular to the one along the azimuthal axis, oriented properly
so that a rotation of the audio channels by an angle β corresponds
to the same increment of the elevation label. It can be easily veri-
fied with the right-hand rule that this unit vector corresponds to the
azimuthal one rotated by −π

2
about the z-axis:

ut =




0 1 0
−1 0 0
0 0 1





cosφ′t
sinφ′t
0


 =




sinφ′t
− cosφ′t

0


 , (3)

where the first term means Rz (−π/2). Now, Rodrigues’ rotation
formula is applied to the v′t, we obtain full-augmented channels:

v′′t = v′t cosβ+(ut×v′t) sinβ+ut (ut ·v′t)(1−cosβ), (4)

where × and · denote the cross-product and the inner-product, re-
spectively.

The main advantage of this method is the high control over the
augmented labels. For example, it allows for generating new labels
which belong to the same domain of the original ones (e.g only mul-
tiple of 10◦ and elevation restricted to the range (−40◦, 40◦), such
as in the dataset used for the experiments [25]. The main disad-
vantage is that it is best suitable for non-overlapping sound events.
There are some workarounds to adapt it to sound recordings with
multiple overlapping sound events, though. Some possibilities are
to apply it only to time frames with one event, to check for the
somewhat rare cases in which all of time events share the same az-
imuth coordinates or to apply a hybrid strategy such as applying the
16 patterns method only for elevation augmentation or considering
only one of the overlapping sources and computing labels for the
others sources as in Channels First.

1In order to maximize the augmentation range, one could segment the
audio recordings in frames containing the single sources. Alternatively, one
could accept to extend the elevation domain of the dataset and agnostically
select a fixed range for the augmentation angle β, which is convenient when
augmenting an entire audio file altogether, as done in experiment 2.

155



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

Table 1: Sixteen patterns of simple spatial augmentation. Swap(X,Y ) denotes X ′ ← Y and Y ′ ← X .
φ− π/2 φ φ+ π/2 φ+ π

θ Swap(−X,Y ) original Swap(X,−Y ) Swap(−X,−Y )
−θ Swap(−X,Y ), Z′ ← −Z Z′ ← −Z Swap(X,−Y ), Z′ ← −Z Swap(−X,−Y ), Z′ ← −Z

−φ− π/2 −φ −φ+ π/2 −φ+ π
θ Swap(X,−Y ) Y ′ ← −Y Swap(X,Y ) X ′ ← −X
−θ Swap(−X,−Y ), Z′ ← −Z Y ′ ← −Y,Z′ ← −Z Swap(X,Y ), Z′ ← −Z X ′ ← −X,Z′ ← −Z

3.3. Third method: Channels First

Channels first is the most general case of FOA Domain Spatial Aug-
mentation. This method doesn’t depend on the number of overlap-
ping sources, but the control over labels is almost completely lost.

The procedure is as follows. A random (3 × 3) orthonarmal
matrix R is selected. An orthonormal matrix R is a matrix such
that HH> = I and det(H) = ±1. This can be done by select-
ing a random (3 × 3) matrix and then orthonormalizing it with the
Graham-Schmidt method. Augmented channels v′ are then com-
puted as:

v′ = R v. (5)

The same transformation is also applied to the labels y = (φ, θ)>,
in Cartesian coordinates2:
yc ← to cartesian(y)
y′c ← R yc
y′ ← to spherical(y′c)

An orthonormal matrix expresses a general rotoreflection. This
method allows generating the most number of augmentation pat-
terns for any number of sources, but, since there is few to none
control over the labels, it is recommended to use only with datasets
without any restrictions on the labels’ domain, as justified by the
results of experiment 2.

4. EXPERIMENT

4.1. Experimental setup

We conducted our experiments, referred to as Experiment 1 and Ex-
periment 2, using two different DOA networks, one simpler, one
more sophisticated, here referred to as Simple DOAnet and Sophis-
ticated DOAnet. Both networks give as output a single pair of az-
imuth and elevation angles computed in a regression fashion and a
sound activity detection value computed in a classification fashion.
Both networks are trained using the maximum overlapping 1 audio
files of the DCASE2019 Challenge dataset [25], and evaluated on
DOA error (Er) and Frame-recall (FR). We used only overlap 1 files
in order to be able to evaluate the effectiveness of FOA Domain
Spatial Augmentation specifically for the DOA estimation task. In
systems that are able to localize more than one overlapping source,
such as SELDnet [11], other tasks, such as Sound Event Detection
(SED), might be influenced by the augmentation strategy and at the
same time influence the performance on DOA estimation.

4.1.1. Experiment 1

Simple DOAnet has a convolutional recurrent neural network
(CRNN) as a core structure, as in [10–12, 19, 26]. Input features

2Since distance from the listener is not relevant for the task, when con-
verting to and from cartesian coordinates, we always assume the norm
r = 1, that is we consider direction of arrivals as points on the unit sphere.

are logscale Mel-magnitude spectrogram (logmels) and General-
ized Cross-Correlation Phase Transform (GCC-PHAT) of the mu-
tual channels, as in [12, 26]. All wav-files were downsampled at
a sampling rate of 32 kHz. The length of the short-time-Fourier-
transform (STFT) and its shift length were 1024 and 640 (20 ms)
points, respectively. The dimension of Mel bins for logmels and
GCC-PHAT was 96. The DNN structure is a CRNN, similar to
a SELDnet [11] without the SED branch and with a single class
DOA output. The CRNN consists of 3 convolutional neural network
(CNN) layers, 2 gated recurrent unit layers, and 2 fully-connected
(FCN) layers, with the total number of parameters of 545K.

As a loss function, we compute the mean average errors (MAE)
between true and predicted labels for both azimuth and elevation
and mask them with the true sound activity labels, then sum them
to the binary cross-entropy loss of the sound activity output. The
model is trained adopting the four cross-validation folds defined
in [25] for 400 epochs each and selecting the best model among the
epochs according to the best validation loss. The conducted exper-
iments on this model are 3: the first is without using FOA Domain
Spatial Augmentation (No Aug), the second is applying the Labels
First method on 50% of the input data (LF Half) and the third is
applying the Labels First method on all of the input data (LF Full).
Augmentation is applied on minibatches of 100 STFT frames (2s).

4.1.2. Experiment 2

Experiment 2 is conducted on Sophisticated DOAnet. Sophisti-
cated DOAnet is a combination method of parametric-based and
DNN-based DOA estimation [27]. Sound intensity vector (IV)-
based DOA estimation is used as a base method and two CRNNs
are used for denoising and dereverberation of IVs. Each CRNN
consists of 5 CNN layers, 2 FCN layers, and 1 bidirectional long
short-term memory layer, and the total number of parameters of So-
phisticated DOAnet is 2.79M. The details of Sophisticated DOAnet
are described in [27].

Training was performed on the standard cross-validation folds,
and selecting the best model among the epochs according to the
best validation loss. Four different runs of the training are per-
formed on this network, one without augmentation (No Aug) and
one for each of the methods described in Section 3: 16 Patterns
(16P), Labels First (LF) and Channels First (ChF). Based on the
results of Experiment 1, all data augmentation was performed on
50% of the input data directly on the full length wav files. For the
Labels First method, elevation augmentation angle β was selected
randomly between −20◦ and 20◦, extending the range of elevation
to (−60◦, 60◦).

4.2. Results

Experiment 1 has mainly two purposes: demonstrate the effective-
ness of FOA Domain Spatial Augmentation on training a simple
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Figure 1: Training progress graph of experiment 2; training loss (top) and DOA error of validation set (bottom). It is apparent that the 16
Patterns method and the Labels First method performed better than without augmentation. The Channels First method lead to worse results,
supposedly due to the over-extension of the labels domain and the consequent complication of the problem.

Table 2: Results of experiment 1 on Simple DOAnet
Fold 1 Fold 2 Fold 3 Fold 4 Ave.

No Er 5.32 4.85 5.56 5.07 5.22
Aug. FR(%) 97.78 98.46 97.79 97.67 97.93
LF Er 3.34 3.28 3.27 3.07 3.22
Half FR(%) 98.16 98.89 98.28 98.14 98.37
LF Er 3.53 3.64 3.53 3.21 3.48
Full FR(%) 98.18 98.74 98.41 98.38 98.43

Table 3: Results of experiment 2 on Sophisticated DOAnet
Fold 1 Fold 2 Fold 3 Fold 4 Ave.

No Er 1.69 1.53 1.81 1.60 1.66
Aug. FR(%) 96.91 96.46 97.14 97.50 97.00

16P Er 0.96 1.30 1.45 1.21 1.21
FR(%) 97.30 97.00 97.53 97.70 97.39

LF Er 1.31 1.39 1.49 1.43 1.40
FR(%) 97.34 94.16 97.61 97.14 96.56

ChF Er 1.99 1.35 1.98 1.61 1.73
FR(%) 96.45 97.28 97.24 96.96 96.98

DOA network and discover whether it is best to apply augmentation
to all the data or, heuristically, to only half of the data. As reported
in Table 2, both runs with the use of augmentation outperformed the
run without using augmentation on all the cross-validation folds, de-
creasing the DOA error by 2◦ on average and increasing the Frame
Recall of 0.5% on average. DOA error achieved the best results
by augmenting 50% of the input data (0.24◦ better on average with
respect to 100%), while augmenting all of the input data achieved
the best result in terms of Frame Recall (0.06% better on average),
although the results of these two runs were very close to each other.

Experiment 2 has the purpose of comparing the different FOA
Domain Spatial Augmentation methods illustrated in Table 3 with
each other as well as with non augmented data. The results reported
in Table 3 show that in this case the 16 Patterns one was the best
performing method, followed by the Labels First method, also scor-
ing better than without augmentation in terms of DOA Error. As we
expected Labels First to be the method achieving the best scores, we
believe the penalty with respect to the expectation is due to the ex-
pansion of the labels domain, which means a more difficult problem
to solve. As expected, the Channels First method was the least ef-
fective on this dataset, scoring worse with respect to non augmented
data. It is safe to say that the determining factor for the underperfor-
mance is the too big of a difference in the labels domains of the aug-
mented data and of the original data. In terms of frame recall, again
16 Patterns achieve the best score, although there aren’t any par-
ticularly noticeable differences. In Figure 1, the training progress
graphs of experiment 2 are reported. It can be clearly seen that in
all the cross-validation folds there is a point since which DOA er-
ror on validation split is better with the 16 Patterns and Labels First
methods rather than without augmentation.

5. CONCLUSIONS

In this paper, FOA Domain Spatial Augmentation, a novel data
augmentation strategy, has been proposed. The basic idea of the
method is to apply rotational transformations to the FOA channels
and corresponding labels. We proposed three types of such trans-
form: channel swapping and inversion, application of a rotation for-
mula, and multiplication by an orthonormal matrix. It has been
proven effective for training two different neural networks for the
task of DOA estimation, improving the DOA error by 40%. Future
research will be to further investigate the effectiveness of this aug-
mentation strategy in different scenarios, for example with a dataset
including all the possible DOAs or with overlapping sound events.
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ABSTRACT
Automated analysis of complex scenes of everyday sounds might
help us navigate within the enormous amount of data and help us
make better decisions based on the sounds around us. For this pur-
pose classification models are required that translate raw audio to
meaningful event labels. The specific task that this paper targets
is that of learning sound event classifier models by a set of exam-
ple sound segments that contain multiple potentially overlapping
sound events and that are labeled with multiple weak sound event
class names. This involves a combination of both multi-label and
multi-instance learning. This paper investigates two state-of-the-
art methodologies that allow this type of learning, low-resolution
multi-label non-negative matrix deconvolution (LRM-NMD) and
CNN. Besides comparing the accuracy in terms of correct sound
event classifications, also the robustness to missing labels and to
overlap of the sound events in the sound segments is evaluated. For
small training set sizes LRM-NMD clearly outperforms CNN with
an accuracy that is 40 to 50% higher. LRM-NMD does only mi-
norly suffer from overlapping sound events during training while
CNN suffers a substantial drop in classification accuracy, in the or-
der of 10 to 20%, when sound events have a 100% overlap. Both
methods show good robustness to missing labels. No matter how
many labels are missing in a single segment (that contains multiple
sound events) CNN converges to 97% accuracy when enough train-
ing data is available. LRM-NMD on the other hand shows a slight
performance drop when the amount of missing labels increases.

Index Terms— Multi-label learning, multi-instance learning,
weak labels, non-negative matrix deconvolution, convolutional neu-
ral networks, overlapping sound events, polyphonic classification,
sound event classification.

1. INTRODUCTION

We are surrounded by complex acoustic scenes made up of many
potentially overlapping sound events. For example, in a busy street
we may hear engine sounds in cars, footsteps of people walking,
doors opening, or people talking. Large amounts of recorded sound
clips are also being uploaded into audio and multimedia collections
of clips on the internet, creating an explosive growth in this audio
data. In recent years, research into content analysis for complex au-
dio has found increasing attention in the research community [1]. It
has lead to algorithms based on machine learning that automate the
analysis of the complex audio of everyday sounds, to help us nav-
igate within the enormous amount of data and help us make better
decisions based on the sounds around us.

In this work we specifically focus on the task of learning sound
event classifier models by a set of sound segments that contain mul-
tiple potentially overlapping sound events and that are labeled with

multiple weak sound event class names. Such setup involves a
combination of multi-label and multi-instance learning. Multi-label
refers to the fact that a single sound segment has multiple labels.
When strong labels are used the labelled sound events are all active
for the full (small, e.g. 50ms) sound segment. Weak labelled sound
events are active on undefined positions in the considered (larger,
e.g. 10s) audio segment. Hence, the learning strategy should have
the ability to identify multiple instances that are present within an
audio fragment. For example learning sound event models based on
YouTube movies that have meta information (that could be automat-
ically transformed into some predefined set of class labels) could be
considered as a multi-label multi-instance learning task.

The literature concerning the classification of overlapping
sounds is mainly divided into two separate streams. Either the over-
lapping events are separated first using source separation methods
[2, 3] or region extraction methods such as [4] prior to detection or
the overlapping events are directly classified via a unifying classfi-
cation scheme [5, 6], with the latter being the most successful. In
this work we compare two methods that belong to this category.
Particularly convolutional neural networks (CNN), potentially with
some recurrent layers added, have shown good performance with
respect to the considered task [5, 7]. In [8] the authors developed a
convolutive modeling technique that combines a sound source sepa-
ration strategy based on non-negative matrix devonvolution (NMD)
with weak supervision to enable the option to perform classifica-
tion. In this paper we will compare both methods not only in terms
of classification accuracy but also in terms of robustness to missing
labels and the amount of overlap of sound events that are present in
the sound segments used during the learning stage.

The literature concerning missing labels in weak labelled data
is rather limited. While research into noisy labels has recently been
growing [9, 10], the impact of missing labels specifically has not yet
been investigated to the best of our knowledge. This is backed up by
the statement in [11] that the theme of noisy labels was completely
missing from the literature.

This paper is organized as follows. In Section 2 we briefly intro-
duce the two methods that are being compared. Section 3 describes
the data set that was used and the experimental setup. The results
are discussed in Section 4. Final conclusions and future directions
are given in Section 5.

2. METHODS

2.1. Non-negative Matrix Deconvolution

NMD is an extension of non-negative matrix factorization (NMF)
and is capable of identifying components with a temporal struc-
ture [12, 13]. The main objective of NMD is to decompose an
all-positive observation data matrix Y[o] ∈ RB×F

≥0 , e.g. a time-

https://doi.org/10.33682/y8xs-0463
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frequency magnitude spectrogram in case of acoustic processing,
into the convolution between a set of temporal basis matrices A[o]

t ∈
RB×L

≥0 , with t ∈ [1, T ], and its activation pattern over time XL×F
≥0 .

The general form of NMD is expressed by

Y[o] ≈ Ψ[o] =

T∑

t=1

A[o]
t

(t−1)−→
X , (1)

where Ψ[o] ∈ RB×F
≥0 denotes the reconstructed data and

t−→
(·) a ma-

trix shift of t entries to the right. Columns that are shifted out at
the right are discarded, while zeros are shifted in from the left. The
complete set of basis data, i.e. also called ’dictionary’ or ’sound-
book’ is described by combining all temporal basis matrices A[o]

t

into a global three-way tensor A[o] ∈ RB×L×T
≥0 . Each l-th slice of

A[o] then contains the temporal basis data of the lth-component over
time t and can be interpreted as one of the additive time-frequency
elements describing the underlying structure in Y[o].

The general form of NMD given by Equation 1 factorizes the
observations in a blind fashion. In [8] we have proposed an exten-
sion to NMD, called low-resolution multi-label non-negative matrix
deconvolution (LRM-NMD), where both the observation data and
the available labelling information are used during the factorization
process. More specifically, let us assume that Y[o] is supported by
a multi-label vector y[s] ∈ {0, 1}C , with C denoting the number
of classes, indicating the sound events that have occurred without
describing beginnings nor endings. In the other words weak labels
are employed. The objective of LRM-NMD is still to decompose
Y[o] as is given in Equation 1 but with respect to

y[s] ≈ ψ[s] = A[s]X1, (2)

with A[s] ∈ {0, 1}C×L acting as a labelling matrix for A[o] and 1
being an all-one column vector of length F . Hence, the cost func-
tion of LRM-NMD is expressed by

min
A[o],A[s],X

J∑

j=1

[
D(Y[o]

j ‖Ψ
[o]
j ) + λ‖Xj‖1 + ηD(y[s]

j ‖ψ
[s]
j )
]
, (3)

where D(v‖w) denotes the Kullback-Leibler divergence between
v and w, λ being the sparsity penalty parameter and η the trade-
off parameter between the observation data and the labelling infor-
mation. The cost function can be minimised using the method of
multiplicative updates as discussed in [8]. LRM-NMD favours de-
compositions that have a balanced performance in terms of recon-
struction error and classification performance. More specifically,
LRM-NMD encourages that the sound events in segment Y[o], la-
belled by y[s], are described by a linear combination of a subset of
sound book elements in A[0] each assigned to a specific sound event
class by the labelling matrix A[s]. Two crucial advantages of LRM-
NMD are: a) that it can deal directly with overlapping sound events
in the observation data, i.e. because of the additive behaviour due to
the non-negativity constraint, and b) that not all events in an acous-
tic segment must be labelled and thus that it can cope with missing
labels enabling a semi-supervised learning strategy that learns the
model parameters from both labelled and unlabelled data.

Classifying an unseen sample is done by decomposing the test
data under the fixed learned basis data A[o] and performing a global
average pooling on the corresponding activations X.

2.2. Convolutional Neural Network

Convolutional neural networks (CNNs) have become the current
state-of-the-art solution for many different machine learning tasks
and are already widely discussed in the literature. CNNs usually
consist of several pairs of convolutional and pooling layers as a fea-
ture extractor. The extracted features are usually flattened using a
flatten layer and are then followed by one or more fully connected
layers that act as a classifier.

In this study we used a basic CNN architecture, using the afore-
mentioned layers. To accommodate for variable sized input frames,
we changed the flatten layer to a global average pooling layer. This
change allows training on segments with a different size compared
to those that are being used in the testing phase. While we could
train on different length segments, we padded all segments to the
length of the longest segment during training for batching purposes.
This padding is done, for each mel band, by sampling from a nor-
mal distribution with the mean and standard deviation derived from
the considered mel band values from the training data.

3. EXPERIMENTAL SETUP

3.1. Dataset

Both methods are validated using the publicly available NAR-
dataset. This dataset contains a set of real-life isolated domestic
audio events, collected with a humanoid robot Nao, and is recorded
specifically for acoustic classification benchmarking in domestic
environments [14, 15]. In total 42 different sound classes were
recorded and can be categorised into ’kitchen related events’, ’of-
fice related events’, ’non-verbal events’ and ’verbal events’. The
verbal events are not used in this research which reduces the dataset
to a total of 20 sound classes each containing 20 or 21 recordings.

The training, validation and test sets are created by randomly
sampling instances from the NAR-dataset with a ratio of 50% for
training, 25% for validation and 25% for testing. The training and
validation sets are further processed into so-called acoustic observa-
tion segments for the multi-instance multi-label learning task. More
specifically, the acoustic segments are generated by randomly draw-
ing five events, sorting them with increasing time duration, and
combining them into a single stream with 0%, 25%, 50%, 75%
and 100% overlap1. In total 10000 training and 2000 validation
segments were generated per degree of overlap. The test set was
not altered since the envisioned task of the experiments later is sim-
ply a classification problem. The previous process was repeated
four times resulting in a final dataset containing 4 folds each made
up of 10000 training segments, 2000 validation segments, and 100
isolated test samples (5 per sound class) for classification.

3.2. Features

The so-called mel-magnitude spectrograms [16] have shown to be
a good choice of acoustic features having the properties of non-
negativity and approximate additivity. The mel-magnitude spectro-
grams that span 40 bands are computed using a Hamming window
with a frame length of 25 ms and a frame shift of 10 ms as proposed
in [17]. The used filter bank is constructed such that the begin fre-
quency of the first mel-filter and the end frequency of the last mel-

1The amount of overlap is defined by the amount of overlapping samples
between two successive events, based on the first event. Special case is
100% where all events in the acoustic segment have the same onset time.
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filter correspond to the frequency range of the microphone, i.e. 300
Hz and 18 kHz.

3.3. Experiments

In this paper two main experiments were carried out. The first ex-
periment investigates the influence of the number of training seg-
ments (ntr) on the classification performance of LRM-NMD and
CNN for different degrees of assigned labels (nlbl). The number of
training segments are increased offline from 50 to 10,000 and the
amount of assigned labels varies between nlbl = 1 (4 missing la-
bels per segment) and nlbl = 5 (no missing labels). The second ex-
periment investigates the influence of overlapping sound events on
the classification performance of LRM-NMD and CNN for a fixed
number of training segments. The investigated degrees of overlap
(novl) vary between novl = 0% and novl = 100%. The amount
of assigned labels varies again in the range nlbl = {1, 2, 3, 4, 5}.
In both experiments, the objective is to predict a single label for an
event while training on multi-label segments.

The set of dictionary elements in A[o] for LRM-NMD was ini-
tialized with one example per sound class and one additional dic-
tionary element with small positive noise for acoustic background
modelling. Hence, the overall dimensions of A[o] are B = 40,
L = 21, and T = 40. The labelling matrix A[s] was initialised by
an identity matrix augmented with an all zeroC long column vector
for the background dictionary element. The used hyperparameters
are λ = 5 and η = 5 and where selected from the results in [8].

The network used for CNN starts with 3 convolutional layers
using (5,5) filter shapes and 64 filters, similar to what was proposed
in [5], each convolutional layer is followed by a batchnormalization
[18] layer, a relu activation and a pooling layer. The pooling layers
used maxpooling with (5,1), (3,1), (2,1) as shapes respectively. Af-
ter these layers a globalaveragepooling layer is added, followed by
a hidden fully connected layer of 64 neurons, with a relu activation,
and an output layer of 20 neurons, the same amount as the number
of output classes. Between all convolutional layers dropout [19] is
used with a drop rate of 0.5. During training the output layer has
a sigmoid activation, due to the multi-label nature of this problem,
and during inference this activation is changed to a softmax since
a single label is required. Since this is a multi-label problem with
binarized labels, binary-crossentropy is used as the loss function.
Adam was used as optimizer with a learning rate of 0.001.

4. RESULTS

In this section the results of both experiments are discussed. Firstly,
we will discuss the effect of missing labels and the amount of train-
ing samples on the performance of both methods. Secondly, we will
discuss the impact overlap in training segments has in both meth-
ods. Finally, while this is not the main focus of this study, we will
do a short comparison of our results to the results of other studies
which used the NAR-dataset.

4.1. Missing labels

The results of this experiment for CNN and LRM-NMD are pre-
sented in Figure 1. The LRM-NMD model was trained with at most
ntr = 2000, while the CNN was trained up to ntr = 10000, how-
ever we assume that the results of LRM-NMD will not have a large
improvement with a higher ntr based on the trend in the results.

From these results we can see that LRM-NMD substantially
outperforms CNN in cases where there is little data available.
The latter is mainly the result of the exemplar based initialization
of LRM-NMD resulting in a bootstrapped model structure. At
ntr = 50, CNN achieves accuracies ranging from 53.8 ± 6.1%
to 11.2 ± 8.2% for 5 labels and 1 label, respectively. In compari-
son, for the same ntr , LRM-NMD achieves accuracies ranging from
89.0± 3.4% to 66.5± 4.4%.

When considering the results when more training segments are
added, we can see that CNN begins to achieve similar accuracies as
LRM-NMD when a few labels are missing. At ntr = 1000, CNN
achieves accuracies ranging from 95.5± 1.1% to 64.5± 9.1% for
5 labels and 1 label, respectively. For the same ntr LRM-NMD
achieves accuracies ranging from 94.5 ± 2.5% to 76.0 ± 2.4%.
These numbers confirm our statement that CNN achieves similar ac-
curacies as LRM-NMD when few labels are missing, if more train-
ing data is added.

If further training data is added, so ntr = 10000, we see that
the achieved accuracies converge around 97% across all nlbl. From
this we can state that CNN sligthly outperforms LRM-NMD, if
a large amount of training data is available. Note that compared
to CNN, LRM-NMD uses less model parameters and has no non-
linear modeling option available.

Another observation is that while LRM-NMD has a good per-
formance for a small ntr , it does not improve as much compared
to CNN when ntr increases. Note that the LRM-NMD hyperpa-
rameters i.e. η and λ, were selected and kept fixed in a model se-
lection procedure in which all labels were present for each training
segment (hence no missing labels). This choice is probably sub-
optimal since the amount of provided labels influences the balance
between the supervision and reconstruction error terms in 3.

4.2. Overlap of events in segments

In this experiment we used ntr = 10000 for CNN and ntr = 500
for LRM-NMD. These amounts were chosen based on the classifi-
cation accuracies and the time needed to train the models. For CNN
the accuracies converged for ntr = 10000 and for LRM-NMD they
started stagnating for ntr = 500. The results of the experiment are
presented in Figure 2.

For novl = 0% we can see that CNN outperforms LRM-NMD,
this can be attributed to the increase in ntr , as described in 4.1.
CNN is converged around 97% accuracy, while the accuracies
achieved by LRM-NMD range from 93.5± 3.1% to 75.5± 3.9%.

At novl = 50% the accuracies achieved by CNN start to di-
verge slightly, ranging from 96.8± 1.3% to 94.5± 2.7%. In com-
parison, LRM-NMD achieves accuracies ranging from 92.5±3.7%
to 66.3± 1.5%. At this point CNN still outperforms LRM-NMD.

However, when we look at novl = 100%, we see that CNN has
a drop in classification accuracy. The classification accuracy ranges
from 80.2±1.3% to 67.5±5.7%, while the classification accuracy
of LRM-NMD ranges from 90.0± 3.2% to 67.3± 7.5%.

From these results, we conclude that for up to novl = 75%
CNN outperforms LRM-NMD. However, if novl gets closer to
100%, LRM-NMD starts to achieve higher accuracies than CNN.
A possible explanation for this could be that, due to the nature of
the generation of the overlap in the segments, the filters of CNN
are smaller than the non-overlapping part of the events for less than
100% overlap. This could lead to the CNN still being able to rec-
ognize the events in this non-overlapping area, while the rest of the
event is overlapped with the next event.
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Figure 1: The obtained classification results for CNN and LRM-
NMD in function of the number of training segments (ntr) and the
number of labelled events per segment (nlbl). Note that ntr = 5000
and ntr = 10000 are not evaluated for LRM-NMD due to the com-
putational complexity of the multiplicative updates and the stagna-
tion of the results.

An important aspect to note here is that the CNN had more
training data. With a smaller training set size, the performance of
CNN is worse.

4.3. Comparison with other papers

This paragraph compares the results of this study with other studies
using the NAR-dataset. For this comparison we used the best results
achieved in the studies, i.e. 96.0% in [14], 97.0% in [15], 98.36%
in [20], and 100.0% in [21], and for LRM-NMD and CNN we used
the best results with no missing labels and 0% overlap, 94.5% and
97.0% respectively. Note that in the other studies the learning is
done using single strong labels, while in this study multi weak la-
bels were used. This makes a direct comparison unfair due to the
different natures of learning, however, based on the results, we can
cautiously state that we approach state-of-the-art performance.

5. CONCLUSION

In this work two experiments that compare the classification per-
formance of a CNN-based and a LRM-NMD-based approach for
acoustic event classification using weakly multi-labelled data were
performed.

The first experiment was done to examine the influence of the
amount of training data on the classification performance for dif-
ferent amounts of missing labels. In this experiment we observed
that for a low amount of data LRM-NMD clearly outperforms CNN
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Figure 2: The obtained classification results for CNN and LRM-
NMD in function of the degree of overlap (novl) and the number of
labelled events per segment (nlbl). Note that CNN uses the setting
of ntr = 10000 and LRM-NMD ntr = 500.

with an accuracy that is 40 to 50% higher, on each amount of miss-
ing labels. However, if enough training data is added, CNN slightly
outperforms LRM-NMD and converges to 97% accuracy for all
amounts of missing labels. Results from this experiment indicate
that, with large training set sizes and with a uniform probability of
a label being absent over classes, missing labels have a very limited
effect on the classification performance of a CNN.

In the second experiment we examined the impact of overlap
on the classification performance. This experiment was done using
ntr = 500 and ntr = 10000 for LRM-NMD and CNN respec-
tively which gave the best models in the former experiment for 0%
overlap of both approaches. We conclude that for up to 75% overlap
CNN outperforms LRM-NMD and converges to 97% while LRM-
NMD reaches 95% accuracy. However, if the amount of overlap
increases further, LRM-NMD starts to outperform CNN, with up
to 10% higher accuracies for different amounts of missing labels.
In this experiment we have also seen that overlap has a relatively
limited impact on LRM-NMD.

In future work we also target to develop a neural network al-
ternative to the LRM-NMD algorithm that we proposed in [8]. In
this way we can benefit from the modelling flexibility (e.g. the abil-
ity to include non-linearity in the modelling process) that comes
with neural networks allowing for several extensions and general-
izations, while also keeping the capabilities of LRM-NMD (e.g. be-
ing able to use unlabelled data in addition to weak labelled data and
the robustness to overlap). Moreover, a more detailed benchmark-
ing of the considered methods will be performed on other publicly
available data sets.
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ABSTRACT

Acoustic Scene Classification is a regular task in the DCASE
Challenge, with each edition having it as a task. Throughout the
years, modifications to the task have included mostly changing
the dataset and increasing its size, but recently also more realis-
tic setups have been introduced. In DCASE 2019 Challenge, the
Acoustic Scene Classification task includes three subtasks: Subtask
A, a closed-set typical supervised classification where all data is
recorded with the same device; Subtask B, a closed-set classifica-
tion setup with mismatched recording devices between training and
evaluation data, and Subtask C, an open-set classification setup in
which evaluation data could contain acoustic scenes not encoun-
tered in the training. In all subtasks, the provided baseline system
was significantly outperformed, with top performance being 85.2%
for Subtask A, 75.5% for Subtask B, and 67.4% for Subtask C. This
paper presents the outcome of DCASE 2019 Challenge Task 1 in
terms of submitted systems performance and analysis.

Index Terms— Acoustic Scene Classification, DCASE 2019
Challenge, open set classification

1. INTRODUCTION

Acoustic scene classification is a task of widespread interest in the
general topic of environmental audio analysis, and refers to the spe-
cific case of classifying environments based on their general acous-
tic characteristics [1, 2, 3]. Other closely related and popular direc-
tions of research include classification of individual sound events
from the environment, sound event detection, localization and tag-
ging. Specific applications for acoustic scene classification include
services and devices that can benefit of context awareness [4], ser-
vices or applications for indexing audio content [5], documentary
and archival of everyday experience [6], wearable technology, nav-
igation systems for robotics, etc.

As a research area acoustic scene classification is not novel,
but has gained traction in recent years due to the wide availability
of user devices and applications. However, is not plausible to be
able to record training data with all devices or all types of scenes
that may be encountered in use conditions. In such situation, the
classifiers require methods to handle device mismatch through e.g.
domain adaptation, and the ability to detect acoustic scenes unseen
in training.

This work has received funding from the European Research Council,
grant agreement 637422 EVERYSOUND

Metro station
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Figure 1: Closed and open-set acoustic scene classification

In DCASE 2019 Challenge, the Acoustic Scene Classification
Task includes three subtasks, among which two represent realis-
tic usage cases. Subtask A is a closed-set supervised classification
problem where all data is recorded with the same device; Subtask
B is a closed-set classification problem with mismatched recording
devices between training and evaluation data, and Subtask C is an
open-set classification problem in which evaluation data could con-
tain acoustic scenes not encountered in the training.

In this paper we present the task setup and submissions of
DCASE 2019 Challenge Task 1. We introduce the three different
setups used for the three subtasks, describe the datasets provided
for each, and present the challenge submissions. Evaluation and
analysis of submitted systems includes general statistics on systems
and performance and system characteristics.

The paper is organized as follows: Section 2 presents the task
setup including data, rules and baseline system, Section 3 presents
the main statistics about the received submissions, while Section
4 presents an analysis of the main trends in the submissions, with
details about selected systems. Finally, Section 6 presents the con-
clusions and ideas for future editions.

2. TASK DESCRIPTION

The goal of acoustic scene classification is to classify a test record-
ing into one of the provided predefined classes that characterizes the
environment in which it was recorded. In DCASE 2019 challenge,
the Acoustic Scene Classification task presented participants with
three different subtasks that required system development for three
different situations:

• Subtask A: Acoustic Scene Classification. Classification of
data from the same device as the available training data.

https://doi.org/10.33682/m5kp-fa97
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• Subtask B: Acoustic Scene Classification with mismatched
recording devices. Classification of data recorded with devices
different than the training data.

• Subtask C: Open set Acoustic Scene Classification. Classifica-
tion on data that includes classes not encountered in the train-
ing data.

2.1. Dataset

The dataset for this task is the TAU Urban Acoustic Scenes 2019
dataset, consisting of recordings from the following acoustic scenes:
airport, indoor shopping mall, metro station, pedestrian street, pub-
lic square, street with medium level of traffic, travelling by tram,
travelling by bus, travelling by underground metro, and urban park.
The dataset used for the task is an extension of the TUT 2018
Urban Acoustic Scenes dataset, recorded in multiple cities in Eu-
rope. TUT 2018 Urban Acoustic Scenes dataset contains recordings
from Barcelona, Helsinki, London, Paris, Stockholm and Vienna, to
which TAU 2019 Urban Acoustic Scenes dataset adds Lisbon, Am-
sterdam, Lyon, Madrid, Milan, and Prague. The recordings were
done with four devices simultaneously, denoted in the data as de-
vice A (Soundman OKM II Klassik/studio A3 electret binaural mi-
crophone), device B (Samsung Galaxy S7), device C (IPhone SE),
and device D (GoPro Hero5 Session). The data recording procedure
is explained in detail in [13].

Different versions of the dataset are provided for each subtask,
together with a training/test partitioning for system development.
Generalization properties of systems were tested by presenting in
the evaluation set data recorded in cities unseen in training (10 cities
in development data, 12 in evaluation). As a special situation, in
Subtask C additional data is provided for the open set classification;
this consists of the ”beach” and ”office” classes of TUT Acoustic
Scenes 2017 dataset, and other material recorded in 2019. Similarly,
data from acoustic scenes other than the 10 mentioned above were
present in the evaluation data.

Table 1 summarizes the information about datasets. For each
subtask, the development set is split into training/test subsets, cre-
ated based on the recording location such that the training subset
contains approximately 70% of recording locations from each city.
The evaluation set was released as audio only, two weeks before
the challenge submission deadline; reference annotation is available
only to task coordinators for evaluating the systems’ performance.

Use of external data was allowed in all subtasks under the con-
ditions that the data is freely accessible and available before the
release of the Evaluation dataset. A list of external data sources was
provided, and participants had the option to suggest others.

2.2. Evaluation

The submissions were evaluated using classification accuracy cal-
culated as average of the class-wise accuracy, with each segment
considered as an independent test sample. Ranking of submissions
was done as follows:

• Subtask A used the average accuracy on all evaluation data.
• Subtask B used the average accuracy on devices B and C.
• Subtask C used the weighted average of the accuracy of known

classes ACCkn and accuracy of the unknown class ACCunk,
with a weight of 0.5 for each:

ACCw = wACCkn + (1− w)ACCunk (1)

During the challenge, public leaderboards were provided for each
task through Kaggle InClass competitions. Leaderboards were
meant to serve as a development tool for participants, and did not
have an official role in the challenge.

2.3. Baseline system

The baseline system implements a convolutional neural network
(CNN) based approach using two CNN layers and one fully con-
nected layer, trained using log mel-band energies extracted for the
10-second audio examples. The system is identical to the baseline
provided in Task 1 of DCASE 2018 Challenge, and detailed system
parameters can be found in [13]. Model selection is done using a
validation set of approximately 30% of the original training data.
Model performance is evaluated on this validation set after each
epoch, and the best performing model is selected.

Specific modifications for subtasks include the use of different
training data for the different subtasks and the decision making pro-
cess for the output. Training of the system for Subtask B was done
such that all available audio material (devices A, B and C) was used,
with no specific way of treating parallel data. For Subtask C, the
system was trained using only the known classes audio material.

The activation function in the output layer for Subtasks A and B
is softmax, allowing selection of the most likely class in the closed-
set classification problem. For Subtask C, the activation function in
the output layer is sigmoid, to allow making the open-set decision
based on a threshold; if at least one of the class values is over the
threshold of 0.5, the most probable target scene class is chosen, if all
values are under the threshold, the unknown scene class is selected.

3. CHALLENGE SUBMISSIONS

The task has received a total number of 146 submissions from 46
teams (maximum 4 submissions per team allowed). Subtask A was
the most popular, as expected, with 98 submissions; Subtask B has
received 29 submisions, and Subtask C 19.

Subtask A had the best performance of 85.2%, with a 95% con-
fidence interval (CI) between 84.4 and 86.0. Zhang et al. [14] are
authors of the four best systems. Koutini et al. [15] ranked 5th -
8th, with their best system having an accuracy of 83.8% (CI 82.9 -
84.6). The McNemar test between the top system of Zhang et al.
and Koutini et al. shows that they are significantly different, estab-
lishing Zhang et al. as the top system. The baseline system with a
performance of 63.3% ranks very low, with only 5 of the 98 submit-
ted systems performing lower.

In Subtask B, Kosmider et al. [16] obtained the highest per-
formance of 75.3% (74.3 - 76.3) on data from devices B and C,
and submitted the four best systems. Tied on 4th rank, the system
by McDonnell et al. [17] obtained an accuracy of 74.9% (73.9 -
75.9), while on rank 5, the system by Eghbal-zadeh et al. [15] has
an accuracy of 74.5% (73.5 - 75.5). McNemar’s test shows that
the top system by Kosmider et.al and the system by McDonnell et
al. make significantly different errors; also McDonnell et al. and
Eghbal-zadeh et al. are significantly different according to the same
test, therefore even though their confidence intervals overlap, their
order in ranking is justified. The baseline system ranks last with a
significant gap to the second last, as no effort was made in it to deal
with the device mismatch.

The top system in Subtask C, by Zhu et al. [18], has an accuracy
of 67.4% (66.8 - 68.1) calculated according to (1), and again the
four best systems were submitted by the same team. On rank 5 is
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Subset Hours Devices Observations

Subtask A dataset: Dev [7] 40 A Binaural audio, data balanced between classes
TAU Urban Acoustic Scenes 2019 Eval [8] 20 A Introduced two unseen cities

Subtask B dataset: Dev [9] 46 A, B, C Single channel audio, 3h of parallel data provided
TAU Urban Acoustic Scenes 2019 Mobile Eval [10] 30 A, B, C, D Introduced two unseen cities, unseen device D

Subtask C dataset: Dev [11] 44 A Single channel audio, 4h ”unknown” class data
TAU Urban Acoustic Scenes 2019 Open set Eval [12] 20 A Introduced two unseen cities, unknown class data

Table 1: Summary of datasets. Complete details for each are included with the data package.

a system by Rakowski et al. [19] with a performance of 64.4% (CI
63.8 - 65.1); this is outside of the confidence interval of the top
system, therefore the top system performs significantly better. In
this subtask too, the baseline system ranks last.

Figure 2 presents the performance of the top ten teams for Sub-
tasks A and B, and top 5 for Subtask C. Best system per team is
selected for the illustration. In the bottom panel, additional details
on the system performance are presented: seen vs unseen cities in
Subtask A, other devices including unseen device D in Subtask B,
and the known vs unknown scenes in Subtask C.

4. ANALYSIS OF SUBMISSIONS

A large majority of submissions for all subtasks used as features
log mel energies and used classifiers based on convolutional neu-
ral networks. The following statistics are based on the information
reported by participants.

4.1. Acoustic Scene Classification

Subtask A includes 85 systems of the 99 (including baseline) that
use log mel energies, as standalone features or in combination with
other features; the other most common preprocessing technique was
harmonic/percussive source separation [20] used by 8 systems of 3
teams. From the 99 systems, 58 reported using mixup [21] as a data
augmentation method.

CNNs were part of 82 systems, in many cases as ensemble.
Ensembles were very common, with 75 systems reporting use 2 to
40 subsystems. Many ensembles are just multiple CNNs, while in
some cases combinations of specific architectures like VGG, Incep-
tion and ResNet were used. The most number of systems in an
ensemble is 40, with one billion parameters [22]. The system uses
a model pre-trained on AudioSet [23] and obtains an accuracy of
80.5%, ranking 15th among the 99 systems.

The top system by Zhang et al. used log mel energies and CQT
as feature representations, generative neural network-based aug-
mentation, and an ensemble of 7 CNNs having in total 48M pa-
rameters [14]. Among the 7 subsystems, one uses an adversary city
adaptation branch that classifies the test samples into the target city,
and a gradient reverse layer that makes the output of convolutional
layers similar for the same scene class over various city domains.
The system has a performance of 77.9% on data from unknown
cities, compared to 86.7% on the cities enocuntered in training.

The runner-up team proposed a variety of Receptive-Field-
Regularized CNN classifiers, among which one submission was
single-model. Separate predictions of the model (snapshots) taken
every 5 epochs after 300 epochs in training were used as a way to
incorporate more opinions on the test data,resulting in a system with
35M parameters. The best system of the team uses among others a
new convolutional layer to create Frequency-Aware Convolutional

Neural Networks [15], with filters more specialized in certain fre-
quencies. This ensemble of 7 subsystems has 71M parameters, and
its confidence intervals overlap with the single model system.

4.2. Acoustic Scene Classification with mismatched devices

Subtask B has a total of 30 systems including the baseline, of which
29 are CNN-based, the other one using support vector machines.
Among all, 25 systems use log mel energies, four use perceptu-
ally weighted power spectrogram (one team), and one uses mel-
frequency discrete wavelet coefficients; 20 systems use mixup, and
14 have a parameter count over 10M. The most number of systems
in an ensemble is 124, belonging to the top system, while the high-
est parameter count is 727M for an ensemble of 11 systems using 20
snapshots each [15]. Methods for dealing with the device mismatch
include domain adaptation and transfer learning, feature transform,
spectrum correction, and regularization.

The top systems from Kosmider et al. [16] are based on large
ensembles and use a spectrum correction method to account for dif-
ferent frequency responses of the devices in the dataset. The method
uses the special feature of the provided development data, namely
the temporally aligned recordings from different devices and cal-
culated correction coefficients for devices, using as a reference the
average spectrum of devices B and C. The method obtains an ac-
curacy of 75.3 on the data from devices B and C (ranking metric),
80.8% on device A, and 38.6% on the unseen device D.

Also in the top is a simple two-system CNN ensemble by Mc-
Donnell et al. that uses multiple forms of regularization that in-
volves aggressively large value for weight decay and not learning
batch normalization scale and offset, along with mixup and tem-
poral crop augmentation [17]. The two CNNs use deep residual
networks with two pathways, one for high frequencies and one for
low frequencies, that were fused prior to the network output. Au-
thors point out that the temporal and frequency axes in spectrograms
represent fundamentally different information than for images, and
choose no to downsample the frequency axis within the networks.
No specific processing of the parallel data from different devices is
reported, but the system obtains nevertheless a very balanced perfor-
mance of the four different devices: 74.9% (73.9 - 75.9) on devices
B and C, performs with 79.8% on device A, and 65.2% on device
D, which is the highest accuracy obtained on device D among all
systems.

4.3. Open set Acoustic Scene Classification

Subtask C has a total of 20 entries, all using log mel energies, with
all but the winner team using CNNs. Only six systems have better
accuracy for the known classes than the unknown class, indicating a
tendency towards optimization for detection of the unknown class.
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Figure 2: Performance of top teams in each subtask, including confidence intervals

The highest reported number of subsystems in an ensemble for this
subtask is 17, but most have only 2 to 4 subsystems.

The top ranked system by Zhu et al. uses CRNNs with self-
attention mechanism which are trained on different time divisions of
the mel spectrogram. The decision for the unknown class is guided
by a threshold of 0.4 on the output layer probabilities for the classes
[18]. Their choice of threshold results in a 81.8% accuracy on the
unknown class, with 53.1% on the known 10 classes.

Rakowski et al. [19] employed a frequency-aware CNN that
preserves the location of features on the frequency axis by applying
global pooling only across the temporal dimension, similar to the
observations of [17] in Subtask B. The approach resulted in a rel-
atively balanced performance on the known and unknown classes,
59.5% and 69.4% respectively. Lehner et al. [24] used a rejection
option for the identification of unknown class, based on the most
likely of the ten known classes. They note that the weighted av-
erage accuracy used for ranking Subtask C favors aggressive re-
jection, and for this reason chose the threshold for rejection as the
maximum score on the validation data. As a result, they obtained
an accuracy of up to 91% on the unknown class, but considerably
lower performance on the ten known classes, only 30%.

A notably different approach was proposed by Wilkinghoff et
al. [25], which treats the open set classification problem as a combi-
nation of convolutional neural networks for closed-set classification
and deep convolutional autoencoders for unknown class detection.
The method results in a high accuracy on the unknown class at the
expense of low accuracy in the closed set (75.2% vs 48.9%).

5. DISCUSSION

One immediate observation about the submissions is that there was
little use of external data, with only the four mentioned systems
of one team using pretrained models [22]. This is contrary to the
feedback of previous challenges that indicated participants wanted
to use external data. It is possible that the datasets provided for the
task are considered large enough to warrant robust modeling, and
therefore use of external data is not necessary.

Compared to 2018 Challenge, novel approaches tailored to use
of parallel data have emerged for solving the device mismatch.
Among all, the spectrum correction has provided the best perfor-
mance on the target devices [16], but the best generalization over
the four devices was obtained by extensive regularization proce-
dures [17]. The open set classification was tackled by participants
in few different ways, with most systems using a threshold. The
more distinct approaches treated the unknown class as a separate
class [17] or as a subproblem [25]. In most cases, the optimization
resulted in emphasis on getting good performance on the unknown
class, at the expense of the performance on the ten known classes.

We also want to highlight two approaches to cross-task solu-
tions, one very basic and another one including many techniques
to achieve robustness. [26] consists of a generic CNN architecture,
similar to the baseline but with more layers, and obtains average
performance in Subtask A (53th with 70.5%) but is only better than
the baseline system in Subtask B and Subtask C. In contrast, [17]
uses more specialized networks and extensive regularization and
data augmentation techniques, resulting in a system highly robust
to device mismatch (4th in subtask B), having a performance 10
to 15% higher than [26] in all subtasks. These results show that a
generic approach, while generally appropriate for straightforward
tasks such as the closed set classification, is not suitable for dealing
with the same problem in realistic settings, but requires additional
techniques to obtain satisfactory performance.

6. CONCLUSIONS

The 2019 Challenge has introduced realistic problems that included
evaluation data that contained unseen cities in Subtask A, unseen
devices in Subtask B and unseen acoustic scene classes in Sub-
task C. Acoustic Scene Classification remains the favorite task in
the DCASE Challenge, as it offers a textbook problem for audio
classification, suitable for beginners in the field. With multiple sub-
tasks of different complexity, the task has also attracted the attention
of experienced researchers, and state of the art methods for audio
classification are continuously developed within the framework of
acoustic scene classification.
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ABSTRACT

Early detection and repair of failing components in automobiles re-
duces the risk of vehicle failure in life-threatening situations. Many
automobile components in need of repair produce characteristic
sounds. For example, loose drive belts emit a high-pitched squeak-
ing sound, and bad starter motors have a characteristic whirring or
clicking noise. Often drivers can tell that the sound of their car is
not normal, but may not be able to identify the cause. To mitigate
this knowledge gap, we have developed OtoMechanic, a web appli-
cation to detect and diagnose vehicle component issues from their
corresponding sounds. It compares a user’s recording of a problem-
atic sound to a database of annotated sounds caused by failing auto-
mobile components. OtoMechanic returns the most similar sounds,
and provides weblinks for more information on the diagnosis as-
sociated with each sound, along with an estimate of the similarity
of each retrieved sound. In user studies, we find that OtoMechanic
significantly increases diagnostic accuracy relative to a baseline ac-
curacy of consumer performance.

Index Terms— Audio retrieval, human-computer interfaces
(HCI), public safety, transfer learning, vehicle diagnosis

1. INTRODUCTION

The timely maintenance of personal automobiles is vitally impor-
tant to passenger safety. Foregoing important vehicle maintenance
can cause a vehicle to behave unexpectedly and poses a danger to
both occupants and nearby pedestrians. Failing to fix specific vehi-
cle issues in a timely manner may also result in significantly more
expensive repairs (e.g., engine damage due to a lack of oil). Be-
cause it is the consumer’s decision to take their vehicle in for repair,
it is of significant public interest to empower drivers with knowl-
edge regarding the status of their vehicle, and whether any urgent
repairs are needed.

The owner is typically alerted to a vehicle issue by either no-
tifications from on-board computers or a change in the sensory ex-
perience of driving (e.g., a strange sound, smell, or vibration). On-
Board Diagnostic (OBD) computer systems have been ubiquitous
in consumer vehicles sold in the United States since 1996. While
OBD systems provide some basic information about vehicle status
directly to the driver (e.g., via the ”Check Engine” light), a large
majority of the diagnostic information from these systems must be
retrieved via an external, specialized computer most consumers do
not own.

This work was funded, in part, by USA National Science Foundation Award
1617497.

Many automobile components in need of repair produce char-
acteristic sounds. For example, loose drive belts emit a high-
pitched squeaking sound, and bad starter motors have a character-
istic whirring or clicking noise. Often drivers can tell that the car
does not sound normal, but may not be able to identify the failing
component. Consumer guides have been released to help drivers
identify these sounds [1]. However, these guides assume that the
consumer possesses significant knowledge, such as being able to
locate and identify the vehicle components for power-steering or
engine cooling. Many do not have this knowledge.

In this work, we present the OtoMechanic (“oto-” meaning
“ear”) web application. OtoMechanic is designed for drivers who
can hear a strange sound coming from their vehicle, but may be un-
certain of the underlying issue and want information about it, such
as the urgency and cost to repair. To use OtoMechanic, one uploads
a recording of the sound a car is making and answers questions
about when and where the sound happens. The system diagnoses
the problem by measuring the similarity of the uploaded record-
ing to reference recordings in a database of sounds produced by a
variety of known vehicle issues. In the remainder of this article
we describe related work, the methods used in OtoMechanic, the
collection of labeled recording of automotive problems and a user
study to evaluate the effectiveness of OtoMechanic.

