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ABSTRACT

We propose an audio captioning system that describes non-speech
audio signals in the form of natural language. Unlike existing sys-
tems, this system can generate a sentence describing sounds, rather
than an object label or onomatopoeia. This allows the description to
include more information, such as how the sound is heard and how
the tone or volume changes over time, and can accommodate un-
known sounds. A major problem in realizing this capability is that
the validity of the description depends not only on the sound itself
but also on the situation or context. To address this problem, a con-
ditional sequence-to-sequence model is proposed. In this model, a
parameter called “specificity” is introduced as a condition to control
the amount of information contained in the output text and generate
an appropriate description. Experiments show that the model works
effectively.

Index Terms— audio captioning, unknown sounds, sequence-
to-sequence model, cross-modal embedding

1. INTRODUCTION

Sound plays an important role in our daily life. It helps us to under-
stand the events around us. In the realm of computational auditory
scene analysis, the major topics have been sound source separation,
acoustic event detection, and its classification [1]. For example,
studies on environmental sounds include the detection or classifi-
cation of acoustic events [2, 3], acoustic scene classification [4],
and abnormal sound detection [5, 6]. However, little work has been
done regarding detailed description of sounds.

Against this background, here we address audio captioning for
non-speech audio signals. Audio captioning here means generating
texts describing sounds given an audio signal as an input. Such cap-
tions can include more information than just an acoustic event label
can, such as how the sound is heard and how the tone or volume
changes over time.

An audio caption is a way to visualize acoustic information so
that we can understand what is happening at a glance, even without
actually hearing the sound. Therefore, it will be useful for multi-
media content search, sound effect search, abnormality search, and
closed captioning systems that can describe non-speech sounds. To
the best of our knowledge, no work has been reported regarding
automatic audio captioning systems that can generate a sound de-
scription in the form of a full sentence.

This paper is organized as follows. Section 2 details the audio
captioning problem. Section 3 describes the proposed audio cap-
tioning models: the basic model and the conditional model. Section
4 explains the experimental results, which show the effectiveness of
the proposed model. Section 5 concludes the paper.

2. PROBLEM OF AUDIO CAPTIONING

2.1. Related Works

Recently, an onomatopoeia generation system has been proposed
[7, 8]. Here, onomatopoeia means a word or a sequence of
phonemes that directly imitates a sound. Based on an encoder-
decoder model, the system produces valid onomatopoeias for var-
ious input sounds. Onomatopoeia generation can be viewed as a
kind of natural language generation for sounds. However, an au-
dio caption is a sequence of words rather than phonemes, and the
correspondence to the input sound is highly indirect. Whether such
an indirect sequence conversion is possible or not has been an open
problem.

Another related task is image captioning. Compared to object
recognition, image captioning produces not only a list of the object
labels contained in an image but also sentences that may include
their attributes or the relationships among them. Recently, systems
based on the encoder-decoder model [9, 10] have achieved reason-
ably good accuracy [11, 12]. In those studies, conditional neural
networks (CNN) pre-trained for an image classification task were
employed as the encoder, and the recurrent language model (RLM)
[13] was used for caption generation based on a fixed size vector.
Video captioning has also been addressed, and the long short-term
memory (LSTM) was shown to effectively deal with an input with
variable length [14].

However, information contained in audio signals can be much
more ambiguous than that in images. In fact, it is often difficult
even for humans to accurately recognize the objects in an audio sig-
nal. Moreover, how to decide the best description is not obvious
for given audio because the validity of the description generally de-
pends on the situation or context as well as the sound itself. For
example, a short warning may be more appropriate than a long de-
scription and vice versa. It is important to note that such problems
particularly come to light in the audio captioning task.

2.2. Specificity Conditioning

To deal with the avobe-mentioned nature of the audio captioning
problem, we introduce a specificity measure of the output text based
on the amount of information that the text carries.

Let pw be the probability of appearance of a word w in a lan-
guage. The amount of information carried by a word w is defined
as a negative logarithm of its probability:

Iw ≡ − log pw (1)

Given an arbitrary natural language corpus, or a dataset of audio
captions, we can estimate pw by pw = Nw/N , where Nw is the
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Figure 1: Block diagram of SCG.

number of appearances of w, and N is the total number of words in
a language corpus or training dataset.

