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A ROUTE TO THE ANCIENT DISCOVERY
OF NON-UNIFORM PLANETARY MOTION

ALEXANDER JONES, University of Toronto

The models of Greek kinematic astronomy, and the medieval traditions that descended
from it, were constructed from “uniform circular motions”. I do not know of any
rigorous definition of this kind of motion in a classical text. In the simpler models it
is easy to see what constitutes uniform motion:

(i) In an eccentric model with a stationary or moving apsidal line, such as Ptolemy’s
solar model (Almagest Book 3), the heavenly body travels with constant speed along
its eccentre as measured from the apogee of the eccentre, or equivalently it travels
with constant angular velocity as seen from the centre of the eccentre relative to the
apsidal line.

(ii) In a simple epicyclic model, such as Ptolemy’s first model for the Moon (Alma-
gest 4), the body travels with constant speed along its epicycle as measured from the
apogee of the epicycle, while the centre of the epicycle moves with constant speed
along its deferent as measured from any fixed point on the deferent.

Ptolemy stretched the interpretation of uniform circular motion in his more com-
plex models on several occasions:

(a) In the revised lunar model of Almagest 5.2, the centre of the Moon’s epicycle
travels along an eccentric deferent with a moving apsidal line, in such a way that the
epicycle centre has constant angular velocity as seen from the centre of the cosmos,
not from the centre of the eccentre.

(b) In the same model (as demonstrated in Almagest 5.5), the apogee of the epicycle,
relative to which the Moon’s own motion is uniform, is defined as lying on a radius
through the centre of the epicycle and through a moving point diametrically opposite
the centre of the eccentre on the circular path of the centre of the eccentre.!

(c) In the model for Mercury (Almagest 9), the centre of the epicycle travels along
a revolving eccentre with uniform angular velocity as seen not from the centre of
the eccentre but from a point whose position relative to the centre of the cosmos is
sidereally stationary.

(d) In the models for the remaining four planets (Almagest 10—11), the centre of the
epicycle travels along a sidereally fixed eccentre with uniform angular velocity as
seen not from the centre of the eccentre but from a point twice as far from the centre
of the cosmos along the apsidal line as the centre of the eccentre.

Ptolemy chooses to regard all these motions as uniform, though obviously not in
the intuitive sense. Most notably, (a), (c), and (d) result in making the point that is
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moving “uniformly” vary in actual speed in its revolution with respect to the refer-
ence point.

Ptolemy states (Almagest 5.1) that he discovered the phenomena motivating (a)
and (b) by examining elongations of the Moon from the Sun observed by Hip-
parchus and by himself, such as the ones that he adduces in Almagest 5.3 and 5.5
to demonstrate the characteristics and parameters of the revised model. This seems
to be a credible assertion. In Almagest 9.9 Ptolemy determines the location of the
centre of uniform motion of Mercury’s model (c) through an analysis of observed
greatest elongations of Mercury, and while the demonstration of Mercury’s model
in the Almagest manifestly does not reproduce the heuristic route by which Ptolemy
arrived at that model, it is nevertheless plausible that the original derivation relied
on greatest elongations.”

The special centre of uniform motion in (d), the so-called ‘equant’ point, presents
the most historically interesting problem. Like (a), and unlike (b) and (c), the equant
reproduces a real property of planetary motion rather than an artifact of imperfect
observations or analysis. Moreover, Ptolemy demonstrates the distinct existence and
location of the equant point, such that the centre of the eccentric deferent bisects the
line from the centre of the Earth to the equant point, only for Venus. The basis of
his demonstration is a variety of observation that is not possible for the three outer
planets: greatest elongations observed when Venus’s epicycle was calculated to be
roughly halfway between the apogee and perigee of the deferent (Almagest 10.3). It
is very difficult to believe that Ptolemy arrived at the equant in this way, and for this
planet. Venus’s eccentricity is rather small, so that while Ptolemy could perhaps have
detected that Venus’s centre of uniform motion seemed to be further from the centre
of the cosmos than the centre of its eccentre, it would not be so easy to find the 2 to
1 ratio of distances (which is in fact more or less optimal for this type of model) or
to justify its application to the remaining three planets. That Ptolemy demonstrates
the equant for Venus is probably due to the circumstance that Venus is the first planet,
in the sequence from innermost to outermost that Ptolemy chooses to follow, that
he believes calls for this model type. He may also have wished to provide a ‘proof’
of the model precisely for the planet with the smallest eccentricity to ward off any
doubt that it applies to all the planets except Mercury.