2. RELATED WORK

By far, the most reliable sources of diagnostic information are do-
main experts such as professional auto mechanics. However, the
costs associated with visiting a mechanic cause consumers to hes-
itate and instead ask “Do I need to go to a mechanic?” Indeed,
our user studies suggest that consumers often expend a significant
amount of time in performing preliminary diagnostics before decid-
ing to consult a mechanic. Since many drivers cannot identify spe-
cific causes or issues themselves, there have been efforts to build
software to perform diagnosis of automotive issues

Recent work by Siegel et al. [2] demonstrates that convolu-
tional neural networks achieve a 78.5% accuracy rate for visually
diagnosing photos of damaged and unsafe tires—a significant im-
provement over the 55% accuracy achieved by humans not trained
to detect flaws in tires. This shows the potential for systems to di-
agnose vehicle problems with an accuracy that exceeds non-expert
performance. While Siegel et al. diagnose photos of tires (i.e., vi-
sual information), our system diagnoses the sounds produced by the
vehicle.

A strange sound is a useful indicator for a variety of specific
vehicle issues (e.g., worn drive belts and low battery). Unfortu-
nately, many people cannot name which component is failing from

https://doi.org/10.33682/ne8s-1m78
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(a) Specifying location information

(b) Specifying timing information

(c) Audio upload interface

(d) Diagnostic results interface

Figure 1: The OtoMechanic user interface

the sound. Datasets of annotated car sounds offer one resource for
consumers trying to identify a component making a strange sound.
Existing datasets include the Car Noise Emporium [3] consisting of
vocal imitations of 45 vehicle issues, the ClingClanger mobile ap-
plication consisting of 27 actual recordings of vehicle issues taken
from a single vehicle [4], and YouTube. YouTube videos demon-
strating the sounds of common car issues have millions of views
[5, 6]. However, finding a video to diagnose a specific issue re-
quires consumers to identify by name the failing component in or-
der to construct a useful search query.

In all of these approaches (including ClingClanger), the task of
matching the sound emitted by their vehicle to example sounds with
known causes falls to the user, who is required to listen to all of the
available recordings to find the best match. The amount of audio
that must be listened to increases linearly as the number of possible
diagnostic sounds increases, imposing a significant time cost.

Auditory analysis is regularly used by professional test engi-
neers and mechanics when diagnosing vehicle issues, and a large
body of literature exists on this subject, specifically for engine di-
agnostics [7, 8, 9, 10, 11, 12, 13]. The work most similar to ours
is by Nave and Sybingco [11], who perform a classification task on
the sounds of three engine issues, and consider the high variance
of sounds caused by the same diagnosis across different vehicles.
Nave and Sybingco developed an application for the Android oper-
ating system to perform classification of these three engine sounds.
However, this app is only useful when the issue has already been
narrowed to an engine fault, which is itself a non-trivial diagnostic
task. More generally, all of these works focus on the development
of tools for professional use, and do not address use by non-expert
consumers.

3. OTOMECHANIC

OtoMechanic is an end-user application for diagnosing automotive
vehicle issues from an audio recording. It can diagnose many more
issues than prior systems and is designed to be accessible by people
with little or no expertise in automotive diagnosis or repair.

OtoMechanic asks users to provide two inputs: 1) a recording of
a troubling sound coming from the user’s vehicle and 2) answers to
the questions: ”Where and when does the sound occur?” Given this
information, it queries a database of sounds associated with vehicle
issues (see Section 3.3), narrowing the search based on when and
where the query sound occurs. Users are then presented with the top
3 matching sounds, ordered by similarity with the user’s recording,
as well as the diagnoses and confidence level for each matching
sound. For each retrieved sound, web links with more information
about the diagnosis are provided. This helps users conduct further
research on their vehicle’s issue.

3.1. Interface Design

The OtoMechanic interface (Figure 1) presents, in sequence, four
distinct displays to the user. The first display (Figure 1a) asks where
on the vehicle the concerning sound is being produced. Users may
respond with front, rear, or wheels of the vehicle, or indicate that
they are not sure. The second display (Figure 1b) asks users when
the concerning sound occurs. Users may respond with while start-
ing the car, while the engine is idling, while driving, while braking,
or while turning, or indicate that they are not sure. After specifying
when and where the sound occurs, users are prompted to upload a
recording of the sound (see Figure 1c).
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Figure 1d shows example diagnostic results from OtoMechanic.
In this example, a recording of a failing battery was uploaded, and
no timing or location information was given. The diagnostic results
allow users to listen to their uploaded recording and compare it to
the three most relevant matches, as determined by our system. The
diagnosis corresponding to each returned audio file is provided to
the user, as well as a visual indicator of the confidence of the di-
agnosis and a weblink to Google search using curated search terms
relevant to that issue. The search terms used ensure that both text
and video descriptions of the diagnosis are included within the first
page of search results. This allows users to verify the accuracy of
the diagnosis, and determine if they need to take further action (e.g.,
taking their car to a mechanic for repair).

3.2. Diagnostic Procedure

Once the user provides their audio recording and any qualitative
input (i.e., where and when the sound occurs), our system queries
a database of annotated sounds of vehicle issues to determine the
most likely diagnosis. To do this, our system first filters out all audio
files in the database that are inconsistent with the time and location
information provided by the user. Our system then computes the
similarity between the user’s audio recording and each audio file in
this list of potential matches.

To compute the similarity between the user’s audio recording
and a recording in our database, we split each audio file into equal-
sized slices of 960 milliseconds at a sampling rate of 16,000 Hz.
Each 960 millisecond slice is transformed by passing it through a
pretrained VGGish neural network [14]. This network is trained to
classify audio taken from millions of YouTube videos. We make use
of the modification proposed by Kim and Pardo [15], who show that
a feature vector formed from the output of two neural network lay-
ers of the trained VGGish model is significantly better for a query-
by-example task than using only the output of the final layer.

The final feature vector representation of a single audio record-
ing is the element-wise average of the VGGish feature vectors ex-
tracted from all 960 ms slices from that recording. The similarity of
a user’s recording to a recording in our database is the cosine simi-
larity between these fixed-length feature vectors. In informal exper-
iments on both a commodity laptop and an Amazon Web Services
EC2 t2-micro instance, inferring the most relevant audio recordings
in the OtoMobile dataset of automotive sounds (see Section 3.3)
takes between 200-500 milliseconds for user recordings up to 10
seconds in length, making it suitable for interactive use.

For each retrieved recording, we report a confidence score to the
user. Confidence scores are derived by mean-shifting the similarity
scores to 0.5 and scaling them to range between 0 and 1 using the
mean and range computed over all pairwise similarity scores on the
OtoMobile dataset (excluding self-similarities). To minimize the
need for users to listen to many recordings, only the top three most
similar recordings are displayed.

Currently, OtoMechanic selects one of 12 possible diagnoses.
The number of possible diagnoses is determined by the number of
different diagnoses that have representation in the dataset of vehicle
sounds. As sounds relevant to new vehicle issues are placed in the
dataset, OtoMechanic becomes able to suggest these new issues as
possible diagnoses.

3.3. OtoMobile Dataset

As no large collection of audio recordings of vehicle issues existed,
we curated our own dataset, called the OtoMobile dataset. OtoMo-

bile consists of 65 recordings of vehicles with failing components,
along with annotations. These annotations include the diagnosis of
the failing component (one of 12 common automobile issues), the
location of the component on the car (front, rear, or wheels), the
time during which the sound occurred (while starting, while idling,
while driving, while braking, or while turning) the video name and
URL, and the start location of the video where the sound was ex-
tracted. Excerpts were selected based on the following criteria:

• The diagnosis of the sound coming from the vehicle was pro-
vided by either a professional auto mechanic, or someone who
had consulted a professional auto mechanic to diagnose the
sound.

• At least one second of audio of the problematic vehicle sound
was available, during which other noises (e.g., speech) were
absent.

• No more than one recording of the same diagnosis was ex-
tracted from each video.

The selected audio recordings were cropped to contain only the
problematic sounds and normalized to all have the same maximum
amplitude. The dataset is available for download for educational
and research purposes1. Despite the availability of the OtoMobile
dataset, we note that data scarcity is still a major bottleneck in au-
ditory vehicle diagnosis.

4. USER STUDIES

We hypothesize that our system improves the ability of nonexperts
to identify the vehicular problem causing a particular sound. To
test our hypothesis, we conducted two user studies. The goals of
the first study were two-fold: 1) understand the existing methods
that consumers use to diagnose strange noises coming from their
vehicles and 2) determine a baseline accuracy for non-expert diag-
nosis of such noises. The goal of the second study was to determine
whether OtoMechanic can be used to improve non-expert auditory
vehicle diagnosis relative to the baseline accuracy determined in our
first study.

Both studies made use of Amazon Mechanical Turk (AMT) to
recruit and pay participants. We required participants to be from
the United States and have at least a 97% acceptance rate on AMT
to qualify for our study. 86 participants completed the diagnos-
tic baseline study study and 100 participants completed the system
evaluation study.

4.1. Establishing a Diagnostic Baseline

The purpose of our first user study was to understand the existing
methods people use to diagnose troublesome vehicle sounds and the
efficacy of their methods. In this study, each of our participants was
presented a randomly selected audio recording from the OtoMobile
dataset (see Section 3.3), along with information about when (i.e.
”when turning”, ”when idling”) and where (i.e. ”from the wheels”)
the troublesome sound occurs. Participants were asked to write a
brief description of the steps they would take to diagnose the vehi-
cle, given this information.

After participants described their approach, a new portion of
the questionnaire was revealed to them, where we asked them to ac-
tually diagnose the sound they had been presented in the previous

1https://zenodo.org/record/3382945.XXCDG-hKhPY
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question. Participants were presented a 12-way forced choice selec-
tion of diagnoses. Note that all sounds in the OtoMobile dataset are
due to one of 12 issues and that the data set is balanced by issue, so
selecting an answer at random will be correct 1/12 of the time.

4.2. Diagnostic Baseline User Study Results

Participant descriptions of their diagnosis method indicated a strong
preference for manual inspection as a diagnostic method. Of the 86
diagnostic methods described by participants, 73 of the descriptions
mentioned a physical interaction with the vehicle that they would
use to gain more information on the issue. We found that partici-
pants were far more willing to actively participate in diagnosing the
vehicle than to seek out a professional auto mechanic; only 23 of
our 86 participants mentioned interacting with a mechanic in order
to diagnose their vehicle.

Despite the wide availability of online resources, our results
suggest that participants are unlikely to connect with these re-
sources. Only four participants mentioned they would use online
resources to assist their diagnosis. We hypothesize that this may be
due to the difficulty that non-experts face in constructing relevant
search terms. For example, one participant describes a process of
first isolating symptoms of the vehicle and then using that informa-
tion to construct a search query: “I’d see what factors might affect
[the sound], e.g. stepping on the gas, changing gears. Then I’d look
up potential answers on the Web.” The ability for OtoMechanic to
connect users to online resources by providing relevant web links
associated with a diagnosis represents a potential solution to the
lack of utilization of online resources that we observed.

Only two participants mentioned asking a friend or family
member, and only two participants mentioned accessing their car’s
computer via an external OBD reader. Responses indicate a large
variance in experience with vehicle repairs. One participant self-
reported that they “don’t know anything about cars”, while others
indicated significant knowledge of car components and prior expe-
rience replacing brake pads, fuel pumps, and drive belts.

When asked to select the diagnosis that best corresponded to
a randomly selected audio recording from the OtoMobile dataset,
participants were able to identify the correct diagnosis with 37.2%
accuracy. Chance performance on this 12-way forced choice task is
8.3%.

4.3. System Evaluation User Study

We evaluate the efficacy of the OtoMechanic approach through a
second user study. This study was performed by a new group of
100 participants. Each study participant was given a random au-
dio recording from the OtoMobile dataset and the same qualitative
information as in the first study (i.e., when and where the sound
occurred). As with the diagnostic portion of the previous study,
participants were presented a 12-way forced choice selection of di-
agnoses and chance performance on this task was 1/12.

In this study, participants were asked to use OtoMechanic to
diagnose the audio recording, and provide their diagnosis by select-
ing from the same diagnostic options as in our first user study. To
prevent trivial similarities, the audio recording provided to each par-
ticipant was removed from the list of possible matches retrieved by
OtoMechanic.

Diagnostic Method Accuracy (%)
Random 8.3
Human Baseline 37.2
OtoMechanic (no time or location information) 34.8
Random (with time and location information) 39.3
Humans using OtoMechanic 57.0
Oracle System Performance 58.7

Table 1: Diagnostic accuracies of experiments on the OtoMobile
dataset

4.4. Oracle System Classification Results

We present the diagnostic accuracy of selecting the diagnosis cor-
responding to the best matching audio recording determined by
OtoMechanic on a 12-way classification of the OtoMobile dataset.
When the location and time information is included as input along-
side the audio recording, our system achieves an accuracy of 58.7%
on the OtoMobile dataset. The likelihood of the correct diagnosis
being one of the 3 results returned to the user by OtoMechanic (i.e.,
the top-3 accuracy) is 82.9%. Without using the information about
when and where the sound occurred, our system achieves an accu-
racy of 34.8%, with a top-3 accuracy of 53.0%. If we use the loca-
tion and time information but choose randomly from the recordings
matching those criteria, our system achieves an accuracy of 39.3%.
This indicates that the knowing when and were the sound occurs is
a significant factor in diagnostic accuracy.

4.5. System Evaluation User Study Results

When asked to use OtoMechanic to diagnose a troublesome vehi-
cle sound, our 100 participants achieved a diagnostic accuracy of
57.0%. This is nearly equal to the 58.7% accuracy achieved by sim-
ply selecting the top choice indicated by OtoMechanic and signifi-
cantly greater than the 37.2% achieved by participants on the iden-
tical task when performed without access to OtoMechanic. This
indicates that our application is significantly more effective at diag-
nosing vehicle issues than a baseline of prior knowledge of partici-
pants.

5. DISCUSSION

Vehicle failure poses serious risk to public health. Road traffic
crashes are the 9th leading cause of death worldwide, and in the US
alone there are an estimated 800 deaths and 47,000 injuries each
year due to vehicle failures [16, 17]. OtoMechanic provides a con-
venient method for informing consumers of potential failures due
to damaged vehicle components. Our user studies showed use of
OtoMechanic significantly increases the accuracy of vehicle diag-
nosis from troublesome sounds without requiring expert knowledge
of vehicle maintenance or repair. Our application connects non-
expert consumers to resources that enable them to make educated
decisions about their vehicle. In future work, we aim to increase the
size of the OtoMobile dataset and the specificity of the annotations
(e.g., the make and model of the vehicle). We also aim to com-
pare our system against more challenging baselines (e.g., the per-
formance of professional auto mechanics) and investigate the utility
of OtoMechanic in on-board vehicle computers.
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ABSTRACT

State of the art polyphonic sound event detection (SED) systems
function as frame-level multi-label classification models. In the
context of dynamic polyphony levels at each frame, sound events
interfere with each other which degrade a classifier’s ability to learn
the exact frequency profile of individual sound events. Frame-level
localized classifiers also fail to explicitly model the long-term tem-
poral structure of sound events. Consequently, the event-wise de-
tection performance is less than the segment-wise detection. We
define ‘temporally precise polyphonic sound event detection’ as the
subtask of detecting sound event instances with the correct onset.
Here, we investigate the effectiveness of sound activity detection
(SAD) and onset detection as auxiliary tasks to improve temporal
precision in polyphonic SED using multi-task learning. SAD helps
to differentiate event activity frames from noisy and silence frames
and helps to avoid missed detections at each frame. Onset predic-
tions ensure the start of each event which in turn are used to con-
dition predictions of both SAD and SED. Our experiments on the
URBAN-SED dataset show that by conditioning SED with onset
detection and SAD, there is over a three-fold relative improvement
in event-based F -score.

Index Terms— Polyphonic sound event detection, sound activ-
ity detection, onset detection, multi-task learning.

1. INTRODUCTION

Sound event detection (SED) [1] is the task of detecting the la-
bel, onset, and offset of sound events in audio streams. State of
the art convolutional recurrent neural network (CRNN) based poly-
phonic SED systems use a frame-wise cost function for training
[2, 3, 4]. The frame-level classifier performance depends on the dy-
namic polyphony level, masking effects between the sound events
and the amount of co-occurrence of sound events in the training
data. Frame-level classifiers also fail to explicitly model the long-
term temporal structure of sound events. Due to these limitations,
frame-level training methods are not sufficient to model the over-
all acoustic features of polyphonic sound events. Consequently,
the event-based detection performance is very poor compared with
the segment-based detection of sound events. For example, in the
DCASE 2016 task on event detection in real life audio [5], the F -
score is around 30% at segment level (frame length of 1 second),
but only around 5% at event level (tolerance of 200 ms for onset
and 200 ms or half length for offset). Here, we define ‘temporally

AP is supported by a QMUL Principal’s studentship. EB is supported
by RAEng Research Fellowship RF/128 and a Turing Fellowship. This re-
search was supported by an NVIDIA GPU Grant.

precise polyphonic sound event detection’ as the subtask of detect-
ing sound event instances with the correct onset. In applications
like audio surveillance [6] and health care monitoring [7], tempo-
rally accurate event-based detection is very important.

1.1. Related work

SED is related to the speech processing tasks of automatic speech
recognition and speaker diarization, as well as the music signal-
related task of automatic music transcription [8, 9]. Many se-
quence modelling methods in speech and music have been utilized
in environmental sound event modeling. For example, in [10] hid-
den semi-Markov models separately model the duration of sound
events; Wang and Metze used a connectionist temporal classifica-
tion (CTC) cost function in a sequence-to-sequence model for SED
[11]. Unlike speech and music language modelling there is not
a well defined structure for environmental sound events. Explicit
use of sequential information to improve sound event modelling
is investigated in [12]; the co-occurrence probabilities of different
events are modelled using N -grams which in turn smooth the spiky
output of a neural net based SED system trained using CTC loss.
However the SED performance is not much improved, considering
the addition of both N -grams and the CTC loss. In [13] a hybrid ap-
proach that combined an acoustic-driven event boundary detection
for sound event modelling with a supervised label prediction model
is proposed for SED. This hybrid approach significantly improved
event-based detection accuracy. It is assumed that the method re-
quires additional post-processing to combine the event boundary
information with the label predictions since both models are trained
independently.

1.2. Contributions of this work

Within the limits of frame-wise training approaches using CRNN
models for polyphonic SED, we propose a novel sequence mod-
elling method using onset detection and SAD as auxiliary tasks to
achieve temporally precise polyphonic SED using multi-task learn-
ing. SAD is the task of detecting the presence or absence of any
sound events, which is analogous to voice activity detection in
speech processing. The effectiveness of SAD to improve poly-
phonic SED is discussed in a preliminary work by the authors [14].
Unlike polyphonic SED, SAD is not affected by masking effects
and acoustic variations in the sound events even when it is trained
using frame-wise cost functions. The onset detector helps to pre-
dict the beginning of sound events accurately, thus reducing missed
event detections which improves temporally precise SED. Both on-
set detection and SAD are not overwhelmed by polyphonic struc-
ture, instead these auxiliary tasks can exploit the polyphonic nature
to improve temporal precision in SED. Inspired from the success of

https://doi.org/10.33682/sm6r-8p49

174



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

time

Input

event

SED

fr
eq

ue
nc

y

jackhammer

sirengunshot

SAD

onset detection

Figure 1: Block diagram of SED, SAD, and onset detection.

framewise note detection in piano transcription conditioned on on-
set predictions [15], we configure multi-task models for SED in a
similar fashion. We investigate the individual effectiveness of con-
ditioning onset detection and SAD on SED. Also we propose a joint
model to improve the temporal precision of sound events in poly-
phonic SED.

2. PROPOSED METHOD

In this work, we investigate the effectiveness of onset detection and
SAD to improve the temporal precision of polyphonic SED. Onset
detection exclusively predicts the beginning of a sound event in-
stance, which is useful because many sound event onsets are charac-
terized by sudden increase in energy, e.g. percussive sound events.
The onset predictions are used to condition framewise SED in a
similar way as the music transcription in [15]. Conditioning SED
based on onset predictions helps to precisely locate the beginning of
sound events. SAD predicts whether any event activity is present or
not in each frame of the audio and so avoids the pitfalls caused by
masking effects between co-occurring sound events. Furthermore,
SAD can exploit polyphony to ensure the presence of an event even
if one event is masked by the occurrence of another event with sim-
ilar or different acoustic properties. Hence conditioning SED with
SAD helps to avoid missed detections in complex acoustic condi-
tions such as real-world sound scenes. Fig. 1 shows the complete
system.

We use a state-of-the-art CRNN model architecture ([2]) to
build baseline SED, SAD, and onset models. To evaluate the in-
dividual effect of each auxiliary task on SED, we implement and
analyse separate SED models conditioned on onset prediction and
sound activity prediction using a multi-task learning set up.

• sed onset is the SED model conditioned on onset prediction.
• sed sad is the SED model conditioned on sound activity.
• The sad onset model verifies the effect of SAD conditioned

on onset detection.
• The joint SED model using both onset detection and SAD as

auxiliary tasks, is denoted as sed sad onset.

2.1. Motivation for onset detection

We examine the importance of onset detector as an auxiliary task in
polyphonic SED in different perspectives. Firstly, the onset detec-
tor is able to predict the beginning of sound events more effectively
compared to a standalone baseline SED model which is affected
by dynamic polyphony levels and acoustic variations of the sound
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Figure 2: Baseline architectures for onset detection, SAD and SED.

events. Secondly, consider the case of two closely occurred sound
events. Even if the onset detector could only detect either of the
events, the same prediction can be used as two separate onsets while
conditioning the event detection with minimum error. This way the
conditioned SED model can avoid missed detection of sound events
and ensure the detection of two closely occurred events even if the
onset detector actually predicted only a single onset. We evaluate
the onset models based on this assumption. More precisely, there
is a one-to-many relation between the onset prediction and the ref-
erence. We consider this fact when counting the false negatives for
onset model evaluation and verified this relaxation does not make
much difference.

2.2. Model configuration

The detailed network architecture of the three baseline models is
in Fig. 2. We replicate the SED and SAD implementation from
[14] and extend it with our onset detector. The onset detector has
three blocks of convolutional layers. The output activations from
the third convolutional layer are averaged using an average pooling
layer, followed by two bidirectional Gated Recurrent Unit (GRU)
layers and a fully connected sigmoid to output the onset predictions.
Onsets are very localized sound events; hence the inter feature map
representations learned at the final convolution layer are equally im-
portant to predict onsets so we opted for average-pooling across the
third convolution layer feature maps instead of max-pooling. Bidi-
rectional recurrent layers are proven to work well for musical onset
detection [16]. The output of the SED model is a posteriogram ma-
trix with dimensions T ×C, where T is the number of frames in the
input data representation and C is the total number of sound event
classes in the dataset. The output representation of the sound ac-
tivity detector and the onset detector is a posteriogram vector with
dimension T . The baseline model predictions are binarised with a
threshold before evaluation. We investigate different threshold val-
ues on the baseline models using the validation set. Using the best
results, we chose a threshold of 0.2 for the SED and onset predic-
tions and 0.5 for the SAD predictions.

We implement conditional models for SED (sed sad,
sed onset, sed sad onset) and SAD (sad onset) using the base-
line SED, SAD, and onset models in a multi-task joint training
setup. Motivated from the effectiveness of piano note transcrip-
tion conditioned on onsets, initially we implement our conditional
models as explained in [15]. However, in our case the exact same ar-
chitecture was not effective so we explore the possibilities of multi-
task learning [17, 18, 19, 20]. From our experiments we fix our
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Figure 3: Block diagram of the proposed conditional models.

conditional model architectures by sharing the initial two convolu-
tional layers of the respective tasks. The conditional model training
is described in Section 2.4.

• We implement the SED model conditioned on activity detec-
tion (sed sad) by concatenating the predictions of the SAD
baseline model with the output of the baseline SED model,
followed by a bidirectional GRU layer and a fully connected
sigmoid layer to predict the sound events.

• The predictions of the onset baseline model are concatenated
with the output of the baseline SED architecture, followed by
a bidirectional GRU layer and a fully connected sigmoid layer
to implement the SED model conditioned on onset detection
(sed onset). Similarly, we implement the SAD model condi-
tioned on onset detection (sad onset).

In the sad onset model the activity detection is conditioned
using the reference event onsets which are different from the onsets
for sound activity. For example, if two sound events are overlap-
ping with each other, there are two sound event onsets but only a
single sound activity onset. The additional onsets in the event on-
set reference condition unwanted preference to the corresponding
activity frames which cause slight disturbance of activity detection
around the respective frames. As a result of this the segment-based
F -score for activity detection of the sad onset model is lower than
the baseline SAD (shown in Section 4). In our analysis of the
sed onset model and the sed sad model we realize that, condition-
ing SED using both onset detection and activity detection improves
SED temporal precision. So we design the final joint conditioned
model (sed sad onset) by first conditioning SED using onsets and
then the onset-conditioned event prediction is reconditioned using
activity predictions. Fig. 3 is a block diagram of the conditional
models.

• For the sed sad onset model, the predictions of the onset
baseline model are concatenated with the baseline SED out-
puts, followed by a bidirectional GRU layer and a fully con-
nected sigmoid layer. The output from this sigmoid layer is
concatenated with the predictions of the activity detector and
passed through a bidirectional GRU layer and a fully connected
sigmoid layer.

2.3. Feature extraction

We use librosa [21] to compute mel-scaled spectrograms from the
input audio. The short-term Fourier transform (STFT) is employed

to obtain the spectrogram from the input audio recordings with a
hop length of 882, an FFT window of 2048, and a sample rate
of 44.1 kHz. This process converts a ten second (duration of
recordings in the URBAN-SED [22] dataset) audio recording into
a 1024× 500 dimensional spectrogram representation. Each frame
of this spectrogram is converted into a 40-dimensional vector of log
filter bank energies using a Mel filterbank. We apply min-max nor-
malization on the mel band energies. Hence, each 10-second audio
recording is represented by a 40× 500 Mel-spectrogram.

2.4. Training

We train all the models in a supervised manner. The dimension of
the labels for the SED is T × C, and for the SAD and the onset
detection, it is T . The training process for the SED and the SAD
models is explained in our previous work [14]. For the onset detec-
tion, a single frame is used to mark each onset during the training
process. The baseline models for SED, SAD and onset detection are
trained using the respective cross-entropy losses denoted by Lsed,
Lsad, and Lonset. The total loss of each of the conditional models
is the weighted sum of the two corresponding cross-entropy losses
as listed in (1). During training of the conditional models, the indi-
vidual losses are equally weighted with a factor of 0.5.

Lsed sad = 0.5 · Lsed + 0.5 · Lsad

Lsed onset = 0.5 · Lsed + 0.5 · Lonset

Lsad onset = 0.5 · Lsad + 0.5 · Lonset

Lsed sad onset = 0.5 · Lsed + 0.5 · Lsad + 0.5 · Lonset

(1)

Every CNN layer activations are batch normalised [23] and reg-
ularised with dropout [24] (probability = 0.3). We train the network
for 200 epochs using a binary cross entropy loss function for both
tasks and with Adam [25] optimizer with a learning rate of 0.001.
Early stopping is used to reduce overfitting. The proposed joint
model is implemented using Keras with TensorFlow.

3. DATASET AND METRICS

We use the URBAN-SED [22] dataset in all experiments. URBAN-
SED is a dataset of 10,000 soundscapes with sound event anno-
tations generated using Scaper [22], an open-source library for
soundscape synthesis. All recordings are ten seconds, 16-bit mono
and sampled at 44.1kHz. The annotations are strong, meaning
for every sound event the annotations include the onset, offset,
and label of the sound event. Each soundscape contains between
one to nine sound events from the list (air conditioner, car horn,
children playing, dog bark, drilling, engine idling, gun shot, jack-
hammer, siren and street music) and has a background of Brownian
noise. The URBAN-SED [22] dataset comes with pre-sorted train,
validation and test sets that we use. Among 10, 000 soundscapes,
6000 are used for training, 2000 for validation and 2000 for testing.

We use precision, recall and F -score as metrics for onset detec-
tion. For sound event and sound activity detection we use the F -
score and Error Rate (ER), with F -score as the primary metric. The
evaluation metrics are computed in both segment-wise and event-
wise manners using the sed eval tool [26]. Segment-based metrics
show how well the system correctly detects the temporal regions
where a sound event is active; with an event-based metric, the met-
ric shows how well the system detects event instances with correct
onset and offset. For temporally precise event detection, we give
more importance to the event-based metric. The evaluation scores
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for activity detection and event detection are micro averaged values,
computed by aggregating intermediate statistics over all test data;
each instance has equal influence on the final metric value. We use
a segment length of one second to compute segment metrics. The
event-based metrics are calculated with respect to event instances
by evaluating only onsets with a time collar of 250ms.

In the case of onset detection, an onset is considered to be cor-
rectly detected if there is a ground truth annotation within ±250ms
around the predicted position. An important factor in the evaluation
is how false positives and false negatives are counted [27]. Assume
that two or more onsets are predicted inside the detection window
around a single reference annotation. All predictions within the
detection window around the single reference onset are treated as
one true positive and zero false positives. The false negatives are
counted by granting a one-to-many relationship between a single
prediction and multiple reference onsets within an analysis window
(±250 ms). Since our main goal is to use onset detection to condi-
tion SED we believe this evaluation approach is fair.

4. EVALUATION

Tables 1, 2, and 3 show the results of onset detection, sound ac-
tivity detection and sound event detection respectively. Table 1, the
baseline onset detector, has the best F -score (81.68%). When onset
detection is used to condition SAD and SED, the onset F -scores are
slightly lower than the baseline value. However, conditioning activ-
ity detection and event detection using onsets is really effective in
temporally precise SED. This is demonstrated in Tables 2 and 3.
By conditioning activity detection using onsets (sad onset in Ta-
ble 2), the event-based activity detection F -score increases from the
baseline value of 43.14% to 70.31%. At the same time the segment-
based F -score for the same model drops from 97.48% to 70.17%.
This is due to the fact that the sound event onset labels are used to
condition the activity detection which is different from the actual
onsets of sound activity as explained in Sec 2. We see a similar
improvement when SED is conditioned using onsets (sed onset in
Table 3). For this model the event-based F -score increases from the
baseline value of 7.34% to 21.42%. The segment-based F -score
for the same model is 47.76% compared with the baseline value
of 35.48%. The improvement in the event-based F -scores for the
sad onset model and the sed onset model verify the effectiveness
of onset conditioned polyphonic event detection to improve tempo-
ral precision in polyphonic SED.

The sed sad model performance (in Table 3) is compared with
a joint model to enhance event detection by re-weighting the event
prediction using the activity prediction from [14] (sed sad joint
in Table 3). The sed sad model segment-based and event-based
F -score values are 43.52% and 17.40% respectively; both are
improvements from the baseline and sed sad joint model. By
analysing the sed sad and sed onset results, we know condition-
ing event detection using onsets is more effective than conditioning
using sound activity. To utilize the advantage of both onsets and
sound activity frames in conditioning event detection we implement
the final conditional model (sed sad onset) as explained in Sec 2.
Using this model the event-based F -score improves to 23.20%.

Further analysis of onset detection performance of the condi-
tional models (sed onset and sed sad onset) reveal that when
false positive errors in onset detection are less, the sound event
model is more effective. More precisely, when the precision of on-
set detection improved from 85.96% to 89.17% from the sed onset
model to the sed sad onset model the event-based F -score also

Table 1: Onset detection results.
Case Precision Recall F -score

baseline 81.16 82.20 81.68
sad onset 90.09 73.28 80.82
sed onset 85.96 74.31 79.71

sed sad onset 89.17 70.68 78.85

Table 2: Sound activity detection results.
F1 (%) Error rate

Case Segment Event Segment Event
baseline 97.48 43.14 0.05 0.78

sed sad joint 98.53 46.23 0.03 0.72
sad onset 70.17 70.31 0.46 0.61
sed sad 98.39 45.53 0.03 0.73

sed sad onset 97.58 46.51 0.05 0.76

Table 3: Sound event detection results.
F1 (%) Error rate

Case Segment Event Segment Event
baseline 35.48 7.34 1.54 3.81

sed sad joint 41.03 8.76 0.97 3.58
sed sad 43.52 17.40 0.88 1.68

sed onset 47.76 21.42 1.02 2.33
sed sad onset 44.12 23.20 0.85 1.49

improved from 21.42% and 23.20%; which implies that false posi-
tive errors in the onset detection are more influential than false neg-
ative errors in the performance of conditional event detection using
onsets. This analysis again proves the effectiveness of conditional
sound event detection using onsets. The class-wise evaluation of all
the models are available1.

5. CONCLUSIONS AND FUTURE WORK

Within the limits of frame-wise training in sequence modelling
problems, we proposed a novel sequence modelling method for
temporally precise polyphonic sound event detection conditioned
on onsets and sound activity detection. From our experimental re-
sults we conclude that: 1) the performance of temporally precise
event detection of the conditional models depends on the perfor-
mance of onset and sound activity detection and also on the con-
ditioning method. 2) conditioning the main task using auxiliary
tasks and training in a multi-task set up is an effective method to
improve SED performance. We believe an onset detector with pre-
cision and recall measures close to 100% can drastically improve
temporal precision in SED performance. In the future, we plan to
improve onset detection by modifying the onset loss with dedicated
penalty terms for false positive and false negative onset predictions.
Also our current conditional models are trained using an equally
weighted sum of cross entropy losses of the individual tasks. In-
stead of this approach we plan to develop a task-dependent weight-
ing scheme explicitly conditioning auxiliary tasks to derive a prin-
cipled multi-task loss function as demonstrated in [28].

1http://c4dm.eecs.qmul.ac.uk/DCASE2019/
class-wise_evaluation_supplementary_doc.pdf
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ABSTRACT
This paper proposes a deep learning technique and network model
for DCASE 2019 task 3: Sound Event Localization and Detection.
Currently, the convolutional recurrent neural network is known as
the state-of-the-art technique for sound classification and detection.
We focus on proposing TrellisNet-based architecture that can re-
place the convolutional recurrent neural network. Our TrellisNet-
based architecture has better performance in the direction of ar-
rival estimation compared to the convolutional recurrent neural net-
work. We also propose reassembly learning to design a single net-
work that handles dependent sub-tasks together. Reassembly learn-
ing is a method to divide multi-task into individual sub-tasks, to
train each sub-task, then reassemble and fine-tune them into a sin-
gle network. Experimental results show that the proposed method
improves sound event localization and detection performance com-
pared to the DCASE 2019 baseline system.

Index Terms— DCASE 2019, sound event localization and
detection, TrellisNet, convolutional recurrent neural network, re-
assembly learning

1. INTRODUCTION

A sound event localization and detection (SELD) [1, 2] is a new es-
timation problem that combines sound event detection (SED) and
direction of arrival estimation (DOAE) into a single task. Hirvo-
nen [3] suggested a classification approach for DOAE using convo-
lutional neural networks (CNN). The disadvantage of DOAE using
classification is that only discrete direction of arrival (DOA) can
be predicted. Besides, applying this method to polyphonic sound
events increases the number of target classes and requires a large
amount of dataset to train the network. Therefore, the DCASE 2019
baseline [1, 2] tried to overcome these disadvantages using multi-
output regression.

Multi-output regression is a method to fit regressors for all tar-
get classes. So the DCASE 2019 baseline estimates DOA for both
active and inactive sound events. As a result, multi-output regres-
sion interrupts training for DOAE because of unnecessary inactive
events. Multi-output regression forces the DOA label to have az-
imuth and elevation values for all classes. Therefore, DOA labels
have true DOA values for active events and default DOA values for
inactive events. Multi-output regression loss includes both DOA
loss for active events and DOA loss for inactive events. As a result,
the network output is trained to be closer to the true DOA for active
events and to the default DOA for inactive events. In short, SELD
with multi-output regression operates to estimate the array contain-
ing the default DOA values, rather than estimating DOA only for

active events. To overcome this problem, Cao et al. [4] proposed a
two-stage learning method to avoid loss from inactive events. The
two-stage learning excludes DOA prediction for inactive events by
masking using ground-truth event labels. As a result, the two-stage
learning makes significant performance improvement.

The two-stage learning solves the problem of multi-output re-
gression by excluding the inactive events from the DOA loss. How-
ever, the two-stage learning still has a problem with inactive events
at the inference stage. The two-stage learning derives the final
SELD output prediction by concatenating SED network prediction
and DOA network prediction. Here, the DOA network of two-stage
learning excludes the inactive events in training. Therefore, the
DOA prediction values of the inactive events are random. As a
result, there is a problem in the Hungarian algorithm used to cal-
culate the DOA error for polyphonic sound events. This problem
occurs when the SED network incorrectly predicts the event. Since
the Hungarian algorithm is a method to find a combination that re-
duces the pair-wise cost, the DOA error is derived from the random
DOA output of the inactive sound event in the above case. In short,
the two-stage learning causes the irony that DOAE for mispredicted
events is made with random DOA predictions excluded from train-
ing.

In this paper, we propose a reassembly learning method to par-
tially alleviate the problem from inactive sound events. This method
is based on the two-stage learning [4]. Reassembly learning is a
method of reassembling pre-trained SED network and DOA net-
work into a single SELD network, and training the reassembled
SELD network. The key idea of reassembly learning is to reduce
the influence of inactive sound events through fine-tuning.

A recurrent neural network (RNN) is widely used for sequence
modeling. Theoretically, RNN can train an infinite length of the
sequence. However, in actual RNN, the vanishing gradient occurs
while repeating the sequential operation. It means that the stability
of the RNN structure is not guaranteed. Therefore gating mecha-
nism has been proposed such as LSTM [5] and GRU [6]. But the
instability problem was not completely solved. There have been
attempts to process sequence data using TCN, which is based on
1D convolution and showed good performance [7, 8]. Bai et al. [9]
proposed TrellisNet, a new architecture that takes advantage of two
advantages of CNN and RNN. TrellisNet is a special form of TCN
structure that stacks multiple layers of TCNs and acts like a trun-
cated RNN at a specific weight. TrellisNet outperforms several
benchmarks, such as language modeling and long-term memory re-
tention [9].

CRNN is used in DCASE 2019 baseline. Furthermore, many
SED and DOAE studies [1,2,4,10] choose CRNN as basic network
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architecture. CRNN is currently state-of-the-art in sound classifi-
cations and detection. CRNN architecture uses CNN for local fea-
ture extraction and RNN for a temporal summary of the output of
the CNN. In this paper, we propose a new network architecture for
sound classification and detection using a TrellisNet [9] based on
the temporal convolutional network (TCN). The key idea of the pro-
posed architecture is to take advantage of both CNN and RNN by
replacing RNN with TrellisNet.

2. DATASET

DCASE 2019 challenge task 3 provides audio dataset for 11 classes
of sound events. The sound event of DCASE 2019 dataset is synthe-
sized using spatial room impulse response recorded in five indoor
locations. The development dataset consists of 400 files. Each audio
file is a one-minute duration with a sampling rate of 48000 Hz. The
development dataset is provided as two different types: four chan-
nel tetrahedral microphone arrays and a first-order ambisonic (FOA)
format. Besides, DCASE challenge task 3 targets polyphonic sound
events with a maximum of two sound events overlap.

3. FEATURE

Our models use log mel-band energy (4 channels), mel-band acous-
tic active intensity (3 channels) and mel-band acoustic reactive in-
tensity (3 channels). Log mel-band energy is extracted from the
tetrahedral microphone dataset. On the other hand, mel-band acous-
tic active and reactive intensity are extracted from FOA dataset. The
input feature configuration used in this paper is shown in Table 1.

3.1. Log mel-band energy

In the DCASE 2018 challenge task 4, many participants used the
log mel-band energy as an input feature for SED [11–16]. Mel-band
energy is a feature that applies a mel filter to an energy spectrogram.
The mel filter mimics the non-linear human auditory perceptions.
The results of DCASE 2018 challenge proved that this non-linear
feature has strength for SED. Also, we expect to obtain information
of time difference, loud difference for sound localization from a
multi-channel log mel-band energy feature.

3.2. Mel-band acoustic intensity

Ambisonic is a coefficient of the spatial basis of the audio signal.
Each spatial basis is expressed as spherical harmonics. Zero-order
ambisonic signal (W) represents the component that is omnidirec-
tional. First-order ambisonic signals (X, Y, Z) represent three polar-
ized bidirectional components. In the presence of multiple sources
or reverberant environments, it is impossible to express complex
sound fields using FOAs (W, X, Y, Z). Therefore, we need addi-
tional methods to extract spatial information from FOAs for the re-
verberant environment. Acoustic intensity is one of these methods
that extract spatial information from FOAs [17].

Acoustic intensity is one of the physical quantities represent-
ing the sound field. The acoustic intensity vector I(t, f) can be
expressed by using FOA as equation (1). Active acoustic inten-
sity vector Ia is a real part of acoustic intensity that represents the
flow of sound energy. It is a physical quantity directly related to
DOA. The active acoustic intensity is expressed as a real part of
the product of the pressure p(t, f) and the particle velocity v(t, f).
Reactive intensity Ir is an imaginary part of acoustic intensity that

Table 1: Input features for single networks
Name Feature configuration
MIC 8 channels, magnitude and phase spec-

trogram (Mic)
FOA 8 channels, magnitude and phase spec-

trogram (Foa)
Log-Mel 4 channels, log mel-band energy (Mic)
Log-Mel + Ia 7 channels, log mel-band energy (Mic)

+ mel-filtered active intensity
Log-Mel + Ia + Ir 10 channels, log mel-band energy (Mic)

+ mel-filtered active intensity + mel-
filtered reactive intensity

represents a dissipative local energy transfer. It is a physical quan-
tity dominated by direct sound from a single source. We expect to
obtain spatial decomposed information and phase information from
acoustic intensities of 6 channels of mel-band acoustic intensity.

I(t, f) = p(t, f)v∗(t, f) = −W (t, f)



X∗(t, f)
Y ∗(t, f)
Z∗(t, f)


 (1)

Finally, it is important that the size of the acoustic intensity
feature and the size of mel-band energy feature are equal to deal
with those features in the single network. Therefore, mel filter is
applied to resize acoustic intensity features.

4. NETWORK ARCHITECTURE

4.1. CNN Layers

In Figure 1(a), the CNN layers consist of two gated linear unit
(GLU) blocks and global average pooling that compresses the fre-
quency (mel-bin) axis. Both the SED network and the DOA net-
work use the same CNN layers. The details of the GLU block are
shown in Figure 1(b).

4.2. Temporal feature extractor

There are two different types of temporal feature extractors for the
proposed model. One is Bidirectional-GRU, one of RNNs. The
other is Bidirectional-TrellisNet which is a special form of TCNs.
The details of the RNN block and the TrellisNet block are shown in
Figure 1(b).

TrellisNet [9] tried to combine CNNs and RNNs through direct
input injection and weight sharing among TCN layers. The key idea
of TrellisNet is to implement a CNN that behaves like an RNN un-
der certain conditions. When RNN is unfolded, a new input comes
in every step and the same weight is applied. In TrellisNet, the tem-
poral convolution layer with kernel size 2 corresponds to one RNN
step. TrellisNet can replace the recurrent structure of the RNNs
by stacking of multiple temporal convolution layers and adding the
input injection and weight sharing techniques. Therefore Trellis-
Net can take advantage of both structural and algorithmic elements
of CNN and RNN. In TrellisNet, LSTM is applied between each
temporal convolution layer. We set the receptive field of TrellisNet
to cover the input frame length for performance comparison with
RNN.

4.3. Reassembly learning

We propose a reassembly learning to design a single network for
a multi-task problem which consists of dependent sub-tasks. Re-
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(a) Network architecture (b) Block specification (c) Process of reassembly learning

Figure 1: Proposed system for DCASE2019 task 3; B: batch size, C: channel, T: time, M: number of mel-bin, F: filters, N: number of classes

Table 2: Hyper-parameters for proposed system
Name Value

Epoch for SED network 25
Epoch for DOA network 100
Epoch for SELD network 10

Learning rate for SED/DOA network 0.001
Learning rate for SELD network 0.0001

Weight for SELD network SED:DOA = 0.2:0.8
Batch size (B) 32

Frame length (T) 200
Step size between two segment 100

Number of Mel-bin (M) 96
Number of the FFT 1024

assembly learning consists of three stages. The first stage is train-
ing the SED network. After then CNN layers of the trained SED
network are transferred to the DOA network. In the second stage,
the loss of the DOA network is calculated with masking inactive
event by the ground truth SED labels. The last stage is the SELD
stage. The SELD network initializes the whole parameter from the
pre-trained SED network and the DOA network as shown in Figure
1(c). At this stage, we use estimated SED for masking instead of
ground truth SED labels.

As mentioned in the introduction, using the ground truth SED
label masking causes an irony that DOAE for mispredicted events
is made with random DOA predictions excluded from training. Re-
assembly learning is a technique to make the random DOA value of
the mispredicted event closer to the default value through additional
training. In short, the reassembly learning is a learning method
that reduces randomness through additional fine-tuning. The trained
SED network has more than 98% F-score for the training dataset.

Therefore, reassembly learning plays a role in adjusting less than
2% outliers that are not detected correctly.

5. EVALUATION RESULT

In this section, we will describe network architectures using the pro-
posed technique and network layers in the previous section and its
performance. The hyper-parameters for training are summarized in
Table 2.

5.1. Single network

Table 3 shows the experimental results for single networks by using
pre-defined four-fold cross-validation split for DCASE 2019. We
combined training and validation split for training proposed models.
The system name and its description stand for following,

• Baseline: Baseline network model for DCASE 2019 challenge
task 3 by task organizers

• Reassembly ‘SED-DOA’: Proposed architecture as shown in
Figure 1(a); ‘SED-DOA’ specifies the network that corre-
sponds to the temporal feature extractor in SED and DOA net-
works. Candidates for temporal feature extractor are RNN and
TrellisNet. For example, RNN-TrellisNet means RNN block
used as SED temporal feature extractor and TrellisNet block
used as DOA temporal feature extractor

• SELD RNN-TrellisNet: Proposed network structure without
reassembly learning

• Two-stage RNN-TrellisNet: Proposed network structure with
two-stage learning

• Reassembly v1: 4 GLU block for CNN layers of proposed
model; DCASE challenge submission model
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Table 3: Experimental results for DCASE 2019 task 3 development dataset; ER: error rate, F: F-score, DOA: DOA error, FR: frame recall
System Feature ER F DOA FR
Baseline FOA 34 79.9 28.5 85.4
Baseline MIC 35 80.0 30.8 84.0

Reassembly RNN-TrellisNet Log-Mel 16 90.9 10.2 88.1
Reassembly RNN-TrellisNet Log-Mel + Ia 15 91.4 7.6 88.2
Reassembly RNN-TrellisNet Log-Mel + Ia + Ir 15 91.4 6.4 88.4

Reassembly RNN-RNN Log-Mel + Ia + Ir 15 91.4 8.8 88.4
Reassembly TrellisNet-RNN Log-Mel + Ia + Ir 30 84.5 10.4 86.6

Reassembly TrellisNet-TrellisNet Log-Mel + Ia + Ir 29 84.6 7.0 86.6
SELD RNN-TrellisNet with ground truth masking Log-Mel + Ia + Ir 18 89.7 10.3 87.5

SELD RNN-TrellisNet with estimated SED masking Log-Mel + Ia + Ir 19 89.3 9.4 86.9
Two-stage RNN-TrellisNet Log-Mel + Ia + Ir 15 91.4 6.7 88.4

Reassembly v1 (Development dataset) Log-Mel + Ia + Ir 16 90.6 6.4 85.7
Reassembly v1 (Evaluation dataset) Log-Mel + Ia + Ir 15 91.9 5.1 87.4

Avg ensemble (SED + DOA), Reassembly RNN-TrellisNet Log-Mel, Log-Mel + Ia, Log-Mel + Ia + Ir 13 92.7 7.7 88.9
Avg ensemble (SED), Reassembly RNN-TrellisNet Log-Mel, Log-Mel + Ia, Log-Mel + Ia + Ir 13 92.7 6.4 88.9

Table 3 shows the results of applying three different input fea-
tures to Reassembly RNN-TrellisNet. As a result, the higher the di-
mension of the input feature used, the higher the DOA result. These
results show that spatial information and phase information from
FOA were important for DOAE. On the other hand, SED results
showed no significant change. This means that the log mel-band
energy feature has been used primarily for SED. While the inten-
sity vector feature does not help improve SED performance. This is
because the direction does not need to be considered for SED.

SED is a problem that infers time-varying patterns. While
DOAE for static events is a problem for estimating static phase dif-
ference. Therefore, we assumed that RNN would be advantageous
in inferring the time-varying pattern for SED. On the other hand,
we assumed that CNN would be more appropriate than RNN for es-
timating the static phase difference. These assumptions are proved
in the results of Table 3. RNN is strong for SED and TrellisNet has
strong point for DOAE. This result is that the TCN based network
has an advantage in DOAE and is the possibility of being applied to
a variety of sound classification and detection applications.

Reassembly RNN-TrellisNet system using Log-Mel + Ia + Ir
is the best performance in a single model in Table 3. We submitted
a single network, Reassembly v1, using 4 GLU blocks on CNN
layers for Reassembly RNN-TrellisNet to DCASE 2019 challenge
task 3. Reassembly v1 ranked 10th in DCASE 2019 challenge task
3 challenge. The model proposed in this paper has slightly changed
the DCASE challenge submission model. By reducing the number
of GLU blocks, the time pooling is reduced. So it brings 1%, 1%,
and 3% performance gain for error rate, F-score and frame recall
respectively.

The proposed system has achieved performance improvement
over DCASE 2019 baseline. Compared to the performance of the
proposed network without reassembly learning, pre-training sub-
task networks has proven to significantly improve the performance
of all metrics. In Table 3 the reassembly learning showed a 0.4◦ im-
provement in DOA error compared to the two-stage learning. Re-
assembly learning has led to a small improvement since it plays a
role in reducing randomness for mispredicted outliers.

5.2. Ensemble network

We use the simple and powerful ensemble method, average ensem-
ble, to Reassembly RNN-TrellisNet model of the three different in-

put features used in Table 3. Following is descriptions of the en-
semble systems:

• Avg ensemble (SED + DOA): Average ensemble for both SED
and DOA prediction results of Reassembly RNN-TrellisNet.

• Avg ensemble (SED): Average ensemble for SED prediction
results of Reassembly RNN-TrellisNet + DOA prediction re-
sults from Log-Mel + Ia + Ir feature.

Table 3 shows that the Avg ensemble (SED) has better perfor-
mance than the Avg ensemble (SED + DOA). In the case of SED,
the performance improvement was achieved by using the average
value of probability used for classification. However, the DOA
value is directly obtained from the regression, so the performance
of the average ensemble for DOAE is almost equal to the average
error of the three systems. The overall performance was improved
by using the average ensemble. For the development dataset, the
Avg ensemble network makes 3%, 2%, and 3% performance gain
for error rate, F-score, and frame recall compared to Reassembly
v1.

6. CONCLUSION

We proposed reassembly learning to solve the sound event localiza-
tion and detection problem which consists of two dependent sub-
tasks. Reassembly learning is a way to retrain network that consists
of pre-trained sub-task networks. Through reassembly learning, we
tried to alleviate the problem of multi regression loss used for con-
tinuous polyphonic SELD. As a result, the proposed models sig-
nificantly improved both SED and DOAE performance compared
to the baseline. Also, we proved that the log mel-band energy and
mel-band intensity are helpful input features for SED and DOAE.
Moreover, the DOAE network using TrellisNet showed better per-
formance than CRNN. Thus TCN based architecture demonstrated
the possibility for other sound classification and detection applica-
tions.
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ABSTRACT

This paper considers a semi-supervised learning framework for
weakly labeled polyphonic sound event detection problems for the
DCASE 2019 challenge’s task4 by combining both the tri-training
and adversarial learning. The goal of the task4 is to detect onsets
and offsets of multiple sound events in a single audio clip. The en-
tire dataset consists of the synthetic data with a strong label (sound
event labels with boundaries) and real data with weakly labeled
(sound event labels) and unlabeled dataset. Given this dataset, we
apply the tri-training where two different classifiers are used to ob-
tain pseudo labels on the weakly labeled and unlabeled dataset,
and the final classifier is trained using the strongly labeled dataset
and weakly/unlabeled dataset with pseudo labels. Also, we apply
the adversarial learning to reduce the domain gap between the real
and synthetic dataset. We evaluated our learning framework using
the validation set of the task4 dataset, and in the experiments, our
learning framework shows a considerable performance improve-
ment over the baseline model.