We consider Iw as specificity ofw, and define Is, the specificity
of an audio caption s consisting of words w1, w2, . . . , wn, by the
sum of the information values with respect to the words in s:

Is ≡
n∑

t=1

Iwt (2)

Obviously, Is becomes high when infrequent words are contained
in the caption or the caption is long in terms of the number of words.

In the audio captioning, more (or less) specificity is not always
better, and therefore, the ability to control the text specificity is
essential in generating a valid output text. In the following sec-
tion, we first propose a caption generator based on a plain encoder-
decoder model, and then we extend it to a conditional encoder-
decoder model where the specificity is treated as a condition for
caption generation.

3. PROPOSED MODEL

3.1. Sequence-to-Sequence Caption Generator

Figure 1 shows the audio caption generator with the plain sequence-
to-sequence caption generator (SCG).

A series of acoustic features x is input to the encoder consist-
ing of recurrent neural network (RNN) and embedded within a fixed
length vector z, which is a latent variable that serves as latent fea-
tures of the input acoustic signal. Then, the decoder is initialized
based on the derived latent variable. The decoder serves as an RLM,
which calculates estimated probabilities of every word in each step
and chooses the word with the highest probability wt as input for
the next step. The generated audio caption ŝ = (w1, w2, . . .) is the
series of the chosen words. The input in the first step is “BOS (be-
ginning of the sentence)”, and the generation of the audio caption
finishes in a step when “EOS (end of the sentence)” is chosen.

The SCG can be viewed as an approximation of the generative
model for the following optimal audio caption s̄:

s̄ = arg max
s

p(s | z), z = f(x), (3)

where f is a mapping to derive latent variables from acoustic signals
and corresponds to the encoder in the model. p(s | z) is a probabil-
ity distribution in which each audio caption is generated when the
latent variable is given. The decoder is expected to generate audio
captions with the highest probability.

Pairs comprising an acoustic signal and audio caption for the
signal are used for learning this model. Given an acoustic signal as

Figure 2: Block diagram of CSCG. Specificity condition c is given
to the decoder, so that the resulting output sentence has the speci-
ficity close to the value of c.

input, the model calculates cross entropy between the output layer
of the decoder and the corresponding word of the target audio cap-
tion in each step of the decoder. Summation of all the cross entropy
values is used as a loss function Lgen., which is viewed as the loss
of the audio caption generation. Let ot be the vector provided by
the output layer in step t, yt be the one-hot vector representing wt,
the tth word in the current training sentence, and n be the number
of words in the sentence. The error function is then expressed as
follows:

Lgen. ≡
n∑

t=1

cross entropy(ot,yt) (4)

=

n∑

t=1

− log(p̂t(wt)) (5)

Then, the model is optimized by backpropagation based on Lgen..

3.2. Conditional Sequence-to-Sequence Caption Generator

Inspired by the conditional generative models that have been suc-
cessfully applied in various works [15, 16, 17, 18, 19], here we pro-
pose a conditional sequence-to-sequence caption generator (CSCG)
to control the specificity of the generated audio captions.

As illustrated in Figure 2, the encoder of the CSCG works in the
same manner as that of the SCG. In addition, specificity condition c
is given to the decoder in addition to the latent variable derived from
the audio signal. The CSCG is trained to generate the following
optimal audio caption s̄:

s̄ = arg max
s

p(s | z, c) (6)

We expect s̄ to have a specificity close to c and, at the same time,
correctly correspond to the input acoustic signal.

We can train the CSCG by alternatively performing the follow-
ing two steps. In the first step, audio caption generation and the
specificity are learned simultaneously. The pairs of acoustic signals
and audio captions are used for the learning. The specificity of an
audio caption of these pairs, Is, is input to the decoder as the speci-
ficity condition, and the model is trained by backpropagation. To
control the specificity of the generated captions, we introduce the
specificity loss Lsp.. The total loss function in this step, LSC-1, is
defined as the weighted sum of Lgen. and Lsp.:

LSC-1 ≡ Lgen. + λLsp., (7)
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Figure 3: Estimation of specificity of a generated caption and speci-
ficity loss. Each value at the output unit, pt(w), denotes the esti-
mated probability for the corresponding word w at step t.

where λ is a hyperparameter to balance the two loss values. Audio
captioning is an ill-posed problem with potentially multiple solu-
tions, and the second term has the role of regularization to deter-
mine the unique solution by adding constraints to the specificity of
the generated caption.