In an unpublished paper cited by Toomer in his translation of the Almagest,
Swerdlow proposed a different route to the equant, in which the central role would
have been played by the retrogradations of the outer planets, and in particular Mars.?
A similar (but by no means identical) hypothesis was independently developed by
Evans.* The starting point for both is a remark that Ptolemy makes in Almagest 10.6
when he is making the transition from his treatment of the inner planets to the outer
ones, and that they see as an indication of how Ptolemy first arrived at the equant
and the bisection of the eccentricity:

In the case of the remaining three, i.e. Mars, Jupiter, and Saturn, we find a single
model for their motion, similar to the one that was determined for Venus, namely
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the model according to which the eccentric circle, on which the centre of the
epicycle always travels, is drawn around a centre that bisects the line between the
centres of the ecliptic [i.e. the centre of the cosmos] and of the circle that brings
about the uniform revolution of the epicycle [i.e. the ‘equant circle’ centred on
the equant point]. For in the case of each of these planets, speaking in terms of
a rather rough method, the eccentricity that is found by means of the greatest
difference caused by the zodiacal anomaly proves to be approximately double
the eccentricity derived from the magnitude of the retrogradations around the
greatest and least distances of the epicycle.

What Ptolemy means by the eccentricity found “by means of the greatest differ-
ence caused by the zodiacal anomaly” is clear enough. The difference in question is
that between the longitude at which the planet would have appeared if there were no
zodiacal anomaly and the longitude at which it actually appears. Assuming a prelimi-
nary model involving an epicycle (for the synodic anomaly) and eccentric deferent
(for the zodiacal anomaly) but no equant, Ptolemy measures this eccentricity for the
three outer planets in the first parts of Almagest 10.7, 11.1, and 11.5 by analysis of
a set of three observations of mean oppositions, analogous to the analysis by which
he measured the anomalies of the Sun and Moon in Almagest 3.4 and 4.6.

Evans and Swerdlow interpret the “eccentricity derived from the magnitude of the
retrogradations” as meaning the eccentricity in an epicycle-and-eccentre model that
would produce the observed range of variation in the planet’s retrograde arcs.’ There
is some divergence in the particulars, since in Evans’s reconstruction of Ptolemy’s
reasoning, Ptolemy is speaking in the first instance of the eccentricity in an equantless
model that would generate, roughly speaking, the observed maximum and minimum
retrograde arcs, whereas Swerdlow takes Ptolemy’s statement as applicable to an
equant model in which the eccentricity of the centre of the eccentric is found, inde-
pendently of the eccentricity of the equant, from the variation of the retrograde arcs.
I will not attempt to summarize the courses of deduction that Evans and Swerdlow
propose, merely remarking that both presume, with good reason, that Mars furnished
the evidence, since it is the only one of the outer planets whose eccentricity is large
enough to produce a conspicuous variation in retrograde arcs.® For the convenience
of the reader, however, I will briefly review the behaviour of the retrograde arcs of
the outer planets in relation to eccentre-and-epicycle models.

Figures 1-3 show the actual retrograde arcs of Mars, Jupiter, and Saturn for the
first few synodic periods starting from A.D. 100, plotted as a function of the tropical
longitude of the midpoint of the retrogradation. Also plotted on each graph are the
maximum and minimum retrograde arcs predicted by (a) an equantless epicycle-
and-eccentre model using the bisected eccentricity and apogee of Ptolemy’s final
equant model, (b) an equantless model using the eccentricity of the equant in the
same model, and (c) Ptolemy’s equant model.” As one would expect, Mars shows
the most pronounced differences from model to model. What is most striking is that
the equantless models predict the largest retrograde arcs near perigee, whereas the
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F1G. 3. Retrograde arcs of Saturn ¢. A.D. 100.

maximum for Mars is actually at apogee. Bisecting the eccentricity derived from
oppositions yields a more reasonable maximum — at some cost to the minimum
— but it is still situated in diametrically the wrong direction (hence Evans posits that
an intermediate model with the apsidal line displaced 180° played a part in Ptolemy’s
route to the equant). For Jupiter even the equantless model with the half-eccentricity
predicts too large a variation in the retrograde arc; the actual variation is only about
a quarter of a degree, scarcely detectable for an ancient observer, and interestingly
the maximum and minimum are significantly offset from the apsidal line.® Only for
Saturn does the bisected eccentricity produce a perceptible improvement on the full
eccentricity in reproducing the amplitude and phase of the retrograde arcs, though here
Ptolemy’s too large epicycle radius means that the predicted values are noticeably too
large. Ptolemy’s equant models turn out not to generate retrogradations that behave
like the ones resulting from the equantless models with bisected eccentricity, and on
the whole they fit the phenomena more closely — spectacularly so for Mars.
While I have no fault to find with Swerdlow’s or Evans’s hypothetical routes to
the equant model, I do not think we need to feel bound by the passage from Almagest
10.6 quoted above to believe that historically the equant was discovered from retro-
grade arcs. In that passage, Ptolemy is not writing an historical or autobiographical
account, but giving an ostensibly empirical justification for a modelling assumption,
which might of course be related to the way Ptolemy arrived at the model, but for that
matter might not. There are a number of comparable passages in the Almagest where
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Ptolemy justifies a decision he makes about the structure of a model by appealing to
a phenomenon that can be succinctly expressed and easily understood with minimal
theoretical presuppositions.® Hence it seems justifiable to look for other observable
planetary behaviours that could have suggested the bisection of the eccentricity. We
would still expect such a behaviour to be manifested around the time of the retrogra-
dations, since that is when the planet is nearest the Earth so that the deficiencies of
a simple eccentre-and-epicycle model are most pronounced. In the following, I will
describe how one can be led directly to Ptolemy’s model by a kind of observation
that was readily available and that was of obvious utility for kinematic modelling.