Index Terms— Sound event detection (SED), Tri-training,
Pseudo labeling, Adversarial learning, Semi-supervised learning,
Weakly supervised learning

1. INTRODUCTION

The polyphonic sound event detection (SED) has been attracting
growing attention in the field of acoustic signal processing [1–8].
The SED aims to detect multiple sound events happened simultane-
ously as well as the time frame in a sequence of audio events. The
applications of the SED include audio event classification [9–11],
media retrieval [12, 13] and automatic surveillance [11] in living
environments such as Google Nest Cam [14] which analyzes the
audio stream to detect conspicuous sounds such as window break-
ing and dog barking among various sounds that could occur in daily
environments.

Several researches [2,7,8,10,15–18] have been previously pro-
posed . In [4], spectral domain features are used to characterize the
audio events, and deep neural networks (DNN) [10] is used to learn
a mapping between the features and sound events. In [18], multiple
instance learning was exploited to predict the labels of new, unseen
instances which rely on an ensemble of instances, rather than in-
dividual instances. In [5], convolutional recurrent neural networks
(CRNN) was introduced which is a combined network of convo-
lutional neural networks (CNN) [15, 16] and recurrent neural net-
works (RNN) [8] to get the benefits of both CNN and RNN. In [19],
Mean Teacher method was adopted where the teacher model is an

∗Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.
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Figure 1: The spectrograms of synthetic and real dataset samples
which have the same clip labels

average of consecutive student models to overcome the limitations
of temporal ensembling for semi-supervised learning.

In contrast to the task 4 of the last year’s challenge [20], a
synthetic dataset with strong annotation is additionally provided in
DCASE 2019 challenge’s task 4. Strong annotation includes on-
set, offset and class label of the sound events. Thus, how to utilize
strongly-labeled synthetic data and mutual complement between
real dataset and synthetic dataset is a challenging problem in weakly
labeled SED problem in DCASE 2019 challenge’s task 4. Previous
methods have not focused on complement of strongly labeled syn-
thetic dataeset. As shown in Figure 1, the log-mel spectrogram of
samples which have the same clip label from synthetic data and real
data seem too much different. For this reason, we assume that do-
main gap between synthetic data and real data exists and it causes
degradation of performance on test samples.

This paper presents a sound event detection combining adver-
sarial learning and tri-training. Adversarial learning helps to re-
duce the gap between synthetic and real data by learning domain-
invariant feature while tri-training method [21] which is one of the
semi-superived learning methods learns discriminative representa-
tions by pseudo labeling one the weakly labeled or unlabeled sam-
ples. Pseudo labels are obtained by agreement of output from con-
fident two labelers on unlable data. Inspired by these properties, we
present a weakly labeled polyphonic SED by considering both ad-
versarial learning and tri-training.

The proposed learning framework was evaluated using a vali-
dation set of the DCASE 2019 challenge’s task 4 [22]. In the evalu-
ation results, combined adversarial training and tri-training shows a
considerable performance improvement over the baseline model.

https://doi.org/10.33682/ntr9-6764
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Figure 2: The proposed learning framework includes feature extractor F , classifiers(pseudo-labelers) F1, F2, final classifier Ft and domain
classifier D. The dataset to train each component is shown in the figure (e.g. classifier F2 is trained using the strongly-labeled synthetic
samples S and weakly-labeled real samplesW . The pseudo-labels are obtained by agreement from two different classifiers F1, F2 and used
in training the final classifier Ft. The domain classifierD, connected to F via a GRL, classifies the input feature into real or synthetic. With the
GRL from D to F , the feature distributions between synthetic and real domain become similar, and thus we can obtain the domain-invariant
features.

2. PROBLEM STATEMENT AND NOTATIONS

For SED, we denote a sound clip by x ∈ X and corresponding
y ∈ Y . The SED systems are expected to produce strongly labeled
output ys (i.e. sound class label with start time and end time) from
input x. However, for weakly labeled SED with semi-supervised
setting, dataset consists of strongly labeled data S = {(xsi , ysi )}mi=1,
weakly labeled data W = {(xwj , ywj )}nj=1 and unlabeled data
U = {xuk}lk=1. The weakly labeled data does not provide a tem-
poral range of events but sound class labels detected in a clip. We
focus on the usage of weakly labeled or unlabeled data and reduc-
ing domain gap between synthetic and real data. Thus, we combine
the adversarial learning based on gradient reversal layer (GRL) [23]
for reducing the domain gap and tri-training method for pseudo-
labeling weakly labeled or unlabeled data such that the networks are
learned to output discriminative representations on a real dataset.

3. PROPOSED METHOD

Our proposed method is based on CRNN [19] model, which showed
the first place of the task 4 in the last year’s challenge by combining
with Mean Teacher algorithm [24]. The whole architecture is shown
in Figure 2. A feature extractor F , which cosists of seven CNN
blocks and two bi-directional gated recurrent units (Bi-GRU) [25],
outputs shared features from log-mel features used as input for four
networks. Two labelers F1, F2 and classifier Ft predict multiple

classes for each time frame and class events for a clip from features
extracted by F . Let Ly be the classification loss with frame-level
classification lossLframe and clip-level classification lossLclip for
multi-label prediction.

Ly = Lframe + Lclip (1)

For training with frame-level classification loss and clip-level
classfication loss, binary cross entropy (BCE) loss is used with the
sigmoid output:

Lclip =

N∑

i=1

K∑

k=1

[yi,k log ŷi,k + (1− yi,k) log (1− ŷi,k)] (2)

Lframe =

N∑

i=1

T∑

t=1

K∑

k=1

[yi,t,k log ŷi,t,k+(1−yi,t,k) log (1− ŷi,t,k)]

(3)
where yi,k, yii,t,k ∈ [0, 1] are the label of sound class k of clip i
and the label sound class k at time frame t of clip i, respectively.
Also, ŷi,k is the predicted probability of sound class k of clip i,
and ŷi,t,k is ŷi,k at time frame t. A domain classifier D classifies
features from F into real or synthetic. Based on this architecture,
the proposed adversarial learning with tri-training framework for
SED will be explained in the next section.
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Figure 3: Two approaches of adversarial learning for sound event
detection problems

3.1. Adversarial learning

We denote strongly labeled synthetic dataset by S and weakly la-
beled or unlabeled real datasetW,U are the different domain (syn-
thetic or real). As shown in Figure 1, since the domain gap between
the synthetic and real dataset is quite big, we construct a domain
classifier to reduce the gap between two domains by adversarial
learning. The domain classifier D classifies input features into real
or synthetic. By applying the GRL [23] from D to the feature extrac-
tor F, we can obtain the feature representation whose distributions
are almost similar in both real and synthetic domain. We consider
two approaches to apply the adversarial learning for SED as shown
in Figure 3. First, D classifies the whole feature from F into one
result: real or synthetic (Adv.whole). In this case, GRL makes the
features from F domain-invariant. Second, D classifies each time
frame of the feature into real or synthetic (Adv.time). The second
approach is more appropriate than the first one since our architec-
ture predicts multiple sound event classes in each time frame from
features extracted from F . We denote θF , θF1 , θF2 , θFt and θD by
the parameters of each network, respectively. Also, Ld is the loss
for the domain classification. For training with domain classfication
loss, BCE loss is used with the sigmoid output:

Ld =

N∑

i=1

[di,t log d̂i,t + (1− di,t) log (1− d̂i,t)] (4)

where di,t is the label of real or synthetic at time frame t of clip i,
and d̂i,t is predicted probability at time frame t of clip i. Based on
GRL, the parameters are updated as follows:

θF ← θF − µ
(∂Ly

∂θF
− α∂Ld

∂θF

)
(5)

θF1,F2,Ft ← θF1,F2,Ft − µ
∂Ly

∂θF1,F2,Ft

(6)

θD ← θD − µ∂Ld

∂θD
(7)

Algorithm 1: The function Pseudo-labeling is the pro-
cess of assigning pseudo-labeling based on agreement
threshold from two labelers. We assign pseudo-labels to
weakly labeled or unlabeled samples when both predic-
tions of F1 and F2 are confident and agreed to the same
prediction.

Input: strongly labeled synthetic data S =
{
(xsi , y

s
i )
}m
i=1

weakly labeled real dataW =
{
(xwj , y

w
j )
}n
j=1

unlabeled real data U =
{
(xuk)

}l
k=1

pseudo-labeled weakly labeled dataWpsl = ∅
pseudo-labeled unlabeled data Upsl = ∅
for i = 1 to iter do

Train F, F1, F2, Ft, D with mini-batch from labeled
training set S,W,U

end
Wpsl = Pseudo-labeling(F, F1, F2,W)
Upsl = Pseudo-labeling(F, F1, F2,U)
for j =1 to iter do

Train F, Ft, D with mini-batch from labeled training
set S,W and pseudo-labeled training setWpsl,Upsl

end

where µ, α are the learning rate and hyperparameter of GRL, re-
spectively.

3.2. Tri-training

We apply the tri-training method to train a network using the
pseudo-labeled weakly labeled samples Wpsl and pseudo-labeled
unlabeled samples Upsl. The entire procedure of tri-training is
shown in Algorithm 1. First, we train common feature extractor
F , two labeling networks F1 and F2 , a final classifier Ft and a
domain classifierD with labeled samples S,W and unlabeled sam-
ples U . Second, pseudo-labeled samples are obtained by F1 and F2

trained with labeled samples. When the confidences of both net-
works’ outputs exceed the agreement threshold, the prediction can
be considered reliable. We set this threshold to 0.5 in the experi-
ments. Also, we expect each labeler to obtain different classifiers
F1 and F2 given the same training data, we use the following regu-
larization loss:

L = Ly + λ

∣∣∣∣∣

(
WF1

|WF1 |

)>(
WF2

|WF2 |

)∣∣∣∣∣ (8)

where WF1 and WF2 are weights of first layer of two labelers F1

and F2, respectively. We set λ to 1.0 based on the validation set.
Then, we use both labeled samples S,W and pseudo-labeled sam-
plesWpsl,Upsl for training F, Ft, andD. Then, F and Ft will learn
from the labeled real dataset.

4. EXPERIMENTS

4.1. Dataset

The DCASE 2019 challenge’s task 4 [22] provides the following 3
subsets of the dataset in the training: 1,578 clips of the weakly la-
beled set, 14,412 clips of the unlabeled in-domain set and 2,045
clips of the synthetic set with strong annotations of events and
timestamps. Weakly labeled and unlabeled in-domain sets are from
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Audioset [26] which drawn from 2 million YouTube videos. The
synthetic set is generated with Scaper [27] to increase the vari-
ability of the output for soundscape synthesis and augmentation.
These audio clips are 10 second-long and contain one or mul-
tiple sound events among 10 different classes (speech, dog, cat,
alarm/bell/ringing, dishes, frying, blender, running water, vacuum
cleaner and electric shaver/toothbrush) which may partly overlap.

4.2. Experimental setup

The model was developed using PyTorch [28] and all experiments
were conducted on an a GeForce GTX TITAN X GPU 12GB RAM.
Also, our architecture was trained with a mini-batch size of 64 us-
ing Adam optimizer [29] with an initial learning rate of 0.001 and
exponential decay rate for the 1st and 2nd moments of 0.9 and
0.999, respectively. The input audio clips are down-sampled from
44.10 kHz to 22.05 kHz. And, the log-mel spectrogram is extracted
from the audio clip with the size of 640× 128: 128-bin is used, and
2048-window with 345-hop is used to convert into 640 frames.

4.3. Experimental results

We evaluated our proposed framework using the DCASE 2019 chal-
lenge’s task4 validation dataset. We could not measure performance
on evaluation dataset since the labels of evaluation dataset are not
available yet. The macro event-based F1 scores and segment-based
F1 scores on validation dataset are shown in Table 1. Segment-based
metrics evaluate an active/inactive state for each sound event in
a fixed-length interval, while event-based metrics evaluate sound
event class detected in the fixed-length interval. The baseline of
DCASE 2019 challenge’s task 4 used the Top-1 ranked model [19]
of DCASE 2018 challenge’s task 4, which proposed Mean Teacher
method for SED; however, this baseline was designed with smaller
architecture. Thus, we designed our baseline model based on orig-
inally Top-1 ranked model in DCASE 2018. Our baseline consists
of feature extractor F and classifier Ft which are trained using the
strongly labeled synthetic data and weakly labeled real data without
Mean Teacher algorithm. The baseline showed 24.15% event-based
F1 score. For the comparisons, the official results of various SED
frameworks submitted for the DCASE 2019 challenge’s task 4 are
shown in Table 1.

With our baseline model, we applied the adversarial learning
method in two ways. The domain classifier D predicted real or syn-
thetic on whole feature map (Adv.whole) and on features in each
time frame (Adv.time). Both adversarial learning approaches im-
proved the performance as shown in Table 1. These approaches
reduced domain gap between synthetic and real feature distribu-
tions, thsu we could improve performance since the validation set
was also from the real audio clips. The Adv.time and Adv.whole
achieved 31.33% and 30.65%, respectively. The Adv.time method
showed better performance than the Adv.whole since the architec-
ture tries to predict multi-label in each time frame. We also per-
formed pseudo-labeling method using tri-training procedure. The
tri-training method achieved 30.23%. Tri-training method showed
better performance than the adversarial learning in evaluating
segment-based F1 scores. Finally, we evaluated the combined archi-
tecture: adversarial learning with the tri-training. When we trained
two labelers in tri-training, we also trained domain classifier si-
multaneously for adversarial learning. After training two labelers
with adversarial learning, more confident labelers for predicting
sound event classes on real dataset were obtained. Then, we as-
signed pseudo-label to weakly labeled and unlabeled samples based

Table 1: The event based macro F1 scores and segment based macro
F1 scores of proposed methods on validation dataset in DCASE
2019 challenge’s task 4

Model Macro F1 (%)
Event-based Segment-based

Wang YSU task4 1 19.4% -
Kong SURREY task4 1 21.3% -
Wang NUDT task4 3 22.4% -
DCASE 2019 baseline [22] 23.7% 55.2%
Rakowski SRPOL task4 1 24.3% -
mishima NEC task4 4 24.7% -
Lee KNU task4 3 26.7% -
bolun NWPU taks4 2 31.9% -
Kothinti JHU task4 1 34.6% -
ZYL UESTC task4 2 35.6% -
Kiyokawa NEC task4 4 36.1 % -
PELLEGRINI IRIT task4 1 39.9% -
Lim ETRI task4 4 40.9 % -
Shi FRDC task4 2 42.5% -
Yan USTC task4 4 42.6 % -
Delphin OL task4 2 43.6% -
Lin ICT task4 3 45.3% -
Our baseline 24.15% 57.70%
Adv.whole 30.65% 59.06%
Adv.time 31.33% 59.26%
Tri-training 30.23% 62.86%
Adv.whole + Tri-training 32.64% 60.48%
Adv.time + Tri-training 35.10% 60.67%

on two labelers. We trained the final classifier with labeled samples
and pseudo-labeled samples by tri-training scheme. In combining
the adversarial learning with tri-training method, we considered the
previous two approaches: Adv.whole and Adv.time. The tri-training
method combined with Adv.whole approach showed 32.64% event-
based F1 score and the tri-training method combined with Adv.time
achieved 35.10%. Adv.time+Tri-training achieved the highest event-
based F1 score of our models. The tri-training method achieved
62.86% segment-based F1 score and it is better than Adv.time+Tri-
training. We think that adversarial learning contributes more to in-
ference exact sound label in time frame while the tri-training con-
tributes more to inference the exact boundary of the sound event.

5. CONCLUSION

In this paper, we consider the semi-supervised learning framework
for weakly labeled SED problem for the DCASE 2019 challenge’s
task4 by combining both tri-training and adversarial learning. The
entire dataset consists of the synthetic data with the strong label
(sound event labels with boundaries) and real data with weakly la-
beled (sound event label) and unlabeled dataset. We reduce domain
gap between strongly labeled synthetic dataset and weakly labeled
or unlabeled real dataset to train networks to learn domain-invariant
feature for preventing degradation of performance. Also, we utilize
pseudo labeled samples based on confident multiple labelers trained
by labeled samples. Then, networks learn the discriminative rep-
resentation of the unlabeled dataset. The tri-training method com-
bined with adversarial learning on each time frame shows a consid-
erable performance improvement over the baseline model.
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ABSTRACT
This work describes and discusses an algorithm submitted to the
Sound Event Localization and Detection Task of DCASE2019
Challenge. The proposed methodology relies on parametric spa-
tial audio analysis for source localization and detection, combined
with a deep learning-based monophonic event classifier. The evalu-
ation of the proposed algorithm yields overall results comparable to
the baseline system. The main highlight is a reduction of the local-
ization error on the evaluation dataset by a factor of 2.6, compared
with the baseline performance.

Index Terms— SELD, parametric spatial audio, deep learning

1. INTRODUCTION

Sound Event Localization and Detection (SELD) refers to the prob-
lem of identifying, for each individual event present in a sound field,
the temporal activity, spatial location, and sound class to which it
belongs. SELD is a current research topic which deals with mi-
crophone array processing and sound classification, with potential
applications in the fields of signal enhancement, autonomous navi-
gation, acoustic scene description or surveillance, among others.

SELD arises from the combination of two different problems:
Sound Event Detection (SED) and Direction of Arrival (DOA) es-
timation. The number of works in the literature which jointly ad-
dress SED and DOA problems is relatively small. It is possible to
classify them by the type of microphone arrays used: distributed
[1, 2, 3] or near-coincident [4, 5, 6]. As mentioned in [6], the usage
of near-coincident circular/spherical arrays enables the representa-
tion of the sound field in the spatial domain, using the spherical
harmonic decomposition, also known as Ambisonics [7, 8]. Such
spatial representation allows a flexible, device-independent compar-
ison between methods. Furthermore, the number of commercially
available ambisonic microphones has increased in recent years due
to their suitability for immersive multimedia applications. Taking
advantage of the compact spatial representation provided by the
spherical harmonic decomposition, several methods for parametric
analysis of the sound field in the ambisonic domain have been pro-
posed [9, 10, 11, 12]. These methods ease sound field segmentation
into direct and diffuse components, and further localization of the
direct sounds. The advent of deep learning techniques for DOA
estimation has also improved the results of traditional methods [6].
However, none of the deep learning-based DOA estimation methods
explicitly exploits the spatial parametric analysis. This situation is
further extended to the SELD problem, with the exception of [5],
where DOAs are estimated from the active intensity vector [9].

∗E.F. is partially supported by a Google Faculty Research Award 2018.

The motivation for the proposed methodology is two-fold.
First, we would like to check whether the usage of spatial paramet-
ric analysis in the ambisonic domain can improve the performance
of SELD algorithms. Second, temporal information derived by the
parametric analysis could be further exploited to estimate event on-
sets and offsets, thus lightening the event classifier complexity; such
reduction might positively impact algorithm’s performance.

In what follows, we present the methodology and the architec-
ture of the proposed system (Section 2). Then, we describe the
design choices and the experimental setup (Section 3), and discuss
the results in the context of DCASE2019 Challenge - Task 3 (Sec-
tion 4). A summary is presented in Section 5. In order to support
open access and reproducibility, all code is freely available at [13].

2. METHOD

The proposed method presents a solution for the SELD problem
splitting the task into four different problems: DOA estimation, as-
sociation, beamforming and classification, which will be described
in the following subsections. The former three systems follow a
heuristic approach—in what follows, they will be jointly referred to
as the parametric front-end. Conversely, the classification system is
data-driven, and will be referred to as the deep learning back-end.
The method architecture is depicted in Figure 1.

Figure 1: System architecture.

2.1. DOA estimation

The DOA estimation system (Figure 2) is based on parametric time-
frequency (TF) spatial audio analysis. Let us consider a first-order
(L = 1) ambisonic signal vector bbb(t) with N3D normalization [14]:

bbb(t) = [bw(t),
√

3bx(t),
√

3by(t),
√

3bz(t)]. (1)

From its short-time frequency domain representation BBB(k, n), the
instantaneous DOA at each TF bin ΩΩΩ(k, n) can be estimated as:

III(k, n) = − 1

Z0
R{[Bx(k, n), By(k, n), Bz(k, n)]Bw(k, n)∗},

ΩΩΩ(k, n) = [ϕ(k, n), θ(k, n)] = ∠(−III(k, n)),
(2)

https://doi.org/10.33682/v1za-0k45
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Figure 2: DOA estimation architecture.

where III(k, n) stands for the active intensity vector [9], Z0 is the
characteristic impedance of the medium, ∗ represents the complex
conjugate operator, and ∠ is the spherical coordinates angle opera-
tor, expressed in terms of azimuth ϕ and elevation θ.

It is desirable to identify the TF regions of ΩΩΩ(k, n) which carry
information from the sound events, and discard the rest. Three bi-
nary masks are computed with that aim. The first mask is the energy
density mask, which is used as an activity detector. The energy den-
sity E(k, n) is defined as in [15] :

E(k, n) =
|Bw(k, n)|2 + ||[Bx(k, n), By(k, n), Bz(k, n)]||2

2Z0c
,

(3)
with c being the sound speed. A gaussian adaptive thresholding

algorithm is then applied to E(k, n), which selects TF bins with
local maximum energy density, as expected from direct sounds.

The diffuseness mask selects the TF bins with high energy prop-
agation. Diffuseness Ψ(k, n) is defined in [16] as:

Ψ(k, n) = 1− || 〈III(k, n) 〉 ||/(c 〈E(k, n) 〉), (4)

where 〈 · 〉 represents the temporal expected value.
The third mask is the DOA variance mask. It tries to select TF

regions with small standard deviation1 with respect to their neighbor
bins—a characteristic of sound fields with low diffuseness [12].

The three masks are then applied to the DOA estimation, ob-
taining the TF-filtered DOAs Ω̄ΩΩ(k, n). Finally, a median filter is ap-
plied, with the aim of improving DOA estimation consistency and
removing spurious TF bins. The median filter is applied in a TF bin
belonging to Ω̄ΩΩ(k, n) only if the number of TF bins belonging to
Ω̄ΩΩ(k, n) in its vicinity is greater than a given threshold Bmin. The
resulting filtered DOA estimation is referred to as Ω̆ΩΩ(k, n).

2.2. Association

The association step (Figure 3) tackles the problem of assigning the
time-frequency-space observation Ω̆ΩΩ(k, n) to a set of events, each
one having a specific onset, offset and location. First, DOA esti-
mates are resampled into frames of the task’s required length (0.02
s). In what follows, frames will be represented by index m. An ad-
ditional constraint is applied: for a given window n0, the DOA es-
timates Ω̆ΩΩ(k, n0) are assigned to the corresponding frame m0 only
if the number of estimates is greater than a threshold Kmin.

Next, the standard deviation in azimuth (σϕ) and elevation (σθ)
of the frame-based DOA estimates Ω̆ΩΩ(k,m) are compared to a
threshold value (σmax), and the result is used to estimate the frame-
based event overlapping amount o(m) :

o(m) =

{
1, if σϕ/2 + σθ < σmax,

2, otherwise.
(5)

1In this work, all statistical operators for angular position refer to the
2π-periodic operator for azimuth, and the standard operator for elevation.

The clustered values ΩΩΩcluster(m) are then computed as the K =

o(m) centroids of Ω̆ΩΩ(k,m), using a modified version of K-Means
which minimizes the central angle distance. Notice that, for
o(m) = 1, the operation is equivalent to the median.

The following step is the grouping of clustered DOA values
into events. Let us define ΩΩΩS(m) as the frame-wise DOA estima-
tions belonging to the event S. A given clustered DOA estimation
ΩΩΩcluster(m) belongs to the event S if the following criteria are met:

• The central angle between ΩΩΩcluster(m) and the median of
ΩΩΩS(m) is smaller than a given threshold dANGLE

max , and
• The frame distance between M and the closest frame of ΩΩΩS(m)

is smaller than a given threshold dFRAME
max .

The resulting DOAs ΩΩΩS(m) are subject to a postprocessing
step with the purpose of delaying event onsets in frames where
o(m) > 2, and discarding events shorter than a given minimum
length. Finally, the frame-based event estimations are converted
into metadata annotations in the form ΛΛΛS = (ΩΩΩS , onsetS , offsetS).

2.3. Beamforming

The last step performed in the front-end is the input signal segmen-
tation. The spatial and temporal information provided by the anno-
tations ΛΛΛS are used to produce monophonic signal estimations of
the events, b̃S(t), as the signals captured by a virtual hypercardioid:

b̃S(t) = YYY (ΩΩΩS)bbbᵀ(t), (6)

where YYY (ΩΩΩS) = [Yw(ΩΩΩS), Yx(ΩΩΩS), Yy(ΩΩΩS), Yz(ΩΩΩS)] is the set of
real-valued spherical harmonics up to order L = 1 evaluated at ΩΩΩS .

2.4. Deep learning classification back-end

The parametric front-end performs DOA estimation, temporal ac-
tivity detection and time/space segmentation, and produces mono-
phonic estimations of the events, b̃S(t). Then, the back-end clas-
sifies the resulting signals as belonging to one of a target set of 11
classes. Therefore, the multi-task nature of the front-end allows
us to define the back-end classification task as a simple multi-class
problem, even though the original SELD task is multi-label. It must
be noted, however, that due to the limited directivity of the first-
order beamformer, the resulting monophonic signals can present
a certain leakage from additional sound sources when two events
overlap, even when the annotations ΛΛΛS are perfectly estimated.

The classification method is divided into two stages. First,
the incoming signal is transformed into the log-mel spectrogram
and split into TF patches. Then, the TF patches are fed into
a single-mode based on a Convolutional Recurrent Neural Net-
work (CRNN), which outputs probabilities for event classes k ∈
{1...K}, with K = 11. Predictions are done at the event-level (not
at the frame level), since the temporal activities have been already
determined by the front-end.
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Figure 3: Association architecture.

The proposed CRNN is depicted in Figure 4. It presents three
convolutional blocks to extract local features from the input repre-
sentation. Each convolutional block consists of one convolutional
layer, after which the resulting feature maps are passed through a
ReLU non-linearity [17]. This is followed by a max-pooling op-
eration to downsample the feature maps and add invariance along
the frequency dimension. The target classes vary to a large ex-
tent in terms of their temporal dynamics, with some of them being
rather impulsive (e.g., Door slam), while others being more sta-
tionary (e.g., Phone ringing). Therefore, after stacking the feature
maps resulting from the convolutional blocks, this representation is
fed into one bidirectional recurrent layer in order to model discrim-
inative temporal structures. The recurrent layer is followed by a
Fully Connected (FC) layer, and finally a 11-way softmax classifier
layer produces the event-level probabilities. Dropout is applied ex-
tensively. The loss function used is categorical cross-entropy. The
model has ∼175k weights.

Figure 4: Back-end architecture.

3. EXPERIMENTS

3.1. Dataset, evaluation metrics and baseline system

We use the TAU Spatial Sound Events 2019 - Ambisonic, which
provides first-order ambisonic recordings. Details about the record-
ing format and dataset specifications can be found in [18]. The
dataset features a vocabulary of 11 classes encompassing human
sounds and sound events typically found in indoor office environ-
ments. The dataset is split into a development and evaluation sets.
The development set consists of a four fold cross-validation setup.

The SELD task is evaluated with individual metrics for SED
(F-score (F) and error rate (ER) calculated in one-second segments)
and DOA estimation (DOA error (DOA) and frame recall (FR) cal-
culated frame-wise) [6]. The SELD score is an averaged summary
of the system performance.

The baseline system features a CRNN that jointly performs
DOA and SED through multi-task learning [6]. Baseline results
are shown in Table 2.

3.2. Parametric front-end

Based on the method’s exploratory analysis, we propose the follow-
ing set of parameter values, which are shown in Table 1.

Table 1: Parameter values for the selected configuration. Top: DOA
analysis parameters. Bottom: Association parameters.

Parameter Unit Value

STFT window size sample 256
analysis frequency range Hz [0,8000]

time average vicinity radius r bin 10
diffuseness mask threshold Ψmax - 0.5

energy density filter length bin 11
std mask vicinity radius bin 2

std mask normalized threshold - 0.15
median filter minimum ratio Bmin - 0.5
median filter vicinity radius (k,n) bin (20, 20)

resampling minimum valid bins Kmin bin 1
overlapping std threshold σmax degree 10

grouping maximum angle dANGLE
max degree 20

grouping maximum distance dFRAME
max frame 20

event minimum length frame 8

3.3. Deep learning classification back-end

We use the provided four fold cross-validation setup. Training and
validation stages use the outcome of an ideal front-end, where the
groundtruth DOA estimation and activation times are used to feed
the beamformer for time-space segmentation. Conversely, we test
the trained models with the signals coming from the complete front-
end described in Section 2. We conducted a set of preliminary ex-
periments with different types of networks including a VGG-like
net, a less deep CNN [19], a Mobilenetv1 [20] and a CRNN [21].
The latter was found to stand out, and we explore certain facets of
the CRNN architecture and the learning pipeline.

Sound events in the dataset last from ∼ 0.2 to 3.3 s. First, clips
shorter than 2s are replicated to meet this length. Then, we com-
pute TF patches of log-mel spectrograms of T = 50 frames (1
s) and F = 64 bands. The values come from the exploration of
T ∈ {25, 50, 75, 100} and F ∈ {40, 64, 96, 128}. T = 50 is
the top performing value, roughly coinciding with the median event
duration. In turn, more than 64 bands provide inconsistent improve-
ments, at the cost of increasing the number of network weights.

Several variants of the CRNN architecture were explored until
reaching the network of Figure 4. This included a small grid search
over number of CNN filters, CNN filter size and shape, number of
GRU units, number of FC units, dropout [22], learning rate, and
the usage of Batch Normalization (BN) [23]. Network extensions
(involving more weights) were considered only if providing major
improvements, as a measure against overfitting. The main take-
aways are: i) squared 3x3 filters provide better results than larger
filters, ii) dropout of 0.5 is critical for overfitting mitigation, iii)
more than one recurrent layer does not yield improvements, while
slowing down training, and iv) surprisingly, slightly better perfor-
mance is attained without BN nor pre-activation [24]. For all exper-
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iments, the batch size was 100 and Adam optimizer was used [25]
with initial learning rate of 0.001, halved each time the validation
accuracy plateaus for 5 epochs. Earlystopping was adopted with a
patience of 15 epochs, monitoring validation accuracy. Prediction
for every event was obtained by computing predictions at the patch
level, and aggregating them with the geometric mean to produce a
clip-level prediction.

Finally, we apply mixup [26] as data augmentation technique.
Mixup consists in creating virtual training examples through linear
interpolations in the feature space, assuming that they correspond
to linear interpolations in the label space. Essentially, virtual TF
patches are created on the fly as convex combinations of the input
training patches, with a hyper-parameter α controlling the interpo-
lation strength. Mixup has been proven successful for sound event
classification, even in adverse conditions of corrupted labels [27].
It seems appropriate for this task since the front-end outcome can
present leakage due to overlapping sources, effectively mixing two
sources while only one training label is available, which can be un-
derstood as a form of label noise [19]. Experiments revealed that
mixup with α = 0.1 boosted testing accuracy in ∼ 1.5%.

4. RESULTS AND DISCUSSION

Table 2: Results for development (top) and evaluation (bottom) sets.

Method ER F DOA FR SELD

Baseline 0.34 79.9% 28.5◦ 85.4% 0.2113
Proposed 0.32 79.7% 9.1◦ 76.4% 0.2026

Ideal front-end 0.08 93.2% ∼ 0◦ ∼ 100% 0.0379

Baseline 0.28 85.4% 24.6◦ 85.7% 0.1764
Proposed 0.29 82.1% 9.3◦ 75.8% 0.1907

Table 2 shows the results of the proposed method for both de-
velopment and evaluation sets, compared to the baseline. Focusing
on evaluation results, our method and the baseline obtain similar
performance in SED (ER and F). However, there is a clear differ-
ence in the DOA metrics: in our method, DOA error is reduced by a
factor of 2.6, but FR is ∼ 10 points worst. In terms of SELD score,
our method performs slightly worse than the baseline in evaluation
mode, while marginally outperforming it in development mode.

The most relevant observation is the great improvement in DOA
error. Results suggest that using spatial audio parametric analysis
as a preprocessing step can help to substantially improve localiza-
tion. Figure 5a provides further evidence for this argument: Chal-
lenge methods using some kind of parametric preprocessing (GCC-
PHAT with the microphone dataset, and Intensity Vector-Based in
ambisonics) obtained in average better DOA error results.

Conversely, the front-end fails regarding FR. This is probably
due to the complexity added by the association step [6], and its lack
of robustness under highly reverberant scenarios. Including spectral
information at the grouping stage might help to improve FR — such
information could be provided by the classification back-end, in a
similar approach to the baseline system. Another option would be
the usage of more sophisticated source counting methods [28, 29].

In order to gain a better insight of the classification back-end
performance, Table 2 shows the method results when the testing
clips are obtained by feeding the beamformer with groundtruth an-
notations (ideal front-end). In this ideal scenario of DOA perfor-
mance, the SED metrics show a significant boost. This result sug-

(a) DOA error across submissions. Hatched bars denote methods
using parametric preprocessing. Horizontal lines depict average
DOA error accross different subsets: all methods (solid), parametric
methods (dashed), non-parametric methods (dotted).

(b) SELD score versus complexity.

Figure 5: DCASE2019 Challenge Task 3 results, evaluation set.

gests that the low FR given by the front-end has a severe impact on
the back-end performance. Yet, the proposed system reaches simi-
lar performance to the baseline system in terms of SED metrics.

Finally, we would like to discuss algorithm complexity among
Challenge methods. As depicted in Figure 5b, there is a general
trend towards architectures with very high number of weights, as
a consequence of the usage of ensembles and large capacity net-
works. Specifically, 66% of submitted methods employ 1M weights
or more, 30% employ 10M or more, and 15% employ 100M or
more. Such complexities are several orders of magnitude greater
than the baseline (150k weights) or the proposed method (∼175k
weights). In this context, our method represents a low-complexity
solution to the SELD problem, featuring a number of parameters
and a performance comparable to the baseline method.

5. CONCLUSION

We present a novel approach for the SELD task. Our method relies
on spatial parametric analysis for the computation of event DOAs,
onsets and offsets. This information is used to filter the input sig-
nals in time and space, and the resulting event estimations are fed
into a CRNN which predicts the class to which the events belong;
the classification problem is thereby handled from a simple multi-
class perspective. The proposed method is able to obtain an overall
performance comparable to the baseline system. The localization
accuracy achieved by our method greatly improves the baseline per-
formance, suggesting that spatial parametric analysis might enhance
performance of SELD algorithms. Moreover, detection and classifi-
cation performance in our method suffers from a low Frame Recall;
improving this metric could lead to promising SELD scores.
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ABSTRACT

Deep-learning-based audio processing algorithms have become
very popular over the past decade. Due to promising results re-
ported for deep-learning-based methods on many tasks, some now
argue that signal processing audio representations (e.g. magnitude
spectrograms) should be entirely discarded, in favor of learning rep-
resentations from data using deep networks. In this paper, we com-
pare the effectiveness of representations output by state-of-the-art
deep nets trained for task-specific problems, to off-the-shelf signal
processing representations applied to those same tasks. We address
two tasks: query by vocal imitation and singing technique classifi-
cation. For query by vocal imitation, experimental results showed
deep representations were dominated by signal-processing repre-
sentations. For singing technique classification, neither approach
was clearly dominant. These results indicate it would be prema-
ture to abandon traditional signal processing in favor of exclusively
using deep networks.

Index Terms— audio signal representation, audio processing,
audio classification, query by example, deep learning

1. INTRODUCTION

Recently, deep-learning-based audio processing has gained great
popularity, due to the promising results these methods have pro-
duced for tasks such as audio classification [1] and audio source
separation [2]. As a result, some argue that representations built
using signal-processing knowledge and theory (e.g. Fourier trans-
forms, cepstrograms, etc.) should be entirely discarded, in favor of
learning representations from data using deep networks [3].

In this work, we study the efficacy of both deep and signal-
processing representations in the context of content-based audio
retrieval and audio classification, focusing on two example tasks
within these broad categories: query by vocal imitation and singing
technique classification. Given a collection of audio files, Query
by vocal imitation (QBV) [4, 5, 6] aims to retrieve those files most
similar to a user’s vocal imitation of a sound (e.g. an imitation of
dog barking). QBV is particularly useful when detailed text labels
for audio samples are not available. Singing technique classification
(e.g. Broadway belting, vocal fry) is useful for automated music in-
struction, genre recognition [7], and singer identification [8]. On
both of these tasks, the current state-of-the-art reported in the liter-
ature uses a deep model to encode the audio.

This work was supported, in part, by USA NSF award 1617497.

We compare the effectiveness of representing the audio using a
state-of-the-art deep model, trained specifically for a task, to the ef-
fectiveness of using one of three off-the-shelf signal processing rep-
resentations. We use a nearest-neighbor classification framework to
perform query by vocal imitation and singing technique classifica-
tion. Audio queries and sound files in the database are both en-
coded in the same way (with either a deep net or a signal processing
method), and then a nearest-neighbor classification is performed to
find the database example most like the query. If deep represen-
tations are truly better for these tasks, then encoding audio with a
task-specific deep model should make the task-salient information
more prominent than encoding with a signal processing method.
This should translate to better performance.

The results of this study are not what recent literature would
lead one to expect. The representation that stands out as the most
useful is the 2D Fourier transform of a constant-Q spectrogram,
rather than the representation produced by any deep network. These
results indicate it would be premature to abandon traditional signal
processing approaches in favor of exclusively using deep networks.

2. DEEP REPRESENTATIONS

In query by vocalization (QBV), people tend to remain more faith-
ful to the general shape of spectral modulations rather than the ex-
act pitch or timing of a reference audio. Therefore, a QBV rep-
resentation should be able to capture modulation patterns and also
be robust against small deviations in the pitch or timing of a query
with respect to the target sound. Similarly, singing techniques create
modulation patterns that serve as powerful discriminants for singing
styles. It is thus desirable for an audio representation used for these
tasks to preserve the modulations and present them explicitly.

Convolutional layers in deep networks are known to be effec-
tive in capturing shift-invariant patterns. For instance, if the in-
put to a convolutional layer is an audio spectorgram, the layer can
be trained to extract up-/downward moving spectral patterns, i.e.
spectro-temporal modulations, regardless of their start time and off-
set frequency [9]. It is, therefore, not surprising that convolutional
nets (CNNs) are the current state-of-the-art on both tasks. We now
describe the specific networks used in our experiments.

TL-IMINET [10] is a deep net built specifically for query by
vocal imitation (QBV). The trained network takes a pair of audio
recordings as input: a vocal imitation (e.g. a human imitation of
a dog bark) and an original recording (e.g. a real dog bark) and
outputs a similarity rating ranging from 0 to 1. TL-IMINET has
two convolutional towers that feed into several fully connected lay-
ers that combine input from the two towers. Each tower has three

https://doi.org/10.33682/bczf-wv12
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convolutional layers with max-pooling. The specific filters (their
number, arrangement, etc.) differ between the two towers, as one
was designed to capture features from an original recording and the
other from a vocal imitation. The authors argue that the convolu-
tional towers capture spectro-temporal modulation patterns resem-
bling feature maps used by mammals in the auditory system. Each
CNN tower takes a 4 second-long log-mel spectrogram as input. We
use a replication of TL-IMINET, trained on the same data sets to a
performance level equal to that reported in the original paper. One
can consider this network a specialist for the QBV task.

The VGGish model [11] is a CNN-based model trained on the
audio from 8 million YouTube videos to distinguish 3,000 sound
classes. It has 6 convolutional layers, followed by 3 fully-connected
layers. It takes a log-mel spectrogram (64 Mel bins, window size
of 25 ms, and hop size of 10 ms) as input and outputs a 128-
dimensional feature embedding for every 1-second segment of the
input audio. We selected it as an example of deep network architec-
tures and trained models used for a variety of audio labeling tasks.
One can consider the audio embedding produced by VGGish as a
“general” audio representation. As such, it is used as a sanity-check
baseline for both QBV and singing technique classification. No
task-specific model should do worse than this general audio model.

Modified VGGish [12] (M-VGGish) is a network for query by
vocalization. Instead of extracting the feature embedding from the
final layer of a VGGish model, the authors used intermediate rep-
resentations from the convolutional layers, which resulted in bet-
ter QBV performance than the original VGGish feature embedding.
The model takes an arbitrary length recording and outputs a feature
vector for every 2-second segment of the recording. To form the
segment-level feature vector, the outputs from the last two convolu-
tional layers are concatenated, then the set of segment-level feature
vectors are averaged to form a clip-level feature vector. One can
consider this network a specialist for the QBV task.

Wilkins et al. [13] made a convolutional neural network that is
the current state-of-the-art for singing technique classification. It is
an end-to-end model that takes a raw PCM audio waveform as input
and outputs a probability distribution over singing techniques. It is
a specialist for singing technique classification.

2.1. Signal-processing-based representations

In this section, we discuss the signal processing representations
used in our experiments. Time-frequency representations, such as
the magnitude spectrogram are, perhaps, the most commonly used
audio features. For this study, we used a log-frequency magnitude
spectrogram built using a Constant-Q Transform (CQT) [14]. The
log-scale frequency spacing of the CQT preserves the spacing be-
tween overtones of harmonic sounds (e.g. human speech) when the
fundamental frequency changes. A log-frequency magnitude spec-
trogram is used as input to three of the four deep models included
in this study (TL-IMINET, VGGish, modified VGGish). Therefore,
one can consider the CQT spectrogram a baseline. If a nearest-
neighbor classifier performs better using a CQT spectrogram as in-
put than it does using the output of one of these deep models, then
that model is not performing task-relevant work.

The 2D Fourier Transform (2DFT) is an image processing tool
that was not originally developed for audio. It decomposes an
image into a set of scaled and phase-shifted 2D sinusoids. The
2DFT can be used to analyze the time-frequency representations
(e.g. CQT) of audio signals [15, 16]. Repeating patterns in a time-
frequency representation, such as overtones of a harmonic sound,

are grouped together and manifest as peaks in the 2DFT domain.
Spectro-temporal modulation patterns can thus be effectively en-
coded by the 2DFT as a set of peaks. The magnitude 2DFT of an
audio spectrogram is invariant with respect to frequency or time
shifts of modulation patterns. The 2DFT has been recently used
in applications such as music/voice separation [15] and cover song
identification [17, 16]. Since it has proven successful in these very
different tasks, we were interested in exploring its potential for the
tasks in this study. In our experiments, we apply the 2DFT to the
log-frequency magnitude spectrogram built from the CQT.

Scale-rate (SR in this work) is a modulation-related feature rep-
resentation computed based on the Multi-resolution Common Fate
Transform (MCFT) [18]1. The MCFT is a bio-inspired represen-
tation initially proposed for the task of audio source separation,
which encodes spectro-temporal modulation patterns as explicit di-
mensions. The modulation-related dimensions are termed scale and
rate [19], respectively encoding the spectral spread and modulation
velocity over time. SR is built by applying the 2D filterbank of the
MCFT to the magnitude CQT of audio signals and averaging the
results over time and frequency. This representation was chosen
due to its explicit representation of spectro-temporal modulations,
which we believe to be useful in both QBV and singing technique
classification tasks.

While we had reason to believe that the 2DFT of the log
spectrogram and the scale-rate representation would capture vocal
spectro-temporal modulations well, none of the signal processing
representations in our study were designed for either the QBV or
singing technique classification task. This contrasts with the deep
networks we tested, which were made specifically for each task.

3. EXPERIMENTS

We consider an audio representation (e.g. the deep embedding out-
put by M-VGGish, or the CQT spectrogram) as effective if the task-
relevant distinctions between audio examples can be easily captured
by a similarity measure applied to those examples encoded in the
representation. The performance of a K-nearest-neighbor classifier,
for instance, is directly affected by the audio representation. The
better the task-related information is represented, the better the clas-
sifier works, the better the retrieval (or labeling) performance would
be. We evaluate the effectiveness of a representation in this light.

3.1. Query by vocal imitation

To evaluate the performance of the representations in the query by
vocal imitation (QBV) scenario we used the VimSketch dataset2,
which combines the datasets from two previous publications [20,
21] to create the largest single dataset for QBV. VimSketch con-
tains 542 reference sounds (including a variety of animal sounds,
musical snippets, and environmental noise samples) and 12,543 vo-
cal imitations of those reference sounds with a minimum of 13 and
a maximum of 37 vocal imitations per reference.

All audio examples encoded by the representations were zero-
padded to the length of the longest example in the dataset (15.4
seconds). All signal processing representations, VGGish and M-
VGGish used full length audio examples. Audio examples for TL-
IMINET were limited to the initial 4 seconds long. This duplicates
the published approach for TL-IMINET [10].

1https://interactiveaudiolab.github.io/MCFT/
2http://doi.org/10.5281/zenodo.2596911
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The VimSketch audio files were originally sampled at different
rates (ranging from 8 kHz to 192 kHz). Thus, we first resampled
them to have a common rate, 8 kHz. For the signal processing repre-
sentations (CQT, 2DFT, and SR), the range of frequencies was lim-
ited to 55 Hz to 2.09 kHz (pitches A1 to C7). This was done to keep
the computations tractable. Audio was upsampled to 16kHz to ac-
commodate the input requirements of VGGish and M-VGGish. In-
put to TL-IMINET was upsampled to 16kHz for the imitation tower
and 44.1kHz for the reference tower, to meet its requirements. We
note that even though the initial resampling removes the frequen-
cies above 4 kHz, the comparison is still reasonable since: i) these
high frequencies are unavailable to all representations alike and ii)
the sounds remain recognizable by humans.

Given a vocal query, the output of a QBV system is a list of
reference sound examples ordered based on their similarity to the
query. In our experiments with the deep net encoders (VGGish, M-
VGGish) and all signal processing features (CQT, 2DFT, SR), we
use the cosine similarity measure to select the most similar sound
examples to a query in the representation domain. We selected the
cosine similarity measure because this is the similarity measure ap-
plied in the published results for the state-of-the-art M-VGGish net-
work for query by vocal imitation [21].

The cosine similarity between a query Vq and a reference Vr

is defined as:

Scos(Vq,Vr) =
〈Vq,Vr〉
‖Vq‖‖Vr‖

, (1)

where 〈·, ·〉 and ‖·‖ are the inner product and Euclidean norm.
Unlike VGGish and M-VGGish, TL-IMINET was not designed

to produce an audio embedding (a.k.a. representation) to be used by
an external similarity measure or classifier. It instead directly out-
puts a similarity measure between pairs of examples, which we use
in place of the cosine similarity applied to all other representations.

The performance of the QBV system can be evaluated in terms
of the rank of the target sound in the output list of sound examples.
We use Mean Reciprocal Rank (MRR) as the performance measure:

MRR =
1

|Q|

|Q|∑

i=1

1

ranki
, (2)

where Q denotes a set of queries and ranki refers to the rank posi-
tion of the target sound for the ith query.

Recall that a ‘reference’ in this context is an audio file in the
collection (e.g. a car horn recording) and a ‘query’ is a vocal imita-
tion of some reference file. The MRR value for each representation
is computed over datasets of size n = 20, 50, 100, 200, 400, and
542 references. Since there are 12,543 vocal imitations in the data,
the MRR value for each reference set is computed by averaging over
12,543 reciprocal ranks. To ensure no result is due to a selection of
a reference set that is skewed to favor a particular representation,
reference set selection is repeated 100 times for each value of n be-
low 542 (the size of the full reference set). The average MRR over
all 100 iterations is reported.

3.1.1. Signal Processing Hyperparameters

In computing the CQT and 2DFT, we treat the frequency resolution
of the CQT as a tunable parameter, taking on values of 12, 24, 48,
or 96 bins/octave. For SR, we keep the frequency resolution fixed
to the best performing 2DFT resolution for the QBV task and then
treat the scale and rate resolutions as tunable parameters with values
1, 2, 4, or 8 bins/octave.
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Figure 1: Query by vocalization search results. Deep represen-
tations (grayscale bars) are compared to signal processing repre-
sentations (colored bars). Higher values are better. Each signal
processing representation uses the worst parameters found for the
task. Two of the deep nets (M-VGGish and TL-IMINET) were con-
structed specifically for query by vocalization. Nevertheless, all
deep representations are dominated by two signal processing rep-
resentations (2DFT of CQT and SR).

For the QBV task, the worst and best results using the CQT and
2DFT are obtained with a frequency resolution of 96 (worst) and 12
bins/octave (best). Increasing the frequency resolution has a nega-
tive effect on the performance of both features, showing the impor-
tance of high temporal resolutions in capturing the fine structure of
modulations. The scale resolution does not impact the performance
of SR features significantly, and hence it is fixed to 1 bin/octave for
the reported results. The rate resolution, on the other hand, has a
noticeable effect, giving the worst results when set to 1 bin/octave
and best results when set to 8 bins/octave.

3.1.2. Results

QBV task results are presented in Figure 1. To tilt the comparison
in favor of the deep representations as far as possible, we show only
the results for the worst tunable parameter settings found for the
signal processing approaches (CQT, 2DFT, and SR). Results shown
for 2DFT and CQT use the worst frequency resolution tested. Re-
sults for SR show the worst scale and rate tested. Therefore, Figure
1 compares off-the-shelf signal processing representations that use
bad hyperparameter choices to published task-specific deep models,
tuned to work well on the kind of data used for evaluation.

It can be clearly observed that the 2DFT and SR features out-
performed all other representations, even with their worst parame-
ter selection. This superiority holds for all sizes of dataset tested.
CQT is a log-frequency spectrogram. VGGish, M-VGGish, and
TL-IMINET all use a log-frequency spectrogram as input. VGGish
was neither trained nor designed for the QBV task and serves as a
baseline among the deep nets. Therefore, it is not surprising that us-
ing the output of VGGish as a representation is roughly equivalent
to simply using a constant-Q spectrogram (the CQT).

The deep nets TL-IMINET and M-VGGish were both con-
structed for the specific QBV task we tested them on. Surprisingly,
TL-IMINET, a network designed and trained specifically for the
QBV task, shows degraded performance as the dataset grows, to the
point where it is would actually be preferable to use a constant-Q
spectrogram, which was the worst-performing of the signal process-
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ing representations.
As can be seen, only M-VGGish consistently improved upon

CQT as the database size increases. This shows it is possible to
create a deep representation that is consistently better than its input
representation for this task. That said, M-VGGish never achieved
the performance of either of the top signal processing represen-
tations (2DFT and SR), despite the fact that we compared to the
worst parameter settings for both. We hypothesize that the supe-
rior performance of the signal processing representations on this
task may be due to the fact that SR and 2DFT features inher-
ently capture spectro-temporal modulations and present them in a
time/frequency-shift-invariant fashion. While a deep representation
may be able to represent such modulations, this comparison illus-
trates that even a network explicitly designed and trained for this
task (e.g. TL-IMINET) may not perform as well as an existing sig-
nal processing approach.

