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ABSTRACT

Accurate sound source direction-of-arrival and trajectory estimation
in 3D is a key component of acoustic scene analysis for many appli-
cations, including as part of polyphonic sound event detection sys-
tems. Recently, a number of systems have been proposed which per-
form this function with first-order Ambisonic audio and can work
well, though typically performance drops when the polyphony is
increased. This paper introduces a novel system for source localisa-
tion using spherical harmonic beamforming and unsupervised peak
clustering. The performance of the system is investigated using syn-
thetic scenes in first to fourth order Ambisonics and featuring up to
three overlapping sounds. It is shown that use of second-order Am-
bisonics results in significantly increased performance relative to
first-order. Using third and fourth-order Ambisonics also results in
improvements, though these are not so pronounced.

Index Terms— sound source localisation, direction of arrival,
spatial audio, beamforming, steered-response power, DBSCAN

1. INTRODUCTION

Sound Event Localisation and Detection (SELD) is the act of de-
tecting and tracking individual sounds in an acoustic scene consist-
ing of a mixture of sources, typically recorded or monitored using a
microphone array. Such a system has applications including audio
surveillance [1], vehicle tracking for the military [2], localisation of
targets in robotics [3], and as a stage in source separation that has
been proposed for use in evaluation of environmental soundscapes
[4, 5]. Previous work involving SELD in Ambisonics is limited to
FOA [6, 7]. These systems tend to work well when localising a
single source, but performance drops when the complexity of the
scene is increased by adding multiple sources overlapping in time.
Higher-order Ambisonic (HOA) audio has much higher spatial res-
olution than FOA, and there are now several portable HOA micro-
phones commercially available, including the second-order Core-
Sound OctoMic [8] and fourth-order mh Acoustics Eigenmike [9],
making it simple to gather high-order Ambisonic recordings.

The EigenScape database of acoustic scenes [10] was recorded
in HOA using the Eigenmike. Analysis of this database has shown
that spatial audio features can be useful in acoustic scene classifica-
tion [10, 11], indicating that use of spatial audio could be a fruitful
area of investigation in future work on soundscape analysis. Us-
ing spatial audio to consider individual sources will require a robust
method for SELD.

In this paper we introduce a new method for estimation of on-
set/offset times and the DOA of active sound sources (covering the
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first two stages of SELD as defined in [6]) in Ambisonic recordings
of acoustic scenes using spherical harmonic beamforming and un-
supervised clustering of power peaks by the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm [12].
An unsupervised approach such as that presented here could be es-
pecially useful when the amount of data available for training is
small. The paper is organised as follows: Section 2 provides a de-
tailed description of the different stages involved in the system, in-
cluding beamforming, peak-finding, clustering and regression. Sec-
tion 3 describes the evaluation procedure, including the data used
to test the system and the metrics used for assessment and optimi-
sation. Section 4 presents the results of the study, with Section 5
providing discussion. Section 6 concludes the paper.

2. METHOD

Our system uses four main steps that will be described in detail
in this section. First, spherical harmonic beamforming is used to
create steered-response power (SRP) maps. These maps are then
analysed to extract a list of peak power positions. DBSCAN is used
to create clusters from these peaks, which correspond to identified
sound sources. Finally, regression models are fit to each cluster for
smoothed trajectory estimates.

2.1. Steered-Response Power Map

The first stage of the system is the creation of a series of power
maps describing how the sound power varies in the scene over time.
Spherical harmonic beamforming is used to create an SRP map [13]
for each frame of audio as follows:

Z(θ, φ) =
∑

k

N∑

n=0

1

bn(k)

n∑

m=−n

Wnm(θ, φ)Pnm(k) (1)

where output power Z for azimuth θ and elevation φ is calculated
as the product of the spherical harmonic-wavenumber domain sig-
nals P for spherical harmonic order n, degree m and wavenumber
k, and a weighting functionW that determines the look direction of
the beam. This calculation is repeated and summed across all n and
m [14], and across k for a map describing power in all frequency
bands. The bn(k) term is required to compensate for scattering of
sound induced by the presence of the recording array [13, 14], here
set to 1 as the system was tested using synthetic sound scenes. In
this work, the simplest spherical harmonic beamformer was used,
where the weights are simply substituted for the spherical harmon-
ics for the given look direction, a process also known as plane-wave
decomposition [15].