The text generation with the decoder includes a discrete pro-
cess to choose one word in each step, and that makes it impos-
sible to backpropagate the losses. To solve this problem, we ap-
proximate the specificity of generated captions without discrete pro-
cesses. Figure 3 illustrates the estimation process. The expectation
of the amount of information of ŵt corresponding to the tth step
of the decoder can be calculated using its output layer, each unit of
which encodes the probability of corresponding words.

E[Iŵt ] =
∑

w

p̂t(w)Iw . (8)

The summation of E[Iŵt ] for all steps is Îŝ, which is the estimated
value of the specificity of the generated caption ŝ.

Îŝ =

n∑

t=1

E[Iŵt ] (9)

Here, we define specificity loss Lsp. as follows:

Lsp. ≡ (Îŝ − c)2 . (10)

We can optimize the model by backpropagation using Lsp, because
it is calculated from the vectors obtained from the output layer of
the decoder by using multiplication and addition only.

The second step is introduced to alleviate overfitting with re-
spect to specificity. In this step, the decoder is trained only with
texts rather than audio-text pairs. First, a latent variable z is ex-
tracted in advance from an audio signal by using the encoder with
the current parameter. This means that we sampled z from real
audio signals, rather than using random vectors, but signals not as-
sociated with any audio captions can be used here. Then, the speci-
ficity condition c is generated randomly. As training sentences, any
captions with the closest specificity value to c can be used. We train
only the decoder using backpropagation based on the following loss
function LSC-2:

LSC-2 ≡ λ′Lgen. + λLsp. (11)

Hyperparameter λ′ smaller than 1 is chosen. Even when the audio
caption for calculating Lgen. does not correspond to the input signal,
the first term has the role of regularization to suppress the generation
of unnatural sentences.

Table 1: Experimental conditions.
Decoder LSTM layers 3
LSTM cells 512
Latent variable dimensions 256
Output word labels 1177
Normalization of c division (max(Is)→ 2.0)
Batchsize 200
Total epoch 400
Hyper-parameter λ 2.0× 10−2

Hyper-parameter λ′ 1.0× 10−2

Optimizer ADAM [20]
MFCC dimensions 80
FFT window (MFCC) 2048 samples
FFT shift (MFCC) 512 samples

4. EVALUATION

To evaluate the effectiveness of the proposed model, we performed
objective and subjective experiments.

4.1. Dataset

We used a part of the audio signals contained in Free Sound Dataset
Kaggle 2018 [21], which is a subset of FSD [22] and includes vari-
ous sound samples digitized at 44.1 kHz with linear PCM of 16 bit
accuracy. We chose 392 signals for the training set and 29 for the
test set. These signals are not longer than 6 s in length and include
various everyday sounds.

To build the training set, audio captions were collected from
human listeners. All the collected captions were in Japanese. Since
one audio signal can correspond to various captions with various
specificity values, multiple audio captions were attached to each
audio signal. To accomplish this, 72 Japanese speakers were asked
to describe the sound in Japanese text. We associated one to four
audio captions for each training signal, and five audio captions for
each test signal. The total numbers of captions were 1,113 in the
training dataset and 145 in the test dataset. Then, the captions for
the training signals were augmented to be expanded to 21,726, by
manually deleting or replacing the words.

4.2. Conditions

Table 1 lists the experimental conditions. We used a series of mel-
frequency cepstral coefficients (MFCC) and f0 as the input. The
vocabulary size for the system was 1,440, as there were 1,437 kinds
of words in the audio captions for training, and three special sym-
bols “BOS”, “EOS”, and “UNK” (unknown word).

4.3. Examples

Table 2 shows some examples of the captions generated from the
test signals. They were manually translated from the Japanese out-
put.

4.4. Controllability of Specificity

Table 3 lists the averages and the standard deviations of the speci-
ficities for generated captions. Since the SCG does not deal with the
specificity, the standard deviation is relatively large. On the other
hand, the specificity values with the CSCG on average are quite
close to the conditioned input c. This shows that the proposed con-
ditioning mechanism works effectively.
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Table 2: Examples of generated audio captions (English translation).
Sound source Methods c Generated captions

Bell

SCG A high-pitched metallic sound echoes.