3.2. Singing technique classification

For the task of singing technique classification, we used VocalSet
[13], a singing voice dataset that includes a large set of voices (9
female and 11 male professional singers) performing 17 different
singing techniques. We extracted the samples corresponding to 10
different singing techniques (belt, breathy, inhaled singing, lip trill,
spoken excerpt, straight tone, trill, trillo, vibrato, and vocal fry) by
all singers, which amounts to 915 samples ranging in length from
1.7 to 21.5 seconds. All audio examples were resampled to 8 kHz.

We compared our results to those of the classifier proposed by
Wilkins et al. [13], which was directly trained on VocalSet, and
thus is expected to perform very well. Their classifier is a neural
network, composed of three convolutional layers followed by two
dense layers. The network receives a 3-second time-domain audio
excerpt as input and outputs the predicted vocal technique class. We
use the same technique classes and the same training/testing data
split as in their experiments. The training and testing sets include
samples from 15 and 5 singers, respectively.

The signal processing representations compared to Wilkins et
al. were CQT, 2DFT, and SR. We also compared to VGGish, a deep
net not trained on this specific task. This provided a baseline deep
net, much the way the CQT provides a baseline signal processing
representation. The singing techniques were classified using the
K-Nearest Neighbors algorithm, with the cosine similarity measure
and K = 3 used as algorithm parameters in all experiments.

Since audio examples are of different lengths, we had to decide
whether to zero-pad or cut all files to the same length. Two lengths
were tried. First, we extracted the initial 3 seconds of all examples,
which is the same length used by the deep net in Wilkins et al. [13].
We expected this to favor their deep net. Next, we found the signal
length that maximized the performance of the VGGish deep net (18
seconds) and zero-padded or cut all examples to that length.

We measured the classification performance in terms of pre-
cision, recall, and F-measure. Table 1 shows results for 3-second
examples and Table 2 the results for 18-second examples.

The frequency range for the CQT and the parameter tuning
strategies for the 2DFT and SR features were the same as in Sec-
tion 3.1. Since the signal processing approaches were not as dom-
inant in this task, we report the results using both the best and the
worst parameter settings for these representations. In both tables,
the best frequency resolutions for the CQT and 2DFT are 96 and 24
bins/octave, respectively. In both tables, the best scale resolution is
1 bin/octave and the best rate resolution 8 bins/octave.

Representation Precision Recall F-measure
Deep: Wilkins et al. 0.677 0.628 0.651
Deep: VGGish 0.556 0.54 0.529
CQT-best 0.61 0.528 0.519
CQT-worst 0.52 0.468 0.448
2DFT-best 0.665 0.624 0.637
2DFT-worst 0.660 0.58 0.597
SR-best 0.562 0.564 0.554
SR-worst 0.449 0.44 0.434

Table 1: Singing technique classification (10 classes): Results for
3-second excerpts. Higher values are better.

Representation Precision Recall F-measure
Deep: VGGish 0.627 0.6 0.602
CQT-best 0.533 0.488 0.479
CQT-worst 0.43 0.432 0.408
2DFT-best 0.723 0.692 0.698
2DFT-worst 0.674 0.636 0.646
SR-best 0.615 0.612 0.603
SR-worst 0.612 0.6 0.599

Table 2: Singing technique classification (10 classes): Results for
18-second excerpts. Higher values are better.

It can be observed that in the 3-second case, the 2DFT outper-
forms the VGGish embeddings by a large margin and a simple pa-
rameter tuning (frequency resolution) brings its performance close
to the network that was specifically trained for the VocalSet data
(Wilkins et al.). When applied to excerpts of longer duration (Table
2), the 2DFT is able to capture long-term modulations even more
efficiently, yielding a higher F-measure than the state-of-the-art re-
sults reported by Wilkins et al. on 3-second examples.

4. CONCLUSION

For query by vocalization, a nearest-neighbor method that applies
cosine similarity to either of two off-the-shelf signal processing
methods (2DFT and SR applied to a constant-Q spectrogram) out-
performed similarity measures built using two different deep ap-
proaches designed specifically for this task (M-VGGish and TL-
IMINET), as well as a general audio deep representation (VGGish).
For singer technique classification, a 2DFT representation was com-
petitive with or outperformed the task-specific deep network that is
the current state-of-the-art (Wilkins et al. [13]), depending on the
choice of parameters, and also outperformed a general audio repre-
sentation (VGGish).

The deep networks evaluated here defined the state of the art on
both tasks until this study. We hypothesize that the ability of both
SR and 2DFT to explicitly represent spectro-temporal modulations
in a time/frequency-shift-invariant fashion is key to their effective-
ness with non-speech vocal classification. While a deep represen-
tation may be able to represent such modulations, this comparison
illustrates that even a network explicitly designed and trained for
non-speech vocal classification may not perform as well at repre-
senting these features. Given our results, it would be premature to
abandon traditional signal processing techniques in favor of exclu-
sively using deep networks.
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ABSTRACT

In this paper, we present the details of our solution for the
IEEE DCASE 2019 Task 3: Sound Event Localization and Detec-
tion (SELD) challenge. Given multi-channel audio as input, goal
is to predict all instances of the sound labels and their directions-
of-arrival (DOAs) in the form of azimuth and elevation angles.
Our solution is based on Convolutional-Recurrent Neural Network
(CRNN) architecture. In the CNN module of the proposed architec-
ture, we introduced rectangular kernels in the pooling layers to min-
imize the information loss in temporal dimension within the CNN
module, leading to boosting up the RNN module performance. Data
augmentation mixup is applied in an attempt to train the network for
greater generalization. The performance of the proposed architec-
ture was evaluated with individual metrics, for sound event detec-
tion (SED) and localization task. Our team’s solution was ranked 5th

in the DCASE-2019 Task-3 challenge with an F-score of 93.7% &
Error Rate 0.12 for SED task and DOA error of 4.2° & frame recall
91.8% for localization task, both on the evaluation set. This results
showed a significant performance improvement for both SED and
localization estimation over the baseline system.

Index Terms— DCASE-2019, SELD, SED, Localization,
CRNN, mixup

1. INTRODUCTION

Sound event localization and detection (SELD) is a challenging
and well-researched topic in the field of acoustic signal processing.
There are two sub-tasks for SELD, first: the sound event detection
(SED), second: the sound source’s direction estimation. An ideal
SELD system would be able to detect & classify multiple sound
events and for each detected sound event determines its direction
of arrival. Signal processing algorithms have been traditionally
employed to address this challenging task. However performance
achieved by such methods are still limited under practical condi-
tions.

In recent research, deep learning based techniques have been
applied individually for both SED and localization part of the SELD
task. In [1, 2], it has been shown that CNN based network can
detect and classify sound events with high accuracy. In [3], 1D-
CNN has been applied for solving the sound localization task. The
recent trend in this field has been about developing deep learning

∗Both authors contributed equally.
†This work was done during an internship at Panasonic R&D Center

Singapore.

techniques for joint localization and classification of multiple sound
sources. In [4] authors proposed 2D-CNN based network for joint
sound source localization and classification. In [5] authors intro-
duced convolutional recurrent neural network architecture (CRNN),
where the CNN module learns the audio spectral information fol-
lowed by the RNN module, that learn the temporal information.
This network architecture has been set as the baseline model in the
DCASE2019 Task 3 challenge - Sound Event Localization & Detec-
tion. In [6] authors introduced two-stage training approach, which
shows improvement in the overall performance over [5]. In this ap-
proach the training of the network is split into two branches, i.e.,
the SED branch and the localization branch.

In this paper, we proposed two deep CRNN architectures with
log-mel spectrogram and generalized cross-correlation phase trans-
forms (GCC-PHATs) as input features to the network. In the CNN
module of one of the proposed network architecture, we restricted
pooling in the frequency domain, this helps in preserving tempo-
ral information, boosting the performance of RNN module. Data
augmentation technique mixup was used in an attempt to general-
ize the network. We investigated the effect of mixup on each of the
sub-task, SED and localization and compared our results with base-
line system provided by the DCASE-2019 challenge and with other
prior-arts.

The rest of the paper is organized as follows. In Section 2,
we presented the details on feature extraction, data augmentation
technique and our proposed CRNN architectures. In Section 3, we
discuss experiments setup & compare our results with prior-arts.
Finally, conclusion and future work is presented in Section 4.

2. METHODOLOGY

In this section, we present our methodology starting with input fea-
ture extraction description followed by CRNN architecture descrip-
tion. In addition, we also discuss the data augmentation step used
during training for improving model generalization. For training the
network we adopted the strategy proposed in [6], where the model
is first trained on SED task, then on localization task using the same
network architecture.

2.1. Features

Input features plays a crucial role in training deep neural network.
In this work, the raw data is in the form of four-channel audio signal,
recorded at 48kHz sampling rate using a microphone array and was
provided by DCASE Task-3 organizers [7]. The time domain multi-
channel signals were first down-sampled to 32 kHz and then used

https://doi.org/10.33682/gbfk-re38
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Figure 1: Base architecture TS-C2Rnn. Each convBlock contains three Conv2D layers followed by (2 × 2) average pooling. Each CNN
layer is followed by batch normalization and ReLU activation. convBlock1 receives the input features.

Figure 2: Proposed architecture TS-C2Rnn-P, with (2× 1) average pooling after each convBlock, with no interpolation layer.

to extract log-mel spectrogram and GCC-PHAT features.
The log-mel spectrogram is commonly used as input feature

in speech recognition [8] because of its similarity to frequency de-
composition of the human auditory system. To obtain the log-mel
spectrogram, time domain audio signal is converted to the time-
frequency (TF) domain using short-time Fourier transform (STFT).
This ensures that both the temporal and spectral characteristics of
the audio data are utilized. After the frequency domain conversion,
we extracted the log-mel spectrogram corresponding to each audio
clip using 96 Mel bands. For the STFT parameters, we employ a
frame length of 1024 points, with a hop length of 10 ms.

GCC-PHAT is widely used for estimation of time difference of
arrival (TODA) of acoustic signal between two microphones. A ba-
sic frequency domain cross-correlation is estimated by the inverse-
FFT of cross power spectrum. GCC is the improved version of
cross-correlation, it is estimated by adding a windowing (or filter-
ing) function prior to the inverse transform to improve the estima-
tion of the time delay, depending on the specific characteristics of
the signals and noise. GCC-PHAT is the phase-transformed version
of GCC, which eliminate the influence of amplitude in the cross
power spectrum, hence only preserving the phase information [9].

2.2. CRNN Architecture

The base network architecture introduced in this work is inspired
from [6] and named as TS-C2Rnn as shown in figure 1 . The
extracted audio features are provided as input to a CRNN archi-
tecture. CNN module of TS-C2Rnn consist of 4 convolutional
blocks, named convBlock1 to convBlock4. Each convBlock is fol-
lowed by an average pooling layer. Within each convBlock there
are 3 convolutional layers, followed by batch normalization and

ReLU activation. For convolutional layers in the convBlocks, 3× 3
kernel is used, with stride and padding fixed to 1. The number
of filters used in convBlock1 to convBlock4 are {convBlock1 :
64, convBlock2 : 128, convBlock3 : 256, convBlock4 : 512}.
For performing average pooling in convBlocks, we used 2× 2 win-
dow, with a stride of 2 × 2 . The CNN module of the network
is followed by RNN module, which has two GRU layers, GRU-1
and GRU-2. The output of the GRU-2 layer is fed into fully con-
nected (FC) layer of size N, where N is the number of sound event
classes. FC layer is followed by interpolate layer to ensure the fi-
nal number of the time frames is approximately equal to the original
number of time frames of the input clip. This is necessary due to the
presence of square kernels in the pooling layers in each convBlock.
The output of the interpolate layer contains N class scores, azimuth
and elevation values corresponding to each T time frames, where T
varies from clip to clip.

We proposed another network architecture TS-C2Rnn-P which
is a modified version of TS-C2Rnn architecture as shown in Figure
2. In the CNN module of TS-C2Rnn the 2× 2 pooling across time
and frequency domain reduces the information both in frequency
and temporal dimension of feature maps. In order to preserve the
time domain information which may be critical for GRU perfor-
mance, we introduced 2×1 rectangular kernels in the CNN module
pooling layers for TS-C2Rnn-P architecture. This results in restrict-
ing the pooling of feature maps in the frequency dimension.

Both the proposed networks TS-C2Rnn & TS-C2Rnn-P), were
first trained on SED task and then on the localization task. In the
first stage, all features are fed into the network to train for SED
task and only the loss of SED is minimized. After SED have been
trained, the learned weights from the convBlocks in the SED branch
is transferred to the convBlocks in the localization branch to train
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for the localization task using the reference event labels to mask the
localization predictions.

2.3. Data Augmentation: MIXUP

For better model generalization, we adopted mixup [10] a data aug-
mentation technique which is a popular for image classification
tasks. It has been illustrated in [10] that mixup scheme helps in
alleviating undesirable behaviors of the deep neural network such
as memorization and sensitivity to adversarial examples. Mixup is a
data-agnostic data augmentation routine. It makes decision bound-
aries transit linearly from class to class, providing a smoother esti-
mate of uncertainty.

The idea behind mixup is that of risk minimization. We wish to
determine a function f that describes the relationship between input
xi and target yi , and follows the joint distribution P (x, y). We can
minimize the average of the loss function ` (or expected risk) over
P in the following manner

R(f) =

∫
`(f(x), y)dP (x, y) ,

where f(x) is a function that describes the relationship between in-
put vector x and target vector y, ` is the loss function that penalizes
the difference between the output of f(x) and target y. While P is
unknown is most practical cases, it can be approximated. There are
two such approximations raised in [10] namely empirical risk min-
imization [11] and vicinal risk minimization [12]. While the vici-
nal virtual input-target pairs are generated by addition of Gaussian
noise in [12], Zhang et al. [10] proposed the generation of virtual
input and target pairs as such,

X = λ× x1 + (1− λ)× x2,
Y = λ× y1 + (1− λ)× y2,

(1)

where λ is a weight drawn from the beta distribution with parame-
ters α, β = 0.2 and x1, x2, y1 and y2 are two pairs of input-target
pairs drawn randomly from the dataset. The parameters α and β
are chosen such that the probability density is denser in the domain
0 < λ < 0.1 and 0.9 < λ < 1.0 which can be seen in Figure 3.
The average of the loss function can then be minimized over this
probability distribution approximation.

Figure 3: Beta distribution with α, β = 0.2

3. EXPERIMENTS AND RESULTS

DCASE2019 Task-3 organizers has provided two datasets [7], TAU
Spatial Sound Events 2019: Ambisonic, Microphone Array datasets
of an identical sound scene with only difference in the format of the

audio. In this work, we only used TAU Spatial Sound Events 2019:
Microphone array dataset for all our experiments. The dataset con-
sist of multiple audio recordings from 4 channel, directional micro-
phones arranged in a tetrahedral array configuration with overlap-
ping sound events recorded in different environments. Dataset is
divided into two sets, development set and evaluation set. The de-
velopment set consists of 400, one minute long recordings sampled
at 48kHz, divided into four cross-validation splits of 100 recordings
each. The evaluation set consists of 100, one-minute recordings.
There are total 11 isolated classes of the sound events. We trained
our network using this 4 pre-defined cross-validation folds and the
final results are the overall aggregated from the test data of all 4
folds in the development set. The performance of the architecture
is evaluated with individual metrics, for SED F-score and error rate
(ER) was considered and for localization task, direction of arrival
(DOA) error and frame recall (FR) were used. We trained our net-
work with an objective to achieve lower DOA error & ER and higher
FR & F-score.

Below is the list of prior arts and proposed architectures used
for experiments and evaluations.

• Baseline, which is the benchmark model [5] released by
DCASE-2019 Task-3 organizers. This network is based on the
CRNN architecture, and take magnitude & phase spectrogram
as input features.

• SELDNet, this network has the same architecture as in Base-
line, but instead of magnitude & phase spectrogram, it takes
log-mel spectrograms & GCC-PHAT as input features.

• Two-Stage (TS), this network has CRNN architecture and is
based on two stage training methodology [6] .

• TS-CRnn, same as our base network architecture TS-C2Rnn
except only 1 GRU layer used as the RNN.

• TS-C2Rnn, our base network architecture as illustrated in Fig-
ure 1 and explained in section 2.2 .

• TS-C2Rnn-P, the modified version of our base network archi-
tecture TS-C2Rnn, which has 2 × 1 kernel size for pooling
layers, as illustrated in Figure 2 and explained in section 2.2.

Table 1 presents the performance results on development set
w.r.t to prior-arts for SED and localization task, with the effect of
data augmentation technique, mixup. Compared with Baseline, our
base network TS-C2Rnn without mixup shows 12.6% and 50.2%
improvement on ER and F-score respectively for the SED task,
while for localization task it show 20° and 2.6% improvement on
DOA error and FR respectively. This result shows that deep CRNN
based architectures improves the performance for SELD task com-
pared to CNN based architecture.

In addition, TS-C2Rnn-P architecture which uses average pool-
ing with kernel size of 2 × 1 in the CNN module, shows the best
improvements with the best score across all evaluation metrics. For
the SED task, TS-C2Rnn-P achieved an error rate of 0.149 and an F-
score of 91.9%. For the localization evaluation metrics, it achieved
a DOA error of 4.588 °and frame recall of 0.896. It shows improve-
ment of 13% and 4° respectively on ER and DOA error, over the
state-of-art Two-Stage(TS) network. This result infers that 2 × 1
pooling in the CNN module of TS-C2Rnn-P, helps it to learn the
spectral information efficiently, and at the same time minimize the
loss of information in the temporal dimension. In turn there is more
information available to the RNN module, which helps in effec-
tively learning the temporal information. This lead to boosting up
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no mixup with mixup
ER F-score DOA(°) FR ER F-score DOA(°) FR

Baseline 0.350 0.800 30.800 0.840 — — — —
SELDNet 0.213 0.879 11.300 0.847 — — — —
Two-Stage (TS) 0.166 0.908 9.619 0.863 0.194 0.888 8.901 0.839
TS-CRnn 0.186 0.897 9.450 0.857 0.200 0.888 7.866 0.841
TS-C2Rnn 0.174 0.901 8.881 0.862 0.176 0.903 7.236 0.856
TS-C2Rnn-P 0.147 0.916 5.631 0.902 0.149 0.919 4.588 0.896

Table 1: Performance evaluation of the proposed network architecture on the development set comparing with prior-arts

DCASE-2019 Task-3 Evaluation-result

Team Name Rank ER F-score DOA(°) FR
Kapka SRPOL [13] 1 0.08 0.947 3.7 0.968
Cao Surrey [14] 2 0.08 0.955 5.5 0.922
Xue JDAI [15] 3 0.06 0.963 9.7 0.923
He THU [16] 4 0.06 0.967 22.4 0.941
Jee NTU (our) 5 0.12 0.937 4.2 0.918

Table 2: Comparison of top 5 results of DCASE-2019 Task-3.

of the overall performance of the proposed TS-C2Rnn-P network.
Table 1 also illustrate the effect of data augmentation i.e. mixup

on the performance of above mention networks. Comparing the re-
sults we can infer that upon applying the mixup the F-score slightly
dropped while the DOA error improved. We realized that the mixup
is having positive effect on improving the localization task perfor-
mance but at the same time it is showing a slight drop or no change
in performance for the SED task. We applied a new training strat-
egy of applying mixup only on the localization task during training,
as there is no effect of mixup on SED task.

mixup on localization task only
ER F-score DOA(°) FR

Two-Stage 0.175 0.903 8.056 0.861
TS-C2Rnn 0.171 0.903 7.486 0.861
TS-C2Rnn-P 0.144 0.904 4.746 0.902

Table 3: Results from using mixup in localization branch training
only.

Comparing between the performance of Two-Stage, TS-C2Rnn
and TS-C2Rnn-P in Table 1 (no mixup) and Table 3 (mixup on lo-
calization task only), an improvement could be seen across all four
evaluation metrics for all of the networks. In contrast while compar-
ing the results of these network in Table 1 (with mixup) and Table
3, only three metrics showed an improvement while DOA error in-
creased. This abnormality tell us that, training for localization task
is built upon the trained weights of the SED task, therefore for im-
proving the results in the localization branch, SED results are also
essential. Although mixup appear to slightly drop in the perfor-
mance score for SED predictions, but its negative effect on SED
score, appears to have a positive performance surge on the localiza-
tion task. The negative effects of mixup on the SED branch appeared

to be suppressed by increasing the number of layers. This can be
seen from the F-score converging to 0.904 for networks tested with
mixup applications in Table 3.

The DOA error could be improved further by learning from
the trained weights of a mixup-applied SED task instead of a non-
mixup-applied SED task although that would adversely affect the
results of SED predictions. Thus, a balance must be found in the
use of mixup, depending on the use case and the allowance for error
in SED and DOA predictions.

Table 2 presents the top 5 teams results on the DCASE-2019
Task 3 evaluation set. In this Table ”Jee NTU” refers to the results
of TS-C2Rnn-P architecture proposed in this work. From the table
we can infer that our DOA error performance, which is the rank 5
system has given a positive improvement over rank 2-4 systems. In
addition our overall F-score for the SED task is comparable with
other systems. With the usage of both the data sets provided by
DCASE-2019 Task 3 and including mixup, we believe TS-C2Rnn-
P can yield similar results as the top system.

4. CONCLUSION & FUTURE WORK

In this paper, we proposed CRNN architecture with mixup as data
augmentation technique for SELD task. Experimentally, we have
shown that using mixup helps in improving the localization perfor-
mance. In addition, usage of rectangular kernels for the pooling
layers helps in overall performance of SED and localization. Ex-
perimental results show that our proposed network architecture TS-
C2Rnn-P with mixup is shown to significantly outperform the base-
line system for both SED and localization task. For future studies,
the changing of parameters α and β in mixup can be investigated.
The parameters were chosen so as not to create too many vastly
different virtual input-target pairs. There might be a beneficial im-
provement if the λ is less heavily weighted to one side of the input-
target pair.
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ABSTRACT

Distribution mismatches between the data seen at training and at
application time remain a major challenge in all application areas
of machine learning. We study this problem in the context of ma-
chine listening (Task 1b of the DCASE 2019 Challenge). We pro-
pose a novel approach to learn domain-invariant classifiers in an
end-to-end fashion by enforcing equal hidden layer representations
for domain-parallel samples, i.e. time-aligned recordings from dif-
ferent recording devices. No classification labels are needed for
our domain adaptation (DA) method, which makes the data collec-
tion process cheaper. We show that our method improves the tar-
get domain accuracy for both a toy dataset and an urban acoustic
scenes dataset. We further compare our method to Maximum Mean
Discrepancy-based DA and find it more robust to the choice of DA
parameters. Our submission, based on this method, to DCASE 2019
Task 1b gave us the 4th place in the team ranking.

Index Terms— Domain Adaptation, Recording Device Mis-
match, Parallel Representations, Acoustic Scene Classification

1. INTRODUCTION

Convolutional Neural Networks (CNNs) have become state of the
art tools for audio related machine learning tasks, such as acous-
tic scene classification, audio tagging and sound event localization.
While CNNs are known to generalize well if the recording condi-
tions for training and unseen data remain the same, the generaliza-
tion of this class of models degrades when there is a distribution
dissimilarity between the training and the testing data [1].

In the following work we elaborate our findings for subtask 1b
of 2019’s IEEE DCASE Challenge, which is concerned with a do-
main mismatch problem. The task is to create an acoustic scene
classification system for ten different acoustic classes. A set of
labelled audio snippets recorded with a high-quality microphone
(known as Device A) is provided for training. Additionally, for a
small subset of samples from device A, parallel recordings from
two lower quality microphones (devices B and C) are given. Eval-
uation of methods is done based on the overall accuracy on unseen
samples from devices B and C. The acoustic scene, the city, and
the device labels are provided for samples of the development set
only. The main challenge of task 1b is to develop a model that,
although trained mostly on samples from device A, is able to gen-
eralize well to samples from devices B and C. Since this problem
is related to the field of Domain Adaptation (DA), we refer to the

distribution of device A samples as the source domain, and the dis-
tribution of samples of B and C devices as the target domain. In this
work we explain how a state-of-the-art CNN model which by itself
achieves high accuracy can be further improved by using a simple
DA technique designed for problems where parallel representations
are given.

2. RELATED WORK

Domain Adaptation (DA) is a popular field of research in transfer
learning with multiple areas of application, e.g. bird audio detec-
tion [2]. Kouw et al. [3] distinguish between three types of data
shifts which lead to a domain mismatches: prior, covariate and con-
cept shift. In this work we focus on domain mismatches which are
caused by covariate shifts (i.e., changes in feature distributions).

According to Shen et al. [4] solutions to domain adaptation
can be categorized into three types: (i) Instance-based methods:
reweight or subsample the source dataset to match the target dis-
tribution more closely [5]. (ii) Parameter-based methods: transfer
knowledge through shared or regularized parameters of source and
target domain learners [6], or by weighted ensembling of multiple
source learners [7]. (iii) Feature-based methods: transform the sam-
ples such that they are invariant of the domain. Weiss et al. [8]
further distinguish between symmetric and asymmetric methods.
Asymmetric methods transform features of one domain to match
another domain [9] symmetric feature-based methods embed sam-
ples into a common latent space where source and target feature
distributions are close [10]. Symmetric feature-based methods can
be easily incorporated into deep neural networks and therefore have
been studied to a larger extent. The general idea is to minimize
the divergence between source and target domain distributions for
specific hidden layer representations with the help of some metric
of distribution difference. For example, the deep domain confu-
sion method [10] and deep adaptaion network [11] use Maximum
Mean Discrepancy (MMD) [12] as a non-parametric integral prob-
ability metric. Other symmetric feature-based approaches exist that
use adversarial objectives to minimize domain differences [13, 4].
These methods learn domain-invariant features by playing a mini-
max game between the domain critic and the feature extractor where
the critic’s task is to discriminate between the source and the target
domain samples and the feature extractor learns domain-invariant
and class-discriminative features. However, training the critic intro-
duces more complexity, and may cause additional problems such as
instability and mode collapse.

https://doi.org/10.33682/v9qj-8954
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Figure 1: Two Moons dataset: best classifiers found by grid search over λ and n (Tab. 1). The source domain is represented by dark blue and
red data points, the shifted target domain by light blue and orange points. The black line shows the decision boundary of a classifier trained
without DA (left), with MMD-DA (middle) and with MSE-DA (right). Red and blue shaded areas represent decision areas of the classifiers.

3. DOMAIN-INVARIANT LEARNING

We propose a symmetric feature-based loss function to encourage
the network to learn device-invariant representations for parallel
samples from the source Xs, and the target domain Xt. This loss
exploits the fact that parallel samples contain the same information
relevant for classification and differ only due to a covariate shift,
e.g. time-aligned spectrograms (xs, xt) contain the same informa-
tion about the acoustic scenes and differ only due to device char-
acteristics. Let φl(x

s) and φl(x
t) be d-dimensional hidden layer

activations of layer l for paired samples xs and xt from the source
and the target domains, respectively. A domain-invariant mapping
φl(·) projects both samples to the same activations without los-
ing the class-discriminative power. To achieve this, we propose to
jointly minimize classification loss LCL and the Mean Squared Er-
ror (MSE) over paired sample activations, where the latter one is
defined as

Ll,MSE =
1

n · d
n∑

i=1

∥∥φl(x
s
i )− φl(x

t
i)
∥∥2
2

(1)

for some fixed network layer l (this is a hyper-parameter). As we
will show in Section 4 the DA mini-batch size n is critical, and our
results suggest that bigger n yields better results. The final opti-
mization objective we use for training is a combination of classifi-
cation loss LCL and DA loss Ll,MSE :

L = LCL + λLl,MSE (2)

Here, λ controls the balance between the DA loss and the classi-
fication loss during training. Note that for Ll,MSE no class label
information is required and the labeled samples from all domains
can be used for the supervised classification loss LCL.

4. EXPERIMENTS

In the following we evaluate the performance of our approach on
the two moons dataset as well as on real-world acoustic data: the
DCASE 2019 Task 1b dataset on acoustic scene classification [14].
We compare our proposed DA objective to the multi-kernel MMD-
based approach used by Eghbal-zadeh et al. [15] for DCASE 2019
Subtask 1b. In all experiments, parallel samples are used without
any class-label information. For both datasets, we find that when
paired samples are given, MSE achieves higher accuracy on the tar-
get set compared to MMD.

MSE MMD

n \λ 0.1 1 5 10 0.1 1 5 10

8 .999 .999 .999 .999 .805 .862 .760 .749
32 .999 .999 .999 .999 .817 .771 .995 .990
128 .999 .999 .999 .999 .801 .859 .754 .739
256 .999 .999 .999 .999 .804 .861 .997 .744

Table 1: Domain Adaptation (DA) results on the two moons dataset:
Accuracy on the target domain for models trained with different
choices of DA loss, λ (columns) and n (rows). Baseline without
DA is at 0.814.

4.1. Experimental Setup

We compare our approach to a baseline that uses the same CNN
architecture and classification loss, but does not incorporate a
DA loss. As another baseline, we use multi-kernel MMD-based
DA [11], a non-parametric symmetric feature-based approach.
MMD represents distances between two distributions as distances
between mean embeddings of features in reproducing kernel Hilbert
spaceHk:

d2k(X
s, Xt) =

∥∥EXs

[
k(φl(x

s), · )
]
− EXt

[
k(φl(x

t), · )
]∥∥2
Hk

The kernel k associated with the feature mapping for our experi-
ments is a combination of four equally weighted RBF kernels with
σ ∈ {0.2, 0.5, 0.9, 1.3}. We use the empirical version of this met-
ric as DA loss, for which we randomly sample batches of size n
from Xs and Xt. Therefore batches do not necessarily contain
parallel representations of samples. Compared to our approach,
MMD-based DA matches the distribution between the hidden rep-
resentations of the source and the target domains, and not between
the parallel representations. For both DA methods best results were
obtained when applying the DA to the output layer. A plausible
explanation is that using higher layer activations gives the network
more flexibility for learning domain invariant representations.

4.2. Two Moons

Two moons (see Fig. 1) is a toy dataset often used in the context of
transfer learning. It consists of two interleaved class distributions,
where each is shaped like a half circle. We use this synthetic dataset
to demonstrate our domain adaptation technique under controlled
conditions.
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Figure 2: From left to right: Time-aligned recordings from devices A (Soundman OKM II Klassik/Studio A3 Microphone & Zoom F8
Recorder), B (Samsung Galaxy S7) and C (iPhone SE). Spectrograms show microphone-specifics, e.g. samples from devices B and C have
more noise in lower Mel bins, compared to those from device A, and samples from device A seem to have fewer energy in all frequency bins.

4.2.1. Dataset & Architecture & Training

We utilize sklearn to generate two class-balanced two moons
datasets with Gaussian distributed noise (µ = 0 and σ = 0.1)
and 10.000 samples each. Features are normalized to fall into the
range of [−0.5, 0.5]. Domain-parallel representations are obtained
by applying an artificial covariate shift to one of the two datasets.
For our initial experiments we use two transformations: a stretch-
ing along the y-dimension by a factor of 1.5, and a rotation by -45
degrees (Fig. 1). We assume no label information is available for
the parallel dataset. All experiments use a common model architec-
ture, which is a fully connected network with one hidden layer of
size 32 and ReLU activations. The output layer consists of one unit
with a sigmoid activation function. The weights are initialized with
He normal initialization [16]. We train for 250 epochs with mini-
batches of size 32, binary cross-entropy loss, ADAM [17] update
rule and constant learning rate of 0.001 to minimize Eq. 2.

4.2.2. Results

Without DA the model scores 81.4% accuracy on the target val-
idation dataset (Fig. 1 left). To find a good parameter setting
for both domain adaptation techniques we perform grid search
over the DA weight λ ∈ {0.1, 1, 5, 10} and the DA batch size
n ∈ {8, 32, 128, 256}. Results are summarized in Table 1. At
its best, MMD improves the accuracy on the target dataset to 99.7%
(Fig. 1 middle). Regardless of the parameter combination the model
with MSE-DA reaches 99.9% accuracy on both source and target
domain validation sets. (Fig. 1 right). For all parameter configura-
tions MSE-DA yields better results than MMD-DA.

4.3. Urban Acoustic Scene Dataset

The previous section has demonstrated that MSE-DA can be effec-
tively used when domain-parallel representations are given. It is
now necessary to evaluate our prior findings on a real world dataset,
in our case the DCASE 2019 Task 1b dataset [14]. As explained
in the introduction, our objective is to create a recording device
invariant classifier by training it on a larger set of source domain
samples and a few time-aligned recordings from the target domain.
Fig. 2 shows three time-aligned recordings, for which we can ob-
serve the device-specific characteristics. Section 1 describes the
DACSE 2019 task 1b in more details. An implementation of the
following experiments is available on GitHub 1.

1https://github.com/OptimusPrimus/dcase2019_
task1b/tree/Workshop

4.3.1. Dataset

The dataset contains 12.290 non-parallel device A samples and
3.240 parallel recorded samples (1080 per device). We use the val-
idation setup suggested by the organizers, i.e. 9185 device A, 540
device B, and 540 device C samples for training and 4185 device
A, 540 device B, and 540 device C for validation. Preprocessing
is done similar to [18]: We resample the audio signals to 22050Hz
and compute a mono-channel Short Time Fourier Transform using
2048-sample windows and a hop size of 512 samples. We apply
a dB conversion to the individual frequency bands of the power
spectrogram and a mel-scaled filterbank for frequencies between 40
and 11025Hz, yielding 431-frame spectrograms with 256 frequency
bins. The samples are normalized during training by subtracting
the source training set mean and dividing by the source training set
standard deviation.

4.3.2. Network Architectures

We use the model architecture introduced by Koutini et al. [19],
a receptive-field-regularized, fully convolutional, residual network
(ResNet) with five residual blocks (Tab. 2). The receptive field of
this architecture is tuned to achieve the best performance in audio-
related tasks using spectrograms, as discussed in [19].

ResNet Residual Block (RB)

Type #K KS 1 KS 2 Type KS

Conv+BN 128 5 Conv+BN KS 1
RB 128 3 1 Conv+BN KS 2
Max Pool - 2 - Add Input
RB 128 3 3
Max Pool - 2 -
RB 128 3 3
RB 256 3 3
Max Pool - 2 -
RB 512 3 1
Conv+BN 10 3 -
GAP - - -

Table 2: Model Architecture by [19] for experiments with the
acoustic scenes dataset. #K and KS are the number of kernels and
kernel size, respectively. Residual Blocks (RB) consist of two Con-
volutional (Conv) layers with #K kernels, each followed by a Batch
Normalization (BN) layer. GAP is a Global Average Pooling Layer.
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MSE MMD

n \λ 0.1 1 10 0.1 1 10

1 .494 .525 .488 - - -
8 .537 .592 .556 .467 .434 .412
16 .571 .592 .561 .456 .492 .233

Table 3: Domain Adaptation (DA) results on the acoustic scenes
dataset: Accuracy on devices B and C for models trained with dif-
ferent choices of DA loss, λ (columns) and n (rows). Baseline
model without DA scores .353 accuracy on the provided split.

4.3.3. Training

Although scene labels are available for all samples, we minimize
LCL over the 8.645 non-parallel device A samples only. The 1.620
time-aligned samples are used to learn domain-invariant features by
minimizing pairwise DA loss Ll,· between the three devices. For
each update-step, we draw a batch from the non-parallel samples
and a batch from the parallel samples to compute LCL and Ll,·,
respectively. We then minimize the sum of these two losses (Eq. 2).
Models are trained for 120 epochs with non-parallel mini-batches
of size 32, categorical cross-entropy loss, and ADAM [17] update
rule to minimize Eq. 2. The initial learning rate is set to 10−3 and
decreased by a factor 0.5 if the mean accuracy for devices B and C
does not increase for 10 epochs. If the learning rate is decreased, we
also reset the model parameters to the best model in terms of mean
accuracy of device B and C up to the last epoch. We further use
MixUp augmentation [20] with parameters of the beta-distribution
set to α = β = 0.2 for classification as well as DA samples.

4.3.4. Results

The baseline model without domain adaptation scores 35.3% BC-
accuracy. We perform grid search over parameters λ ∈ {0.1, 1, 10}
and n ∈ {1, 8, 16} to find a good combination for both MMD-
and MSE-DA. The best model validation accuracy on device B
and C (BC-accuracy) over all 120 epochs for each experiment is
reported in Table 3. MMD-DA improves the BC-accuracy com-
pared to the baseline without DA for all except one experiment. At
its best MMD-DA achieves an BC-accuracy of 49.2%, which is an
improvement by 13.9 p.p. compared to the model trained without
DA. Pairwise representation matching improves BC-accuracy even
further: The best MSE-DA model scores 59.2% which is 23.9p.p.
above the baseline without DA.

4.4. DCASE Challenge 2019 Subtask 1b

In the following section we describe the adjustments made to our
challenge submission to be more competitive. Our technical report
describes the submitted systems in more detail [21].

4.4.1. Datset & Cross-Validation & Training

We split all audio segments into four folds, to have more domain
parallel samples available for training. Furthermore, we minimize
the classification loss over all available samples, including those
from devices B and C. We increase the number of training and pa-
tience epochs to 250 and 15, respectively. For each fold, the model
that scores the highest device BC-accuracy is selected for predic-
tion on evaluation data. As we train every model on 4 folds, our

Tr.\Te. 4-CV K. Priv. K. Pub. Eval.

Ensemble - - .770 .766 .742
MSE-DA .644 .697 .762 .758 .734
No-DA .612 .669 .705 .737 .713

Table 4: DCASE 2019 Task 1b results for different validation sets,
from left to right: Device B and C validation accuracy (%) on the
provided (Tr.\Te.) and custom split (4-CV), Kaggle private (K.
Priv) and public leaderbord (K. Pub.), and the evaluation set (Eval.).

final submission models are ensembles of the outputs of the 4 folds.
For submission 1 and 2 we average the softmax predictions of each
fold’s best scoring model and select the class with the highest score.
Submission 4 combines two independently trained models, again by
averaging each of their 4 folds softmax outputs.

4.4.2. Results

The results of our challenge submission measured in BC-accuracy
on unseen samples are reported in Table 4. The convolutional
ResNet without DA achieved a BC-accuracy of 71.3% on the eval-
uation set, training on the suggested split achieved a BC-accuracy
of 61.2%. The model used in submission three trained with MSE-
DA loss gained an additional 2.1p.p. on the evaluation set over the
base model, resulting in an accuracy of 73.4%. A larger gain can
be seen for the proposed split, as with 64.35 the model performed
3.15p.p. better than our base model. Our ensemble of eight pre-
dictors achieves 74.2% BC-accuracy on the evaluation set which is
our best result. The challenge submission by [15] which utilizes
MMD-DA to learn device-invariant classifiers scores 74.5% on the
final validation set, 0.3 p.p. better than ours. The MM-DA used
in [15] incorporates across-device mixup augmentation, is applied
on a different architecture, integrates ensemble models, and uses a
larger batch size, which explains the performance differences.

5. CONCLUSION & FUTURE WORK

In this report, we have shown how an already well-performing
ResNet-like model [19] can be further improved for DCASE 2019
task 1b by using a simple DA technique. Our DA loss is designed to
enforce equal hidden layer representations for different devices by
exploiting time-aligned recordings. In our experiment we find that
pointwise matching of representations yields better results, com-
pared to minimizing the MMD between the hidden feature distribu-
tions without utilizing parallel representations. Notably, the MSE-
DA increased the performance by 3.15 p.p. on the validation set of
the proposed split, and by 2.1 p.p. on the final validation set. Fur-
thermore, acquiring data for our method is cheap as it does not re-
quire labels for domain-parallel samples. In future work, we would
like to investigate if data from unrelated acoustic scenes, i.e. scenes
not relevant for classification, can be used to create device-invariant
classifiers, as this would decrease cost even further.
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ABSTRACT

Factory machinery is prone to failure or breakdown, resulting in sig-
nificant expenses for companies. Hence, there is a rising interest in
machine monitoring using different sensors including microphones.
In scientific community, the emergence of public datasets has been
promoting the advancement in acoustic detection and classification
of scenes and events, but there are no public datasets that focus on
the sound of industrial machines under normal and anomalous op-
erating conditions in real factory environments. In this paper, we
present a new dataset of industrial machine sounds which we call a
sound dataset for malfunctioning industrial machine investigation
and inspection (MIMII dataset). Normal and anomalous sounds
were recorded for different types of industrial machines, i.e. valves,
pumps, fans and slide rails. To resemble the real-life scenario, var-
ious anomalous sounds have been recorded, for instance, contami-
nation, leakage, rotating unbalance, rail damage, etc. The purpose
of releasing the MIMII dataset is to help the machine-learning and
signal-processing community to advance the development of auto-
mated facility maintenance.

Index Terms— Machine sound dataset, Acoustic scene classi-
fication, Anomaly detection, Unsupervised anomalous sound detec-
tion

1. INTRODUCTION

The increasing demand for automatic machine inspection is at-
tributable to the need for a better quality of factory equipment main-
tenance. The discovery of malfunctioning machine parts mainly
depends on the experience of field engineers. However, shortage of
field experts due to the increased number of requests for inspection
has become an important problem in the industry. Therefore, an
efficient and affordable solution to this problem is highly desirable.

In the past decade, industrial Internet of Things (IoT) and data-
driven techniques have been revolutionizing the manufacturing in-
dustry, and different approaches have been undertaken for moni-
toring the state of machinery; for example, vibration sensor-based
approaches [1–4], temperature sensor-based approaches [5], pres-
sure sensor-based approaches [6], etc. Another approach is to de-
tect anomalies from sound by using technologies for acoustic scene
classification and event detection [7–13]. A remarkable advance-
ment has been made in classification of acoustic scenes and detec-
tion of acoustic events, and there are many promising state-of-the-
art studies [14–16]. We know that the emergence of numerous open
benchmark dataset [17–20] is essential for the advancement of the
research field. However, to the best of our knowledge, there is no

public dataset which contains different types of machine sounds in
real factory environments.

In this paper, we introduce a new dataset of machine sounds
in normal and anomalous operating conditions in real factory envi-
ronments. We include the sound of four machine types: (i) valves,
(ii) pumps, (iii) fans, and (iv) slide rails. For each type of machine,
we consider seven kinds of product models. We assume that the
main task is to find an anomalous condition of the machine during a
10-second sound segment in an unsupervised learning situation. In
other words, only normal machine sounds can be used in the train-
ing phase, and one has to correctly distinguish between a normal
machine sound and an abnormal machine sound in the test phase.
The main contributions of this paper can be summarized as follows:
(1) We created an open dataset for malfunctioning industrial ma-
chine investigation and inspection (MIMII), first of its kind. (We
will release this dataset by the workshop.) This dataset contains a
total of 26,092 sound files for normal conditions of four different
machine types. It also contains real-life anomalous sound files for
each category of the machines. (2) Using our developed dataset,
we have explored an autoencoder-based model for each type of ma-
chine with various noise conditions. These results can be taken as
a benchmark to improve the accuracy of anomaly detection in the
MIMII dataset.

The rest of the paper is organized as follows. In Section 2, we
describe the recording environment and the setup. The details of
the dataset content are given in Section 3. The autoencoder-based
detection benchmark and results are discussed in Section 4. Section
5 concludes the paper.

2. RECORDING ENVIRONMENT AND SETUP

The dataset was collected using TAMAGO-03 microphone, manu-
factured by System In Frontier Inc [21]. It is a circular microphone
array which consists of eight distinct microphones; the details of
the microphone array are shown in Figure 1. By using the mi-
crophone array, not only single-channel-based approaches but also
multi-channel-based ones can be evaluated. The microphone array
was kept at a distance of 50 cm from the machine (10 cm in case
of valves); 10-second sound segments were recorded. The dataset
contains eight separate channels for each segment. Figure 2 depicts
the recording setup with the direction and distance for each kind of
machine. It should be noted that each machine sound was recorded
in separate session. In running condition, the sound of the machine
was recorded as 16-bit audio signals sampled at 16 kHz in a rever-
berant environment. Apart from the target machine sound, back-
ground noise in multiple real factories was continuously recorded

https://doi.org/10.33682/m76f-d618
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Figure 1: Circular microphone array

to mix it with the target machine sound for simulating real envi-
ronments. For recording the background noise, we used the same
microphone array as for the target machine sound.

3. DATASET CONTENT

The MIMII dataset contains the sound of four different types of ma-
chines: valves, pumps, fans, and slide rails. The valves are solenoid
valves that are repeatedly opened and closed. The pumps are water
pumps, which drained water from a pool and discharged water to
the pool continuously. The fans represent industrial fans, which are
used to provide a continuous flow or gas of air in factories. The
slide rails in this paper represent linear slide systems, which consist
of a moving platform and a stage base. The types of the sounds pro-
duced by the machines are stationary and non-stationary, have dif-
ferent features, and different degrees of difficulty. Figure 3 depicts
a power spectrogram of the sound of all four types of machines,
clearly showing that each machine has its unique sound character-
istics.

The list of sound files for each machine type is reported in the
Table 1. Each type of machines consists of seven individual ma-
chines. Individual machines may be of a different product model.
We know that large datasets incorporating real-life complexity are
needed to effectively train the models, so we recorded a total of
26,092 normal sound segments for all individual machines. In addi-
tion to this, different real-life anomalous scenarios have been con-
sidered for each kind of machine, for instance, contamination, leak-
age, rotating unbalance, rail damage, etc. Various running condi-
tions are listed in Table 2. The number of sound segments for each
anomalous sound for each different type of machine is small be-
cause we regard the main target of our dataset as an unsupervised
learning scenario and regard the anomalous segments as a part of
test data.

As explained in Section 2, the background noise recorded in
multiple real factories was mixed with the target machine sound.
Eight channels are considered separately during mixing the original
sounds with the noise. For a certain signal-to-noise ratio (SNR) γ
dB, the noise-mixed data of each machine model was made by the
following steps:

1. The average power over all segments of the machine models,
a, was calculated.

2. For each segment i from the machine model,

Table 1: MIMII dataset content details

Machine type/
model ID

Segments
for normal

condition

Segments
for anomalous

condition

V
al

ve

00 991 119
01 869 120
02 708 120
03 963 120
04 1000 120
05 999 400
06 992 120

Pu
m

p

00 1006 143
01 1003 116
02 1005 111
03 706 113
04 702 100
05 1008 248
06 1036 102

Fa
n

00 1011 407
01 1034 407
02 1016 359
03 1012 358
04 1033 348
05 1109 349
06 1015 361

Sl
id

e
ra

il
00 1068 356
01 1068 178
02 1068 267
03 1068 178
04 534 178
05 534 178
06 534 89

Total 26092 6065

Table 2: List of operations and anomalous conditions

Machine
type Operations

Examples of
anomalous
conditions

Valve Open/close repeat
with different timing

More than
two kinds of

contamination

Pump
Suction from/
discharge to
a water pool

Leakage,
contamination,
clogging, etc.

Fan Normal work
Unbalanced,

voltage change,
clogging, etc.

Slide rail Slide repeat at
different speeds

Rail damage,
loose belt,

no grease, etc.
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Figure 2: Schematic experimental setup for dataset recording

(a) a background-noise segment j is randomly selected,
and its power bj is tuned so that γ = 10 log10 (a/bj).

(b) The noise-mixed data is calculated by adding
the target-machine segment i and the power-tuned
background-noise segment j.

4. EXPERIMENT

An example of benchmarking is shown in this section. Our main
goal is to detect anomalous sounds in an unsupervised learning
scenario as discussed in Section 1, and several studies have suc-
cessfully used autoencoders for unsupervised anomaly detection
[12, 22–24], so an autoencoder-based unsupervised anomaly detec-
tor was evaluated.

We consider log-Mel spectrogram as an input feature. To cal-
culate the Mel spectrogram, we consider a frame size of 1024, a
hop size of 512 and a mel filter banks of 64 in our experiment. Five
frames have been combined to initiate our 320 dimensional input
feature vector x. The parameters of the encoder and decoder neu-
ral networks (i.e. θ = (θe, θd)) are trained to minimize the loss
function given as follows:

LAE(θe, θd) = ∥x − D(E(x | θe) | θd)∥2
2 (1)

Our basic assumption is that this trained model will give high re-
construction error for anomalous machine sounds. The autoencoder
network structure for the experiment is summarized as follows:
The encoder network (E(·)) comprises FC(Input, 64, ReLU);
FC(64, 64, ReLU); and FC(64, 8, ReLU), and the decoder net-
work (D(·)) incorporates FC(8, 64, ReLU); FC(64, 64, ReLU)

and FC(64, Output, none) where FC(a, b, f) means a fully-
connected layer with a input neurons, b output neurons, and acti-
vation function f . The ReLUs are Rectified Linear Units [25]. The
network is trained with Adam [26] optimization technique for 50
epochs.

For each machine type and model ID, all the segments were
split into a training dataset and a test dataset. All the anomalous
segments were regarded as the test dataset, the same number of
normal segments were randomly selected and regarded as the test
dataset, and all the rest normal segments were regarded as the train-
ing dataset. By using the training dataset consisting only of normal
ones, different autoencoders were trained for each machine type and
model ID. Anomaly detection was performed for each segment by
thresholding the reconstruction error averaged over 10 seconds, and
the area under the curve (AUC) values were calculated for the test
dataset for each machine type and model ID. In addition to this, we
also considered different levels of SNR (with factory noise) in the
experiment, for example, 6 dB, 0 dB, and -6 dB.

Table 3 shows the AUCs averaged over three training runs with
independent initializations. In Table 3, It is clear that the AUCs for
valves are lower than the other machines. Sound signals of valves
are non-stationary, in particular, impulsive and sparse in time, and
the reconstruction error averaged over time tends to be small. So,
it is difficult to detect anomalies for valves. In contrast, it is easier
to detect anomalies for fans than the other machines because sound
signals of fans are stationary. Moreover, for some machine models,
the AUC decreases rapidly as the noise level increases. These re-
sults indicate that it is important to solve the degradation caused by
non-stationarity and noise for unsupervised anomalous sound de-
tection.

5. CONCLUSION AND PERSPECTIVES

In this paper, we introduced the MIMII dataset, a real-world dataset
for investigating the malfunctioning behavior of the industrial ma-
chines. We collected 26,092 sound segments of normal condi-
tion and 6,065 sound segments of anomalous condition and mixed
the background noise recorded in multiple real factories with the
machine-sound segments for simulating real environments. In ad-
dition, using the MIMII dataset, we showed an example of evalu-
ation for autoencoder-based unsupervised anomalous sound detec-
tion. We observed that non-stationary machine sound signals and
noise are the key issues for developing the unsupervised anomaly
detector. These results can be taken as a benchmark to improve the
accuracy of anomaly detection in the MIMII dataset.

We will release this dataset by the workshop. To the best of our
knowledge, this dataset is the first of its kind to address the problem
of detecting anomalous conditions in industrial machinery through
machine sounds. As benchmarking is an important aspect in data
driven methods, we strongly believe that our MIMII dataset will be
very useful to the research community. We are releasing this data to
accelerate research in the area of audio event detection, specifically
for machine sounds. This dataset can be used for other use cases,
for example, to restrict the training on specific number of machine
models and then test on the remaining machine models. This study
will be useful for measuring the domain adaptation capability of the
different methods applied on machines from different manufactures.
If the community finds interest in our dataset and validates its usage,
we will improve the current version with the additional meta-data
related to different anomalies.
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(d) Slide rail (machine ID: 00)

Figure 3: Examples of power spectrograms on a normal condition at 6 dB SNR.