To create the SRP map, the beam must be steered in multiple
directions to sample the 3D space. We used the Fibonacci spiral
[16] to distribute 600 points in a nearly-uniform spherical pattern.
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This distribution was chosen as it can generate any number of points
with the only major irregularities in spacing occurring near the poles
[17], which are uncommon positions for sound sources. A map was
generated for each frame of audio, describing how the sound power
impacting on the measurement position changed over time. We split
our audio into frames of 256 samples, using rectangular windows
and no overlap.

2.2. Peak-finding

The series of SRP maps is then passed to a peak-finding algorithm.
Peak-finding in a spherical function presents a challenge in that the
wraparound of the sphere at the edges of the data i.e. f(2π, φ) =
f(0, φ) has to be taken into account, along with the fact that the
sphere has not been sampled with a regular grid.

We used the peak-finding function from the dipy Python library
[18]. Originally designed for analysis of MRI data, this peak-finder
overcomes these issues by requiring the sampling directions as input
as well as the power map. There are two parameters that govern the
behaviour of the function. The first, rel pk, is used to calculate a
threshold below which to discard peaks by:

threshold = ∧+ rel pk ·R (2)

where R is the range of the data and ∧ is either the minimum of the
data or 0 if the minimum is negative. The second factor is min sep,
an angular distance that governs the minimum separation allowed
between peaks. This helps avoid groups by discarding peaks that
are found within this distance of each other - only the largest peak is
retained. The algorithm returns an indeterminate number of peaks,
so we allocated enough memory for a maximum of 20 per frame.
This could easily be extended if the application demanded it, but in
practise this limit was rarely approached. The output of this stage
is a list of vectors containing the angle of the detected peaks along
with the time in seconds.

2.3. Clustering

In order to estimate coherent sound sources, we used the DBSCAN
algorithm [12] to intelligently cluster sets of peaks proximal in
space and time. DBSCAN is an unsupervised algorithm that groups
data into clusters based on their proximity, with points in low-
density regions (having fewer neighbours) designated as outliers.
This algorithm is very useful in terms of estimating which peaks
belong to the same source sounds. Onset and offset times for each
source can be predicted by considering the first and last-occurring
peak points grouped into each cluster.

To once again avoid the problems mentioned in Section 2.2
involving spherical wraparound points, the spherical co-ordinate
component of each peak vector is converted to Cartesian co-
ordinates. Each peak is therefore mapped from 3D (t, θ, φ) to 4D
(t, x, y, z), similar to the approach used in [6]. Without this pro-
cess, there would be a disconnect in the clusters identified by DB-
SCAN as sources moved across or near to the spherical co-ordinate
boundaries.

The spatial dimensions of the data were normalised, as is stan-
dard in machine learning, to zero mean and unit variance. The time
dimension was not collapsed, as in testing this resulted in clusters
being made of peaks occurring in similar spatial locations but sep-
arated by large amounts of time. There are two main input parame-
ters for the DBSCAN algorithm:

• ε - The largest distance between two adjacent points before the
algorithm considers assigning the points to different clusters.

• MinPts - The number of data points required within ε of a given
point for that point to be considered a ‘core’ point. This affects
how dense groups need to be in order to be clustered.