CSCG

20 A loud sound.
50 A high sound like friction of metals.
80 A metal bell is hit only once and makes loud, high and sustained sound.
110 A high-pitched sound sounds as if a metal is hit, first loudly and then gradually fades out.

Bass drum

SCG A low sound rings for a moment.

CSCG

20 A low sound sounds for a moment.
50 A light and low-pitched sound as if something is dashed on the mat for a moment.
80 A drum is uninterestedly played, making a faint, very low-pitched sound only once.
110 A faint, low-pitched sound sounds as if something is hit dully, and it soon disappears.

Glass

SCG High-pitched sounds continue as if a metal is rolling

CSCG

20 Glass is broken.
50 A dry sound of breaking glass sounds once a little loudly.
80 A high-pitched sound as if glass is breaking diminishes in a moment.
110 A high, cold sound as if glass is breaking is heard for one or two seconds.

Table 3: Specificity of the generated captions.
Methods c Average SD

SCG 38.0 21.2

CSCG

20 21.7 2.4
50 57.7 5.0
80 90.5 9.5
110 107.2 20.6

Figure 4: Comparisons of SCG and CSCG. The “BEST c” bar
shows the results obtained by using the best c value (among the
four) for each signal. The numbers in the bars show the percentage.

4.5. Objective Scores

Table 4 shows the BLEU scores. The CSCG with c = 50 marks the
best BLEU, 17.01%, but it is still lower than that of human captions.
Note that BLEU has a penalty for short sentences, which adversely
affected the BLEU of the CSCG with low c values.

Table 4: BLEU Scores.
Methods c BLEU [%]

SCG 13.02

CSCG

20 5.83
50 17.01
80 12.52
110 11.21

Human 22.35

4.6. Subjective Evaluation

We evaluated the proposed methods with two kinds of subjective
evaluations.

Evaluation 1 investigated acceptability for the generated cap-
tions. The test audio signals and corresponding generated captions

Table 5: Acceptability scores.
Methods c Average SD

SCG 1.45 1.13

CSCG

20 1.69 1.17
50 1.29 1.11
80 1.14 1.16
110 1.07 1.07

Human 2.11 0.87

were presented to 41 subjects who understand Japanese. The sub-
jects evaluated the captions in four levels: “very suitable”, “suit-
able”, “partly suitable” and “unsuitable”. These answers were con-
verted to points of 3, 2, 1 and 0, and the values of the average were
the metric of acceptability. The captions given by humans were
also evaluated for comparison. All the subjects responded to the 29
sound sources, for a total of 1,189 responses. Table 5 shows the
results. The average scores of all methods are over 1.0, which is
higher than the point of “partly suitable”. The CSCG with c = 20
has the best acceptability within the proposed method.

Evaluation 2 compared the SCG and the CSCG models. The
subjects were presented with one audio signal and two audio cap-
tions, “A” and “B.” They were then asked to choose one of the five
options: “A is much better”, “A is better”, “Neutral”, “B is better”,
or “B is much better”. Either “A” or “B” (randomly selected) was
the audio caption generated with the SCG and the other was the one
generated with the CSCG. Figure 4 shows the results. With an ap-
propriate choice of c, CSCG outperformed SCG for about 2/3 of the
test samples. That is, if the optimal c value is known somehow in
advance, CSCG can produce better captions compared with SCG.

5. CONCLUSION

This paper proposed a neural audio captioning system for audio sig-
nals. The experiments showed that two versions of the proposed
method, SCG and CSCG, work effectively and that the conditional
version (CSCG) can successfully control the amount of information
contained in the output sentence. It was also shown that CSCG gen-
erated subjectively better captions than SCG when we could choose
the best specificity value for each signal. Unlike the existing au-
dio classification systems, the proposed system does not solve the
classification problem but performs sentence generation using the
learned vocabulary, as in machine translation. For this reason, it
tends to perform reasonably well even for unknown or ambiguous
sounds. In our future work, we will investigate a specificity adapta-
tion method for individual sounds, situations, and applications.
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