Table 3: AUCs for all machines
Machine type/
model ID

Input SNR
6 dB 0 dB -6 dB

V
al

ve

00 0.68 0.55 0.62
01 0.77 0.71 0.61
02 0.66 0.59 0.57
03 0.70 0.65 0.44
04 0.64 0.65 0.50
05 0.52 0.48 0.44
06 0.70 0.66 0.53
Avg. 0.67 0.61 0.53

Pu
m

p

00 0.84 0.65 0.58
01 0.98 0.90 0.73
02 0.45 0.46 0.52
03 0.79 0.81 0.75
04 0.99 0.95 0.93
05 0.66 0.66 0.64
06 0.94 0.76 0.61
Avg. 0.81 0.74 0.68

Fa
n

00 0.75 0.63 0.57
01 0.97 0.90 0.70
02 0.99 0.83 0.68
03 1.00 0.89 0.70
04 0.92 0.75 0.57
05 0.95 0.90 0.83
06 0.99 0.97 0.83
Avg. 0.94 0.84 0.70

Sl
id

e
ra

il

00 0.99 0.99 0.93
01 0.94 0.90 0.83
02 0.93 0.79 0.74
03 0.99 0.85 0.71
04 0.88 0.78 0.61
05 0.84 0.70 0.60
06 0.71 0.56 0.52
Avg. 0.90 0.80 0.70

6. REFERENCES

[1] M. Yu, D. Wang, and M. Luo, “Model-based prognosis for
hybrid systems with mode-dependent degradation behaviors,”
IEEE Transactions on Industrial Electronics, vol. 61, no. 1,
pp. 546–554, 2013.

[2] T. Ishibashi, A. Yoshida, and T. Kawai, “Modelling of asym-
metric rotor and cracked shaft,” in Proceedings of the 2nd
Japanese Modelica Conference, no. 148, 2019, pp. 180–186.

[3] E. P. Carden and P. Fanning, “Vibration based condition mon-
itoring: A review,” Structural health monitoring, vol. 3, no. 4,
pp. 355–377, 2004.

[4] G. S. Galloway, V. M. Catterson, T. Fay, A. Robb, and
C. Love, “Diagnosis of tidal turbine vibration data through
deep neural networks,” in Proceedings of the 3rd European
Conference of the Prognostics and Health Management Soci-
ety, 2016.

[5] G. Lodewijks, W. Li, Y. Pang, and X. Jiang, “An application of
the IoT in belt conveyor systems,” in Proceedings of the Inter-
national Conference on Internet and Distributed Computing
Systems (IDCS), 2016, pp. 340–351.

[6] R. F. Salikhov, Y. P. Makushev, G. N. Musagitova, L. U.
Volkova, and R. S. Suleymanov, “Diagnosis of fuel equipment
of diesel engines in oil-and-gas machinery and facilities,” AIP
Conference Proceedings, vol. 2141, no. 1, p. 050009, 2019.

[7] Y. Koizumi, S. Murata, N. Harada, S. Saito, and H. Uematsu,
“SNIPER: Few-shot learning for anomaly detection to min-
imize false-negative rate with ensured true-positive rate,” in
Proceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2019, pp. 915–
919.

[8] Y. Kawachi, Y. Koizumi, S. Murata, and N. Harada, “A two-
class hyper-spherical autoencoder for supervised anomaly de-
tection,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2019,
pp. 3047–3051.

212



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

[9] M. Yamaguchi, Y. Koizumi, and N. Harada, “AdaFlow:
Domain-adaptive density estimator with application to
anomaly detection and unpaired cross-domain translation,” in
Proceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2019, pp. 3647–
3651.

[10] Y. Kawaguchi, R. Tanabe, T. Endo, K. Ichige, and K. Hamada,
“Anomaly detection based on an ensemble of dereverbera-
tion and anomalous sound extraction,” in Proceedings of the
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2019, pp. 865–869.

[11] Y. Koizumi, S. Saito, H. Uematsu, Y. Kawachi, and N. Harada,
“Unsupervised detection of anomalous sound based on deep
learning and the Neyman–Pearson lemma,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 27,
no. 1, pp. 212–224, 2018.

[12] Y. Kawaguchi and T. Endo, “How can we detect anomalies
from subsampled audio signals?” in Proceedings of the IEEE
27th International Workshop on Machine Learning for Signal
Processing (MLSP), 2017, pp. 1–6.

[13] Y. Kawaguchi, “Anomaly detection based on feature recon-
struction from subsampled audio signals,” in Proceedings
of the European Signal Processing Conference (EUSIPCO),
2018, pp. 2524–2528.

[14] A. Mesaros, T. Heittola, E. Benetos, P. Foster, M. Lagrange,
T. Virtanen, and M. D. Plumbley, “Detection and classification
of acoustic scenes and events: Outcome of the DCASE 2016
Challenge,” IEEE/ACM Transactions on Audio, Speech and
Language Processing, vol. 26, no. 2, pp. 379–393, 2018.

[15] S. S. R. Phaye, E. Benetos, and Y. Wang, “SubSpectralNet–
using sub-spectrogram based convolutional neural networks
for acoustic scene classification,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2019, pp. 825–829.

[16] Z. Podwinska, I. Sobieraj, B. M. Fazenda, W. J. Davies, and
M. D. Plumbley, “Acoustic event detection from weakly la-
beled data using auditory salience,” in Proceedings of the
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2019, pp. 41–45.

[17] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen,
W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Au-
dio Set: An ontology and human-labeled dataset for audio
events,” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2017,
pp. 776–780.

[18] E. Fonseca, J. Pons, X. Favory, F. Font, D. Bogdanov, A. Fer-
raro, S. Oramas, A. Porter, and X. Serra, “Freesound datasets:
A platform for the creation of open audio datasets,” in Pro-
ceedings of the International Society for Music Information
Retrieval Conference (ISMIR), 2017, pp. 486–493.

[19] G. Dekkers, S. Lauwereins, B. Thoen, M. W. Adhana,
H. Brouckxon, B. V. den Bergh, T. van Waterschoot, B. Van-
rumste, M. Verhelst, and P. Karsmakers, “The SINS database
for detection of daily activities in a home environment using
an acoustic sensor network,” in Proceedings of the Workshop
on Detection and Classification of Acoustic Scenes and Events
(DCASE), 2017, pp. 32–36.

[20] Y. Koizumi, S. Saito, H. Uematsu, N. Harada, and K. Imoto,
“ToyADMOS: A dataset of miniature-machine operating
sounds for anomalous sound detection,” in Proceedings of the
Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), 2019, to appear.

[21] System In Frontier Inc. (http://www.sifi.co.jp/system/
modules/pico/index.php?content id=39&ml lang=en).

[22] T. Tagawa, Y. Tadokoro, and T. Yairi, “Structured denoising
autoencoder for fault detection and analysis,” in Proceedings
of the Asian Conference on Machine Learning (ACML), 2015,
pp. 96–111.

[23] E. Marchi, F. Vesperini, F. Eyben, S. Squartini, and
B. Schuller, “A novel approach for automatic acoustic novelty
detection using a denoising autoencoder with bidirectional
LSTM neural networks,” in Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015, pp. 1996–2000.

[24] D. Oh and I. Yun, “Residual error based anomaly detection
using auto-encoder in SMD machine sound,” Sensors, vol. 18,
no. 5, p. 1308, 2018.

[25] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What
is the best multi-stage architecture for object recognition?”
in Proceedings of the 12th IEEE International Conference on
Computer Vision (ICCV), 2009, pp. 2146–2153.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic op-
timization,” arXiv preprint arXiv:1412.6980, 2014.

213



Detection and Classification of Acoustic Scenes and Events 2019 25-26 October 2019, New York, NY, USA

  

SOUND EVENT DETECTION AND DIRECTION OF ARRIVAL ESTIMATION USING 

RESIDUAL NET AND RECURRENT NEURAL NETWORKS 

Rishabh Ranjan1, Sathish s/o Jayabalan1, Thi Ngoc Tho Nguyen1, Woon-Seng Gan1 

1 Nanyang Technological University, Singapore, 679798 

{rishabh001, sathishj, nguyenth003, ewsgan}@ntu.edu.sg 
 

ABSTRACT 

This paper presents deep learning approach for sound events de-

tection and localization, which is also a part of detection and clas-

sification of acoustic scenes and events (DCASE) challenge 2019 

Task 3. Deep residual nets originally used for image classification 

are adapted and combined with recurrent neural networks (RNN) 

to estimate the onset-offset of sound events, sound events class, 

and their direction in a reverberant environment. Additionally, 

data augmentation and post processing techniques are applied to 

generalize and improve the system performance on unseen data. 

Using our best model on validation dataset, sound events detec-

tion achieves F1-score of 0.89 and error rate of 0.18, whereas 

sound source localization task achieves angular error of 8° and 

90% frame recall.  

Index Terms— Sound events detection, directional of arrival, 

residual net, recurrent neural networks 

1. INTRODUCTION 

Sound events localization and detection (SELD) system allows 

one to have automated annotation of a scene in spatial dimension 

and can assist stakeholders to make informed decisions. It is an 

important tool for various applications like identifying critical 

events like gunshots, accidents, noisy vehicles, mixed reality audio 

where spatial scene information enhanced the augmented listening, 

robots that listens just like humans and tracks the sound source of 

interest, smart homes and surveillance systems [1-5]. The three 

main objectives of SELD system are namely, (1) first, to detect 

presence of sound events, (2) second, to classify active sound 

events as textual labels, and (3) third, to estimate directions of ac-

tive sound events. 

The first key component of the SELD system is sound event 

detection (SED), which assigns pre-defined labels to the active 

sound events every frame [6]. In the past, many signal processing 

and machine learning methods have been extensively applied to 

the SED problem using supervised classification approach. The 

most popular methods include, dictionary learning [7], gaussian or 

and hidden markov model [8-9], non-negative matrix factorization 

(NMF) [10-11], principal component analysis [12], and deep 

learning methods like fully connected neural network (FCNN) 

[13], convolutional neural network (CNN) [14-15], recurrent neu-

ral networks (RNN) [16], residual network (ResNet) [17].  Most 

recently, combination of the CNN, RNN and FCNN networks 

were also proposed to improve the SED performance and present 

state-of-art results [18-20]. Furthermore, multi-channel audio in-

puts as well as ambisonics data has been employed in SED task to 

exploit the spatial nature of the data [20-21].  

The second key component of SELD system is direction of ar-

rival (DoA), which estimates the directions of active sound events 

in terms of azimuth and/or elevations angles. DoA problem is 

commonly dealt using various traditional signal processing based 

methods: time-difference [22], subspace methods such as multiple 

signal classification (MUSIC) [23], cross-correlation methods 

such as generalized cross-correlation with phase transform (GCC-

PHAT) [24], steered response with phase transform (SRP-PHAT) 

[25], multichannel cross-correlation coefficient (MCCC) [26]. 

However, some of the common practical challenges with these 

methods is performance degradation in presence of noisy and re-

verberant environment as well as high computational cost. Re-

cently, deep learning based methods is also being extensively em-

ployed to improve the DoA performance and outperforms the tra-

ditional methods in challenging environments [27-35]. DNN based 

approaches vary in terms of microphone array geometry- circular, 

linear, binaural, ambisonics. In addition, different input features 

like GCC [33], magnitude and phase transform [21] [31], eigen 

vectors [34], inter-aural cross-correlation features [32] and most 

recently raw temporal features [35] have been used to improve the 

DoA performance. Furthermore, most of these works have been 

shown to work on only azimuthal plane sources and/or single static 

sources except [31], which demonstrates working in both azimuth 

and elevation as well as for overlapping sound sources. 

There are very few works jointly solving the SELD task using 

deep learning. Hirvonen [28] used spectral power of the multi-

channel audio signals from circular array and used CNN based 

classifier to predict one of the 8 source directions on azimuthal 

plane for each sound event. In contrast, Adavanne [21] employed 

regression based continuous DoA output in both azimuth and ele-

vation for 11 different type of overlapping sound classes. The au-

thors employed a joint network using CRNN network with two 

branches each for SED and DoA to perform the combined SELD 

task. 

In this paper, we employ a ResNet architecture combined with 

RNN, referred as ResNet RNN, for the joint estimation of respec-

tive labels for SED and DoA for sound events in a reverberant 

scene with one or two active sound sources. In contrast to the base-

line model [21], a classification-based output is employed for DoA 

and additional post-processing techniques are employed for both 

SED and DoA to further improve the overall SELD performance. 

The proposed model significantly outperforms the baseline model 

[21] using convolutional recurrent neural network (CRNN) specif-

ically for the DoA task. In the next section, we give a detailed de-

scription of the proposed methodology and training set up.

https://doi.org/10.33682/93dp-f064
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2. METHODOLOGY 

For the SELD task, two different configurations using a modified 

version of ResNet architecture combined with RNN are em-

ployed. Figure 1 shows overview block diagrams of the two sys-

tem configurations. First system is using individually trained 

models for SED and DoA, where input is log mel magnitude spec-

trogram for the SED task, while log mel magnitude and linear mel 

phase spectrogram for the DoA as shown in Figure 1(a). Second 

system is using a jointly trained model, where ResNet RNN ar-

chitecture is common for both SED and DoA and subsequently, 

divided into two branches using FCNN layers as shown in Figure 

1(b). One key advantage of joint model in this work is that they 

share the common resources of ResNet RNN and therefore, would 

need less computational resource when implementing on embed-

ded devices. DoA branch for both the configurations is further di-

vided into two parallel branches consisting of FCNN layers and 

the two network outputs are combined as post-processing step to 

enhance the DoA accuracy. For both the systems, SED and DoA 

is predicted as continuous output in range [0 1] as probabilities for 

11 distinct sound events and 324 unique directions, respectively. 

In the next subsections, we explain the dataset, feature extraction, 

model architecture, training set up, data augmentations and post-

processing techniques used. 

2.1. Development Dataset 

The development dataset is taken from detection and classifica-

tion of acoustic scenes and events (DCASE) challenge 2019 task 

3 for SELD task [36]. It consists of 4 splits and each split contains 

100 audio files of length 60 sec and contains overlapping as well 

as non-overlapping sound events. Audio files is synthesized using 

11 isolated sound labels taken from [37] and convolved with im-

pulse responses (IR) measured from 5 different rooms at 504 

unique combinations of azimuth-elevation-distance and finally, 

mixed with natural ambient noise collected at IR recording loca-

tions. In terms of unique target directions, there are 36 azimuths 

and 9 elevations resulting in total 324 directions. All the IRs were 

recorded using Eigenmike [38], a 32 microphone spherical array 

with only 4 of the microphones forming a tetrahedral shape were 

used for synthesis of DCASE 2019 task 3 dataset. 

2.2. Feature Extraction 

Each of the audio file is sampled at 48kHz and short-time Fourier 

transform (STFT) is applied with hop size of 20 msec. Next, STFT 

spectrogram is converted to log mel magnitude spectrogram from 

amplitude of STFT and linear mel phase spectrogram from phase 

component of STFT using dot product of STFT component and 

mel-filter banks. After converting into mel spectrogram features, 

low and high frequency components are removed and finally, 

resized to match the input shape of the neural network before 

training. 

2.3. Model Architecture 

Figure 2(a) shows the architecture of proposed modified ResNet 

combined with RNN. The ResNet model is adapted from residual 

net model originally designed for image recognition and de-

scribed in [39]. As shown in the figure, output of the feature ex-

traction is fed to the ResNet RNN model with feature dimension 

of 𝑁𝑐ℎ × 𝐾 ×  𝑁𝑚𝑒𝑙 , where 𝑁𝑐ℎ  is the number of channels (= 4 

when only magnitude is used and 8 when both magnitude and 

phase is used as input feature), 𝐾 is the number of frames used as 

 

 

 

 
 

(a) ResNet RNN (b) SED model 

 
(c) DoA model 

 

Figure 2: Model architectures (a) ResNet RNN (b) SED: FCNN 

(c) DoA: Two parallel FCNN branch 

 

  
(a) (b) 

Figure 1: Proposed system overview (a) Individually trained models for SED and DoA (b) Jointly trained model 
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sequence, and 𝑁𝑚𝑒𝑙 is the number of mel filter banks. The ResNet 

architecture consists of many 2D convolutional (conv) layers, 

however the distinct feature of ResNet architecture is the use of 

identity and convolutional block with skip connection to solve the 

vanishing gradient problem in deeper networks [39]. In this work, 

ResNet is a 2-stage architecture with first stage being a 2D conv 

layer with 64 filters, followed by batch normalization of outputs 

[40], ‘ReLU’ activation function and dimensionality reduction us-

ing max pooling of 2 along the mel frequency axis. Second stage 

consists of one convolutional block with three filters with output 

size as (64, 64, 256), and 4 identity blocks with three filters and 

same number of filters as in convolutional block. Finally, average 

pooling of size 16 is applied along the mel frequency axis. Subse-

quently, output from stage 2 is reshaped on the last two dimen-

sions before feeding to two RNN layers to learn the contextual 

information from temporal sequence data of K frames. Each RNN 

layer consists of 128 nodes of either gated recurrent units (GRU) 

or long short-term memory (LSTM) with ‘tanh’ activation func-

tion. RNN block is followed by fully connected dense layers for 

both SED and DoA as shown in Figure 2(b) and (c). First FC layer 

in both the tasks consists of 128 nodes with linear activation func-

tion and dropout of 0.5 to improve the generalization ability of 

network. Final FC layer in SED consists of 11 nodes correspond-

ing to 11 unique target sound classes with sigmoid activation 

function as shown in Figure 2(b). DoA, however, consists of two 

parallel branches of FC layers with one branch estimating number 

of active sources and other branch estimating actual direction es-

timates as probabilities. Final FC layer in first branch consists of 

𝑁𝑠𝑟𝑐 nodes corresponding to maximum number of active sources 

with ‘softmax’ activation function. For the second DoA branch, 

final FC layer consists of 324 nodes corresponding to 324 unique 

directions with ‘sigmoid’ activation function.  

2.4. Model Training 

For model development, 4 cross-fold sets from DCASE challenge 

2019 task 3 dataset [4] is used with 3 of the splits used for training 

and one split for validation as shown in Table 1. During training, 

each processed audio feature file is split into sequence length of 

128 frames and resized with fixed batch size of 96. For SED, bi-

nary cross-entropy loss function is used for model weights adap-

tation. For DoA second branch, weighted binary cross-entropy 

loss function is used to strongly penalize the false negatives be-

cause at most only two out of 324 DoA labels are true at any time 

frame in the ground truth. For both SED and DoA, adam optimizer 

is used with learning rate of 0.0005. Best model is saved using the 

combined SELD loss metric computed using the evaluation met-

rics provided by DCASE task 3 organizers and briefly explained 

in sub-section 2.7. 

2.5. Data Augmentation 

To improve model generalization capability on unseen test data, 

data augmentation using frame shifting is applied to each of the 

processed audio file. Each audio feature set is shifted in negative 

time by 32, 64 and 96 frames across temporal dimension before 

splitting into sequence of 128 frames. In this way, we create 3 

shifted copies of audio segments, which helps in generalizing the 

model performance. Therefore, total data after augmentation is 4 

times larger than the original dataset size and each audio feature 

file including shifted copies are selected randomly for training in 

each epoch. 

2.6. Output Post-processing 

First post-processing technique applied to both SED and DoA out-

puts is by predicting on frame shifted audio feature sequences and 

then, taking geometric mean of the shifted probability estimates: 

𝐩𝑎𝑣𝑔 = √𝐩(𝑡0) ∙ 𝐩(𝑡1) ∙ 𝐩(𝑡2)3  . (1) 

where 𝐩(𝑡𝑖) is the probabilities predicted using the final trained 

model weights for each audio feature file 𝐗(𝑡)  shifted by 𝑡𝑖 

frames and padding zeros in front and excluding first 𝑡𝑖 frames 

from the predicted probabilities as final estimates: 

𝐩(𝑡𝑖) = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡([𝟎(𝑡𝑖) 𝐗(𝑡 − 𝑡𝑖)]). (2) 

Above averaging method helps in averaging out the spurious out-

liers in the final prediction. It is also found that geometric mean 

gives slightly better results than arithmetic mean and thus, were 

used to compute SED and DoA output probabilities. 

Final SED labels were obtained frame wise by comparing the 

output probabilities for each label with a given threshold. Those 

labels with probabilities more than the threshold are selected as 

active sound events and in the case of none of the labels’ proba-

bilities more than threshold no activity, i.e., ambience is assigned. 

For DoA estimations, we merge the outputs of two branches as 

explained in following sub subsection.  

2.6.1. DoA Post-processing 

As explained earlier in sub-section 2.3 and Figure 2(c), there are 

two outputs from DoA model as number of active sources and 324 

direction labels probabilities. To obtain final estimated directions 

per frame, we take the following steps: 

1. Convert the DoA output 324 probabilities estimate into 

2D array with size 36 azimuths × 9 elevations 

2. Find the local peaks in the 2D array above a given 

threshold and a minimum neighboring distance between 

two peaks 

3. Compute 𝑛𝑠𝑟𝑐 as number of active sources by selecting 

label with maximum probability in the first DoA branch. 

4. Select 𝑛𝑠𝑟𝑐 peaks from the output of second step as final 

DoA estimate. 
By using above post-processing steps of peak finding with mini-

mum neighboring constraint, we filter out the redundant DoA 

peaks which are close by and also improve the DoA frame recall 

by capping the number estimated DoAs based on first branch out-

put. Finally, both SED and DoA outputs are combined together 

frame wise based on the presence of active sound events or direc-

tions in any of the SED or DoA outputs. In the case of multiple 

sources, to match the DoA and SED outputs, we take into account 

the precedence of single source SED and DoA outputs in previous 

time frames and use this prior information to match the second 

source outputs in current time frame. 

Table 1: Cross-fold configuration for model evaluation 

Fold Training sets Validation sets 

1 Split 2, 3, 4 Split 1 

2 Split 3, 4, 1 Split 2 

3 Split 1, 2, 4 Split 3 

4 Split 1, 2, 3 Split 4 
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2.7. Evaluation Metrics 

Model performance is evaluated using 4 metrics, 2 each for SED 

and DoA. SED is evaluated using error rate (ER) and F-score. ER 

is the total error based on total number of insertions (I), deletions 

and substitutions [41]. F-score is calculated as harmonic mean of 

precision and recall [41]. DoA is evaluated using average angular 

error and frame recall (FR). DoA error is defined as average angu-

lar error in degrees between estimated and ground truth directions 

and computed using Hungarian algorithm [42] to account for the 

assignment problem of matching the individual estimated direc-

tion with respective reference direction. DoA FR is defined as per-

centage of frames where number of estimated and reference direc-

tions are equal out of total frames. In addition, combined SED, 

DoA and SELD metrics were computed using mean of respective 

error metrics and used for evaluating models. 

3. RESULTS 

Table 2 shows the performance of two proposed models: individu-

ally trained models (Proposed-I) and jointly trained models (Pro-

posed-J). Clearly, the Proposed-I models outperforms the baseline 

model in terms of all the 4 metrics and for all validation splits. Spe-

cifically, there is significant overall improvement in terms of DoA 

angular error from 31°  for baseline to 8.2°  for the individually 

trained models. However, jointly trained models do not perform as 

good as the Proposed-I models but yet provides noticeable improve-

ment over baseline, especially for DoA. Poor performance for Pro-

posed-J model can be explained by the fact that by using shared 

ResNet layers’ trained weights may not be optimal for either SED 

and DoA because of joint training. On the other hand, for individual 

models, respective weights for both SED and DoA ResNet layers 

are optimally trained and thus, giving better performance. Addition-

ally, joint model incurred around 1.4 million parameters against 3 

million parameters for combined individual SED and DoA model.  

Clearly as mentioned earlier, joint models require less computa-

tional resource and therefore, would ensure faster prediction time 

as compared to individual models for an SELD system running in 

real-time on an embedded device.  

Table 3 shows the proposed models performance for single 

source (Ov1) and two overlapping sources (Ov2). Proposed models 

performs much better for single source scenario as compared to two 

sources, especially with DoA error as low as 3.9°  and FR as high 

as 97 %.  Proposed model performance for 5 different room impulse 

responses is also summarized in Table 4. Except for the IR5 and 

IR3 in terms of SED ER, proposed models perform similar across 

all the IRs.  

4. CONCLUSION 

In this paper, a 2-stage ResNet architecture combined with RNN 

is used for both sound events classification and localization task. 

With data augmentation and post-processing techniques, the pro-

posed model performance is significantly improved, especially 

for the DoA task with error as low as 8o and frame recall of 90 %. 

The proposed work is also demonstrated in DCASE challenge 

2019 Task 3 and showed superior performance over baseline on 

evaluation dataset. Jointly trained model is useful for edge imple-

mentations because of lower complexity but at the cost of sub-

optimal performance. This needs to be further investigated and 

has been identified as future work to further improve the perfor-

mance of joint model.  
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Table 3: Proposed ResNet RNN model Vs Baseline CRNN model 

performance for Ov1 and Ov2 

Fold Model ER 
F-
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FR 
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Proposed-I 0.1571 91.26 3.90 97.07 

Proposed-J 0.2077 88.86 6.6 93.96 

Baseline 0.2834 85.32 26.41 93.23 

Ov2 

Proposed-I 0.1954 87.93 10.49 84.60 

Proposed-J 0.3029 81.64 15.59 83.25 

Baseline 0.3064 82.00 33.70 77.38 

Table 4: Proposed-I model performance for 5 RIRs 

IR ER F-Score DoA Error (°) FR (%) 

IR1 0.1728 89.49 8.31 90.46 

IR2 0.1940 88.57 7.85 92.06 

IR3 0.1737 89.83 7.69 90.22 

IR4 0.1788 89.33 8.36 91.49 

IR5 0.1937 88.24 8.73 89.95 
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ABSTRACT 

Most audio recognition/classification systems assume a static 

and closed-set model, where training and testing data are 

drawn from a prior distribution. However, in real-world audio 

recognition/classification problems, such a distribution is un-

known, and training data is limited and incomplete at training 

time. As it is difficult to collect exhaustive training samples 

to train classifiers. Datasets at prediction time are evolving 

and the trained model must deal with an infinite number of 

unseen/unknown categories. Therefore, it is desired to have 

an open-set classifier that not only accurately classifies the 

known classes into their respective classes but also effectively 

identifies unknown samples and learns them. This paper in-

troduces an open-set evolving audio classification technique, 

which can effectively recognize and learn unknown classes 

continuously in an unsupervised manner. The proposed 

method consists of several steps: a) recognizing sound signals 

and associating them with known classes while also being 

able to identify the unknown classes; b) detecting the hidden 

unknown classes among the rejected sound samples; c) learn-

ing those novel detected classes and updating the classifier. 

The experimental results illustrate the effectiveness of the de-

veloped approach in detecting unknown sound classes com-

pared to extreme value machine (EVM) and Weibull-cali-

brated SVM (W-SVM).   

Index Terms—Acoustic scene classification, open-set 

recognition, support vector data description 

1. INTRODUCTION 

Research on acoustic scene classification (ASC) has been receiving 

increased attention over the past decade, which has led to a consid-

erable amount of new sound modeling and recognition techniques. 

ASC plays a major role in machine hearing systems. Where, the pri-

mary goal is achieving human-like auditory recognition of ambient 

sound signals [1, 2]. Some example applications include context-

aware devices that automatically adjust their operation mode accord-

ing to surrounding sounds, such as hearing aid devices that their 

speech enhancement parameters are adjusted depending on the back-

ground noise type [3]. Some other applications are robotics [4], mon-

itoring elderly people, and acoustic monitoring systems in smart 

homes for detecting events such as glass breaking, baby crying, and 

gunshot [5]. 

One limitation of the existing ASC systems is their closed-set 

nature, that is a fixed and limited number of known classes are used 

during the training. In closed-set classifiers, it is assumed that during 

test time, the test data is drawn from the same set of classes as the 

training data. This guarantees that every input samples are classified 

into exactly one of the training classes. However, most applications 

for ASCs in nature are open-set problems. In other words, in an 

open-set framework, the test data could include samples associated 

with unknown classes as well. Therefore, it is necessary for an ASC 

to detect if a sound signal is associated with an unknown category. 

It is also desired to learn the unknown instances that appear more 

frequently. To our knowledge, the following contributions are the 

only existing ASC systems that partially implement the open-set 

framework. In [6] an open-set ASC is proposed to detect unknown 

classes utilizing support vector data description (SVDD). This 

method is only able to detect unknown samples without being able 

to learn them. In [7], a real-time unsupervised model for learning 

environmental noise signals is developed. This model can detect un-

known classes in the stream of input sound signals and learn them 

on the fly. However, it can only store data from one unknown class 

and create one class at a time.  

In this work, we propose a solution to overcome the limitations 

of both systems. Our proposed technique can identify the unknown 

sound signals and classify them into multiple micro-clusters based 

on the similarity of their characteristics. We then prune the micro-

clusters according to a popularity measure, such that the micro-clus-

ters larger than a certain threshold are classified into new classes on 

the fly. Importantly, our proposed method has no limitation on the 

number of classes created on the fly.  

The rest of the paper is organized as follows. A brief overview 

of the open-set problem is covered in Section 2. The proposed open-

set evolving acoustic scene classification model is then presented in 

Section 3. Section 4 presents the experimental results followed by 

the conclusion in Section 5. 

2. OPEN-SET RECOGNITION MODEL 

In this section, we first briefly state the preliminaries related to open-

set recognition (OSR), following which we formally define the 

evolving open-set problem in Section 3.  

Traditional recognition/classification algorithms are closed-set 

problems where all training and testing data are known a priori. 

Closed-set classifiers have been developed that maximize the opti-

mal posterior probability, 𝑝(𝐶𝑖|𝑥; 𝐶1, 𝐶2, … 𝐶𝑀), 𝑖 ∈ {1,2, … , 𝑀} , 

where 𝑥 is an input sample, 𝑖 is the index of the known class 𝐶𝑖, and 

𝑀 in the number of the known classes. However, a practical auto-

matic recognition/classification problem is an open-set problem, 

https://doi.org/10.33682/en2t-9m14
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where during testing, data from unknown classes can emerge at any 

time unexpectedly. Therefore, during the test, the optimal posterior 

probability becomes 𝑝(𝐶𝑗|𝑥; 𝐶1, 𝐶2, … 𝐶𝑀, 𝐶𝑀+1, . . 𝐶𝑀+𝑄), 𝑗 ∈
{1,2, … , 𝑀 + 𝑄}, with 𝑄 being the number of unknown classes [8]. 

This posterior probability cannot be modeled as classes 𝐶𝑀+1 

through 𝐶𝑀+𝑄 are unknown.  

In [9], the OSR problem was formalized for the first time and a 

preliminary solution was proposed. It incorporates an open space 𝑂 

risk term to account for the space beyond the reasonable support of 

the known classes. Open space is a space that is sufficiently far from 

the known classes. Let 𝑓 be a measurable function where 𝑓𝑦(𝑥) ≥ 0 

implies recognition of the known class 𝑦 and 𝑓𝑦(𝑥) = 0 implies, in-

put 𝑥 does not belong to class 𝑦. The open space risk 𝑅𝑜(𝑓) for a 

class 𝑦 can be defined as follows [9]:  

𝑅𝑜(𝑓𝑦) =  
∫ 𝑓𝑦(𝑥)𝑑𝑥

𝑂

∫ 𝑓𝑦(𝑥)𝑑𝑥
𝑆𝑜

      (1) 

where 𝑆𝑜 is the space that contains all the known training classes as 

well as the open space 𝑂. The objective OSR function must balance 

the open space risk against empirical error.   

The OSR problem has been studied in various frameworks [10-

12]. In [12] the existing open-set techniques are categorized into five 

main categories. 1) deep neural network-based, 2) adversarial learn-

ing-based, 3) extreme value theory-based, 4) Dirichlet process-based, 

and 5) traditional machine learning-based models. Although much 

effort has been made to develop promising solutions for OSR prob-

lem, the flexibility of these methods in continuously learning new 

classes, at a lower computational complexity, is still a challenge. Ad-

dressing this challenge using traditional machine learning ap-

proaches is the focus of this paper.   

3. MULTI-CLASS OPEN-SET EVOLVING ACOUSTIC 

SCENE CLASSIFICATION MECHANISM 

A dynamically evolving classification system needs to continuously 

detect unknown classes and learn them at a low training cost. The 

key components of such a system are as follows: 1) accurately as-

signing the input samples from the known classes into their respec-

tive labels, 2) rejecting samples that are from unknown classes, 3) 

keeping track of the rejected unknown samples to identify potential 

new classes among all the rejected samples in 2), and 4) learning/la-

beling the detected new classes and expanding the existing model at 

a low training cost. 

In this work, similar to [7], known classes are labeled with pos-

itive integers and unknown samples are temporarily labeled as 0. As-

suming 𝑥 ∈ ℝ𝑑 to be an input sample in the feature domain, the pro-

posed open-set evolving model is defined as follows.  

Definition (Multi-class Open-set Evolving Recognition (MCOSR) 

Model): A solution to a multi-class open-set evolving recognition:  

1. A multi-class open-set model 𝐹(𝑥): ℝ𝑑 ↦ ℤ≥0  is an ensemble 

of multiple OSR functions, 𝑓𝐶𝑖
(𝑥)  ∶ ℝ𝑑 ↦ ℝ,   𝑖 = 1, … , 𝑀 , 

where 𝑀 is the number of known classes.  

2. Let 𝒳𝑁𝑜𝑣 ≔ {𝑥𝑘|𝑥𝑘 ∈ ℝ𝑑 , 𝑘 = 1, … , 𝒦} be a dataset of 𝒦 sam-

ples, that are detected as unknown. 𝐿(𝒳𝑁𝑜𝑣): ℝ𝑑 ↦ ℕ is a nov-

elty detection process that is applied to 𝒳𝑁𝑜𝑣 to determine the 

existence of new classes in 𝒳𝑁𝑜𝑣.  

3. If 𝐿(𝒳𝑁𝑜𝑣) discovers 𝑄 potential new classes, the existing 

MCOSR model is expanded by adding the discovered classes to 

the previously learned class set. Thus, the set of known classes 

becomes {𝐶1, 𝐶2, … , 𝐶𝑀} ∪ {𝐶𝑀+1, 𝐶𝑀+2, … , 𝐶𝑀+𝑄}. It is worth 

noting that 𝑀 varies in time as a result of the evolution process. 

The diagram of the proposed MCOSR is shown in Fig. 1. Details of 

each step are introduced in the following subsections. 

3.1. Multi-class open-set evolving recognition function 

This section states the details of the proposed open-set acoustic 

scene classification. The algorithm consists of four main steps, fea-

ture extraction, classification/rejection, new class detection, and 

model evolution as follows.  

3.1.1.  Feature extraction: 

The spectrogram of the input audio signal is first passed through a 

pre-trained neural network (details discussed in section 4) to extract 

the embedding representation. In this work, an L3-Net-based [13] 

audio embedding network is used as the feature extractor. The ex-

tracted embeddings are used as the input feature vectors to the 

MCOSR model.  

3.1.2. Classification/rejection 

The extracted embeddings from an input sound file are passed into 

the multi-class open-set recognition model 𝐹(𝑥): ℝ𝑑 ↦ ℤ≥0  to de-

termine if the input sound signal belongs to any of the known clas-

ses, 𝐶𝑖, or it is an unknown sample (0). 𝐹(𝑥) is an ensemble of mul-

tiple OSR functions, 𝑓𝐶𝑖
(𝑥)  ∶ ℝ𝑑 ↦ ℝ,   𝑖 = 1, … , 𝑀 , where 𝑀  is 

the number of known classes. Each of the OSR functions character-

izes one of the known classes utilizing a support vector data descrip-

tion (SVDD) model [14].   

SVDD is a kernel-based sphere-shaped data description method 

that provides an effective description of the data boundary in the fea-

ture space. SVDD has been investigated in the context of various 

open-set problems [15,16]. The objective of SVDD is to find the 

 
Figure 1: Block diagram of the developed open-set evolving acoustic scene classification system 
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smallest hypersphere that encloses most of the data in feature 

space  𝒳 . Let 𝒳 ≔ {𝑥𝒿|𝑥𝒿 ∈ ℝ𝑑 , 𝒿 = 1, … , 𝒥}  be a dataset of 𝒥 

points. Using a nonlinear transformation 𝜑 from 𝒳 to a high-dimen-

sional kernel feature space, the smallest enclosing hypersphere of 

radius 𝑅 and center 𝛼 can be stated as: 

min
𝑅,𝛼,𝜉

𝑅2 +
1

𝛾
∑ 𝜉𝒿𝑗           (2) 

𝑠. 𝑡. ‖𝜑(𝑥𝒿) − 𝛼‖
2

≤ 𝑅2 + 𝜉𝒿,        𝜉𝒿 ≥ 0,      ∀𝒿.       (3) 
 

The slack variables 𝜉𝒿 ≥ 0, associated with each training sample 

𝑥𝒿, allow a soft boundary and hyperparameter 𝛾 ∈ (0,1] establishes 

a trade-off between the sphere volume and the accuracy of data de-

scription. To optimize 𝛼, 𝑅 and 𝜉𝒿  [14] a Lagrangian procedure is 

used. The local maximum of the Lagrange function can be written 

as: 

ℒ =  ∑ 𝛽𝒿𝜑(𝑥𝒿). 𝜑(𝑥𝒿) −𝒥
𝒿=1 ∑ 𝛽𝒿𝛽𝓀𝜑(𝑥𝒿). 𝜑(𝑥𝓀)𝒥

𝒿,𝓀 =1  

            (4) 

𝑠. 𝑡.  ∑ 𝛽𝒿  𝒿 = 1, 𝛼 = ∑ 𝛽𝒿𝜑(𝑥𝒿) 𝒿 , 0 ≤  𝛽𝒿 ≤ 𝛾  

where 𝛽𝒿 ≥ 0 represent Lagrange multipliers. Samples with 𝛽𝒿 = 0 

lie inside the sphere surface, while those with 𝛽𝒿 = 𝛾 fall outside. 

Samples with 0 < 𝛽𝒿 < 𝛾 are on the boundary of the corresponding 

hypersphere. It can be seen from (4), the center of the sphere (𝛼) is 

a linear combination of the data samples. To describe the hy-

persphere, only samples with  𝛽𝒿 > 0 are needed, hence they are 

called support vectors.  𝑅2 is the distance from the center of the 

sphere (𝛼) to (any of the support vectors on) the boundary, excluding 

the ones outside the sphere. 

Therefore, given a set of 𝒥 data samples, the open-set recognition 

function for representing it as a class/hypersphere 𝐶𝑖 is defined as:  

𝑓𝐶𝑖
(𝑥) = ‖𝜑(𝑥) − 𝛼𝑖‖2 − 𝑅𝑖

2     (5) 

Input 𝑥 is associated with class 𝐶𝑖, if its distance to the center 

of the sphere 𝐶𝑖 ,i.e. 𝛼𝑖, is equal or smaller than the radius 𝑅𝑖
2, i.e.  

𝑓𝐶𝑖
(𝑥) ≤ 0. Therefore, the decision mechanism of identifying the la-

bel of the input sample 𝑥 in MCOSR is as follows:  

 

𝐶∗ =  {
𝑎𝑟𝑔 min

𝑖
𝑓𝐶𝑖

(𝑥)    𝑓𝐶𝑖
(𝑥) ≤ 0, ∀ 𝑖 = 1, … , 𝑀

0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (6) 

The 𝐶∗ is the output label, where 0 stands for unknown samples. 

To minimize misclassifications, majority voting of 3 decisions is 

considered. This way if inputs at time 𝑡  and 𝑡 + 2, 𝑥𝑡 and 𝑥𝑡+2 are 

both from class ℓ, then 𝑥𝑡+1 is expected to be from the same class, 

noting that signal data occur in a streaming manner and the interest 

is primarily on the sustained type of sound. 

3.1.3. Model evolution with detected new classes 

Samples that are detected as unknown are stored in a buffer. Length 

of this buffer should be larger than a minimum number of samples, 

𝒟 , required for establishing a new class. Let 𝒳𝑁𝑜𝑣 ≔ {𝑥𝑘|𝑥𝑘 ∈
ℝ𝑑 , 𝑘 = 1, … , 𝒦} be the set of 𝒦  samples in the buffer. Among 

these stored unknown samples, we need to determine if there is any 

consolidated ensemble that should be declared as a new separate 

class. A similarity measure is used to assess such consolidation. Let 

𝐿(. ): ℝ𝑑 ↦ ℕ to be the process of detecting the existence of a new 

class using that similarity measure. We use cosine similarity meas-

ure and denote a pair of data points as similar if their cosine simi-

larity is greater than a predefined threshold value 𝜆. In this work, 

this value is set empirically to 𝜆 = 0.85. An ensemble of similar 

samples is called micro-cluster. A sample is assigned to a micro-

cluster if its similarity not only with the center of the micro-cluster, 

but also with each sample from a randomly selected set, is greater 

than 𝜆. If not assigned to any of the existing micro-clusters, the sam-

ple will form a sporadic micro-cluster. Micro-clusters with size less 

than two are considered sporadic. Once the size of a micro-cluster 

exceeds 𝒟, an open-set recognition function, e.g. SVDD, is used to 

model it as a new class. To set 𝒟, one needs to specify how long an 

occurring sound to be sustained in order to establish a new class. In 

other words, how long sound data from a scene class is needed to 

establish a new class. Finally, when a new class is created, the pre-

trained model gets updated accordingly. The newly created class is 

labeled as the number of existing classes plus one.  

4. EXPERIMENTAL RESULTS 

In this section, we evaluate the performance of MCOSR algorithm 

in terms of OSR accuracy, and qualitatively analyze its evolving as-

pects. We then perform a comparative study of the OSR accuracy 

of the proposed method against the existing state-of-the-art OSR al-

gorithms such as EVM [8], Weibull-calibrated SVM (W-SVM) 

[17], PI-SVM and PI-OSVM (one-class SVM) [18]. EVM has a 

well-grounded interpretation derived from the statistical extreme 

value theory (EVT) and is the first classifier capable of performing 

nonlinear kernel-free learning. In W-SVM, the decision scores are 

used to fit the data into a single Weibull distribution, and a specific 

threshold is set to reject the unknown classes [8].  

Data from the DCASE 2018 task5, a subset of SINS [19], TUT 

Acoustic Scenes 2017 [20], and Audioset [21] are used to evaluate 

the proposed algorithm. The dataset comprises 12 acoustic scenes, 

which are “absence”, “cooking”, “dishwashing”, “eating”, “social 

activity”, “watching TV”, “car”, “music”, “restaurant”, “transport”, 

“vacuum cleaner”, and “working”. 

OpenL3 [22] is used for extracting the audio embeddings, con-

sidering the default settings and a 512-embedding dimension. The 

input to the L3-Net is a 10-second audio signal and the extracted 

embedding feature is a matrix of size 96×512. The averages of the 

extracted embeddings from the 10-second sound files are used as 

inputs to the MCOSR.  

We begin by pre-training a model using data from the follow-

ing five acoustic scenes “cooking”, “dishwashing”, “eating”, “social 

activity”, and “watching TV”. This leads to five pre-trained classes, 

which we will refer to as C1, C2, …, C5, respectively. For pre-train-

ing, we used 30 audio embedding samples, i.e. 𝒟, extracted from 

five minutes of sound signals per acoustic scene. The remaining du-

ration of data associated with the five pre-training scenes, men-

tioned above, along with the full duration of the data associated with 

the other seven acoustic scenes, i.e. “absence”, “car”, “music”, “res-

taurant”, “transport”, “vacuum cleaner”, and “working”, are used 

for testing. 

4.1. Multi-class open-set recognition   

We evaluate the OSR aspect of the MCOSR in two steps. In the first 

step, the proposed system identifies if an input sample is associated 

with the pre-trained classes and if so, it labels them as known sam-

ples. In the second step, the system classifies the known samples 

into their respective classes, which is known as closed-set recogni-

tion. Denote by 𝑇𝑃, 𝐹𝑃, 𝑇𝑁, and 𝐹𝑁 the true-positive, false-posi-

tive, true-negative and false-negative, respectively. We measure the 

221



Detection and Classification of Acoustic Scenes and Events 2019  25-26 November 2019, New York, NY, USA  

 

accuracy of the first step in the form of true-positive rate, given by 

𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), and specificity, that is 1 − 𝐹𝑃𝑅 =  𝑇𝑁/
(𝑇𝑁 + 𝐹𝑃). The results are reported in Table 1, where each entry is 

an average of a 10-fold cross-validation process.  

Aside from MCOSR results, Table 1 also reports the results for 

comparable algorithms in the literature, including EVM, W-SVM, 

PI-SVM, and PI-OSVM. The rejection threshold, i.e. 𝛿, for EVM is 

set to 0.05, which is deduced empirically. At first glance, it may 

appear that W-SVM outperforms other algorithms since its specific-

ity is slightly higher than that of MCOSR and EVM. However, it 

drastically underperforms, in terms of 𝑇𝑃𝑅, compared to MCOSR 

and EVM. It is worth mentioning that, EVM has the highest 𝑇𝑃𝑅 

while its specificity is close to the MCOSR. Importantly, as reported 

in Table 2, EVM suffers from large confusion error in close-set 

recognition. Our analyses suggest that PI-OSVM and PI-SVM pro-

vide the lowest performance.  

4.2. The performance of the open-set technique as a function of 

class-set evolution   

In this section, we study the performance of our proposed algorithm 

while changing the order in which the data are fed to the system. 

Our contribution is two-fold. First, we investigate the effect of 

choosing the initial sound samples on the number of created classes 

during the test and their accuracy. Next, we measure the overall 

post-evolution accuracy of the system, in terms of a confusion ma-

trix. 

To evaluate the effect of the initial sound samples on the per-

formance of the proposed MCOSR technique, we used a pre-trained 

model comprising C1, C2, C3, C4, and C5. During the test, the in-

puts to the pre-trained model are the samples from known and un-

known classes. The experiment is repeated 10 times while randomly 

shuffling the sound files associated with each class. Samples that 

are detected as unknown are stored in a buffer. The 𝐿(. ) process is 

continuously assessing the existence of a new class among the 

stored unknown samples. Once it detects a new class, MCOSR to 

be updated with this new class and the set of known classes is ex-

panded. It is expected the forthcoming samples from the newly 

added class to be assigned to it and not identified as unknown sam-

ples anymore. However, in some of the experiments, MCOSR cre-

ates multiple classes for “music” class. Because the music data is 

not coherent enough, the initially created music class by MCOSR 

does not provide enough representative information of the music 

class. Therefore, other incoming music samples are identified as un-

known samples and later will be learned as a new class. Data from 

the “working” sound scene is also a challenging one.  In some ex-

periments, no new class is created for this scene, as data from this 

scene is always misclassified by one of the known classes, mostly 

the “absence” class. Also, the samples from this scene that are iden-

tified as unknown are not similar enough to create meaningful mi-

cro-clusters to be declared as a new class.  

As mentioned earlier, we next measured the post-evolution ac-

curacy of the system. The results are reported in Table 3 in terms of 

a confusion matrix. In this table “absence”, “car”, “music”, “restau-

rant”, “transport”, “vacuum cleaner”, and “working” scenes are re-

ferred as C6, C7, …, C12, respectively. It was found as the number 

of classes increases in the model; the confusion rate increases. Be-

cause SVDD ignores the discriminative information between the 

known classes, which leads to poor classification performance. This 

issue needs to be addressed to achieve a higher classification accu-

racy when dealing with more complex acoustic scenes.  

5. CONCLUSION 

This paper provides an open-set evolving audio scene classification 

technique, MCOSR, which can effectively recognize and learn un-

known acoustic scenes in an unsupervised manner. The developed 

model is evaluated utilizing the DCASE challenge dataset, TUT 

Acoustic Scenes 2017, and music files from Audioset. Experimental 

results demonstrate the effectiveness of the developed approach in 

identifying unknown samples compared to EVM, W-SVM, PI-

OSVM, and PI-SVM. This paper exemplifies how the proposed 

MCOSR method can be used as a proper evolving open-set system 

for sound classification applications. Future research will focus on 

addressing practical issues during run time.   

Table 2. Confusion matrices of the proposed MCOSR and EVM for Table 1. 
 cooking dishwashing eating social activity watching TV unknown 

MCOSR EVM MCOSR EVM MCOSR EVM MCOSR EVM MCOSR EVM MCOSR EVM 

cooking 81.54 58.33 3.97 27.08 0 4.17 0 0 0 0 14.49 10.42 

dishwashing 3.08 16.67 88.21 62.5 3.72 20.83 0 0 0 0 5 0 

eating 0 8.33 1.03 12.5 96.41 79.17 0 0 0 0 2.56 0 

social activity 0 6.25 0 0 1.28 4.17 86.28 87.5 0 0 12.44 2.08 

watching TV 0.13 2.08 0 0 0 2.08 0.9 6.25 89.1 87.5 9.87 2.08 

unknown 0.04 7.79 0.04 0.31 5.48 0 0 0 0.15 0 94.29 91.9 

 
Table 3. Accuracy of the developed open-set evolving acoustic scene recognition model (%), after all classes have been learnt on the fly 

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 unknown 

C1 73.21 4.36 0 0 0 0.13 1.03 0 0 0 0 0.51 20.77 

C2 2.05 88.46 3.08 0 0 0 0 0 0 0 0 0 6.41 

C3 0 1.67 81.67 0 0 4.36 0 0 0 0 0 3.08 9.23 

C4 0.13 0.38 0.51 84.62 0 0 0 0 1.15 0.38 0 0 12.82 

C5 0 0 0 0.13 89.74 0 0 0 0 0 0.51 0.51 9.1 

C6 0.13 0 0.26 0 0 94.49 0 0 0 0 0 0.13 5 

C7 0 0 0 0 0 1.28 92.95 0 0 0.26 0 0 5.51 

C8 0 0 0.9 0 0 0 0 94.62 0.64 0 0 0 3.85 

C9 0 0 0 0 0 0 0 0.9 97.56 0 0 0 1.54 

C10 0 0 0 0.77 0 0 0.26 0 0 92.56 0 0 6.41 

C11 0 0 0 0 0 0 0 0 0 0.77 91.15 0 8.08 

C12 0.63 2.7 13.81 0 0.63 29.05 0 0 0 0 0 19.68 33.49 

 

Table 1. Accuracy of MCOSR, EVM, W-SVM(Linear), PI-

OSVM, and PI-SVM in detecting the known classes and reject-

ing the unknown classes (%), in terms of TPR (higher, better) 

and 1-FPR (higher, better) 

Methods 
Detecting known: 

TPR 

Rejecting unknown: 

1-FPR 

MCOSR 88.22 93.03 

W-SVM (Linear) 59.58 96.61 

EVM 97.08 91.9 

PI-OSVM 21.7 15.68 

PI-SVM 60.8 51.41 
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ABSTRACT

In this paper, we present a method called HODGEPODGE1

for large-scale detection of sound events using weakly labeled,
synthetic, and unlabeled data in the Detection and Classification
of Acoustic Scenes and Events (DCASE) 2019 challenge Task
4: Sound event detection in domestic environments. To perform
this task, we adopted the convolutional recurrent neural networks
(CRNN) as our backbone network. In order to deal with the small
amount of tagged data and the large amounts of unlabeled in-
domain data, we aim to focus primarily on how to apply semi-
supervise learning methods efficiently to make full use of limited
data. Three semi-supervised learning principles have been used in
our system, including: 1) Consistency regularization applies data
augmentation; 2) MixUp regularizer requiring that the predictions
for a interpolation of two inputs is close to the interpolation of
the prediction for each individual input; 3) MixUp regularization
applies to interpolation between data augmentations. We also tried
an ensemble of various models, which are trained by different
semi-supervised learning principles. Our approach significantly
improved the performance of the baseline, achieving a event-based
f-measure of 42.0% compared to 25.8% of the baseline on the
official evaluation dataset. Our submissions ranked third among 18
teams in the task 4.