2.4. Regression

Each cluster is used to train a set of Support Vector Regressors
(SVRs) [19], which create models of source trajectories. Since the
clusters are labelled by the DBSCAN stage, this stage of learning
is supervised. A separate regressor is trained for each spatial di-
mension, modelling x, y, and z separately against t, and the outputs
of these three models are combined for a final 4D trajectory. The
regressors serve to smooth the raw data, which can exhibit a cer-
tain amount of ‘jitter’ as adjacent sample points are instantaneously
identified as peaks in a given frame. The model can also be used to
fill in missing points in the cluster, as there might not necessarily be
a peak identified in the cluster for every time step. In this way we
provide some mitigation for interference.

The salient input parameter for the SVR algorithm in terms of
this study is C, which is the cost associated with the distance of
input data from the regression line. A higher value of C causes
overfitting as the cost associated with points not coinciding with
the line is high. In this study we determined experimentally to use
1× 10−3 as the value forC, as this ensured smoother predicted tra-
jectories with minimal jitter. The output of these regressors is calcu-
lated for every frame between the first and last points of each cluster.
The predictions are then re-scaled back to the original spatial ranges
and the Cartesian co-ordinates are converted back to spherical co-
ordinates, giving the final output of the system.

3. EVALUATION

3.1. Dataset

The system was tested using an expanded version of the TUT Sound
Events 2018 Ambisonic Anechoic Dataset [20]. This dataset fea-
tures synthetic Ambisonic scenes with sounds at static locations in
the full range of θ and at φ between±60◦, with a resolution of 10◦.
Scenes are included with three levels of polyphony, up to a maxi-
mum of one, two or three simultaneous sounds active (denoted OV1
to OV3). Using synthetic data, the level of polyphony, position, and
movement of sounds is controllable and can therefore be precisely
known. Real recordings would have to be labelled manually and
this would be very labour-intensive. Indeed, it is not clear how one
would go about labelling real recordings for DOA in a way that
would be at all reliable.

Since the original dataset is only available in FOA, we re-
synthesised it in fourth-order HOA using the original scene descrip-
tion files and source sounds from the DCASE 2016 task 2 dataset
[21], which contains a variety of everyday sounds. See [7] for more
detail on the method for synthesising the data. The dataset features
240 training examples and 60 testing examples for each OV. Our
system has no need of training, so we used only the testing exam-
ples. The examples were all resampled to 16 kHz, as would be
necessary with real-world Eigenmike recordings in order to avoid
spatial aliasing artefacts due to the geometry of the array [22].
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3.2. Metrics

To assess the system we employ the two frame-wise DOA metrics
used in the DCASE 2019 Task 3 challenge [6, 7, 23]. The first is
DOA error, defined as:

DOA error =
1∑T

t=1D
t
E

T∑

t=1

H(DOAt
R,DOAt

E) (3)

where DOAt
R and DOAt

E are lists of reference and estimated
DOAs, respectively, in frame t. Dt

E is the number of estimates
in DOAt

E , and H is the Hungarian algorithm [24], used to assign
predicted angles to reference angles based on optimising pair-wise
costs using angular distances. This metric gives the average error
between predicted and actual DOA angles.

The second metric is frame recall (FR), formally defined for
DCASE 2019 as [23]:

FR =
1

T

T∑

t=1

1(Dt
R = Dt

E) (4)

whereDt
R is the ground-truth number of sources present in frame t,

and 1 is an indicator function which outputs one where the brack-
eted condition is met, otherwise returning zero. FR indicates the
proportion of frames where the estimated and reference number of
active sounds are equal. A perfect system would have a FR of 1 and
a DOA error of 0.

3.3. Optimisation

To assess the system, we ran it on all 60 test files for each order
of Ambisonics from first to fourth-order (denoted N1 to N4) and
each level of polyphony available in the dataset. Metrics were cal-
culated for each file, with their means calculated to characterise the
system’s performance across the whole dataset.

To find the best possible performance for each N and OV, we
used the hyperopt library [25] to run 1000 iterations using vari-
ous combinations of hyperparameters, optimising for FR. Follow-
ing preliminary tests to find appropriate ranges, we set the search
space as follows:

• {ε ∈ R | 0.1 ≤ ε ≤ 1.25}
• {MinPts ∈ Z | 3 ≤ MinPts ≤ 10}
• {rel pk ∈ R | 0.0 ≤ rel pk ≤ 1.0}
• {min sep ∈ Z | 0 < min sep < 90}

Hyperopt uses the Tree Parzen Estimator (TPE) algorithm [26] to
focus on optimal values over time. This enables more fine-tuning
of the system’s performance compared to the same number of iter-
ations in a random search.

4. RESULTS

4.1. Optimised Systems

Figure 1 shows the performance metrics recorded for each level of
overlap and Ambisonic order from systems optimised for maximum
FR, along with results from SELDnet reported in [6], as a compari-
son. It can be seen that performance on OV1 audio is very good re-
gardless of N, with almost perfect FR and low DOA error of around
3◦. For OV2 there is a clear pattern of improvement in performance
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Figure 1: Plot of DOA Error against FR for systems using parame-
ters maximising FR, as well as reported SELDnet results [6].

with increase of N. OV2/N4 yields FR of 0.85 with DOA error of
2.9◦, with OV2/N2 yielding FR of 0.81 with a DOA error of 4.2◦,
remarkably close to the OV2/N4 performance. There is a larger gap
between OV2/N1 and OV2/N2 results than between the other or-
ders. This pattern of performance difference across N appears to
be more pronounced as OV increases. For OV3/N1 the DOA error
is a relatively poor 19.7◦, with a FR of 0.55. OV3/N2 reduces the
DOA error to 5.7◦, an improvement of 14◦, whilst the gap between
OV3/N2 and OV3/N4 is just 2.5◦. FR also increases with N, though
the difference is not so marked as that of DOA error.

The results achieved for OV1 are very closely aligned with those
achieved by SELDnet. DOA error for OV2 is smaller than the
SELDnet result in all orders, but FR does not begin to approach the
SELDnet result until higher orders are used. SELDnet outperforms
this system for OV3/N1, but is outperformed in terms of DOA error
for OV3 using all higher orders. Again, the FR achieved by SELD-
net is only approached using higher orders.

4.2. Performance Variance

Figure 2 shows the distribution of results returned by all 1000 it-
erations of the system using various hyperparameters. It should be
noted that due to the use of the TPE algorithm these results will be
skewed, with more data on performance with hyperparameters set
close to optimal values. This accounts for the large number of visi-
ble outliers, although they represent only a small proportion of the
1000 iterations.

It can clearly be seen in Figure 2(a) that increasing the order of
the beamformer decreases the median and variance of DOA Error
for OV2, and to an ever greater degree for OV3. Similarly to the
pattern of results in Figure 1, the largest reduction in both is be-
tween N1 and N2, with higher orders yielding diminishing returns
in this regard. The comparatively low variance in systems using N2
or above indicates a degree of robustness to varying hyperparame-
ters, at least within a certain range. This could be a benefit when
using the system on real-world audio in which the precise number
of sources would usually be unknown.

Returning attention to the outliers, it can be seen that there are
iterations of the system that achieved very low DOA error values.
These are not, however, the results shown in Figure 1, as achieving
this low DOA error incurs a trade-off whereby FR becomes poor.
Further investigation indicated that these metrics were recorded on
iterations where both peak-finding parameters discussed in Section
2.2 were set very low. This results in clusters of peaks being identi-
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Figure 2: Distributions of DOA Error and Frame Recall system per-
formance metrics across all 1000 hyperopt iterations.

fied in the directions of the sound sources, as opposed to the single
peaks enabled when the parameters are set more appropriately. The
presence of these clusters may enable the regression stage to inter-
polate and find a truer DOA for the source lying in the centre of
these peaks. Unfortunately, lowering these hyperparameters also
results in an increase of spurious peaks, leading to greatly reduced
FR. Despite these considerations, in a context where precise DOA
measurement was of greater importance than an exact number of
active sources, such optimisation for DOA error might be desirable.