Index Terms— DCASE 2019, convolutional recurrent neural
networks, sound event detection, weakly-supervised learning, semi-
supervised learning

1. INTRODUCTION

Sound carries a lot of information about our everyday environment
and the physical events that take place there. We can easily perceive
the sound scenes we are in (busy streets, offices, etc.) and identify
individual sound events (cars, footsteps, etc.). The automatic
detection of these sound events has many applications in real life.
For example, it’s very useful for intelligent devices, robots, etc., in
the environment awareness. Also a sound event detection system
can help to construct a complete monitoring system when the radar
or video system may not work in some cases.

To contribute to the sound event detection task, the Detection
and Classification of Acoustic Scenes and Events (DCASE)
challenge has been organized for four years since 2013 [1, 2, 3].
DCASE is a series of challenges aimed at developing sound

1HODGEPODGE has two layers of meanings. The first layer is the
variety of training data involved in the method, including weakly labeled,
synthetic, and unlabeled data. The second layer refers to several semi-
supervised principles involved in our method.

classification and detection systems [1, 2, 3]. This year, the DCASE
2019 challenge comprises five tasks: acoustic scene classification,
audio tagging with noisy labels and minimal supervision, sound
event localization and detection, sound event detection in domestic
environments, and urban sound tagging [3]. Among them,
this paper describes a method for the task 4 of the DCASE
2019 challenge, large-scale detection of sound events in domestic
environments using real data either weakly labeled or unlabeled, or
synthetic data that is strongly labeled (with time stamps). The aim is
to predict the presence or absence and the onset and offset times of
sound events in domestic environments. This task is the follow-up
to DCASE 2018 task 4, which aims at exploring the possibility to
exploit a large amount of unbalanced and unlabeled training data
together with a small weakly annotated training set to improve
system performance. The difference is that there is an additional
training set with strongly annotated synthetic data is provided in
this year’s task 4. Thus it can be seen that we are faced with three
difficult problems: 1) there is no real strongly labeled and only too
few weakly labeled data, 2) the synthetic data is obviously different
from the real one, and how is the effect of synthetic data on the
detection results? and 3) there is too much unlabeled data. Although
this task is difficult , there have been a variety of methods proposed
to solve this problem [4, 5, 6]. Furthermore, a baseline system that
performs the task is provided in the DCASE 2019 challenge [7, 5].

Based on these previous studies, we propose to apply a
convolutional recurrent neural network (CRNN), which is used
as the backbone network in the baseline system for task 4 of
DCASE 2019 [3]. In order to make full use of small amount of
weakly labeled and synthetic data, the principles in interpolation
consistency training (ICT) [8] and MixMatch [9] has been adopted
in the ‘Mean Teacher’ [7, 5] framework. To avoid overfitting,
consistency regularization on the provided unlabeled data is
incorporated.

The rest of this paper is organized as follows: Section 2
introduces details of our proposed HODGEPODGE. The
experiment settings and results are displayed and discussed in
Section 3. We conclude this paper in Section 4.

2. PROPOSED METHOD

Herein, we present the method of our submissions for task 4 of
DCASE 2019. In the following sections, we will describe the details
of our approach, including feature extraction, network structure,
how to use ICT and MixMatch in the context of ‘Mean Teacher’,
and how to use unlabeled data.

https://doi.org/10.33682/9kcj-bq06
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2.1. Feature extraction

The dataset for task 4 is composed of 10 sec audio clips recorded
in domestic environment or synthesized to simulate a domestic
environment. No preprocessing step was applied in the presented
frameworks. The acoustic features for the 44.1kHz original data
used in this system consist of 128-dimensional log mel-band energy
extracted in Hanning windows of size 2048 with 431 points overlap.
Thus the maximum number of frames is 1024. In order to prevent
the system from overfitting on the small amount of development
data, we added random white noise (before log operation) to the
melspectrogram in each mini-batch during training. The input to
the network is fixed to be 10-second audio clip. If the input audio
is less than 10 seconds, it is padded to 10 seconds; otherwise it is
truncated to 10 seconds.

2.2. Neural network architecture

Figure 1 presents the CRNN network architecture employed in our
HODGEPODGE. The audio signal is first converted to [128×1024]
log-melspectrogram to form the input to the network. The first half
of the network consists of the seven convolutional layers, where we
use gated linear units (GLUs) instead of commonly rectified linear
units (RELUs) or leaky ReLUs as nonlinear activations.

Figure 2: Architecture of a GLU.

Figure 2 shows the structure of a GLU :

o = (i ∗ W + b) ⊗ σ(i ∗ Wg + bg),

where i and o are the input and output, W , b, Wg , and bg

are learned parameters, σ is the sigmoid function and ⊗ is the
element-wise product between vectors or matrices. Similar to
LSTMs, GLUs play the role of controlling the information passed
on in the hierarchy. This special gating mechanism allows us to
effectively capture long-range context dependencies by deepening
layers without encountering the problem of vanishing gradient.

For the seven gated convolutional layers, the kernel sizes are
3, the paddings are 1, the strides are 1, and the number of filters
are [16, 32, 64, 128, 128, 128, 128] respectively, and the poolings
are [(2, 2), (2, 2), (1, 2), (1, 2), (1, 2), (1, 2), (1, 2)] respectively.
Pooling along the time axis is used in training with the clip-level
and frame-level labels.

The gated convolutional blocks are followed by two
bidirectional gated recurrent units (GRU) layers containing 64 units
in the forward and backward path, their output is concatenated and
passed to the attention and classification layer which are described
below.

As depicted in Figure 1, the output of the bidirectional GRU
layers is fed into both a frame-level classification block and an
attention block respectively. The frame-level classification block
uses a sigmoid activation function to predict the probability of
each occurring class at each frame. Thus bidirectional GRUs

followed by a dense layer with sigmoid activation to compute
posterior probabilities of the different sounds classes. In that case
there are two outputs in this CRNN. The output from bidirectional
GRUs followed by dense layers with sigmoid activation is
considered as sound event detection result. This output can be
used to predict event activity probabilities. The other output is
the weighted average of the element-wise multiplication of the
attention, considering as audio tagging result. Thus the final
prediction for the weak label of each class is determined by the
weighted average of the element-wise multiplication of the attention
and classification block output of each class c.

2.3. Semi-supervised learning

Inspired by the DCASE 2018 task 4 winner solution [5] and the
baseline system [10], in which it uses the ‘Mean Teacher’ model [7],
we also used ‘Mean Teacher’ as the main framework of our system..
‘Mean Teacher’ is a combination of two models: the student
model and the teacher model. At each training step, the student
model is trained on synthetic and weakly labeled data with binary
cross entropy classification cost. While the teacher model is an
exponential moving average of the student models. The student
model is the final model and the teacher model is designed to help
the student model by a consistency mean-squared error cost for
frame-level and clip-level predictions of unlabeled audio clips. That
means good student should output the same class distributions as
the teacher for the same unlabeled example even after it has been
perturbed by Gaussian noise augmentation. The goal of ‘Mean
Teacher’ is to minimize:

L = Lw + Ls + w(t)Lcw + w(t)Lcs

where Lw and Ls are the usual cross-entropy classification loss on
weakly labeled data with only weak labels and synthetic data with
only strong labels respectively, Lcw and Lcs are the teacher-student
consistence regularization loss on unlabeled data with predicted
weak and strong labels respectively, and w(t) is the balance of
classification loss and the consistency loss. Generally the w(t)
changes over time to make the consistency loss initially accounts for
a very small proportion, and then the ratio slowly becomes higher.
Since in the beginning, neither the student model nor the teacher
model were accurate on predictions, and the consistency loss did
not make much sense. w(t) has a maximum upper bound, that
is, the proportion of consistent loss does not tend to be extremely
large. With different maximum upper bound of consistence weight
w(t), the trained model has different performances. In the next
section, we ensemble the models trained under different maximum
consistence weights to achieve better results.

HODGEPODGE did not change the overall framework of the
baseline. It only attempts to combine several of the latest semi-
supervised learning methods under this framework.

The first attempt is the interpolation consistency training
(ICT) principle [8]. ICT teaches the student network in a semi-
supervised manner. To this end, ICT uses a ‘Mean Teacher’ fθ′ .
During training, the student parameters θ are updated to encourage
consistent predictions

fθ(Mixλ(uj , uk)) ≈ Mixλ(fθ′(uj), fθ′(uk)),

and correct predictions for labeled examples, where

Mixλ(a, b) = λa + (1 − λ)b
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Figure 1: Architecture of the CRNN in HODGEPODGE.

is called the interpolation or MixUp [11] of two log-
melspectrograms uj and uk, and on each batch we sample a
random λ from Beta(α; α) (e.g. α = 1.0 in all our settings). In
sum, the population version of our ICT term can be written a.
In our system, we perform interpolation of sample pair and their
corresponding labels (or pseudo labels predicted by the CRNNs) in
both the supervised loss on labeled examples and the consistency
loss on unsupervised examples. In each batch, the weakly labeled
data, synthetic data, and unlabeled data are shuffled separately to
form a new batch. There are 24 audio log-melspectrograms in each
batch, of which 6 are weakly labeled, 6 are synthetic audio data,
and the remaining 12 are unlabeled. Then we use the ICT principle
to generate new augmented data and labels with the corresponding
clips in the original and new batches. It should be noted that λ is
different for each batch. Thus the loss

Lict = Lw,ict + Ls,ict + w(t)Lcw,ict + w(t)Lcs,ict

where Lw,ict and Ls,ict are the classification loss on weakly labeled
data with only weak labels and synthetic data with only strong labels
using ICT respectively, Lcw,ict and Lcs,ict are the teacher-student
consistence regularization loss on ICT applied on unlabeled data
with predicted weak and strong labels respectively.

The second try draws on some of the ideas in MixMatch [9],
but not exactly the same. MixMatch introduces a single loss
that unifies entropy minimization, consistency regularization, and
generic regularization approaches to semi-supervised learning.
Unfortunately MixMatch can only be used for one-hot labels, not
suitable for task 4, where may be several events in a single audio
clip. So we didn’t use MixMatch in its original form. In each batch,
K(> 1) different augmentations are generated, then the original

MixMatch does mixup on all data, regardless of whether the data
is weakly labeled, synthetic or unlabeled. In our experiments, we
found that the effect is not good, so we fine-tuned the MixMatch to
do MixUp only between the augmentations of the same data type.
The loss function is similar to the loss in the ICT case.

2.4. Model ensemble and submission

To further improve the performance of the system, we use some
ensemble methods to fuse different models. The main differences
of the single models have two dimensions, one is the difference of
the semi-supervised learning method, and the other is the difference
of the maximum value of the consistency loss weight. For this
challenge, we submitted 4 prediction results with different model
ensemble:

• HODGEPODGE 1: Ensemble model is conducted by
averaging the outputs of 9 different models with different
maximum consistency coefficients in ‘Mean Teacher’
principle. The F-score on validation data was 0.367.
(Corresponding to Shi FRDC task4 1 in official submissions)

• HODGEPODGE 2: Ensemble model is conducted by
averaging the outputs of 9 different models with different
maximum consistency coefficients in ICT principle. The
F-score on validation data was 0.425. (Corresponding to
Shi FRDC task4 2 in official submissions)

• HODGEPODGE 3: Ensemble model is conducted by
averaging the outputs of 6 different models with different
maximum consistency coefficients in MixMatch principle. The
F-score on validation data was 0.389. (Corresponding to
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Shi FRDC task4 3 in official submissions)
• HODGEPODGE 4: Ensemble model is conducted by

averaging the outputs of all the 24 models in Submission
1, 2, and 3. The F-score on validation data was 0.417.
(Corresponding to Shi FRDC task4 4 in official submissions)

3. EXPERIMENTS AND RESULTS

3.1. Dataset

Sound event detection in domestic environments [11] is a task to
detect the onset and offset time steps of sound events in domestic
environments. The datasets are from AudioSet [12], FSD [13] and
SINS dataset [14]. The aim of this task is to investigate whether
real but weakly annotated data or synthetic data is sufficient for
designing sound event detection systems. There are a total of
1578 real audio clips with weak labels, 2045 synthetic audio clips
with strong labels, and 14412 unlabeled in domain audio clips in
the development set, while the evaluation set contains 1168 audio
clips. Audio recordings are 10 seconds in duration and consist of
polyphonic sound events from 10 sound classes.

3.2. Evaluation Metric

The evaluation metric for this task is based on the event-based F-
score [15]. The predicted events are compared to a list of reference
events by comparing the onset and offset of the predicted event
to the overlapping reference event. If the onset of the predicted
event is within 200 ms collar of the onset of the reference event
and its offset is within 200 ms or 20% of the event length collar
around the reference offset, then the predicted event is considered
to be correctly detected, referred to as true positive. If a reference
event has no matching predicted event, then it is considered a false
negative. If the predicted event does not match any of the reference
events, it is considered a false positive. In addition, if the system
partially predicts an event without accurately detecting its onset
and offset, it will be penalized twice as a false positive and a false
negative. The following equation shows the calculation of the F-
score for each class.

Fc =
2TPc

2TPc + FPc + FNc
,

where Fc, TPc, FPc, FNc are the F-score, true positives, false
positives, false negatives of the class c respectively. The final
evaluation metric is the average of the F-score for all the classes.

3.3. Results

First we did some experiments to determine the best size of the
median window. The median window is used in the post-processing
of posterior probabilities to results in the final events with onset
and offset. Table 1 shows the performance of HODGEPODGE
systems on validation data set under different median window size.
Coincidentally, all methods achieve the best performance when the
window size is 9.

Table 2 shows the final macro-averaged event-based evaluation
results on the test set compared to the baseline system. In
fact, HODGEPODGE 1 is the ensemble of baselines, the only
difference is that we use a deeper network, as well as higher
sampling rate and larger features. It can be seen that both ICT
and MixMatch principles can improve performance, especially ICT,
which performs best in all HODGEPODGE systems.

Table 1: The performance of HODGEPODGE systems on
validation data set under different median window size.

Median window size 5 7 9 11 13
HODGEPODGE 1 35.7% 36.4% 36.7% 36.5% 36.1%
HODGEPODGE 2 41.4% 42.1% 42.5% 42.2% 42.1%
HODGEPODGE 3 38.1% 38.7% 38.9% 38.3% 37.9%
HODGEPODGE 4 40.8% 41.5% 41.7% 41.3% 40.9%

Table 2: The performance of our approach compared to the baseline
system.

Method Evaluation Validation
HODGEPODGE 1 37.0% 36.7%
HODGEPODGE 2 42.0% 42.5%
HODGEPODGE 3 40.9% 38.9%
HODGEPODGE 4 41.5% 41.7%

Baseline 25.8% 23.7%

4. CONCLUSIONS

In this paper, we proposed a method called HODGEPODGE for
sound event detection using only weakly labeled, synthetic and
unlabeled data. Our approach is based on CRNNs, whereby we
introduce several latest semi-supervised learning methods, such as
interpolation consistence training and MixMatch into the ‘Mean
Teacher’ framework to leverage the information in audio data that
are not accurately labeled. The final F-score of our system on the
evaluation set is 42.0%, which is significantly higher than the score
of the baseline system which is 25.8%.
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ABSTRACT

In this paper, we propose a feature representation framework
which captures features constituting different levels of abstraction
for audio scene classification. A pre-trained deep convolution neu-
ral network, SoundNet, is used to extract the features from vari-
ous intermediate layers corresponding to an audio file. We consider
that the features obtained from various intermediate layers provide
the different types of abstraction and exhibits complementary in-
formation. Thus, combining the intermediate features of various
layers can improve the classification performance to discriminate
audio scenes. To obtain the representations, we ignore redundant
filters in the intermediate layers using analysis of variance based
redundancy removal framework. This reduces dimensionality and
computational complexity. Next, shift-invariant fixed-length com-
pressed representations across layers are obtained by aggregating
the responses of the important filters only. The obtained compressed
representations are stacked altogether to obtain a supervector. Fi-
nally, we employ the classification using multi-layer perceptron and
support vector machine models. We comprehensively perform the
validation of the above assumption on two public datasets; Making
Sense of Sounds and open set acoustic scene classification DCASE
2019.

Index Terms— Acoustic scene classification, Deep neural net-
work, SoundNet.

1. INTRODUCTION

Acoustic scene classification (ASC) aims to utilize the audio infor-
mation in everyday soundscapes to recognise the underlying phys-
ical environment (commonly referred to as scene). Traditionally,
most of the work in audio scene classification, inspired from the
closely related fields such as speech recognition and music anal-
ysis, employed hand-crafted time-frequency based representations
such as spectrogram, log-mel energy, mel-frequency cepstral coef-
ficients, constant-Q-transform etc. However, the hand-crafted fea-
tures are often not able to adapt to acoustic scenes data owing to the
complexity which arises mostly from many independent unknown
sources which produces unstructured sounds. Moreover, the audio
information in the scene spans whole audio spectrum . To circum-
vent this, feature learning based approaches are being applied to
learn relevant information directly from time-frequency representa-
tions. For examples, the work in [1] applied matrix factorization
based representations. [2] used i-vector and deep convolution neu-
ral network (CNN) based features. The study [3] used a dictionary
learning framework which captures the rare and most frequently
occurring sound events. Apart from this, ensemble based methods

which combines multiple channels and models are also being re-
ported [4].

A few studies explored the feature representations from raw au-
dio directly. For example, [5] demonstrated that deep CNNs trained
directly on very long raw acoustic sound waveforms can outperform
than CNNs with similar architecture on handcrafted features. The
study [6] proposed a pre-trained deep convolutional neural network,
SoundNet, that accepts raw audio as input. The work [7] performed
a layer-wise analysis on SoundNet layers and proposed an ensemble
framework in decision space.

In this paper, we propose a representations framework for ASC
by utilizing the intermediate layer representations obtained using
SoundNet, from raw audio. Our underlying assumption is that the
intermediate representations of different layers in SoundNet, corre-
spond to different details of an audio. To illustrate this, we show
the frequency response for some of the learned filters in the first
and second convolution layers of SoundNet in Figure 1. It can be
observed that the filters (a) and (b) in the first convolution layer
have different bandpass frequency characteristics and hence, pro-
duce different details of an audio. In the subsequent layers, the
output of the filters from the previous layer is being operated with
a different set of filters, which also posses different bandpass in-
formation. As shown in the Figure 1, the learned filters (c)-(e) in
the second convolution layer have different bandpass characteris-
tic and operate on the output of the filter (a) (learned in the first
convolution layer). Similarly, the filters (f)-(h) in the second con-
volution layer operate on the output of the filter (b) which is being
learned in the first convolution layer. Therefore, an audio signal is
operated upon by filters having different frequency responses along
the layers. Moreover, the non-linear operations such as batch nor-
malization and ReLU transformation, project the data into different
subspaces [8]. Therefore, the representations obtained from differ-
ent layers can be considered as exhibiting different characteristics
of an audio.

Henceforth, such intermediate representations are further trans-
formed into compressed features as explained in subsection 2.2 and
concatenated altogether to build a supervector, which captures the
multiple details of an audio. Empirically, we analyse the validity of
the proposed feature representation approach for two publicly avail-
able datasets.

The rest of the paper is organized as follows. Section 2 gives
the main idea of our proposed method in which we describe the
feature extraction, the compressed feature representation and the
classification methods. Section 3 shows the experimental setup and
findings. In Section 4, we conclude this paper.

https://doi.org/10.33682/05gk-pd08
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First convolution layer

(c) (d) (e) (f) (g) (h)

Second convolution layer

(a) (b)

Figure 1: Single-sided magnitude of frequency spectrum for some of the learned filters in SoundNet. (a) and (b) shows the frequency response
for fifth and sixteenth filters respectively in the first convolution layer. (c)-(h) shows frequency response of filters in second convolution layer.
The filters (c)-(e) (here, only three are shown) operate on the output produced by filter (a). Similarly, (f)-(h) shows frequency response for
filters which operate on response of (b) filter. Here, the frequency spectrum is computed using 64-point DFT and the magnitude (dB) is
20 log |X(f)|. |X(f)| is the magnitude of frequency spectrum.

2. PROPOSED METHODOLOGY

2.1. A brief on pre-trained 1-D CNN

SoundNet is a 1-D CNN, trained on large-scale weakly labeled
video datasets, ultimately performing transfer learning from video
to audio. The architecture has 8-layers namely convolution, pool-
ing layers and operates on the raw audio directly. Each convolution
layer (denoted as C) output is computed by convolution operation
followed by batch normalization (denoted as p-C) and non-linear
activation operations (ReLU).

An audio signal x, of duration t seconds, and sampled at fs
frequency, can be represented into a 2-D representations ∈ RN×s

using any intermediate layer of SoundNet. Here, N and s represent
the number of feature maps and their size respectively in a given
layer.

2.2. Compressed feature representation and classification

Ti
m
e

Baby cry
event

Ti
m
e

C1 layer  
feature maps

Feature map
index

Feature map
index

C3 layer  
feature maps

 
Baby cry event  

+   
silence

Audio
signal

Figure 2: 2-D intermediate layer representations for first (C1) and
third (C3) convolutional layer in SoundNet corresponding to 5 sec-
onds audio. Here, the audio is a baby cry event and a silence.

The intermediate 2-D feature representations obtained from
SoundNet have very high dimensionality of the order of approx.
16M and 27k for an audio of length 5 seconds sampled at 44.1kHz

for first (C1) and third (C3) convolution layer respectively. In addi-
tion, the size of representations depend on the input audio length
and the representations are not time-invariant. Figure 2 demon-
strates the time-variance of the intermediate layers representations
as the input shifts in time.

We reduce the dimensionality in two ways: first, since all the
learned filters in SoundNet do not provide discriminatory response
[9], some of the filter responses can be ignored. We employ anal-
ysis of variance method based pruning procedure as proposed in
[10] to identify the filters, which generates discriminating response
across scene classes. This is done for each of layers independently.
Ignoring the non-discriminating responses result into a reduced di-
mension 2-D representations ∈ RN′×s, whereN ′ ≤ N . Second, to
compute the time-invariant representations and compress the inter-
mediate representation further, global sum pooling is applied across
the response of filters . This results into a fixed-length representa-
tions ∈ RN′

of an audio for a particular intermediate layer. Hence-
forth, we call these fixed-length representations as compressed fea-
tures.

We utilize the compressed features from various layers to build
a global super-vector ξ, representing different details of an audio
by concatenating the compressed features from various layers. A
variable length audio of very high dimensionality can now be rep-
resented using ξ-features. Since these features represent different
characteristics of an audio, therefore we call them “multi-view fea-
tures”. Finally, we employ multilayer perceptron (MLP) model and
support vector machine (SVM) as a classifier. The flow diagram of
the overall proposed framework is shown in Figure 3.

3. PERFORMANCE EVALUATION

3.1. Dataset and Experimental setup

We use the following audio scene classification (ASC) datasets for
evaluation: first, the Making Sense of Sounds (MSOS) challenge
dataset [11], comprising of a development dataset consists of 1500
audio files divided into the five categories, each containing 300 files.
The number of different sound types within each category is not bal-
anced. The evaluation dataset consists of 500 audio files, 100 files
per category. F-measure and accuracy metrics are used to measure
the performance.

Second, the TAU Urban Scenes openset development and
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Figure 3: Overall proposed framework. The size and number of
feature maps for each layer are shown corresponding to input of 30
seconds length sampled at 44.1kHz. C1, P1, C2 etc. represents first
convolution, first pooling, second convolution and so on layers.

(a) (b)

(c) (d)

Urban Music

Figure 4: t-SNE plot of compressed features obtained from (a) P2,
(b) C3 (c) C7 and (d) the proposed multi-view features from various
layers of two classes namely, urban and music from MSOS Evalua-
tion dataset.

leaderboard dataset [12] (DCASE), comprising of ten known tar-
get classes and one unknown class is used. The “unknown” class
has additional data of several unknown acoustic scenes. The train-
ing and testing development data is divided as described in the task
protocol for all 11 classes. We handle the out-of-set classification
as follows. A given test recording is being classified as a particular
scene class if the class-specific probability is greater than threshold
(τ ), τ ∈ [0, 1). Otherwise, if all classes have lesser than τ , the
sample is assigned as an unknown class label. For DCASE dataset,
the weighted average accuracy (αw), the accuracy of known classes
(αk) and unknown class (αu) is used as metric as given in the Equa-
tion 1. We report the performance for leaderboard dataset using the
online portal.

αw = 0.5 ∗ αk + 0.5 ∗ αu (1)

The compressed features are computed from C2 to C7 layer (a
total of 4256 filter responses) including the p-C layers. We obtain a
total of 1307 non-redundant filter responses, as explained in section
2.2. This leads to give multi-view feature ξ ∈ R1307 obtained from
12 intermediate layers after performing global sum pooling on each
filter response.

The classification model parameters such as number of hidden
layers, neurons in MLP and hyper-parameters of non-linear SVM
are selected empirically. The MLP is trained with Adam optimizer

C7 P5 P2 C3 Multi-view(SVM)                 Multi-view(MLP) 
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Figure 5: F-measure obtained with compressed features from C7,
P5, P2, C3 layers using SVM and multi-view features using SVM
and MLP for MSOS dataset.

Figure 6: Confusion matrix using multi-view features with MLP for
MSOS dataset.

and cross-entropy categorical loss for 100 epochs. Empirically, we
find that single hidden layer having 30 neurons with hyperbolic tan-
gent activation function suits well for our classification task.

3.2. Results and Analysis

3.2.1. Dataset (A): Making sense of Sounds

Figure 4 shows the t-SNE plot for compressed features obtained
from various intermediate layers and ξ-features for two sound
classes. It can be observed that the ξ-feature space shows lesser
inter-class overlap as compared to the feature space generated from
the individual intermediate layers.

In addition to give more separability, the ξ-feature space also
utilizes complementary information given by various layers. This
can be observed from Figure 5, which shows the F-measure, com-
puted using the compressed features obtained from various interme-
diate layers and ξ-features. The F-measure for a given class varies
across layers, for example, “Nature” has larger F-measure for C3
layer as compared to C7 and P2 layers. This is valid for “Human”
as well. However, C7 layer has larger F-measure for “Effects” as
compared to P2 and C3 layers. This empirically shows that the fea-
ture space generated from various layers constitute complementary
information. Utilizing the compressed features from various lay-
ers to build multi-view features improve the F-measure of all scene
class significantly. The accuracy for compressed features from C7,
P5, P2, C3 and ξ-features using SVM is 64.2%, 79%, 59.6%, 70%
and 91% respectively. Using MLP, the accuracy obtained with ξ-
features is 93.2%. Figure 6 gives the confusion matrix obtained
using ξ-features with MLP as a classifier. It can be observed that
“Urban” is most frequently confused as “Nature” and “Human”.

Comparison with existing methods: Figure 7 shows the com-
parison of class-wise accuracy for baseline, state-of-the-art [11] and
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Figure 7: Comparison of class-wise accuracy with the existing
methods for MSOS dataset.
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Figure 8: t-SNE plot across SoundNet layers for compressed fea-
tures from (a) P2 (b) C3 (c) C7 and (d) the proposed multi-view
features for three scene class, namely airport, bus and metro. Here,
(a’), (b’), (c’) and (d’) shows the same when unknown class is also
being considered.

our proposed approach with MLP. For all classes, our proposed ap-
proach provides significant improvement as compared to the base-
line. On the other hand, the performance is equivalent to state-of-
the-art with an improvement for “Nature” and Effects by 3% and 1%
respectively, however, the performance degrades for “Human” and
“Urban” by 1% and 4% respectively. The accuracy across classes
for baseline, the state-of-the-art and our proposed approach is 81%,
93.4% and 93.2% respectively.

3.2.2. Dataset (B): TAU Urban Acoustic Scenes 2019 Openset

Figure 8 shows the t-SNE plot obtained using compressed features
from various layers and ξ-features for three known classes, airport,
bus, metro and one unknown class. It is notable that the proposed
multi-view features are able to provide better separation among
known classes as compared to the classes considering both known
and unknown.

Figure 9 gives the performance obtained using MLP and SVM
classifier as τ varies from 0 to 1. For τ close to 0, the classifiers
are able to classify the known classes significantly well. However,
the unknown class has poor accuracy. As τ increases, the unknown
class accuracy increases, however, when τ is very close to 1, the
known class accuracy is poor. It can be observed that there is a
trade-off in accuracy of the known and unknown class with thresh-
old. Our proposed framework improves αw significantly by 12% to
31% (choosing 0.5 < τ < 1) as compared to that of baseline [12]
which has αw equals to 48.7%.

For leaderboard dataset, αw is computed through the public
leaderboard online portal. Figure 10 shows αw as a function of τ
with MLP and SVM classifiers. In case of MLP, as the τ increases
towards 1, the αw also increases and approaches to the baseline
performance which is around 44% (private leaderboard). Utiliz-
ing SVM, the αw remains constant at 17.5% beyond 0.5 threshold.
This may be due to the over-fitting of the SVM classifier towards the

(b)

(a)

Figure 9: Known, unknown and weighted average accuracy as a
function of threshold (τ ) using (a) SVM and (b) MLP as a classifier
for DCASE development dataset.

Figure 10: Weighted average accuracy (αw) as a function of thresh-
old using MLP and SVM for DCASE leaderboard dataset.

training dataset. The predicted scene labels obtained using different
threshold for leaderboard dataset can be found on this link.

3.2.3. Discussion

The proposed approach is performing well for MSOS dataset. How-
ever, the overall performance for DCASE dataset especially the
leaderboard dataset (recorded at different locations and time in-
stants), is not that overwhelming. We speculate that this might
be caused because the resulting latent space obtained from a pre-
trained model is not able to discriminate each of the classes, es-
pecially the “unknown” class. SoundNet is trained using transfer
learning from 2 million Flicker videos [6]. The MSOS dataset con-
tains the audio files collected from Freesound and the other online
sources [11]. This may lead to give similar distributions between the
learned parameters of SoundNet and the MSOS dataset, hence, the
model shows good representation strength. However, the DCASE
dataset is recorded at various locations in an uncontrolled environ-
ment and with more confusing classes. Hence, DCASE dataset
shows more domain mismatch to the pre-trained SoundNet. In addi-
tion, the complexity of DCASE dataset can not be ignored. There-
fore, we experiment to adapt the existing model with new datasets
such as DCASE and expecting to perform better than the approach
proposed in this paper in future.

4. CONCLUSION

We propose a feature representation framework using various inter-
mediate levels of the pre-trained deep CNN SoundNet, for acoustic
scene classification. The combined features from the intermediate
layers are able to provide better discrimination as compared to the
features from each of the individual layers.

232



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

5. REFERENCES

[1] V. Bisot, R. Serizel, S. Essid, and G. Richard, “Supervised
nonnegative matrix factorization for acoustic scene classifica-
tion,” DCASE2016 Challenge, Tech. Rep., September 2016.

[2] H. Eghbal-Zadeh, B. Lehner, M. Dorfer, and G. Widmer, “CP-
JKU submissions for dcase-2016: a hybrid approach using
binaural i-vectors and deep convolutional neural networks,”
IEEE AASP Challenge on Detection and Classification of
Acoustic Scenes and Events (DCASE), 2016.

[3] A. Singh, A. Thakur, and P. Rajan, “APE: Archetypal-
prototypal embeddings for audio classification,” in 2018 IEEE
28th International Workshop on Machine Learning for Signal
Processing (MLSP). IEEE, 2018, pp. 1–6.

[4] S. Mun, S. Park, D. Han, and H. Ko, “Generative adversarial
network based acoustic scene training set augmentation and
selection using SVM hyper-plane,” DCASE2017 Challenge,
Tech. Rep., September 2017.

[5] T. Purohit and A. Agarwal, “Acoustic scene classification us-
ing deep CNN on raw-waveform,” DCASE2018 Challenge,
Tech. Rep., September 2018.

[6] Y. Aytar, C. Vondrick, and A. Torralba, “Soundnet: Learning
sound representations from unlabeled video,” in Advances in
neural information processing systems, 2016, pp. 892–900.

[7] A. Singh, A. Thakur, P. Rajan, and A. Bhavsar, “A layer-wise
score level ensemble framework for acoustic scene classifica-
tion,” in 2018 26th European Signal Processing Conference
(EUSIPCO). IEEE, 2018, pp. 837–841.

[8] S. Yu and J. C. Principe, “Understanding autoencoders with
information theoretic concepts,” Neural Networks, vol. 117,
pp. 104–123, 2019.

[9] A. RoyChowdhury, P. Sharma, E. Learned-Miller, and A. Roy,
“Reducing duplicate filters in deep neural networks,” in NIPS
workshop on Deep Learning: Bridging Theory and Practice,
vol. 1, 2017.

[10] A. Singh, P. Rajan, and A. Bhavsar, “Deep hidden analysis: A
statistical framework to prune feature maps,” in ICASSP 2019-
2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2019, pp. 820–824.

[11] C. Kroos, O. Bones, Y. Cao, L. Harris, P. J. Jackson, W. J.
Davies, W. Wang, T. J. Cox, and M. D. Plumbley, “Gener-
alisation in environmental sound classification: the making
sense of sounds data set and challenge,” in ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP). IEEE, 2019, pp. 8082–8086.

[12] A. Mesaros, T. Heittola, and T. Virtanen, “A multi-device
dataset for urban acoustic scene classification,” in Proceedings
of the Detection and Classification of Acoustic Scenes and
Events 2018 Workshop (DCASE2018), November 2018, pp.
9–13. [Online]. Available: https://arxiv.org/abs/1807.09840

233



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

AUDIO TAGGING USING A LINEAR NOISE MODELLING LAYER

Shubhr Singh, Arjun Pankajakshan and Emmanouil Benetos
{s.singh@se17. , a.pankajakshan@ , emmanouil.benetos@}qmul.ac.uk

School of Electronic Engineering and Computer Science, Queen Mary University of London, UK

ABSTRACT

Label noise refers to the presence of inaccurate target labels in a
dataset. It is an impediment to the performance of a deep neural net-
work (DNN) as the network tends to overfit to the label noise, hence
it becomes imperative to devise a generic methodology to counter
the effects of label noise. FSDnoisy18k is an audio dataset collected
with the aim of encouraging research on label noise for sound event
classification. The dataset contains∼42.5 hours of audio recordings
divided across 20 classes, with a small amount of manually verified
labels and a large amount of noisy data. Using this dataset, our work
intends to explore the potential of modelling the label noise distri-
bution by adding a linear layer on top of a baseline network. The
accuracy of the approach is compared to an alternative approach of
adopting a noise robust loss function. Results show that modelling
the noise distribution improves the accuracy of the baseline network
in a similar capacity to the soft bootstrapping loss.

Index Terms— Audio tagging, noisy labels, noise adaptation
layer, noise robust loss function.

1. INTRODUCTION

Audio tagging refers to the classification task which involves pre-
dicting the presence of one or more acoustic events in a particu-
lar audio recording. Humans are able to perform this task effort-
lessly, however modelling this cognitive process through computa-
tional methods is non-trivial [1] and is an active research area which
has received increased attention in recent years. The majority of
current approaches to the problem involve supervised training of a
deep neural network (DNN) on the labels associated with each au-
dio recording [2],[3]. The basic assumption that comes along with
these approaches is that the label provided with the audio recording
is correct, i.e. the presence of the acoustic event associated with
the label corresponding to the audio recording has been manually
verified. This assumption does not always hold true as manual ver-
ification of data labels is a costly affair, effectively limiting the size
of the data sets.

As described in [4], a large amount of audio data accumulation
comes at the cost of imprecise labels, especially in cases such where
labels have been inferred based on user provided metadata, i.e. tags.
As the labels are noisy, there is a high probability of misleading
information, which in turn subverts the training of a DNN. Recent
studies [5], [6] have shown that the generalization capability of a
DNN reduces on datasets with noisy labels, i.e. the model overfits
the training data.

In this paper, we explore the FSDnoisy18k dataset [4] for sound
event classification, which contains a small subset (10%) of accu-
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rately labelled data and a large subset (90%) consisting of data sam-
ples with noisy labels. We use a linear noise distribution modelling
layer approach and compare its performance on the test set with that
of the baseline model and also with the soft bootstrapping loss func-
tion approach [7]. Both approaches have been implemented for the
problem of noisy labels in computer vision [6], [7], however to the
authors’ knowledge, experiments on audio data with a linear noise
modelling layer is yet to be explored. We adopt the MobilenetV2 ar-
chitecture as our baseline model without any pretrained weights and
train the network on the training set of FSDnoisy18k. The model
weights with the least categorical cross entropy loss (CCE) on the
validation set are selected and a dense layer with softmax activation
is placed on top of the network and re-trained on the training set.
The purpose of the re-training is to learn the weight parameters of
the noise modelling layer. The noise modelling layer is removed
during prediction on the test set. We observed that the noise mod-
elling layer approach improves the accuracy of the baseline net-
work on test set by approximately 2% and the soft bootstrapping
loss function approach improves the accuracy score of the baseline
network by approximately 1.5%.

The paper is organized as follows. Section 2 introduces related
work, Section 3 discusses the characteristics of the dataset used in
this paper, Section 4 discusses the type of label noise present in the
dataset, Section 5 details the MobilenetV2 architecture, Section 6
discusses the two approaches to the problem, Section 7 covers the
experimental setup and the evaluation metrics adopted for the paper,
Section 8 discusses the results, and Section 9 concludes the paper
and discusses future work.

2. RELATED WORK

Various approaches have been proposed to deal with the problem of
noisy labels in the computer vision domain. One line of approach
involves modelling the distribution of noisy and true labels using
DNNs [6], [8]. The noise model is used to infer the true labels from
the noisy labels. These methods explicitly require a small subset of
the data with trustworthy labels. The true label is considered to be
a latent random variable and the noise processes is modelled by a
linear layer with unknown parameters. Reasoning for using a linear
layer is explained in section 6. The expectation-maximization (EM)
algorithm [9] is applied to find the parameters of both the linear
layer and the neural network to find the correct labels.

A different line of approach involves the soft bootstrapping loss
function [7], where the target label is dynamically updated to a con-
vex combination of the original noisy label and the label predicted
by the model at that point in time. The updated target label is used
for calculating the CCE loss against the predicted label. The un-
derlying concept behind the custom loss function is that label noise
causes high deviation between the label predicted by the model and
the observed label, due to which the loss is artificially inflated and

https://doi.org/10.33682/zyc0-jw35

234



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

to reduce this loss component, the model memorizes the noisy label,
hence to rectify this situation, current model prediction is added as
a consistency objective to the observed label and as learning pro-
gresses during training, the predictions of the network tend to be-
come more reliable, negating the effect of label noise to an extent.
The soft and hard bootstrapping methods have been evaluated in [4]
using audio data and have shown to improve the accuracy of the
network. To the authors’ knowledge, [4] is the only work in the au-
dio domain with a soft bootstrapping loss function implemented for
noise robustness.

3. DATASET

The FSDnoisy18k dataset [4] consists of audio recordings un-
equally distributed across 20 acoustic event classes: Acoustic guitar,
Bass guitar, Clapping, Coin-dropping, Crash cymbal, Dishes pots
and pans, Engine, Fart, Fire, Fireworks, Footsteps, Glass, Hi-hat,
Piano, Rain, Slam, Squeak, Tearing, Walk, Wind, and Writing.

Audio recordings are of varying lengths, ranging from 30ms
to 300ms and can be broadly divided into two categories of labels -
noisy and clean. The proportion of noisy/clean labels in terms of the
number of audio recordings is 90%/10% and in terms of duration,
the proportion is 94%/6%.

The training set consists of 17,585 clips whereas the test set
comprises 947 clips. The test set has been formed entirely from
the clean label dataset, with the remaining data forming the training
set. The number of clips per class ranges from 51 to 170 in the clean
subset and 250 to 1000 in the noisy subset. The dataset contains a
single label per audio recording.

4. LABEL NOISE

Label noise can either be synthetically injected into the dataset [7]
or can already be present in the dataset (real world noise). FS-
Dnoisy18k [4] contains real world label noise since the class la-
bel have been annotated based on the associated user tags from
freesound [10]. Before elucidating the label noise types, it is impor-
tant to discuss the data collection and annotation process adopted
for the dataset. First a number of freesound user-generated tags
were mapped to classes based on Audio set ontology definition
[11], post which, for each class, audio clips were selected from
freesound, tagged with at least one of the selected user tags. This
process generated a number of potential annotations, each of which
indicated the presence of a particular class in the given audio record-
ing. The potential annotations were verified via a validation task
hosted on FSD online platform [10], where users were required to
validate the presence or absence of each of the potential annotations
by choosing one of the following options [10]:

1. Present & Predominant (PP) - The sound event is clearly
present and predominant.

2. Present but not predominant (PNP) - The sound event is
present, but the audio recording also contains other types of
sound events and/or background noise.

3. Not Present (NP) - The sound event is not present in the au-
dio recording.

4. Unsure (U) - Note sure if the sound event is present or not.

The audio recordings with annotations rated as PP by a majority
of users were included in the training set with curated labels and the
test set. The remaining audio clips are included in the training set

with noisy labels. The label noise types found in the dataset can be
characterized into the following categories:

1. Incorrect/out of vocabulary (OOV) - The accurate label de-
scribing the sound event does not correspond to any of the
Audio set [11] classes.

2. Incomplete/OOV - Some audio clips contain acoustic events
in addition to their accurate labels, however only one sound
event is mentioned in the label since the other sound events
do not belong to any of the Audio set [11] classes.

3. Incorrect/In vocabulary (IV) - This type of noise consists of
classes which are closely related to each other, (e.g. ”wind”
and ”rain” ) and have been interchanged.

4. Incomplete/In vocabulary (IV) - Two sound events are co-
occurring on the audio recording, despite only a single label
reported.

5. Ambiguous labels - It is not clear whether the label is correct
or not.

The distribution of label noise types in random 15% of per class
data in the dataset is shown in Table1. The analysis of noisy labelled
training dataset revealed that approximately 60% of the labels con-
tain one or multiple types of label noise and 40% of the labels are
correct [4]. As can be seen from Table1, OOV noise constitutes a
major portion of the label noise across different classes, either in
form of incorrect labels or incomplete labels.

5. BASELINE MODEL

MobilenetV2 [12] is selected as the baseline model. It builds upon
the MobilenetV1 [13] architecture which uses depth wise separable
convolution layers as the building block. MobilenetV1 consists of
a single convolutional layer followed by 13 separable convolution
layers. An average pooling layer follows the last separable convolu-
tion layer. In separable convolution, the kernel step is divided into
depthwise and pointwise convolution operations. A depthwise con-
volution acts on each channel independently, post which a pointwise
convolution acts across all the channels. This factoring reduces the
weights of each layer, making the model compact without loss of
accuracy. The MobilenetV2 architecture has two new features on
top of its predecessor:

1. Linear bottleneck between layers,
2. Residual connection between the bottlenecks.

A pointwise convolution operation in a separable convolution layer
leads to an increase in the number of channels. A linear bottleneck
layer does the exact opposite. It reduces the amount of data flowing
through the network. The residual connection between the linear
bottlenecks work in the same manner as Residual Nets [14], where
the skip connection serves to assist the flow of gradients through
the network. MobilenetV1 was used as the baseline network for the
DCASE 2019 Challenge Task 2 [15], a multi label audio tagging
task with a large amount of noisy labelled training data and a small
amount of manually curated training data. The test data was free of
label noise. The source of the manually curated training dataset and
test data was the Freesound dataset [10]. This inspired us to explore
the MobilenetV2 architecture for our experiments.

6. METHODS

We explore the approaches proposed in [6] and [4] for our experi-
ments on audio tagging with noisy labels.
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Table 1: The table has been adopted from [4] and depicts the
distribution of label noise types in a random 15% of the noisy data
of FSDnoisy18k. The most predominant noise type is Incorrect
OOV which refers to the noise type where user tags were not
mapping to any existing class.

Label noise type Amount
Incorrect/OOV 38%
Incomplete/OOV 10%
Incorrect/IV 6%
Incomplete/IV 5%

Ambiguous labels 1%

6.1. Noise modelling with linear layer

This approach intends to find the latent clean label from the noisy
labels [6]. A linear noise modelling layer is added on top of the
softmax layer. The parameters of the noise layer are denoted by:

θ(i, j) = p(z = j|y = i). (1)

z is the observed noisy label and y is the latent clean label. i and
j belong to the class set {1, 2....k}. This parameter representation
denotes the probability of observing a noisy label z = j given the
latent true label y = i. The equation assumes that the noise gen-
eration is independent of the input vector and only depends upon
the latent clean labels. This is a simple version of the noise adap-
tion layer and can be implemented using a dense layer with softmax
activation.

For the complex version of the noise adaptation layer, given the
input vector x, network parameters w, noisy label z, noise distribu-
tion parameter θ defined in equation (1) and number of classes n,
the probability of observing noisy label z given the feature vector x
can be denoted by the equation:

p(z = j|x;w, θ) =
n∑

k=1

p(z = j|y = i; θ)p(y = i|x;w) (2)

The block diagram of the noise adaptation layer approach is shown
in Fig. 1. h in the figure denotes the non linear function h = h(x)
applied on the input x. wnoise refers to the weights of the noise
modelling layer. For our model, which is identical to the simple
model proposed in [6], the weights are initialized from the predic-
tion output of the baseline model on the training set and are learnt
along with the weights of the neural network (w) during the training
phase. The linear noise modelling layer is not used during the test
phase.

The experimental procedure is as follows: First, the baseline
network (MobilenetV2) is trained on the training set containing
both noisy and clean labels. The weights of the model are learnt
from scratch during the training phase. The prediction output of the
baseline network on the training set is used to initialize the weights
of the noise modelling layer which is basically a dense layer with
softmax activation. The noise modelling layer is added on top of
the baseline network and retrained on the training set to learn the
weights of the noisy channel.

The noise modelling layer is removed during prediction on the
test set, the reason being that we want to see how the transformed
baseline network performs on the test set as compared to the original
baseline architecture.

Figure 1: The figure has been adapted from [6]. It is an illustration
of the architecture for the training phase (above) and the test phase
(below).

6.2. Soft bootstrapping loss

The soft bootstrapping loss was originally introduced in [7] and has
been implemented in the audio domain in [4]. The loss function
dynamically updates the target labels based on the models’ current
output. The idea is to pay less attention to the noisy labels, in favour
of the model predictions, which are more reliable as the learning
progresses. This approach can be expressed by:

Lsoft = −
n∑

k=1

[βyk + (1− β)ŷk] log(ŷk), β ∈ [0, 1] (3)

ŷk is the k’th element of the network predictions (the predicted
class probabilities), and n is the number of classes. The parame-
ter β is used to assign the weightage of each component in the total
loss. The updated target label is a convex combination of the current
model’s prediction and the (potentially noisy) target label.

7. EXPERIMENTAL SETUP AND METRICS

In this section we discuss the experimental setup and the evaluation
metrics adopted for the paper.

7.1. Experimental Setup

Given the nature of the dataset with noisy labels, we are interested
in exploring how well the baseline and baseline & linear noise mod-
elling layer would perform on the dataset. The incoming audio is
transformed to a 128 band log-mel spectogram using a window size
of 1764 (44100(sampling rate) x 0.04(40 ms for a frame)), samples
and a hop length of 882 (44100 *0.02(20 ms for overlap)) samples.
Since each audio recording is of different length, the duration of
each recording is fixed to 2s. The longer recordings were clipped
whereas the shorter ones were replicated to obtain a uniform length
across the dataset. Both the training set and the test set are scaled
using the mean and standard deviation of the training set, post which
the class distribution is balanced by oversampling the classes with
less samples using the oversampling function from the imblearn li-
brary [16].

Data augmentation is also applied as a part of preprocessing.
We use mix up data augmentation [17] where new samples are cre-
ated through a weighted linear interpolation of two existing sam-
ples. (xi, yi) and (xj , yj) are two samples randomly selected
from the training set and a convex combination using the param-
eter λ ∈ [0, 1] which decides the mixing proportions. A new pair of
samples (xk, yk) is formed using the equations:

xk = λxi + (1− λ)xj (4)
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yk = λyi + (1− λ)yj (5)

The training data is split into training and validation sets with
the entire manually verified data used as validation set. The cross
entropy loss is used in all experiments except one, where the soft
bootstrapping loss is used. An initial learning rate of 0.001 and
batch size of 64 samples is used. Each model is trained for 250
Epochs.

The following experimental scenarios are evaluated:

1. Using the baseline network without data augmentation.

2. Using the baseline network with data augmentation.

3. Using the best model from step 2 and adding a dense layer
with softmax activation on top of the network. The new net-
work is retrained on the training data with the same setup
for training and validation. The weights of the linear layer
are initialized using the prediction output from the baseline
network. This is in line with the simple model proposed in
[6].

4. Training the baseline network from scratch using the soft
bootstrapping loss.

7.2. Evaluation Metrics

Classification accuracy was used as the evaluation metric for all the
experiments and the results for training, validation and test accuracy
have been reported in the results section.

8. RESULTS

Table 2 presents the results of all the experimental approaches men-
tioned in Section 7.1. Adding a linear noise modelling layer in-
creases the accuracy of the baseline network by approximately 2%.
The soft bootstrapping loss function approach also improves the ac-
curacy of the baseline model by approximately 1.5%, indicating that
both the approaches are to an extent, helpful in dealing with label
noise.

Table 2: Results
Approach Test Accuracy
Baseline w/o data augmentation 0.649
Baseline with data augmentation 0.667
Baseline with linear noise layer 0.686
Baseline with soft bootstrapping loss 0.6825

As can be seen from Fig. 2, the noise modelling approach
improves the performance of the baseline network in certain
classes such as Coin dropping, Dishes and pots and pans,Crash
cymbal,Wind,fireworks,Hi-hat and Writing, however the accuracy
either decreased or was equivalent to the baseline accuracy for
Walk or footsteps,Rain,Engine,Glass,Fire,Fart and Tearing. From
analysing the FSDnoisy18k [4], it can be inferred that the noise
modelling layer improved accuracy in certain classes with signifi-
cant amount of noisy labels, such as clapping (68% noisy labels),
coin dropping (71% noisy labels), crash cymbal (86% noisy la-
bels) and wind (75% noisy labels), however this is not the case
with all the classes with high label noise. For some labels such
as piano (60% noisy labels), Engine (68% noisy labels), Fire (89%
noisy labels), the accuracy score of the noise modelling layer ei-
ther dropped or stayed constant as compared to the baseline model.

Figure 2: Classwise accuracy score for baseline model(blue) and
noise modelling layer (green) is shown. Both graphs have been
merged for the purpose of comparison. For all the classes with only
blue bars, the accuracy achieved by the noise modelling layer is
either equivalent or less than the baseline model and the green bar
is a visual indication of the classes where the noise modelling layer
was able to improve the accuracy of the baseline model.

This inconsistency in performance improvement indicates towards
the hypothesis that the noise modelling approach might only be ef-
fective against certain label noise types and not so much against
other types. We intend to explore this hypothesis in a more detailed
manner in the future.

9. FUTURE WORK & CONCLUSION

In this work, we experimented with an intuitive approach to model
the noise distribution of dataset labels and compared it with a noise
robust loss function approach. The accuracy increase over the base-
line model is encouraging, however we believe that a higher accu-
racy can be obtained by further tuning of the network and imple-
menting the complex model from [6]. Although the accuracy of the
system is lower than the one reported in [4], we consider this our
first step in exploration of modelling label noise distribution and
hope to achieve better results in the future.