The distributions of FR values are shown in Figure 2(b). Once
again, higher Ambisonic orders tend to have better performance
both in median and maximum values. There is once again a larger
increase in performance between N1 and N2 than for other orders,
though this is not as pronounced as with DOA error values. Un-
like DOA error, FR declines consistently given increasing levels of
sound overlap. The variance in FR for OV1 decreases between N1
and N2, but this pattern is not repeated for OV2, where variance re-
mains consistent regardless of N, or OV3, where variance actually
increases between N1 and N2.

5. DISCUSSION

Results indicate, in terms of best performance as well as average
performance and variance, that there is a larger gap between N1
and N2 than between N2 and N3 or N4. Increasing N increases
the computational complexity of the beamforming stage, as well as
the amount of storage space required for the recorded data and the
number of microphone capsules required to capture real-world au-

dio. Since this increases cost at all stages, we have an incentive to
keep N low. The jump in performance between N1 and N2 indicates
that N2 may be worth the increased cost, yet limited performance
gains at higher orders suggests that second-order Ambisonics might
mark a good compromise point for this application. On the other
hand, the results do show that the improvements in performance
with increased N become more pronounced as OV increases. Since
real-world acoustic scenes are far more complex than the synthe-
sised scenes tested here, use of higher orders may still be useful
dependent on context. It is interesting to note that the lowest DOA
error achieved at each OV in the optimised systems shown in Fig-
ure 1 are very similar, at around 3◦. This corresponds closely to
the average angular distance between pairs of adjacent points in the
600-point Fibonacci spiral, which is 2.72◦, indicating that the sys-
tem could achieve even lower DOA values if a finer grid pattern or
some method of interpolation were employed (though this would
complicate the peak-finding stage).

The fact that FR appears to decrease linearly with increasing
OV is interesting, especially given that the synthetic scenes used
here are anechoic. The diminishing returns in terms of improve-
ments with increasing Ambisonic order indicate a trend towards a
maximum performance level which is clearly less than perfect. The
best results achieved here are very closely aligned with the results
from SELDnet, which provides some evidence there may be a ceil-
ing inherent in either the dataset used or more fundamentally with
this type of approach. Increasing N will likely result in smaller and
smaller improvements whilst at the same time increasing computa-
tional complexity exponentially. This indicates that improvements
to FR will probably require an improved or alternative method for
producing the power map than the plane-wave decomposition SRP
method used here or the neural network-generated spatial pseudo-
spectrum used in [6, 7]. It is also possible that given dynamic
scenes with multiple moving sources that when the trajectories of
two or more sources intersect, the DBSCAN algorithm used here
would link them together, thus causing the regression stage to pro-
duce wildly erroneous DOA estimates. One potential solution to
this could be utilising the different frequency bands present in the
power map calculation (e.g. not summing over k in Equation 1)
to add another dimension that would make it less likely for over-
lapping sounds to be clustered provided they remained in different
frequency ranges (ω-disjoint orthogonality [4]).

6. CONCLUSION

In this paper, we have specified and tested a system using spherical
harmonic beamforming and unsupervised peak clustering for con-
ducting sound event localisation in Ambisonic recordings of acous-
tic scenes. The system has been tested on synthetic scenes it has
been shown that performance given a single active source is con-
sistently very good across all Ambisonic orders, with reductions in
performance occurring as the number of concurrent sources is in-
creased. Increasing Ambisonic order improves performance, espe-
cially between first and second-order.

Future work on this system could seek to improve frame recall
by using an alternative method for calculating the power map. DOA
error performance could be improved by introducing interpolation
to the peak-finding stage. Apart from these improvements, the ob-
vious next step would be to add a labelling stage, making this a
fully-fledged SELD system.
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