From a future work perspective, we intend to understand as to
why the noise modelling layer only can rectify certain kinds of la-
bel noise and fails to do so on other kinds of noise, post which
we intend to implement the complex model from [6] to evaluate its
performance against the baseline model, baseline with simple noise
modelling layer and the soft bootstrapping loss model. Our future
road map also includes implementing the approach on a multi-label
noisy audio dataset and evaluate the performance of the model from
different evaluation metrics other than accuracy to gain a better un-
derstanding of the underlying concepts.
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ABSTRACT

An adversarial attack is a method to generate perturbations to the
input of a machine learning model in order to make the output of
the model incorrect. The perturbed inputs are known as adversarial
examples. In this paper, we investigate the robustness of adversarial
examples to simple input transformations such as mp3 compression,
resampling, white noise and reverb in the task of sound event classi-
fication. By performing this analysis, we aim to provide insights on
strengths and weaknesses in current adversarial attack algorithms as
well as provide a baseline for defenses against adversarial attacks.
Our work shows that adversarial attacks are not robust to simple
input transformations. White noise is the most consistent method
to defend against adversarial attacks with a success rate of 73.72%
averaged across all models and attack algorithms.

Index Terms— adversarial attacks, deep learning, robust clas-
sifiers, sound event classification.

1. INTRODUCTION

Adversarial attacks are algorithms that add imperceptible perturba-
tions to the input signal of a machine learning model in order to
generate an incorrect output. The perturbed input signals are called
adversarial examples. The existence of adversarial attacks presents
a security threat to deep learning models that are used in tasks such
as speech recognition and sound event classification, where fooling
classifiers can be used to hide malicious content [1, 2]. Adversarial
attacks call into question the robustness of machine learning mod-
els and whether we can improve them by addressing adversarial
attacks.

There is extensive work that investigates the robustness of ad-
versarial attacks against simple input transformations in the task
of image recognition. Kurakin, Goodfellow and Bengio [3] ap-
ply transformations such as Gaussian noise, JPEG compression etc.
to verify the robustness of adversarial attacks. They work towards
physical adversarial examples where a photo can be taken of the
adversarial example and fool the image recognition model. There
is a lot of similar work in image recognition that focuses on dif-
ferent input transformations and their effect on adversarial attacks
[4, 5, 6]. Ultimately, this led to 3-d printouts that were adversarial
[7], adversarial stickers [8] etc.

In automatic speech recognition, a lot of adversarial attack al-
gorithms have been developed keeping in mind audio specific con-
cerns. Yakura and Samura [9] and Qin et al. [10] developed meth-

∗This work has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie Skodowska-Curie
grant agreement No. 765068.
†supported by RAEng Research Fellowship RF/128.

ods to simulate real world distortion while creating adversarial at-
tacks to make them robust. Liu et al. [11] developed a system to
make the process of generating adversarial attacks quicker and qui-
eter. Du et al. [12] developed the Siren Attack that uses Particle
Swarm Optimization to speed up generation of adversarial attacks.
Besides the Siren Attack, none of these attacks have been tested on
other audio tasks such as sound event classification or music classi-
fication.

Similarly, most of the work on defenses against adversarial at-
tacks is focused on automatic speech recognition. Research has
shown that mp3 compression, band pass filters, adding noise etc.
[13, 14, 15, 16] are effective at eliminating adversarial examples in
automatic speech recognition. To our knowledge, no work has been
done on the effect of input transformations on adversarial attacks
in sound event classification. Esmaeilpour et al. [17] developed a
support vector machine (SVM) classifier that was more robust to
adversarial attacks for sound event classification, but it was at the
cost of model performance.

This research aims to establish a body of work that studies the
effects of adversarial attacks and defenses in sound event classifi-
cation. In this paper, we explore simple input transformations such
as mp3 compression, resampling, white noise and live reverb as de-
fenses against adversarial attacks across different models. We build
off of work done in Subramanian et al. [18] where the performance
of popular adversarial attacks was tested against the top submissions
to the DCASE 2018 challenge on General purpose audio tagging1.
We use the adversarial examples generated in that work and run ex-
periments on how robust they are to input transformations.

Our contributions can be summarised as follows: 1. We evalu-
ate the robustness of adversarial examples generated in [18] against
simple input transformations. 2. We create a baseline system of de-
fenses against adversarial attacks for sound event classification.

2. METHODOLOGY

2.1. Adversarial attacks

We use a subset of the adversarial attacks in Subramanian et al. [18],
the attacks we ignore are the two weaker baseline attacks. All of
the attacks used are white box attacks meaning that they have full
information of the model they are attacking. The attacks fall into
two categories, untargeted and targeted attack. A targeted attack is
when the algorithm fools the output classifier to a specific prede-
termined class. An untargeted attack is when the algorithm reduces
the confidence of the current class until the classifier is fooled. The
adversarial attacks used in this work are as follows:

1http://dcase.community/challenge2018/task-general-purpose-audio-
tagging-results

https://doi.org/10.33682/sp9n-qk06
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1. L-BFGS: Szegedy et al. [19] introduced one of the first
methods for generating adversarial attacks, it is a targeted
attack.
Assume a classifier denoted as f : Rm → {1...k} with a
loss function lossf . For a given input x ∈ Rm and target
t ∈ {1....k} we aim to identify the value of perturbation r as
formulated below:

Minimize ‖r‖2 under the conditions:
f(x+ r) = t

x+ r ∈ [0, 1]m

The box constraint on x+ r is to prevent clipping. The exact
computation of this problem is difficult so it is approximated
using the box constrained L-BFGS algorithm. So the new
equation to minimize is:

c|r|+ lossf (x+ r, l) under the conditions x+ r ∈ [0, 1]m

2. DeepFool: DeepFool attack was introduced by Moozavi-
dezfooli et al. [20]. It is an untargeted attack where the
algorithm iteratively linearizes the deep learning model to
generate perturbations to fool the classifier. We show how
the Deepfool classifier works in the case of a binary classi-
fier, in order to understand how it scales to the multi-class
problem we recommend the readers look at the original pa-
per.
We use the same terminology as defined above for the L-
BFGS algorithm. In this case we start by assuming we have
a linear classifier f so the relationship between the input x
and output can be written as:

f(x) = ωTx+ b

Here, ω is the weight matrix and b is the bias added. In a
binary linear classifier there is a hyper-planeH that separates
the two classes. The hyper-plane is defined such that x ∈
H → f(x) = 0 So, to generate an adversarial attack you
need to create a perturbation that pushes the input to the other
side of the hyper-plane. This perturbation corresponds to the
orthogonal projection of the input onto this hyper-plane. The
perturbation for a particular input x0 denoted by r(x0) can
be computed using the formula:

r(x0) = −f(x0)‖ω‖22
ω

In the case of a general differentiable binary classifier the
model is linearized iteratively and the perturbation is calcu-
lated using the formula given above.

3. Carlini and Wagner - Carlini and Wagner introduce a
strong set of attacks based on the L0, L2 and L∞ distance
[21]. This can be used as a targeted and untargeted attack.
The problem for adversarial attacks is formulated the same
way as Szegedy et al. [19]. The classifier is denoted as C
with input x, c is constant:

Minimize D(x, x+ δ) + c.f(x+ δ)

such that x+ δ ∈ [0, 1]n

HereD is a distance function that is either the L0, L2 or L∞
norm and f is an objective that simplifies the problem such
that:

C(x+ δ) = t is true if f(x+ δ) ≤ 0

f(x′) = (max(Z(x′)i)− Z(x′)t)+ i 6= t

In the equation for f , Z denotes the penultimate layer of the
classifier and t is the target class. This is just one example of
the function f many other functions work and can be found
in the paper [21]. In this work we use the L2 version of the
Carlini and Wagner attack.

2.2. Input Transformations

We pick input transformations that are likely to occur in the real
world when playing an audio file and recording it on a smart phone.
The input transformations are as follows:

Mp3 compression - Mp3 compression is a popular format for
storing audio files. It is done using the libmp3lame encoding library
inside ffmpeg [22]. In our experiments, we compress the adversar-
ial audio examples at three constant bit-rates–48kbps, 128kbps and
320kbps. The lower the bitrate, the higher the information loss will
be.

Re-sampling - We are interested in the effects of removing
high frequency content on adversarial examples. In our work, re-
sampling serves as a low pass filter and is performed using the re-
sampy2 python library. Resampy uses a band limited sinc interpola-
tion method for re-sampling [23]. We use the “kaiser best” configu-
ration which is the high quality version of resampy. The adversarial
audio files in our experiments have a sampling rate of 32kHz. We
resample the audio files to 8kHz, 16kHz, and 20kHz and resample
it back to 32kHz.

White noise addition - White noise is a standard digital dis-
tortion. It is added to the adversarial examples at a signal-to-noise
ratio of 20dB, 40dB and 60dB.

Live reverberation - Using the live recording setting of the
audio degradation toolbox [24], we obtain the impulse response for
the “Great Hall”–one of the live rooms with a very long reverb. We
applied said impulse response to add reverb to our adversarial audio
files using convolution. After convolution, we eliminate the tail of
the audio file in order to preserve its original length.

2.3. Datasest

We use the FSDKaggle2018 dataset [25] introduced for the DCASE
2018 challenge on general-purpose audio tagging. This dataset con-
sists of 41 classes, ranging from urban sounds such as buses, keys
jangling and fireworks to musical instruments such as cello, snare
drum and Glockenspiel. We use the adversarial audio examples
generated on this dataset in Subramanian et al. [18]. For the un-
targeted attacks we use 6 audio files per class making a total of 246
audio files per model per attack. For the targeted attack we use a
subset of 6 classes and for each class we generate 5 targeted adver-
sarial attacks to each of the other 5 classes. This makes 180 audio
files per model per attack. Since the adversarial attack algorithms
are not 100% effective the actual number of adversarial examples
are a bit lower than the number indicated above.

2https://github.com/bmcfee/resampy
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Model Training Test
VGG13 0.9714 0.8093
CRNN 0.9768 0.8437
GCNN 0.9803 0.8437
dense mel 0.9876 0.89875
dense wav 0.9698 0.86125

Table 1: Model performance on training and test data.

2.4. Models

We use the DenseNet models described by Jeong and Lim [26].
The DenseNet model concatenates the input to the output for each
module. We use two versions of the architecture, the first version
uses log mel spectrogram as input (dense mel) to the model and the
second one uses raw audio (dense wav) as the input to the model.

We use three models from Iqbal et al. [27], the VGG13, CRNN
and GCNN networks. VGG13 is a convolutional neural network
inspired by the VGG13 architecture. CRNN is a convolutional re-
current neural network that uses a bidirectional RNN after the con-
volutional layers. The GCNN is a gated convolutional neural net-
work where the gated component is inspired from Long-Short Term
Memory (LSTMs). The input to all three models is a log mel spec-
trogram.

Table 1 shows the training and test accuracy for each of the
models on the FSDKaggle2018 dataset [25]. We pick these models
because they were the top submissions for the DCASE 2018 chal-
lenge on “General purpose audio-tagging”.

2.5. Experiment and metrics

The experimental setup has three sets of labels. First is the ground
truth, which is the label associated with the audio file from the FSD-
Kaggle2018 dataset [25]. The second is the adversarial label, gen-
erated by applying adversarial attacks on the audio file from the
aforementioned dataset. The third is the transformed label, which
is generated by running each audio file through each of the input
transformations separately. Once these transformed inputs are run
through the model, it generates the transformed label. Our task is
to verify how effective a defense and input transformation is against
an adversarial attack. We compare how many transformed labels
are ground truth, adversarial, or different from both.

A good defense would convert a lot of the transformed labels
to the ground truth; however, if an adversarial attack is robust, a lot
of the transformed labels will remain the adversarial labels. We use
signal-to-noise ratio and output confidence values generated from
Subramanian et al. [18] to explain the results.

3. RESULTS AND DISCUSSION

Table 2 provides a reference for how the defenses affect the ground
truth audio data before an adversarial attack is performed. Table 3
compares the effectiveness of mp3 compression, white noise addi-
tion, re-sampling and live reverb averaged across all of the models
and adversarial attack algorithms. In general, the numbers look as
we expect: the more distortion we add to the adversarial example,
the more likely it will stop being an adversarial example. The best
defense against the adversaries on average is adding noise at 20dB.
As we raise the volume of noise to 40dB, the number of audio exam-
ples that are destroyed lowers; however, the number of adversarial
examples that are classified as a different label is lowered as well.

Transform GT Diff
mp3 48k 93.98 6.02
mp3 128k 99.92 0.08
mp3 320k 100 0
noise 20dB 86.67 13.33
noise 40dB 97.89 2.11
noise 60dB 99.84 0.16
sr 8kHz 55.36 44.63
sr 16kHz 85.77 14.23
sr 20kHz 91.87 8.13
live reverb 82.85 17.15

Table 2: Summary of defenses on ground truth data.
Transform Adv GT Diff
mp3 48k 45.02 50.23 4.75
mp3 128k 83.66 15.71 0.63
mp3 320k 91.55 8.26 0.17
noise 20dB 3.40 73.72 22.87
noise 40dB 31.68 63.69 4.61
noise 60dB 81.00 17.58 1.41
sr 8kHz 27.93 41.71 30.34
sr 16kHz 42.36 47.85 9.78
sr 20kHz 47.90 44.89 7.20
live reverb 4.09 67.07 28.83

Table 3: Summary of performance given as a percentage of adver-
sarial examples that remain adversarial, that go back to ground truth
and that change completely.

Live reverb is the second most successful defense against the ad-
versaries. These simple input transformations can defend against
adversaries, showing that there is a need to create more powerful
attacks against sound event classification.

The next table, Table 4, shows how each model behaves in re-
sponse to these input transformations on the adversarial attacks. We
do not show all the data in the interest of space; instead, we show
the best two defenses for each model. Across all the models, adding
white noise is an effective defense against adversarial attacks. Be-
sides adding white noise, reverb is one of the better defenses. In
general, the defenses are more successful for the DenseNet models
than for the other three models. One of the reasons for this could
be because the adversarial attacks for the DenseNet model are op-
timized on the output probabilities; whereas the other three models
are optimized on the output scores. This means that optimizing an
adversarial attack for the DenseNet models only needs to maximize
the relative score of the desired class.

Between the DenseNet models the raw audio configuration of
the DenseNet behaves differently. Resampling at 20kHz success-
fully eliminates adversarial examples at 97.18%. For the mel spec-
trogram configuration of the DenseNet resampling at 20kHz is only
successful for 72.36% of the cases. This strongly suggests that the
model is sensitive to different changes between the mel spectrogram
and raw audio inputs. We speculate that the perceptual weights in-
troduced by the mel spectrogram make that version of the DenseNet
give less importance to higher frequencies. This means that losing
frequency above 20kHz would impact the mel spectrogram model
less adversely than the raw audio model.

In the cases where the defenses are less effective, we want to
know if the distribution of the adversarial examples on which the
input transforms are effective or ineffective are similar. We pick the
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Model Best Adv GT Diff

dense mel noise 20dB 1.52 97.86 0.61
noise 40dB 6.25 92.97 0.76

dense wav sr 20kHz 1.46 97.55 0.97
mp3 48k 1.58 97.18 1.22

VGG13 noise 20dB 4.34 58.74 38.89
live 5.05 57.69 37.25

CRNN noise 20dB 4.70 65.92 29.37
noise 40dB 27.37 62.86 9.75

GCNN noise 40dB 27.81 64.31 7.86
live 5.98 57.74 36.26

Table 4: Top 2 defenses against the different model architectures
averaged over all the adversarial attacks.

(a) VGG13 confusion matrix with live reverb input transform.

(b) VGG13 confusion matrix with noise 20dB input transform.

Figure 1: Comparison of two confusion matrices. The confusion
matrix plots the ground truth against the transformed label.

VGG13 model to compare since the success of noise at 20dB and
live reverb is very close. We plot the confusion matrices for the two
scenarios in figure 1. Noise at 20dB is an effective defense for label
3 (Bass drum) and 33 (Snare drum), but live reverb is not a good de-
fense, live reverb is successful against label 8 (Clarinet) but, noise at
20dB is not as effective etc. Interestingly label 21 (Gunshot or gun-
fire) has 0% success for both defenses. Evidently, audio files from
different labels seem to have disparate properties; therefore, apply-

Attack SNR/Conf Best Adv GT Diff

deepfool 50/0.35
noise 20dB 4.14 77.23 18.61
noise 40dB 16.09 76.17 7.72
live 4.22 70.37 25.04

C&W
untargeted 51.26/0.71

noise 20dB 5.88 74.83 19.28
live 5.88 70.17 23.93
noise 40dB 43.79 50.98 5.22

L-BFGS 56.25/0.98
noise 20dB 0.40 69.56 30.02
noise 40dB 32.33 66.44 1.22
live 1.63 62.77 35.59

C&W
Targeted 50.49/0.97

noise 20dB 1.31 70.6 28.07
noise 40dB 36.32 61.52 2.15
live 3.46 60.93 35.60

Table 5: Table shows the top 3 defenses against input transforms
for the different adversarial attacks averaged over all the models.
The SNR in dB and label confidence (Conf) as probability of the
adversarial examples are presented as averaged over all the models.

ing each distortion type will affect the differing labels uniquely This
would mean that while developing an adversarial attack that works
in the real world, we need to come up with a solution that is robust
to different types of distortion.

Table 5 shows the performance of the top 3 defenses for each
adversarial attack algorithm. The targeted attacks seem more robust
to these input transformations than the untargeted attacks but not by
too much. We expect Carlini and Wagner to be more robust because
it is a more powerful attack than Deepfool and L-BFGS as is shown
in Subramanian et al. [18].

The fact that the SNR is very high for all of the attack algo-
rithms is good from a real world perspective because that means that
the noise added to make the audio files adversarial is less likely to be
perceived. However, it is possible that the noise is being masked by
the input transformations which makes the adversarial attacks not
very robust. Given that the SNR is so high there is a lot of headroom
to improve adversarial attack algorithms for sound event detection
where we increase the amount of noise added without compromis-
ing too much on how perceivable the adversarial attacks are.

4. CONCLUSION

We show that simple input transformations such as mp3 compres-
sion, re-sampling, white noise addition and live reverb are effective
defenses against popular adversarial attacks. White noise at 20dB
is the most consistent method to defend against adversarial attacks
with live reverb being a close second. The raw audio version of
the DenseNet behaves differently with re-sampling at 20kHz, being
the most effective defense. This suggests that different input rep-
resentations affect the type of features that a deep learning model
can learn by making the deep learning model focus on different fre-
quency bands. Generally, we hope that these defenses give a sense
of current weaknesses in research on adversarial attacks for audio.

Another area that we plan to explore is trying to explain the
presence of adversarial attacks in sound event classification. We aim
to combine research from interpretability and adversarial attacks in
order to work towards explaining and interpreting deep learning.
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ABSTRACT 

This paper describes improvement of Direction of Arrival (DOA) 
estimation performance using quaternion output in the Detection 
and Classification of Acoustic Scenes and Events (DCASE) 2019 
Task 3. DCASE 2019 Task3 focuses on the sound event localiza-
tion and detection (SELD) which is a task that simultaneously es-
timates the sound source direction in addition to conventional 
sound event detection (SED).  In the baseline method, the sound 
source direction angle is directly regressed. However, the angle is 
a periodic function and it has discontinuities which may make 
learning unstable. Specifically, even though -180 deg and 180 deg 
are in the same direction, a large loss is calculated. Estimating 
DOA angles with a classification approach instead of regression 
can solve such instability of discontinuities but this causes limita-
tion of resolution. In this paper, we propose to introduce the qua-
ternion which is a continuous function into the output layer of the 
neural network instead of directly estimating the sound source di-
rection angle. This method can be easily implemented only by 
changing the output of the existing neural network, and thus does 
not significantly increase the number of parameters in the middle 
layers. Experimental results show that proposed method improves 
the DOA estimation without significantly increasing the number 
of parameters. 

Index Terms— Sound event localization and detection, 
direction of arrival, inter-channel phase difference, quater-
nion, convolutional recurrent neural networks 

1. INTRODUCTION 

Sound event detection (SED) is a rapidly developing research area 
that aims to analyze and recognize a variety of sounds in urban and 
natural environments. Compared to audio tagging, event detection 
also involves estimating the time of occurrence of sounds. Auto-
matic recognition of sound events would have a major impact in 
several applications. For example, SED has been drawing a surg-
ing amount of interest in recent years with applications including 
audio surveillance [1], healthcare monitoring [2], urban sound 
analysis [3], multimedia event detection [4] and bird call detection 
[5].  In an actual application, more convenient application can be 
realized by simultaneously performing sound source localization 
as well as detection of a sound event occurrence interval. 

 
For example, in the case of an audio surveillance, it is useful to 
detect the direction of the anomalous sound. Alternatively, indi-
vidual sound events can be identified even when events of the 
same class are overlapped. Also, regarding the detection of over-
lapping sound events, more rational detection is possible by using 
spatial information.  

Task 3 of the DCASE 2019 Challenge focuses on locating 
and detecting sound events (SELD) for overlapping sound sources 
[6]. A recently developed system called SELDnet was used as a 
baseline system. SELDnet uses magnitude spectrograms and phase 
spectrograms as input features to jointly train SED and DOA esti-
mation purposes [7]. Regarding input features, it has been reported 
that simply using sinIPD and cosIPD (inter-channel phase differ-
ence) as input features for the neural network improves the perfor-
mance in speech separation [8]. Meanwhile, DOA angle has been 
directly predicted in many research. During training, the difference 
between the correct angle and the estimated angle is calculated as 
a loss. Since the angle is a periodic function, it has discontinuities. 
Specifically, even though -180 deg and 180 deg are in the same 
direction, a large loss is calculated, which may make learning un-
stable. Regarding the discontinuity problem in rotation angle es-
timation, camera pose regression has been proposed that estimates 
camera position and orientation by using quaternion in computer 
vision [9-12]. 

This paper proposes a model that replaces input features of 
baseline system and DOA output with sinIPD, cosIPD and quater-
nion respectively. Since this method can be implemented without 
changing the middle layer of the network, it is easy to implement 
with almost no increase in the number of parameters of the existing 
model. Details of the proposed method are explained in the fol-
lowing sections. 

2. METHOD 

The entire network of Sound event localization and detection is 
shown in Fig. 1. The time-series sound source is input to the con-
volutional recurrent neural network (CRNN) [13] after feature ex-
traction block. The CRNN is consists of three blocks, including 
three layers of convolutional neural network (CNN), two layers 
of bi-directional recurrent neural network (RNN) and two fully 
connected layers. There are two branches throughout the joint 
layer block. One is for SED, and the other is for DOA estimation. 

https://doi.org/10.33682/jj50-hm12
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The difference from the baseline is that the source direction angle 
is not directly estimated but through regressing quaternions. The 
estimated quaternions are converted to source direction angles by 
post-processing. Details of feature extraction, network, and post-
processing is described in the following sections. 

2.1. Feature extraction 

The input to this method is multi-channel audio with a sam-
pling rate of 48 kHz. At first, short time Fourier transformation 
(STFT) is applied using a 40 ms long Hanning window and M 
points (M=2048) from 20 ms hop length. Then, for each STFT 
obtained, select a reference microphone, p, and other non-ref-
erence microphones, q. As a spectral feature, an amplitude 
spectrogram of only the reference microphone is used. Mean-
while, we use the following equations to extract spatial fea-
tures, 

cos 𝐼𝑃𝐷(𝑡, 𝑓, 𝑝, 𝑞) = cos/𝜃1,2,3,45, (1)  

									sin 𝐼𝑃𝐷(𝑡, 𝑓, 𝑝, 𝑞) = sin/𝜃1,2,3,45, (2)  

where θt,f,p,q = ∠xt,f,p − ∠xt,f,q is the phase difference between the 
STFT coefficients xt,f,p and xt,f,q at time t and frequency f of the 
signals at microphones p and q. In this paper, 6-channel sinIPD 
and cosIPD are used as spatial features for IPD of three combina-
tions (1ch-2ch, 1ch-3ch, 1ch-4ch). That is, a total of 7-channel 
features consisting of one amplitude spectrogram of the reference 
microphone and the 6-channel spatial features are input to the neu-
ral network. 

2.2. Network architecture 

In order to verify the effect of quaternion estimation, basically the 
same network as the baseline system shown in Fig. 1 is used.  A 
sequence of T spectrogram frames (T = 128), extracted in the fea-
ture extraction block, is fed to the three convolutional layers that 
extract shift-invariant features using P filters each (P=64). Batch 
normalization is used after each convolutional layers. Dimension-
ality reduction of the input spectrogram feature is performed using 
max pooling operation only along the frequency axis, which is 
called frequency pooling in [13]. The temporal axis is untouched 
to keep the resolution of the output unchanged from the input di-
mension. The temporal structure of the sound events is modeled 
using two bi-directional recurrent layers with Q gated recurrent 
units (GRU) each (Q=128). Finally, the output of the recurrent 
layer is shared between two fully connected layer (FC) branches 
each producing the SED as multiclass multilabel classification 
and DOA as multi-output regression; together producing the 
SELD output. The first FC layer contains R nodes each with linear 
activation. The SED output obtained is the class-wise probabili-
ties for the C classes in the dataset at each of the T frames of input 
spectrogram sequence, resulting in a dimension of T × C. The lo-
calization output estimates, for each time frame T, quaternions 
representing rotation in the azimuth direction and elevation direc-
tion for each of the C classes i.e., if multiple instances of the same 
sound class occur in a time frame the SELDnet localizes either 
one or oscillates between multiple instances.  The overall dimen-
sion of localization output is T × 4C, where 4C represents the 
class-wise sin(θazimth), cos(θazimuth) and sin(θelevation), cos(θelevation), 

 
Figure 1: Convolutional recurrent neural network for SELD. 
 
Table 1: An example of the outputs and post-processing results. 

 
 
which describes quaternion around z-axis and y-axis. Note that 
θazimuth and θelevation do not represent the phase of STFT but repre-
sent the sound source direction angles of azimuth and elevation. 
A sound event class is said to be active if its probability in SED 
output is greater than the threshold of 0.5, otherwise, the sound 
class is considered to be inactive. The presence of sound class in 
consecutive time frames gives the onset and offset times, and the 
corresponding DOA estimates from the localization output gives 
the spatial location with respect to time. A crossentropy loss is 
employed for detection output, while a mean square error loss on 
the quaternion distance between reference and estimated locations 
is employed for the localization output. The combined convolu-
tional recurrent neural network architecture is trained using Adam 
optimizer and a weighted combination of the two output losses. 
Specifically, the localization output is weighted ×50 more than the 
detection output same as the baseline. The number of parameters 
is 615,799 while baseline has 613,537. This method does not 

Sound
event
class

SED
prediction

Sound
activity Azimuth Elevation

sin(θazi ) cos(θazi ) sin(θele ) cos(θele )

SPEECH 0.8 active 1.0 0.0 0.5 0.9 90 30

CAR 0.1 inactive 0.1 0 -0.1 -0.1 inactive inactive

… 0.2 inactive 0 0.1 -0.1 0 inactive inactive

DOG 0.7 active 0.0 -1.0 0.0 1.0 -180 0

… 0.1 inactive 0.1 0 -0.1 0 inactive inactive

TRAIN 0.1 inactive 0 -0.1 0.1 -0.1 inactive inactive

Ground truth of
quaternion

around z-axis

Ground truth of
quaternion

around y-axis

Output of DOA branchOutput of SED branch DOA angle
(post processing)
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significantly increase the number of parameters compared to 
baseline. 

2.3. Output and post processing 

In the baseline system, the sound source direction angle is directly 
estimated by regression, but since the angle is a periodic function, 
it has discontinuities. Specifically, -180 deg and 180 deg are in the 
same direction but are trained as a large loss as shown in Fig. 2. 
Therefore, in this paper, the source direction angle is estimated us-
ing quaternions defined by (4). Specifically, the output of the re-
gression branch is changed to quaternion, and the post-processing 
converts it into the sound source direction angle.  

 𝒂 = :
𝑎<
𝑎=
𝑎>
?, (3)  

𝒒 =

⎝

⎛

cos(𝜃/2)
𝑎< sin(𝜃/2)
𝑎= sin(𝜃/2)
𝑎>	sin	(𝜃/2)⎠

⎞, (4)  

where, a=[ax,ay,az] is a unit vector representing the rotation axis 
and q is the definition of quaternion. For the angle estimation in 
the azimuth direction, a= [0, 0, 1] is substituted and in the eleva-
tion direction angle, a= [0, 1, 0] is substituted. That is, the output 
of the network can be trained with sin(θ/2) and cos(θ/2) as ground 
truth. In order to simplify the calculation, θ is substituted instead 
of θ/2. Since sin(θ) and cos(θ) are continuous function, it is possi-
ble to train efficiently. Additionally, sin(θ) and cos(θ) always have 
different values. If the sound source is inactive i.e., if the ground 
truth of the SED is 0, then sin(θ) = 0, cos(θ) = 0 are used as ground 
truth. During inference, post-processing is performed as in the fol-
lowing equation to calculate the sound source direction angle as 
described in (5).  

𝜃 =

⎩
⎪
⎨

⎪
⎧𝑎𝑟𝑐𝑡𝑎𝑛 N

OPQ	(R)
STO	(R)U + 	𝜋		(𝑖𝑓 sin(𝜃) ≥ 0, cos(𝜃) < 0)

𝑎𝑟𝑐𝑡𝑎𝑛 NOPQ	(R)
STO	(R)

U − 𝜋			(𝑖𝑓 sin(𝜃) < 0, cos(𝜃) ≥ 0)

𝑎𝑟𝑐𝑡𝑎𝑛 NOPQ	(R)
STO	(R)

U																																						(otherwise)

.       (5)  

 
As shown in the Fig. 2, if both sin(θ) and cos(θ) values are known, 
the sound source direction angle can be uniquely calculated in the 
range of -180 to 180 degrees. However, if both sin (θ) and cos (θ) 
are within the range of -0.2 to 0.2, it is regarded as inactive, calcu-
lation of the sound source direction angle is not performed. 

3. DEVELOPMENT RESULTS 

Polyphonic sound event detection and localization are evaluated 
with individual metrics for SED and DOA estimation. For SED, 
segment-based error rate (ER) and F-score [14] are calculated in 
one-second lengths. A lower ER or a higher F-score indicates bet-
ter performance. For DOA, DOA error and frame recall are used. 
A lower DOA error and a higher frame recall are better. Using the 
cross-validation split provided for this task, Tab. 1 shows the de-
velopment set performance for the proposed method. As shown in 
Tab. 1, the DOA error decreased but the index related to SED did 
not improve. The reason is that the quaternion output model prop- 

 

Figure 2: Unit circle with origin of microphone array position, 
and DOA. 

 

Table 2: Cross validation results for the development set. 

  Error rate F score DOA 
error 

Frame 
recall 

baseline- 
ambisonic 0.34 0.799 28.5 0.854 

baseline- 
microphone array 0.35 0.80 30.8 0.840 

proposed method 0.35 0.81 11.5 0.835 

 
osed in this paper backpropagates an error to the DOA branch but 
does not directly affect the SED branch. Moreover, since the SED 
results are not improved, it is not considered that the spatial infor-
mation using sinIPD and cosIPD did not show a significant im-
provement. However, in terms of the number of parameters, the 
baseline uses features of a total of 8-channel features consisting of 
amplitude spectrum and phase spectrum, while the proposed 
method uses 7-channel features consisting of a reference spectro-
gram and sinIPD, cosIPD. Therefore, the proposed method is con-
sidered to have some dimensional reduction effect. 

4. CONCLUSION 

In this paper, as an approach applicable to the existing neural net-
work model, we propose a method to replace the output and input 
with quaternion and sinIPD, cosIPD respectively. In the DCASE 
2019 Task 3, verification was performed by replacing only the 
baseline input and output with the proposed method. From the ex-
perimental results, it was found that changing the output of the 
DOA branch to quaternion can improve the DOA estimation with-
out changing the existing neural network model. However, be-
cause there were no changes in the SED branch, the performance 
associated with SED remained comparable. Regarding spatial fea-
tures using sinIPD and cosIPD, although the performance was not 
improved, the dimension of feature was reduced. Since this 
method can be implemented with almost no change to existing 
network models, further improvement of DOA estimation is ex-
pected by using it in combination with other high-performance 
models. 
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ABSTRACT
Task 5 of the Detection and Classification of Acoustic Scenes and
Events (DCASE) 2019 challenge is “urban sound tagging”. Given a
set of known sound categories and sub-categories, the goal is to
build a multi-label audio classification model to predict whether
each sound category is present or absent in an audio recording.
We developed a model composed of a preprocessing layer that
converts audio to a log-mel spectrogram, a VGG-inspired Convo-
lutional Neural Network (CNN) that generates an embedding for
the spectrogram, a pre-trained VGGish network that generates a
separate audio embedding, and finally a series of fully-connected
layers that converts these two embeddings (concatenated) into a
multi-label classification. This model directly outputs both fine and
coarse labels; it treats the task as a 37-way multi-label classification
problem. One version of this network did better at the coarse la-
bels CNN+VGGish1); another did better with fine labels on Micro
AUPRC CNN+VGGish2). A separate family of CNN models was
also trained to take into account the hierarchical nature of the labels
(Hierarchical1, Hierarchical2, and Hierarchical3).
The hierarchical models perform better on Micro AUPRC with fine-
level classification.

Index Terms— Sound Event Classification, CNN, Hierarchy

1. INTRODUCTION

A soundscape recording is a “recording of sounds at a given loca-
tion at a given time, obtained with one or more fixed or moving
microphones” [1]. Automatic sound event classification has many
applications, such as abnormal event detection [2], acoustic ecol-
ogy [3] and urban noise pollution monitoring [4]. SONYC (Sounds
of New York City) is a research project for mitigating urban noise
pollution [4]. Because the SONYC sensor network collects mil-
lions of audio recordings, it is important to automatically detect and
classify the collected audio recordings for noise pollution monitor-
ing. Therefore, researchers designed the urban sound tagging task,
which is to predict whether each of 23 sources of noise pollution
is present or absent in the 10-second scene recorded. Researchers
recruited individuals on Zooniverse, a web platform for citizen sci-
ence, to provide weak labels for collected audio recordings based
on a taxonomy involving both coarse- and fine-grained classes [4].

The relationship between coarse-grained and fine-grained tags
is hierarchical. Therefore, we designed a hierarchical sound event
classification model. Previous studies demonstrate that convolu-
tional neural networks (CNNs) can achieve state-of-the-art perfor-
mance in sound event classification tasks[5]. Thus, we adopt the
CNNs structure for our model design. In our approach to audio
event classification, we assessed two categories of methods: 1) cre-
ating and training a new model trained only on the DCASE Task

5 Challenge dataset, and 2) building a model that uses as input
an embedding vector generated by an external model trained on
a larger, different dataset. Both approaches have various advan-
tages and disadvantages. Creating a new model results in a model
trained for the specific sounds, environments, and sensors from the
dataset, which can potentially offer better precision, yet the limited
size of the dataset can reduce training success. Re-purposing a pre-
trained model such as VGGish, trained on AudioSet [5], has the
advantage of starting with a model that was trained on a large and
diverse dataset, but the disadvantage of disregarding input features
that might have been discarded by the VGGish model, reducing the
ability to capture nuanced distinctions between specific classes in
the DCASE Task 5 dataset.

Our approach combined the two approaches, in an attempt to
benefit from both AudioSet’s large dataset and the task-specific na-
ture of a custom model trained on raw input data. We created
several variants of the model in terms of the output classes pre-
dicted: a) all 37 labels; b) 29 “fine” labels from which we infer the
8 “coarse” labels; or c) 8 “coarse” labels. We trained two VGG-
inspired CNN models (CNN+VGGish1 and CNN+VGGish2) for
the 37-way multi-label classification. We also created three hi-
erarchical models (Hierarchical1, Hierarchical2, and
Hierarchical3) to attempt to make use of the extra informa-
tion encapsulated in the known hierarchical nature of the labels.

In addition to experimenting with model variants, we aug-
mented the dataset by adding background noise, pitch shifting, and
changing the volume. We also tried several approaches to learning
rate decays and warm restarts.

2. RELATED WORK

The general problem of machine listening is discussed in [6]. Much
existing work focuses on human speech, but this task focuses on
primarily non-speech audio. A large weakly-labeled dataset called
AudioSet [5] was created to facilitate research in this domain.

The authors of AudioSet also built an audio classification model
called VGGish, based on log-mel spectrogram and CNNs [5]. Sim-
ilarly, separate work used CNNs for classification of audio events,
along with data augmentation to improve training. The work in [7]
uses synthetic recordings involving multiple sound sources, where
multiple recordings have been combined algorithmically and pro-
cessed further via frequency band amplification or attenuation.

This task involves hierarchical category labels. The general
problem of hierarchical classification is reviewed in [8].

https://doi.org/10.33682/v0ns-1352
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Figure 1: Input features for a sample input file. X-axis is time. a)
Log-mel spectrogram: 128 mel bins, 862 time bins. b) VGGish
embedding: 128 dimensions, 10 time bins.

3. FEATURE EXTRACTION

3.1. Data augmentation and spectrogram generation

To help the model generalize and to augment the dataset, each file
was subjected to pitch shifting, volume changing, and an addition
of background noise. After augmentation, each audio file was con-
verted into a log-mel spectrogram with 128 mel bins. The original
sample rate of 44.1 kHz was retained, resulting in each spectrogram
having 862 time bins. The VGGish features (128x10) from the pre-
trained AudioSet model were also generated for each input file. See
Figure 1 for a visualization.

3.2. Label choice

To assign labels to each example, we tried several configurations
that take into account the disagreement among human annotators.
We tried several different thresholds of agreement from 25 percent
to 75 percent agreement yielding a positive value. We also tried
assigning labels as a float that represents the agreement among an-
notators. We achieved the best results when we restricted positive
labels to only classes that had over 50 percent agreement from peo-
ple who voted on that particular class.

4. MODELS

To build our model, we began by feeding log-mel spectrogram val-
ues into a VGGish architecture, and then modified the architec-
ture parameters based on training results from the Task 5 dataset.
The VGGish architecture failed to improve past the first epoch—
possibly the model was overfitting due to the large number of lay-
ers and the relatively small size of the dataset. By removing some
convolutional layers and maxpooling layers, the model would learn
more gradually and continue to improve after the first epoch.

In addition to removing layers, we found that altering the ker-
nel sizes improved training. Details of the convolution layers are
given in Table 1 and Table 2, where each row describes a ”con-
volution block” of the following sequence of layers: convolution,
maxpool, batch normalization, and dropout. In a given block, some

Figure 2: Hierarchical model.

of the layers may not be present, as specified in those tables. The
first convolution block has a kernel size of 1x1, which was bor-
rowed from ConvNet configurations, although the 1x1 layers oc-
cur in later layers rather than the first in [9]. For CNN+VGGish1,
CNN+VGGish2, both fine- and coarse-level classification mod-
els used in Hierarchical1, and the coarse-level classification
model used in Hierarchical2 and Hierarchical3, the third
convolution block features a large and rectangular (16x128) kernel
size with a large stride and padding. We modified the configuration
for the fine-level classification model used in Hierarchical2
and Hierarchical3 to reduce this to a smaller kernel – Table 2
gives the kernel size, stride, and padding used in those models.

Each convolution block contains batch normalization and
dropout at a rate of 0.5. One maxpooling layer follows the third
convolution block.

4.1. CNN + VGGish

The results of our CNN model were unable to surpass the baseline
results, so we decided to merge the AudioSet-based VGGish em-
beddings into our trained model at the fully-connected layer level
(see Table 3). The output of our CNN model was 256 channels of
1 value (256x1) while the VGGish embedding output was 128x10.
These outputs were flattened (to vectors of length 256 and 1280,
respectively) and concatenated to yield a 1536-dimensional vector
which was followed by three fully-connected layers that reduce the
dimensionality to 512, 256, and finally the desired number of out-
put classes. Batch normalization is applied to each fully-connected
layer, as is a dropout rate of 0.2. Adding the VGGish embeddings
improved our training results and allowed us to surpass the baseline
results for some metrics.

4.2. Hierarchical

Because the class labels are given in terms of a known two-level
hierarchy, we built an alternative model that takes the label hier-
archy into account. Our model is similar to the ”Local classifier
per parent node” approach in [8]. A top-level model MC was built
that would predict probabilities for each of the eight “coarse” la-
bels. Two of the “coarse” labels (non-machinery-impact and
dog-barking-whining) only had a single associated “fine” la-
bel, so a prediction from the top-level model of one of these two
classes was hard-coded to generate the same probability of predic-
tion for the associated fine-label class. To handle fine-label predic-
tions for sound events in the other coarse categories, six individual
low-level models {MFi | COARSE = i}, 1 ≤ i ≤ 6 were trained
to classify the probability for each of the fine labels i, conditioned
on knowledge of the coarse class label for a particular example.
This resulted in a total of seven models; see Figure 2. Each of these
models had essentially the same structure, with the exception of the
number of nodes in the output layer.
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Each fine-label classifier MFi was trained in the same way as
the coarse classifier MC (see Section 5). The dataset for each clas-
sifier was generated by simply extracting the subset of training data
where the coarse label was that expected for the fine-label classifier.
E.g., for the engine classifier, the data used for training consisted of
solely those examples where the coarse label was identified in the
ground truth as engine.

We constructed a working classification system from these
models as follows. First an unknown input example would be given
to the coarse-level classifier MC . Then, the coarse category with
the maximum output value would determine which model MFi to
run to determine the fine label output values. Finally, if any other
coarse categories were output with value > 0.5, the corresponding
models MFi would be run as well to generate additional possible
fine label classifications.

5. TRAINING TECHNIQUES

For CNN+VGGish1, CNN+VGGish2, Hierarchical1, and
the coarse-level classification model of Hierarchical2 and
Hierarchical3, we used an Adam optimizer [10] with a learn-
ing rate of 0.001. Regarding the fine-level classification model for
Hierarchical2 and Hierarchical3, we found that using
an RMSProp optimizer [11] with a learning rate of 0.01 performed
better. For the loss function, we used binary cross entropy with log-
its, which combines the sigmoid function with binary cross entropy.
The loss function is defined as:

ln,c = −wn,c[pcyn,c · log f(xn,c)+(1−yn,c)·log(1−f(xn,c))]
(1)

where f(xn,c)∈ [0, 1]c predicts the presence probabilities of sound
categories. c is the class number, n is the index of the sample in the
batch, and p is the weight of the positive answer for the class c.

We also experimented with modifying the loss function to give
weight to classes based on their representation in the dataset. While
fully weighting classes to offset the dataset imbalance decreased
the micro AUPRC scores, smoothing the weights—such taking the
tenth root of each value—helped under-represented classes perform
better and made a slight overall improvement to the micro AUPRC
scores (results of these experiments not shown here).

When training the coarse-level models, we implemented a mod-
ified form of warm restarts[12]. We monitored the micro AUPRC
scores of coarse classes on the validation set, and when coarse mi-
cro AUPRC scores had not improved by a specified ”stagnation”
threshold, the learning rate was reduced. This process was repeated
until a minimum learning-rate threshold was reached. The model
then would be reset to the original learning rate and made to cycle
through again, with the rate of learning rate reduction set to be less
severe. We saved a new best model at the end of any epoch that
resulted in a new highest micro AUPRC score.

Training of the ”branch” models for fine-grained classification
in the three Hierarchical models proceeded differently, with-
out warm restarts. For each fine-grained classifier, we reduced the
learning rate by multiplying it by a factor γ after a certain number of
epochs p (for ”patience”) passed with no improvement to the loss.
For the Hierarchical1 model we set γ = 0.1 and p = 5, while
for the Hierarchical2 and Hierarchical3 variants we set
γ = 0.2 and p = 6. We saved a new best model at the end of any
epoch that resulted in a new lowest validation loss.

6. RESULTS

Our results can be found in Table 4. Our method was able to sur-
pass the Micro AUPRC and Macro AUPRC baseline scores in the
coarse-level evaluation. However, our method was unable to beat
the baseline in fine-level evaluation. Both CNN+VGGish models
are checkpoints from different points of a single training session;
the best fine-level score was achieved before the best coarse-level
score.

We adopted the CNN+VGGish1 model as the coarse-level
classifier for the Hierarchical1 and Hierarchical2 mod-
els. For Hierarchical3 the coarse-level classifier was the
CNN+VGGish2 model. For all the Hierarchical models, the
results were worse than those of the best single model trained to
jointly output fine and coarse labels (CNN+VGGish1), except for
one metric: Micro F1 for the fine-level evaluation. Notice that
we were able to increase the fine-level Micro F1 score from 0.490
(Hierarchical1) to 0.524 (Hierarchical3) via the modi-
fications noted above to the optimization parameters. Notably, the
latter score of 0.524 was better than the baseline system result of
0.502. However, this Micro F1 optimization also lead to a decrease
in the Micro AUPRC and Macro AUPRC scores in the fine-level
evaluation.

The inferior results of the three Hierarchical models for
Micro and Macro AUPRC were a surprise, but they seem to indi-
cate that the single model has more than enough parameters to do
both fine and coarse tasks simultaneously. A possible explanation is
that the fine-level models MFi were only trained on a strict subset
of the dataset. An improvement might be to use the entire dataset,
but to assign a new dummy output label in the ground truth for all
examples where the coarse label 6= i, in order to provide more neg-
ative examples.

7. CONCLUSIONS

Our results show how fusing a custom CNN model with VGGish
embeddings can impact scores. Furthermore, creating a hierar-
chical model has the potential to fine-tune subset classes of indi-
vidual coarse classes. Further hyper-parameter tuning may yield
better results, as may further experimentation with data augmen-
tation. For more details please refer to our GitHub repository at
https://github.com/microsoft/dcase-2019.

As future work, we plan to perform segmentation on the time-
frequency domain to obtain background and foreground segments
and adopt classification models on them to further improve the per-
formance.
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Conv Block In Channels Out Channels Kernel Size Stride Padding Batch Norm Max Pooling Dropout
1 1 8 (1,1) (1,1) (0,0) True False .5
2 8 16 (3,3) (1,1) (1,1) True False .5
3 16 32 (16,128) (4,16) (8,16) True (4,4) .5
4 32 64 (5,5) (2,2) (1,1) True False .5
5 64 128 (5,5) (2,2) (1,1) True False .5
6 128 256 (3,3) (2,2) (1,1) True False .5

Table 1: Convolution blocks of CNN+VGGish1, CNN+VGGish2, both fine- and coarse-level classification models in Hierarchical1,
and the coarse-level classification model used in Hierarchical2 and Hierarchical3.

Conv Block In Channels Out Channels Kernel Size Stride Padding Batch Norm Max Pooling Dropout
1 1 8 (1,1) (2,2) (0,0) True False .5
2 8 16 (3,3) (2,2) (1,1) True False .5
3 16 32 (3,3) (4,4) (1,1) True (4,4) .5
4 32 64 (5,5) (2,2) (1,1) True False .5
5 64 128 (3,3) (3,3) (1,1) True False .5
6 128 256 (3,3) (3,3) (1,1) True False .5

Table 2: Convolution blocks of the fine-level classification model used in Hierarchical2 and Hierarchical3.

FC-Layer In Channels Out Channels Batch Norm Dropout
Bilinear (256,1280) 512 True .2
Linear 512 256 True .2
Linear 256 number of classes False None

Table 3: Combining VGGish embeddings with spectrogram convolution output in fully-connected layers.

Micro AUPRC Micro F1 Macro AUPRC Micro AUPRC Micro F1 Macro AUPRC
System Fine-level evaluation Coarse-level evaluation

Baseline (Fine-level) 0.671 0.502 0.427 0.742 0.507 0.530
Baseline (Coarse-level) - - - 0.762 0.674 0.542

CNN+VGGish1 0.646 0.483 0.425 0.787 0.609 0.579
CNN+VGGish2 0.656 0.398 0.401 0.768 0.533 0.555

Hierarchical1 0.643 0.490 0.414 0.787 0.609 0.579
Hierarchical2 0.643 0.516 0.412 0.787 0.609 0.579
Hierarchical3 0.623 0.524 0.386 0.768 0.533 0.555

Table 4: Results: metrics computed on validation set. Best results for each metric indicated in bold.
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ABSTRACT
This paper presents Task 4 of the Detection and Classification of
Acoustic Scenes and Events (DCASE) 2019 challenge and pro-
vides a first analysis of the challenge results. The task is a follow-
up to Task 4 of DCASE 2018, and involves training systems
for large-scale detection of sound events using a combination of
weakly labeled data, i.e. training labels without time boundaries,
and strongly-labeled synthesized data. We introduce the Domes-
tic Environment Sound Event Detection (DESED) dataset, mixing
a part of last year’s dataset and an additional synthetic, strongly la-
beled, dataset provided this year that we describe in more detail. We
also report the performance of the submitted systems on the official
evaluation (test) and development sets as well as several additional
datasets. The best systems from this year outperform last year’s
winning system by about 10% points in terms of F-measure.

Index Terms— Sound event detection, weakly labeled data,
semi-supervised learning, synthetic data

1. INTRODUCTION

Sound conveys important information in our everyday lives – we
depend on sounds to better understand changes in our physical en-
vironment and to perceive events occurring around us. We perceive
the sound scene (the overall soundscape of e.g., an airport or inside
a house) as well as individual sound events (e.g., car honks, foot-
steps, speech, etc.). Sound event detection within an audio record-
ing refers to the task of detecting and classifying sound events,
that is, temporally locating the occurrences of sound events in the
recording and recognizing which object or category each sound be-
longs to. Sound event detection has potential applications in noise
monitoring in smart cities [1, 2], surveillance [3], urban planning
[1], multimedia information retrieval [4, 5]; and domestic applica-
tions such as smart homes, health monitoring systems and home
security solutions [6, 7, 8] to name a few. In recent years the field
has gained increasing interest from the broader machine learning
and audio processing research communities.

Sound event detection (SED) systems trained using weak la-
bels have seen significant interest [6, 9, 10, 11, 12] in the research
community, as they address some of the challenges involved in de-
veloping models that require strongly labeled data for training. In

This work was made with the support of the French National Re-
search Agency, in the framework of the project LEAUDS Learning to under-
stand audio scenes (ANR-18-CE23-0020) and the French region Grand-Est.
Experiments presented in this paper were carried out using the Grid5000
testbed, supported by a scientific interest group hosted by Inria and includ-
ing CNRS, RENATER and several Universities as well as other organiza-
tions (see https://www.grid5000).

particular, strongly labeled data is time-consuming and difficult to
annotate as it requires annotating the temporal extent of event oc-
currences in addition to their presence or absence. Strong label an-
notations are also more likely to contain human errors/disagreement
given the ambiguity in the perception of some sound event onsets
and offsets. In the case of weakly labeled data, we only have in-
formation about whether an event is present in a recording or not.
We have no information about how many times the event occurs nor
the temporal locations of the occurrences within the audio clip. For
real-world applications, it is critical to build systems that generalize
over a large number of sound classes and a variety of sound event
distributions. In such cases, it may be more feasible to collect large
quantities of weakly labeled data as opposed to strongly labeled data
which is significantly more costly in terms of both time and effort.

We propose to follow up on DCASE 2018 Task 4 [6] and in-
vestigate the scenario where large-scale SED systems can exploit
the availability of a small set of weakly annotated data, a larger set
of unlabeled data and an additional training set of synthetic sound-
scapes with strong labels. Given these data, the goal of this task is
to train SED models that output event detections with time bound-
aries (i.e. strong predictions) in domestic environments. That is,
a system has to detect the presence of a sound event as well as
predict the onset and offset times of each occurrence of the event.
We generate strongly annotated synthetic soundscapes using the
Scaper library [13]. Given a set of user-specified background and
foreground sound event recordings, Scaper automatically generates
soundscapes containing random mixtures of the provided events
sampled from user-defined distributions. These distributions are de-
fined via a sound event specification including properties such as
event duration, onset time, signal-to-noise ratio (SNR) with respect
to the background and data augmentation (pitch shifting and time
stretching). This allows us to generate multiple different sound-
scape instantiations from the same specification, which is chosen
based on our general requirements for the soundscapes. Since gen-
erating such strongly labeled synthetic data is feasible on a large
scale, we provide a strongly labeled synthetic dataset in order to ex-
plore whether it can help improve SED models. We believe insights
learned from this task will be beneficial to the community as such
an exploration is novel and will provide a pathway to developing
scalable SED systems.

The remainder of this manuscript is organized as follows: Sec-
tion 2 provides a brief overview of the task definition and how
the development and evaluation datasets were created. Section
3 describes the baseline system and the evaluation procedure for
DCASE 2019 Task 4. Section 4 gives an overview of the systems
submitted to the challenge for this task. Finally, conclusions from
the challenge are provided in section 5.

https://doi.org/10.33682/006b-jx26
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Class Unique Dev set
events Clips Events

Alarm/bell/ringing 190 392 755
Blender 98 436 540
Cat 88 274 547
Dishes 109 444 814
Dog 136 319 516
Electric shaver/toothbrush 56 221 230
Frying 64 130 137
Running water 68 143 157
Speech 128 1272 2132
Vacuum cleaner 74 196 204
Total 1011 2045 6032

Table 1: Class-wise statistics for the synthetic development subset.

2. TASK DESCRIPTION AND THE DESED DATASET

2.1. Task description

This task is the follow-up to DCASE 2018 Task 4 [6] and focuses
on the same 10 classes of sound events. Systems are expected to
produce strongly labeled output (i.e. detect sound events with a start
time, end time, and sound class label), but are provided with weakly
labeled data (i.e. sound recordings with only the presence/absence
of a sound included in the labels without any timing information)
for training. Multiple events can be present in each audio recording,
including overlapping events. As in the previous iteration of this
task, the challenge entails exploiting a large amount of unbalanced
and unlabeled training data together with a small weakly annotated
training set to improve system performance. However, unlike last
year, in this iteration of the challenge we also provide an additional
training set with strongly annotated synthetic soundscapes. This
opens the door to exploring scientific questions around the informa-
tiveness of real (but weakly labeled) data versus strongly-labeled
synthetic data, whether the two data sources are complementary or
not, and how to best leverage these datasets to optimize system per-
formance.

2.2. DESED development dataset

The DESED development dataset is composed of 10-sec audio clips
recorded in a domestic environment or synthesized to simulate a
domestic environment. The real recordings are taken from Au-
dioSet [14]. The development dataset is divided in two subsets: (i)
A training subset composed of real recordings similar to DCASE
2018 task 4 [10] and synthetic soundscapes generated using Sca-
per (see also Table 1). (ii) A validation subset composed of real
recordings with strongly labeled data which is the combination of
the validation and evaluation sets from DCASE 2018 Task 4.

2.2.1. Synthetic soundscape generation procedure

The subset of synthetic soundscapes is comprised of 10 second au-
dio clips generated with Scaper [13], a python library for sound-
scape synthesis and augmentation. Scaper operates by taking a set
of foreground sounds and a set of background sounds and auto-
matically sequencing them into random soundscapes sampled from
a user-specified distribution controlling the number and type of
sound events, their duration, signal-to-noise ratio, and several other
key characteristics. The foreground events are obtained from the

Class Unique Synth set 1
events Clips Events

Alarm/bell/ringing 63 101 184
Blender 27 84 95
Cat 26 113 197
Dishes 34 161 293
Dog 43 124 217
Electric shaver/toothbrush 17 113 117
Frying 17 52 52
Running water 20 67 73
Speech 47 471 803
Vacuum cleaner 20 92 93
Total 314 1378 2124

Table 2: Class-wise statistics for the synthetic evaluation subsets

Freesound Dataset (FSD) [15, 16]. Each sound event clip was ver-
ified by a human to ensure that the sound quality and the event-
to-background ratio were sufficient to be used as an isolated sound
event. We also controlled for whether the sound event onset and
offset were present in the clip. Each selected clip was then seg-
mented when needed to remove silences before and after the sound
event and between sound events when the file contained multiple
occurrences of the sound event class. The number of unique iso-
lated sound events per class used to generate the subset of synthetic
soundscapes is presented in Table 1. We also list the number of clips
containing each sound class and the number of events per class.

The background textures are obtained from the SINS dataset
(activity class “other”) [17]. This particular activity class was se-
lected because it contains a low amount of sound events from our
10 target foreground sound event classes. However, there is no guar-
antee that these sound event classes are completely absent from the
background clips. A total of 2060 unique background clips are used
to generate the synthetic subset.

Scaper scripts are designed such that the distribution of sound
events per class, the number of sound events per clip (depending
on the class) and the sound event class co-occurrence are similar
to that of the validation set which is composed of real recordings.
The synthetic soundscapes are annotated with strong labels that are
automatically generated by Scaper [13].

2.3. DESED evaluation dataset

The evaluation set is composed of two subsets: a subset with real
recordings and a subset with synthetic soundscapes.

2.3.1. Real recordings

The first subset contains 1,013 audio clips and is used for rank-
ing purposes. It is comprised of audio clips extracted from 692
YouTube and 321 Vimeo videos under creative common licenses.
Each clip is annotated by a human and annotations are verified by a
second annotator.

2.3.2. Synthetic soundscapes

The second subset is comprised of synthetic soundscapes generated
with Scaper1. This subset is used for analysis purposes and its de-

1The JAMS [18] annotation files corresponding to these soundscapes can
be accessed from DCASE website: http://dcase.community/.
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Figure 1: Mean-teacher model. η and η′ represent noise applied to the different models (in this case dropout).

sign is motivated by the analysis of last year’s results [10]. In par-
ticular, most submissions from last year performed poorly in terms
of event segmentation. One of the goals of this subset is to facilitate
studies on the extent to which including strongly labeled data in
the training set helps improve and refine the segmentation output.
The foreground events are obtained from the FSD [15, 16]. The
selection process was the same as described for the development
dataset. Background sounds are extracted from YouTube videos
under a Creative Common license and from the Freesound subset
of the MUSAN dataset [19]. The synthetic subset is further divided
into several subsets (described below) for a total of 12,139 audio
clips synthesized from 314 isolated events. The isolated sound event
distribution per class is presented in Table 2.

Varying foreground-to-background SNR: A subset (denoted
Synthetic set 1) of 754 soundscapes is generated with a sound event
distribution similar to that of the training set. Four versions of this
subset are generated varying the value of the foreground events’
SNR with respect to the background: 0 dB, 6 dB, 15 dB and 30 dB.

Audio degradation: Six alternative versions of the previous
subset (with SNR=0 dB) are generated introducing artificial degra-
dation with the Audio Degradation Toolbox [20]. The following
degradations are used (with default parameters) : “smartPhonePlay-
back”, “smartPhoneRecording”, “unit applyClippingAlternative”,
“unit applyLowpassFilter”, “unit applyHighpassFilter” and
“unit applyDynamicRangeCompression”.

Varying onset time: A subset of 750 soundscapes is generated
with uniform sound event onset distribution and only one event per
soundscape. The SNR parameter is set to 0 dB. Three variants of
this subset are generated with the same isolated events, only shifted
in time. In the first version, all sound events have an onset located
between 250 ms and 750 ms, in the second version the sound event
onsets are located between 4.75 s and 5.25 s and in the last version
the sound event onsets are located between 9.25 s and 9.75 s.

Long sound events vs. short sound events: A subset with
522 soundscapes is generated where the background is selected
from one of the five long sound event classes (Blender, Electric
shaver/toothbrush, Frying, Running water and Vacuum cleaner).
The foreground sound events are selected from the five short sound
event classes (Alarm/bell/ringing, Cat, Dishes, Dog and Speech).
Three variants of this subset are generated with similar sound event
scripts and varying values of the sound event SNR parameter (0 dB,
15 dB and 30 dB).

3. BASELINE

The baseline system2 is inspired by the winning system from
DCASE 2018 Task 4 by Lu [21]. It uses a mean-teacher model
which is a combination of two models: a student model and a
teacher model (both have the same architecture). Our implemen-
tation of the mean-teacher model is based on the work of Tarvainen
and Valpola [22]. The student model is the final model used at infer-
ence time, while the teacher model is aimed at helping the student
model during training and its weights are an exponential moving
average of the student model’s weights. A depiction of the baseline
model is provided in Figure 1.

The models are a combination of a convolutional neural net-
work (CNN) and a recurrent neural network (RNN) followed by an
aggregation layer (in our case an attention layer). The output of
the RNN gives strong predictions (the weights of this model are de-
noted θs) while the output of the aggregation layer gives the weak
predictions (the weights of this model are denoted θ).

The student model is trained on the synthetic and weakly la-
beled data. The loss (binary cross-entropy) is computed at the frame
level for the strongly labeled synthetic data and at the clip level for
the weakly labeled data. The teacher model is not trained, rather, its
weights are a moving average of the student model (at each epoch).
During training, the teacher model receives the same input as the
student model but with added Gaussian noise, and helps train the
student model via a consistency loss (mean-squared error) for both
strong (frame-level) and weak predictions. Every batch contains a
combination of unlabeled, weakly and strongly labeled samples.

This results in four loss components: two for classification
(weak and strong) and two for consistency (weak and strong), which
are combined as follows:

L(θ) =Lclassw (θ) + σ(λ)Lconsw (θ)

+ Lclasss(θs) + σ(λ)Lconss(θs)
(1)

4. SUBMISSION EVALUATION

DCASE 2019 Task 4 obtained 57 submissions from 18 different
teams involving 60 researchers overall.

2Open source code available at: https://github.com/
turpaultn/DCASE2019_task4/tree/public/baseline
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Rank System Classifier
Real recordings Synthetic

Event-based Segment-based Event-based
Eval Youtube Vimeo Valid Eval Set 1

1 Lin, ICT CNN 42.7% 47.7% 29.4% 45.3% 64.8% 47.6%
2 Delphin-Poulat, OL CRNN 42.1% 45.8% 33.3% 43.6% 71.4% 59.8%
3 Shi, FRDC CRNN 42.0% 46.1% 31.5% 42.5% 69.8% 53.2%
4 Cances, IRIT CRNN 39.7% 43.0% 30.9% 39.9% 64.7% 50.8%
5 Yan, USTC CRNN 36.2% 38.8% 28.7% 42.6% 65.2% 41.8%
6 Lim, ETRI CRNN, Ensemble 34.4% 38.6% 23.7% 40.9% 66.4% 42.5%
7 Kiyokawa, NEC ResNet, SENet 32.4% 36.2% 23.8% 36.1% 65.3% 42.3%
8 Chan, NU NMF, CNN 31.0% 34.7% 21.6% 30.4% 58.2% 46.7%
9 Zhang, UESTC CNN,ResNet,RNN 30.8% 34.5% 21.1% 35.6% 60.9% 49.2%
10 Kothinti, JHU CRNN, RBM, CRBM, PCA 30.7% 33.2% 23.8% 34.6% 53.1% 35.6%
11 Wang B., NWPU CNN, RNN, ensemble 27.8% 30.1% 21.7% 31.9% 61.6% 32.9%
12 Lee, KNU CNN 26.7% 28.1% 22.9% 31.6% 50.2% 33.0%

Baseline 2019 CRNN 25.8% 29.0% 18.1% 23.7% 53.7% 40.6%
13 Agnone, PDL CRNN 25.0% 27.1% 20.0% 59.6% 60.4% 46.7%
14 Rakowski, SRPOL CNN 24.2% 26.2% 19.2% 24.3% 63.4% 29.7%
15 Kong, SURREY CNN 22.3% 24.1% 17.0% 21.3% 59.4% 23.6%
16 Mishima, NEC ResNet 19.8% 21.8% 15.0% 24.7% 58.7% 33.0%
17 Wang D., NUDT CRNN 17.5% 19.2% 13.3% 22.4% 63.0% 14.0%
18 Yang, YSU CMRANN-MT 6.7% 7.6% 4.6% 19.4% 26.3% 7.5%

Table 3: F1-score performance on the evaluation sets

4.1. Evaluation metrics

Submissions were evaluated according to an event-based F1-score
with a 200 ms collar on the onsets and a collar on the offsets that
is the greater of 200 ms and 20% of the sound event’s length. The
overall F1-score is the unweighted average of the class-wise F1-
scores (macro-average). In addition, we provide the segment-based
F1-score on 1 s segments as a secondary measure. The metrics are
computed using the sed eval library [23].

4.2. System performance

The official team ranking (best system from each team) along with
some characteristics of the submitted systems is presented in Ta-
ble 3. Submissions are ranked according to the event-based F1-
score computed over the real recordings in the evaluation set. For
a more detailed comparison, we also provide the event-based F1-
score on the YouTube and Vimeo subsets and the segment-based
F1-score over all real recordings. The event-based F1-score on
the validation set is reported for the sake of comparison with last
year’s results (75% of the 2019 validation set is comprised of the
2018 evaluation set). Performance on synthetic recordings is not
taken into account in the ranking, but the event-based F1-score on
Synthetic set 1 (0 dB) is presented here as well. The baseline for
DCASE 2018 would obtain 22.2% F1-score on the evaluation set.

Twelve teams outperform the baseline with the best sys-
tems [24, 25, 26] outperforming the baseline by 16% points and
the best system from 2018 by over 10 % points. While the ranking
on the YouTube subset is similar to the official ranking, there rank-
ings based on the Vimeo and synthetic subsets are notably different.
Performance on the Vimeo set is in general considerably lower than
on the YouTube set and Synthethic set 1. The fact that no data
from Vimeo was used during training (unlike data from YouTube
and synthetic data) suggests that the submitted systems struggle to
generalize to an entirely unseen set of recording conditions.

All three top-performing teams used a semi-supervised mean-
teacher model [22]. Lin et al. [24] focused on the importance of
semi-supervised learning with a guided learning setup [27] and on
how synthetic data can help when used together with a sufficient
amount of real data. Delphin-Poulat et al. [25] focused on data aug-
mentation and Shi [26] focused on a specific type of data augmen-
tation where both audio files and their labels are mixed. Cances et
al. [28] proposed a multi-task learning setup where audio tagging
(producing weak predictions) and the sound event localization in
time (strong predictions) are treated as two separate subtasks [29].
The latter was also the least complex of the top-performing systems.

Most of the top-performing systems also demonstrate the im-
portance of employing class-dependent post-processing [24, 25,
28], which improves performance significantly compared to e.g. us-
ing a fixed median filtering approach. This highlights the benefits
of applying dedicated segmentation post-processing [28, 30].

5. CONCLUSION

This paper presents DCASE 2019 Task 4 and the DESED dataset,
which focus on SED in domestic environments. The goal of the task
is to exploit a small dataset of weakly labeled sound clips together
with a larger unlabeled dataset to perform SED. An additional train-
ing dataset composed of synthetic soundscapes with strong labels is
provided to explore the gains achievable with simulated data. The
best submissions from this year outperform last year’s winning sub-
mission by over 10 % points, representing a notable advancement.
Evaluation on the Vimeo subset, suggests there is still a significant
challenge in generalizing to unseen recording conditions.
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ABSTRACT
Acoustic scene classification is the task of determining the environ-
ment in which a given audio file has been recorded. If it is a priori
not known whether all possible environments that may be encoun-
tered during test time are also known when training the system, the
task is referred to as open-set classification. This paper contains a
description of an open-set acoustic scene classification system sub-
mitted to task 1C of the Detection and Classification of Acoustic
Scenes and Events (DCASE) Challenge 2019. Our system consists
of a combination of convolutional neural networks for closed-set
identification and deep convolutional autoencoders for outlier de-
tection. On the evaluation dataset of the challenge, our proposed
system significantly outperforms the baseline system and improves
the score from 0.476 to 0.621. Moreover, our submitted system
ranked 3rd among all teams in task 1C.

Index Terms— acoustic scene classification, deep convolu-
tional autoencoder, open-set classification, outlier detection

1. INTRODUCTION

Acoustic scene classification is a subfield of machine listening,
where systems need to determine the environment in which given
audio files were recorded, and has always been an integral part of
the DCASE challenge [1, 2]. Additionally, there is growing interest
in open-set classification [3, 4] within the machine learning com-
munity since realistic scenarios and applications are almost always
open-set problems. The reason is that one can only very rarely cap-
ture the entire space of classes when training a classification system.
The only potential exception is a very artificial setup that ensures
no encounters of data belonging to novel or unknown classes when
running the system after training. But since change and evolution
in general are inevitable this setup seems very unlikely, especially
in real world applications. However, open-set classification is much
more difficult than closed-set classification because one also needs
to determine whether data belongs to one of the known classes or
not (outlier detection [5]), which is an a priori assumption in closed-
set classification. This difficulty is probably the reason why most
research has been focused on closed-set classification.

To promote this research direction, in this year’s edition of the
DCASE challenge there is a subtask of the acoustic scene clas-
sification task entirely focusing on the open-set setting (task 1C)
[6], which will also be the focus of this paper. The development
dataset consists of 44 hours of 48kHz audio belonging to some un-
known and ten known classes, namely airports, indoor shopping
malls, metro stations, pedestrian streets, public squares, streets with
medium level of traffic, traveling by a tram, traveling by a bus, trav-
eling by an underground metro and urban parks. The evaluation

dataset consists of 20 hours of audio. For all recordings the same
recording device has been used (unlike to subtask 1B where four
different devices have been used) and all have a length of 10 sec-
onds. To evaluate the performance of the systems, the final score
is computed as the weighted average accuracy of the known classes
and unknown classes. For more information about the task, see [6].

To our best knowledge, previous work for open-set acoustic
scene classification is extremely limited. Still, there are some papers
entirely focusing on that task as for example [7] where the authors
used one-class support vector machines for open-set classification.
Another way to detect outliers and thus make open-set classification
possible is to use deep convolutional autoencoders (DCAEs) [8, 9].
By training DCAEs with data belonging to the known classes, one
can expect that the neural networks learn to reconstruct this data
well but have difficulties when encountering data belonging to un-
known classes. In turn, the reconstruction loss can be used as a
heuristic to detect outliers.

The contributions of this work are the following. First and
foremost, a system for open-set acoustic scene classification is pre-
sented1. More specifically, we propose to use CNNs for closed-set
classification and DCAEs for rejecting unknown acoustic scenes via
outlier detection. As a last contribution, an effective way to com-
bine a closed-set classification system and outlier detection models
into a single open-set system is presented. It is also worth mention-
ing, that we did not use any external data resources nor pretrained
models for training our system. Although this makes the open-set
classification task even more challenging, it also enables us to pre-
cisely compare the performance of our system with other submitted
systems that did not use external data resources.

2. ACOUSTIC SCENE CLASSIFICATION SYSTEM

As already stated, this paper focuses on open-set acoustic scene
classification. But in order to do open-set classification one also
needs a well working closed-set classification chain. The reason is
that the system needs to 1) determine whether given data belongs to
one of the known classes (outlier detection) and if so, 2) predict the
most likely of the known classes (closed-set classification). Mathe-
matically, this corresponds to estimating

P (Y = yi,K = true|X = x)

=P (Y = yi|K = true, X = x)P (K = true|X = x)
(1)

where X and Y are random variables denoting the data and one
of the known class labels, respectively, and K is a binary random

1An open-source Python implementation of the presented system is
available here: https://github.com/wilkinghoff/dcase2019

https://doi.org/10.33682/340j-wd27
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variable indicating that the data belongs to one of the known classes
(see [10]). Thus, open-set classification (left hand side) can indeed
be decomposed into the subtasks closed-set classification and out-
lier detection (right hand side).

We will now present our feature extraction procedure followed
by descriptions of the closed-set classification and outlier detection
systems. This section is then concluded by a description of how to
combine both systems into a single open-set acoustic scene classifi-
cation system.

2.1. Feature extraction

Almost all recently proposed acoustic scene classification systems
as well as the baseline system utilize log-mel spectrograms as in-
put features (see e.g. [2, 11, 12]). As this is the state-of-the-art,
we also used log-mel spectrograms and closely followed [13] for
the parameter settings with a few changes. More precisely, we also
used a Hanning window size of 1024, a hop size of 500 and 64 mel
bins but used the cutoff frequencies 50Hz and 16000Hz. Addition-
ally, we normalized the audio files with respect to the maximum
norm before extracting the features. The resulting features are of
dimension 64× 442.

Furthermore, we utilized median filtering for Harmonic-
Percussive Source Separation [14] via Librosa [15] as many partic-
ipants have done in past editions of the DCASE challenge (see e.g.
[11, 16]). All mel-spectrograms were separated into harmonic and
percussive parts before applying the logarithm resulting in a total
number of three features per audio file: The log-mel spectrograms
themselves and their harmonic and percussive parts.

Before inserting the features into a neural network, we stan-
dardized them in two different ways. For closed-set classification,
we subtracted the mean and divided by the standard deviation of all
training data, which belongs to any of the ten known classes. When
detecting outliers, all features were standardized in the same way
but only data belonging to a single known class was used to com-
pute the mean and standard deviation. As we will train individual
DCAEs for each class, the data is standardized with respect to that
specific class beforehand.

2.2. Closed-set classification

In the era of deep learning, CNNs are the method of choice to clas-
sify log-mel spectrograms. Classifying acoustic scenes is not an
exception. The CNN proposed in [13] is reported to perform better
than the baseline system of the challenge. Thus, we used this CNN
as a starting point but changed a few details leading to an even bet-
ter performance while using less parameters. All CNNs have been
implemented using Keras [17] with Tensorflow [18] and their struc-
ture can be found in Table 1. For each of the three features, namely
log-mel spectrograms and their harmonic and percussive parts, an-
other CNN is trained for 6000 epochs with a batch size of 32 by
minimizing the categorical crossentropy. Mixup [19] and Cutout
[20] have been used to augment the training data, which are known
to be effective in terms of improving classification accuracy (see
[12]). Additionally, random shifts in time up to 60% of the entire
duration and up to 3 mel bins were used when augmenting data.
To acquire a single score per class, the geometric mean of the out-
put distributions obtained with the three CNNs is taken. But since
the classification accuracy obtained with the log-mel spectrograms
were higher on the validation set, their corresponding scores have
been multiplied with a factor of two to give them more weight than

Table 1: CNN architecture for closed-set classification.
Layer Output Shape #Parameters

Input (64, 442) 0
Convolution (kernel size: 3x3) (64, 442, 64) 640
Batch Normalization (64, 442, 64) 256
Non-linearity (ReLU) (64, 442, 64) 0
Convolution (kernel size: 3x3) (64, 442, 64) 36,928
Batch Normalization (64, 442, 64) 256
Non-linearity (ReLU) (64, 442, 64) 0
Average-Pooling (pool size: 2x3) (32, 147, 64) 0
Convolution (kernel size: 3x3) (32, 147, 128) 73,856
Batch Normalization (32, 147, 128) 512
Non-linearity (ReLU) (32, 147, 128) 0
Convolution (kernel size: 3x3) (32, 147, 128) 147,584
Batch Normalization (32, 147, 128) 512
Non-linearity (ReLU) (32, 147, 128) 0
Average-Pooling (pool size: 2x3) (16, 49, 128) 0
Convolution (kernel size: 3x3) (16, 49, 196) 225,988
Batch Normalization (16, 49, 196) 784
Non-linearity (ReLU) (16, 49, 196) 0
Convolution (kernel size: 3x3) (16, 49, 196) 345,940
Batch Normalization (16, 49, 196) 784
Non-linearity (ReLU) (16, 49, 196) 0
Average-Pooling (pool size: 2x3) (8, 16, 196) 0
Convolution (kernel size: 3x3) (8, 16, 256) 451,840
Batch Normalization (8, 16, 256) 1,024
Non-linearity (ReLU) (8, 16, 256) 0
Convolution (kernel size: 3x3) (8, 16, 256) 590,080
Batch Normalization (8, 16, 256) 1,024
Non-linearity (ReLU) (8, 16, 256) 0
Global-Average-Pooling 256 0
Dense (Softmax) 10 2,570

∑
1,880,578

the scores resulting from the other two features. Using this heuristic
enabled us to use the entire development set, i.e. training and val-
idation split, for training the CNNs and led to better performance
because more data results in more knowledge. Note that one can
usually achieve better results when carefully tuning model-specific
weights but this would have required additional labeled data to ob-
tain meaningful scores for training these weights.

2.3. Outlier detection

To detect outliers, we used one-class classification models, more
concretely DCAEs. For each of the known classes, another DCAE
was trained using only training data belonging to that particular
class. By doing so, we avoided the direct usage of training data
belonging to any unknown class. The reason for doing this is that
the variability of the unknown class space cannot be captured suffi-
ciently by using samples of unknown classes. However, in order for
the outlier detection models to learn to distinguish between strong
outliers and weak outliers, which are noisy samples still belonging
to the known class a DCAE is trained for, samples belonging to
unknown classes are still needed. A way to use these samples for
training will be explained later in subsection 2.4.

The particular structure we have chosen for the DCAEs can be
found in Table 2. The basic task is to reduce the feature space di-
mension from 64× 442 to 16× 110 and reconstruct the input fea-
tures as accurately as possible. More precisely, we trained another
DCAE for each of the ten known classes resulting in a total of ten
models per feature type. Again, we implemented the DCAEs with
Keras [17] and Tensorflow [18]. To train the DCAEs, we mini-
mized the mean squared error for 1000 epochs using a batch size
of 32. In contrast to the CNNs, no data augmentation techniques
were applied while training, which is the reason why less epochs
are sufficient. We still trained different models for all three features
but this time only the training data split of the development set has
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Table 2: DCAE architecture for outlier detection.
Layer Output Shape #Parameters

Input (64, 442, 1) 0
Convolution (kernel size: 3x3) (64, 442, 64) 640
Batch Normalization (64, 442, 64) 256
Non-linearity (ReLU) (64, 442, 64) 0
Convolution (kernel size: 3x3) (64, 442, 64) 36,928
Batch Normalization (64, 442, 64) 256
Non-linearity (ReLU) (64, 442, 64) 0
Average-Pooling (pool size: 2x2) (32, 221, 64) 0
Convolution (kernel size: 3x3) (32, 221, 128) 73,856
Batch Normalization (32, 221, 128) 512
Non-linearity (ReLU) (32, 221, 128) 0
Convolution (kernel size: 3x3) (32, 221, 128) 147,584
Batch Normalization (32, 221, 128) 512
Non-linearity (ReLU) (32, 221, 128) 0
Average-Pooling (pool size: 2x2) (16, 110, 128) 0
Convolution (kernel size: 3x3) (16, 110, 128) 147,584
Batch Normalization (16, 110, 128) 512
Non-linearity (ReLU) (16, 110, 128) 0
Convolution (kernel size: 3x3) (16, 110, 128) 147,584
Batch Normalization (16, 110, 128) 512
Non-linearity (ReLU) (16, 110, 128) 0
Up-Sampling (size: 2x2) (32, 220, 128) 0
Zero-Padding (32, 221, 128) 0
Convolution (kernel size: 3x3) (32, 221, 64) 73,792
Batch Normalization (32, 221, 64) 256
Non-linearity (ReLU) (32, 221, 64) 0
Convolution (kernel size: 3x3) (32, 221, 64) 36,928
Batch Normalization (32, 221, 64) 256
Non-linearity (ReLU) (32, 221, 64) 0
Up-Sampling (size: 2x2) (64, 442, 64) 0
Convolution (kernel size: 3x3) (64, 442, 1) 577
Non-linearity (ReLU) (64, 442, 1) 0

∑
668,545
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Figure 1: Structure of our proposed open-set acoustic scene classi-
fication system.

been used because the validation data set is needed in the next step.
Note that using ReLU as an activation function in the last layer pre-
vents the DCAE to perfectly reconstruct the data again since nega-
tive output values cannot be produced. But interesting events that
are typical for an acoustic scene correspond to high energy in a mel-
spectrogram and thus are still positive after normalization. An ex-
ample are bird calls, which can only very rarely be heard in a metro
but are one of the acoustic events one expects to hear in a park.
Therefore, a DCAE trained on data belonging to the class “park”
should be able to reconstruct bird calls but a DCAE associated with
the class “park” should not, leading to a high reconstruction loss
when encountering audio containing birds. In conclusion, the usage
of ReLU can be seen as a form of regularization in this case and
helped to improve the performance when detecting outliers.

2.4. Combined system

Since both subproblems, closed-set classification and outlier detec-
tion, have been tackled in some way, we can now determine the final
output of the system. The only problem left is that, while the soft-

max output of the CNNs can be interpreted as a probability distri-
bution, the loss of the DCAEs is just the mean squared error, which
is not even bounded and scaled differently for each DCAE. More-
over, there is not only a single loss value per file but ten. Hence, it
is highly non-trivial to find a suitable decision criterion when trying
to detect outliers.

To solve this issue, we used logistic regression as implemented
in Scikit-learn [21]. The idea is to treat the ten losses as ten di-
mensional features and train a binary classifier with them. For this
purpose, we also made use of all audio files belonging to unknown
classes. Although it is not a good idea to use these files or their
spectral features directly for training a binary classifier, their losses
should look much more close to each other (equally bad) than the
outliers themselves. Hence, it may be a valid assumption to use
them as valuable training data. In addition to that, the logistic re-
gression model is very simple compared to all neural networks in-
volved before. Thus, there is less room for the model to learn more
than differentiating between losses corresponding to known classes
and the “strange looking ones” belonging to unknown classes. In or-
der to obtain meaningful positive examples of loss values belonging
to known classes, we used the validation split of the development
set. This is the only reason why the data files have not been used
for training the DCAEs before.

To decide whether given data should be treated as an outlier,
we used a threshold of 0.5 for all probabilities resulting from the
logistic regression model. This means that for each encountered
audio file, the class belonging to the maximum likelihood is cho-
sen but if the score is smaller than 0.5, it is labeled as “unknown”
instead. Choosing this particular threshold makes sense because
the logistic regression model has been trained with balanced class
weights to compensate for the different number of known and un-
known training samples. In addition to that, we also labeled all
audio files that had a maximum likelihood score less than 0.5 in
the closed-set classification evaluation as “unknown”. The underly-
ing assumption is that most resulting scores are very high anyway
and thus very small scores indicate that the model has difficulties
in deciding which class the encountered data belongs to. This may
indicate data belonging to unknown classes. See Figure 1 for an
abstract overview of the entire system.

3. EXPERIMENTAL RESULTS

3.1. Closed-set classification

Closed-set classification is not the focus of this paper. Still, it is
a vital part of any open-set classification system (see Equation 1).
Therefore, we compared the performance of our closed-set classi-
fication system to those obtained with other systems. For this pur-
pose, we used the datasets provided for subtask A of task 1. Us-
ing the datasets of subtask C for this purpose is impossible because
the score also includes the system’s outlier detection performance,
which also affects the closed-set classification accuracy. The results
can be found in Figure 2.

It can be seen that our closed-set classification accuracies are
significantly higher than the ones obtained with the baseline system
and with the system provided in [13]. Furthermore, our ensemble,
which utilizes all three features types, performs significantly better
than all models based on a single feature type. This justifies the final
design of our closed-set classification system. We also included the
winning system [22] to give an example of how much performance
can be gained when improving the system.

260



Detection and Classification of Acoustic Scenes and Events 2019 25–26 October 2019, New York, NY, USA

public leaderboard set private leaderboard set evaluation set
0

20

40

60

80
64

.3
%

63
%

63
.3

%

69
.3

%

69
.3

%

70
.5

%

75
.0

%

73
.0

%

74
.6

%

70
.8

%

72
.8

%

no
ta

va
ila

bl
e

69
.5

%

67
.3

%

no
ta

va
ila

bl
e

77
.3

%

75
.5

%

76
.2

%86
.5

%

85
.5

%

85
.2

%

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
(i

n
pe

rc
en

t)

baseline [6]
CVSSP baseline [13]

log-mel spectrogram based model
harmonic part based model
percussive part based model

full ensemble
challenge winner [22]

Figure 2: Comparison of closed-set classification accuracies ob-
tained in task 1A.
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Figure 3: Comparison of all submitted systems’ open-set classifi-
cation scores obtained on the evaluation dataset of task 1C (final
challenge results).

3.2. Open-set classification

The open-set classification performances on the evaluation dataset
of task 1C obtained with all submitted systems including ours can be
found in Figure 3. One can see that all systems outperform the base-
line system as well as the system presented in [13] on the evaluation
dataset. More concretely, the relative performance gain of our pro-
posed system with respect to the score is 30.5% when comparing
to the challenge’s baseline system. Since these improvements are
larger in this open-set setting than in task 1A, much of the success
can be credited to using DCAEs for outlier detection. In contrast
to the results obtained in the closed-set classification task, the accu-
racy of our ensemble significantly degraded for the known classes,
which looks a bit strange at first sight. But since the accuracy signif-
icantly improved on the unknown classes, more test samples were
predicted as outliers by the ensemble also resulting in more false
rejections and a lower accuracy on the known classes.

When comparing all submitted systems, one can distinguish the
three leftmost systems (baseline [6], CVSSP baseline [13] and Mc-
Donnell [23]), which have a relatively low accuracy on the unknown
classes and thus are detecting only a few outliers, from the other sys-
tems. Because this also results in fewer false rejections, these three
systems have a comparatively high accuracy on the known classes.

Compared to them, the other systems have a much higher accuracy
on unknown classes and thus are detecting more outliers. However,
since this also results in more false rejections, this degrades the per-
formance on the known classes. It is worth pointing out that Lehner
[24] has the highest accuracy on the unknown classes but the lowest
accuracy on the known classes. In conclusion, this system detects
too many outliers. The fact that our system ranks 3rd among all
submitted systems shows that the overall structure of our open-set
acoustic scene classification system is suitable for the task.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an open-set acoustic scene classification
system that has been submitted to task 1C of the DCASE challenge
2019. It has been shown that a combination of CNNs for closed-
set classification and DCAEs for outlier detection yields significant
improvements over the baseline system. In fact, our system out-
performed the baseline system by 30.5% without using any exter-
nal data resources, increasing the score from 0.476 to 0.621 on the
evaluation dataset. Using the presented system, our team ranked 3rd
overall in task 1C of the challenge.

For future work, we plan to improve the structure of the DCAE.
In addition, using the mean squared error of DCAEs for outlier de-
tection is just a heuristic since the loss function to be optimized
does not directly aim at rejecting unknown examples. Instead of us-
ing DCAEs, one may also train a neural network with another loss
function that is specifically targeted at one-class classification (e.g.
[27]). The results can also be compared to those obtained with an
OpenMax layer [28], which can be understood as the open-set ver-
sion of a softmax layer. Another path to be investigated is to make
use of embeddings as for example the L3-Net embedding [29] or
OpenL3 [30]. These embeddings could be used in the same way
as i-vectors [31] or x-vectors [32] in open-set speaker identification
(see e.g. [10]). Note that both, i-vector and x-vector, have been suc-
cessfully applied for closed-set acoustic scene classification [33, 34]
in past editions of the DCASE challenge. Thus, utilizing embed-
dings seems promising. Lastly, using external data for training the
models or improving our relatively simple closed-set classification
model with more sophisticated techniques as for example an atten-
tion mechanism [35] also improves the open-set performance.
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ABSTRACT

We describe the public release of a dataset for sound event de-
tection in urban environments, namely MAVD, which is the first of
a series of datasets planned within an ongoing research project for
urban noise monitoring in Montevideo city, Uruguay. This release
focuses on traffic noise, MAVD-traffic, as it is usually the predom-
inant noise source in urban environments. An ontology for traffic
sounds is proposed, which is the combination of a set of two tax-
onomies: vehicle types (e.g. car, bus) and vehicle components (e.g.
engine, brakes), and a set of actions related to them (e.g. idling, ac-
celerating). Thus, the proposed ontology allows for a flexible and
detailed description of traffic sounds. We also provide a baseline of
the performance of state–of–the–art sound event detection systems
applied to the dataset.

Index Terms— SED database, traffic noise, urban sound

1. INTRODUCTION

Recent years have witnessed the upsurge of the Smart City concept,
i.e. networks of Internet of Things (IoT) sensors used to collect data
in order to monitor and manage city services and resources. Noise
levels in cities are often annoying or even harmful to health, being
consequently among the most frequent complaints of urban resi-
dents [1]. This fuelled the development of technologies for moni-
toring urban sound environments, mainly oriented towards the miti-
gation of noise pollution [2, 3]. The application of signal processing
and machine learning has lead to the automatic generation of high–
level descriptors of the sound environment. This encompasses the
problem of sound event detection (SED), as an attempt at describing
the acoustic environment through the sounds encountered in it. It is
defined as the task of finding individual sound events, by indicating
the onset time, the duration and a text label describing the type of
sound [4, 5].

The SED problem is usually approached within a supervised
learning framework, using a set of predefined sound event classes
and annotated audio examples of them [5, 6]. One of the most chal-
lenging aspects of the problem is that it involves the detection of
overlapping sound events. In addition, given the intrinsic variabil-
ity of sound sources of the same type (e.g. cars) and the influence
of the acoustic environment (e.g. reverberation, distance) for dif-
ferent locations and situations, the acoustic features of each class
can exhibit great diversity. The solutions proposed typically use
a mel–spectral representation of the audio signal as the input fea-
tures, and apply different classification methods, including Random
Forest [7], GMM [8], and more recently convolutional neural net-
works [9, 10] and recurrent neural networks [11, 12, 13].

1.1. Related work

Publicly available datasets for SED are of crucial importance to fos-
ter the development of the field as they encourage reproducible re-
search and fair comparison of algorithms. In this respect, the De-
tection and Classification of Acoustic Scenes and Events (DCASE)
challenge, held for the first time in 2013 and repeated every year
since 2016, has established a benchmark for sound event detection
using open data [6, 14].

Two of the datasets used in the DCASE challenge for SED in ur-
ban environments are part of the TUT database (TUT Sound Events
2016 and 2017), which was collected in residential areas in Finland
by Tampere University of Technology (TUT) and contain overlap-
ping sound events manually annotated [8]. The classes are defined
during the labeling process. In a first step, the participants are asked
to mark all the sound events freely, and later the labels are grouped
into more general concepts. In addition, the tags must be composed
of a noun and a verb, such as ENGINE ACCELERATING [8].

Manual annotation of audio recordings for SED is a very time
consuming task, primarily due to multiple overlapping sounds,
which has limited the amount of annotated audio available. A way
to alleviate the work involved in manual annotation is to use weak
labels, as in DCASE 2017 task 4 [14], which indicate the presence
of a source without giving time boundaries. Another approach is to
create synthetic audio mixtures using isolated sound events. This
is the approach adopted in the URBAN-SED dataset [9], that con-
tains synthesized soundscapes with sound event annotations gener-
ated using Scaper [9] (a software library for soundscape synthesis).
The original sound events are extracted from the UrbanSound8K
dataset [15], where a taxonomic categorization of urban sounds is
proposed. At the top level, four groups are defined: HUMAN, NAT-
URAL, MECHANICAL and MUSICAL, which have been used in pre-
vious works. To define the lower levels, the most frequent noise
complaints in New York city from 2010 to 2014 were used [15].

Table 1 summarizes the characteristics of the available datasets
for SED in urban environments. While the TUT datasets are lim-
ited to only one and two hours, the URBAN-SED dataset comprises
30 hours of audio but contains synthetic audio mixtures instead of
real recordings. Other resources for research on urban sound en-
vironments are available, such as the SONYC Urban Sound Tag-
ging (SONYC–UST) dataset [2], though they are not specifically
devoted to the SED problem. If traffic sounds are to be considered,
the DCASE 2017 task 4 training dataset has only weak labels, the
TUT database has only a moderate amount of traffic activity since
it was recorded in a calm residential area, and only three out of the
ten classes in URBAN-SED are related to traffic (i.e. CAR HORN,
ENGINE IDLING and SIREN). Therefore, there is plenty of room for
expanding the existing resources, in particular, for specific applica-
tions’ scenarios such traffic noise monitoring.

https://doi.org/10.33682/kfmf-zv94
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dataset classes hours type label

TUT-SE 2016 [8] 7 1 recording strong
TUT-SE 2017 [8] 6 2 recording strong
URBAN-SED [9] 10 30 synthetic strong

DCASE2017 #4 [14] 17 141 10-s clips weak
MAVD-traffic 21 4 recording strong

Table 1: Available datasets for SED in urban environments, along
with the released dataset.

1.2. Our contributions

We describe the first public release of a dataset for SED in ur-
ban environments, called MAVD, for Montevideo Audio and Video
Dataset. This release focuses on traffic sounds, namely MAVD-
traffic, which corresponds to the most prevalent noise source in ur-
ban environments. The records were generated in various locations
in Montevideo city and include both audio and video files, along
with annotations of the sound events. The video files, apart from be-
ing useful for manual annotation, open up new research possibilities
for SED using audio and video. The annotations follow a new ontol-
ogy for traffic sounds that is proposed in this work. It arises from the
combination of a set of two taxonomies: vehicle types (e.g. car, bus)
and vehicle components (e.g. engine, brakes), and a set of actions
related to them (e.g. idling, accelerating). Thus, the proposed ontol-
ogy allows for a flexible and detailed description of traffic sounds.
In addition, we provide a baseline of the performance of state–of–
the–art SED systems applied to the MAVD-traffic dataset. Finally,
we discuss possible directions for further research and some efforts
we undertaken to improve and extend current dataset.

2. ONTOLOGY

The proposed ontology focuses on traffic noise. Consequently, ve-
hicles (such as cars, buses, motorcycles and trucks) are the main
sources of noise and define the classes of interest. However, vehi-
cles generate different types of sounds, for example those related to
the braking system, the rolling of the wheels or the engine, calling
for a classification that is more specific than just the type of vehicle.
One way to approach it, is by classifying sound events with different
correlated attributes, such as the sound source (object), the action,
and the context [16]. These attributes can be defined by one or sev-
eral taxonomies, implying that the same event can be classified by
several schemes simultaneously [16]. In this case, the context is
defined by urban environments where traffic noise is predominant.
Then, sound sources and actions can be described by several tax-
onomies, for instance, one that defines the type of vehicle and other
that defines the internal components that generate the sound.

We define an ontology based on a graph like the one shown in
Figure 1, which consists of two taxonomies that blend in the middle:
the top one describes the categories of vehicles; and the bottom one
describes the categories of components. The categories of compo-
nents are further combined with a set of actions to form an object-
action pair (e.g. ENGINE IDLING, ENGINE ACCELERATING).1

The categories indicated in bold are those that are called basic
level (CAR, BUS, etc. for vehicles and ENGINE, WHEEL, etc. for
components). These two taxonomies of the ontology are merged

1This could also be done in the top taxonomy for the vehicles, for exam-
ple BUS PASSING BY, CAR STOPPING, etc., but was considered redundant.

Figure 1: Graph representing the ontology. The top taxonomy refers
to the vehicle categories and the bottom one to the components. The
basic levels are indicated in bold and the subordinate level is marked
in italics. The rectangle nodes denote objects; the ellipses denote
actions; and the rounded rectangles indicate objects–actions pairs.

into what is called the subordinate level (depicted in italics), which
are combinations of elements of the categories of vehicles and com-
ponents, with the aim of providing a more detailed description of the
noise source (e.g. CAR/ENGINE IDLING, BUS/COMPRESSOR). Note
that the diagram of Figure 1 does not show all the class labels.

3. DATASET

3.1. Recordings

The recordings were produced in Montevideo, the capital city of
Uruguay, which has population of 1.4 million people. Four different
locations were included in this release of the dataset, corresponding
to different levels of traffic activity and social use characteristics:

L1. Residential area, with several shops and many buses.
L2. Park area. No housing or shops. Some light traffic nearby.
L3. Park/residential area. Similar to location L2, but next to a

residential area, with more traffic noise and less nature sounds.
L4. Residential area, with a few shops and some buses.

The sound was captured with a SONY PCM-D50 recorder at a
sampling rate of 48 kHz and a resolution of 24 bits. The video was
recorded with a GoPro Hero 3 camera at a rate of 30 frames per
second and a resolution of 1920 × 1080 pixels. Audio and video
files of about 15–minutes long were recorded at different times of
the day in the different locations.

Some basic processing was done to generate the files of the
dataset from the raw recordings. This included the synchronization
of audio and video, the removal of windy sections and the segmen-
tation into excerpts of approximately five minutes to facilitate their
manipulation. The train and validation sets are composed of 24 and
7 files from the location L1 respectively, while the test set consists
of 16 files from the L2, L3 and L4 locations2. The dataset totals
233 minutes (almost 4 hours, as shown in Table 1), of which 117
minutes correspond to the train set, 33 minutes to the validation set
and 83 minutes to the test set.

2In train/validation we favoured the location with more events (L1) but
other fold schemes could be implemented using the metadata information.
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Figure 2: Total time for each class in the dataset. The first two graphs correspond to the basic levels, and the third one to the subordinate level.

3.2. Annotation

The ELAN [17] software was used to manually annotate the record-
ings of the dataset. The software allows the user to simultaneously
inspect several audio and/or video recordings and produce annota-
tions time–aligned to the media. During the annotation process the
software session displayed the audio waveform, the video record
and the spectrogram of the audio signal. For the latter, an auxiliary
video file was generated for each recording, showing the spectro-
gram of the audio signal and a vertical line indicating current time
instant (as shown in Figure 3). The annotations can be created on
multiple layers, which can be hierarchically interconnected. This
feature is a perfect fit for the taxonomies’ approach defined above.

Figure 3: Screenshot of the ELAN software showing MAVD–traffic
data: at the top the video and the spectrogram (with a marker indi-
cating the instant being labeled) and at the bottom the annotations.

The annotation process was carried out in two steps. First, the
vehicle categories were labeled (e.g. CAR, BUS). Then, for each of
the marked segments, the labels of the component categories (e.g.
ENGINE IDLING) were annotated to form the subordinate level. Fig-
ure 2 shows the total duration of the events for the three category
types. Note that the dataset is highly unbalanced, especially the sub-
ordinate level, being CAR/WHEEL ROLLING the predominant class.

4. EXPERIMENTS AND RESULTS

4.1. Experiments

We devised two different experiments to provide a baseline of the
SED performance on the MAVD–traffic dataset. For the first ex-
periment, we used a Random Forest classifier with the acoustic
features defined as follows. We extracted 20 mel–frequency cep-
stral coefficients (MFCC) using the energy in 40 mel bands. The

MFCCs were calculated in frames of 40 ms overlapped 50% and us-
ing a Hamming analysis window. Besides, first and second deriva-
tives were calculated (∆MFCC,∆2MFCC), to describe the tempo-
ral variations of the coefficients. The features were computed with
librosa (version 0.6.1) [18] and the Random Forest models were
implemented with scikit-learn (version 0.17) [19].

For the second experiment, we used the convolutional neural
network for SED proposed by Salamon et. al in [9] (S–CNN). The
input of this network is a one–second length mel–spectrogram and
has three convolutional layers followed by three fully–connected
layers. The final layer is a sigmoid that performs the classification
task (the number of units is equal to the number of classes). First
we trained the S–CNN model with the URBAN–SED dataset using
the same strategy used in [9]. Then, we used a fine–tuning strategy
in order to specialize the network to the MAVD–traffic dataset. We
replace the last sigmoid layer of the network to accomplish the clas-
sification task of the MAVD-traffic dataset. The parameters of the
other layers of the network were kept unchanged during the fine–
tuning training process. The S–CNN model was implemented in
keras (version 2.2.0) [20] using tensorflow (version 1.5.0) [21].

4.2. Metrics

The performance measures typically used for the SED problem are:
F–score (F1) and Error Rate (ER), on a fixed time grid [22]. The
detected sound events are compared with the ground–truth in one–
second length segments. Based on the number of false positives
(FP ) and false negatives (FN ), the values of the precision (P ) and
recall (R) are computed. Then, the F–score (F1) is calculated as:

F1 =
2PR

P + R
=

2TP

2TP + FN + FP
. (1)

The error rate (ER) is calculated in terms of insertions I(k),
deletions D(k) and substitutions S(k) in each segment k. A substi-
tution is defined as the case in which the system detects an event in a
segment but with the wrong label. This corresponds to a simultane-
ous FP and FN for the segment. The remaining FP not included
in the substitutions are considered insertions and the remaining FN
as deletions. Finally, the ER is calculated considering all errors as:

ER =

∑K
k=1 S(k) +

∑K
k=1 D(k) +

∑K
k=1 I(k)

∑K
k=1 N(k)

, (2)

where K is the total number of segments and N(k) is the number
of active classes in the ground-truth at segment k [8, 22].

The values of F1 and ER are usually calculated globally over
the full set of segments and classes simultaneously. They can also
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Figure 4: Comparison of the SED results for both S-CNN and Random Forest systems applied to the MAVD–traffic dataset. The performance
is shown at the basic and subordinate levels for the different classes and for the three discussed metrics: Global, Average and Weighted sum.

be calculated restricted to each class and then averaged, which are
denoted as F̄1 and ĒR respectively. This average is calculated as:

M̄ =
1

C

C∑

c=1

Mc, (3)

where C is the number of classes and Mc is the metric for class c.
These global metrics can bias the SED algorithms to detect only

the majority class. This is illustrated by the results of DCASE chal-
lenges 2016 and 2017, in which the algorithms that obtained better
global results actually detect only the majority class [6, 14].

We aim to improve these evaluation metrics (ER and F1) in
the case of multi–class SED systems trained with very unbalanced
data, by increasing the importance of detecting the minority classes.
To do so, we propose a weighted sum of the metric values as,

M̂ =

C∑

c=1

wcMc, wc =
1/Nc∑C
j=1 1/Nj

(4)

where Nc is the number of active segments for class c, and wc is the
weight for each class, which is designed to give more importance to
the minority classes. Note that wc increases when Nc decreases, as
expected. The sum in the denominator ensures that

∑
c wc = 1.

4.3. Results

We trained the Random Forest and the S–CNN models for the three
class levels (vehicles, components and subordinate) and obtained
the results shown in Figure 4 and in Table 2. Note that the S–CNN
models tend to classify only the majority class while yielding quite
good results for the global ER and F1 metrics, as discussed in Sec-
tion 4.2. On the other hand, the weighted sum metrics, ÊR and F̂1,
clearly penalize the detection of only the majority class. The Ran-
dom Forest models perform better in detecting the minority classes
(see the BUS class), reaching higher values of the weighted sum
metrics. The source code for training the models and reproducing
these results on the MAV-traffic dataset is publicly available.3

3https://github.com/pzinemanas/MAVD-traffic

Global Weighted sum
Level Model ER F1(%) ÊR F̂1(%)

Vehicles RF 0.54 63.1 0.71 38.2
S–CNN 0.51 55.5 0.97 8.70

Components RF 0.49 69.0 0.80 24.6
S–CNN 1.17 56.2 1.03 5.35

Subordinate RF 0.78 36.1 0.96 1.98
S–CNN 0.70 38.9 1.00 0.17

Table 2: Results for Random Forest (RF) and S-CNN using the
original (Global) and the proposed (Weighted sum) metrics.

5. CONCLUSION

In this work a new dataset for SED in urban environments is
described and publicly released.4 The dataset focuses on traffic
noise and was generated from real recordings in Montevideo city.
Apart from audio recordings it, also includes synchronized video
files.5 The dataset was manually annotated using an ontology pro-
posed in this work, which combines two taxonomies (vehicles and
component–action pairs) for a detailed description of traffic noise
sounds. Since the taxonomies follow a hierarchy they can be used
with different levels of detail. The performance of two SED sys-
tem is reported as a baseline for the dataset. Some considerations
are given regarding the evaluation metrics for class–unbalanced
datasets. In future work, we will increase the size of the dataset, by
including other locations with different levels of traffic activity. We
also plan to address urban soundscapes in which other noise sources
are predominant, such as those related to social, construction or in-
dustrial activities. In addition, image processing techniques will be
applied to the video files to develop a multi–modal SED system.

4Available from Zenodo, DOI 10.5281/zenodo.3338727
5In this release, the video files are available in low resolution as we are

anonymizing them, after which they will be available in high resolution.
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