Neugebauer has drawn attention to several ancient Greco-Roman astronomical and
astrological texts that mention a special stage in the synodic cycle of Mars when it
is at an elongation at or near 90° from the Sun; two such situations, called by Pliny
nonagenarii (“nintieths”), occur in each cycle, one roughly three months before
opposition, the other roughly three months after opposition.'® Neugebauer plausi-
bly interpreted these as references to the points when Mars passes in direct motion
through the longitude of its opposition. Such significance as the ancient sources
assign to the nonagenarii is purely astrological, although Neugebauer suspected that
they might also have been regarded for computational convenience as the limiting
points of the more or less linear interval of the planet’s direct motion. Since the term
nonagenarius is strictly appropriate only for Mars, I will use the expression “triple
passage” for the general situation of a planet passing three consecutive times through
its point of opposition.

So far as [ am aware, no actual reports of Mars passing direct through its recent or
imminent point of opposition survive among the few planetary observation reports in
classical sources (most are in the Almagest itself). However, the observation report
of Jupiter passing close by & Cnc on 241 B.C. Sept. 4 that Ptolemy uses to correct
Jupiter’s periodicities of mean motion in Almagest 11.3 catches the planet in just
this situation. Ptolemy himself does not allude to the fact, or make any use of it,
but it was likely the reason why this observation was preserved in whatever source
he had, since a recently discovered papyrus fragment of an astronomical treatise
from the generation before Ptolemy cites an observation report of Jupiter passing
the very same star on 241 B.C. Dec. 31 at its opposition.!! Hence it is reasonable to
ask whether triple passages might have had a theoretical application in the work of
Greek astronomers before Ptolemy.

In the following I designate the point of opposition of an outer planet @, and
the points where a planet has the same longitude before and after opposition ®,
and ©,. Figure 4 shows how the triple passage would be accounted for by a simple
epicyclic model of the kind that might have been current before Hipparchus’s time.
At opposition the planet lies along the radius from C, the centre of the deferent, to
E,, the centre of the epicycle. During the time 7' between ®, and @, the radius from
the epicycle’s centre to the planet revolves through the angle A&, and the radius
from C to the epicycle’s centre through AX , such that r/R = sin Ak /sin (AL, + AGL),
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F1G. 4. Triple passage of a planet assuming an epicycle model.

where r and R are the radii of epicycle and deferent respectively. AL, and AG., can be
calculated from the periodicities of the planet and the observed time 7',. Hence we
readily obtain the size of the epicycle. (The same radius, of course, should follow
from vsing 7, the time between ® and ©,.)

It is worth remarking in passing that little loss of accuracy need result if the
observations of ®, and @, are not made when the planet is at the exact longitude of
opposition, but instead at a nearby longitude, say with reference to a conveniently
situated star. To allow for this, one may calculate with T,.= %(T1 + T,) in place of
T, or T,; the error when @, and ®, are equally displaced is small because the rate of
change of the apparent velocity (as seen from C) near these moments is small.

If we hypothetically displace the observer from the centre of the deferent, we
obtain an eccentre-and-epicycle model, the variety that (it is plausibly supposed)
was commonly employed for the planets between Hipparchus and Ptolemy.!? In this
model the observed times 7', and T, between ®,, ®, and ®, do not in general lead to
an exact derivation of 7/R, because the change of viewpoint from which ®,, ®, and
©, are seen as the same longitude destroys the relation between AL, Ad, r, and R.
However, this relation still holds when the opposition falls along the apsidal line,
since then the apparent positions are the same as if one observed from C. If, therefore,
one knows the approximate location of the apsidal line (say from consideration of
the symmetrical distribution of planetary phenomena with respect to this line), one
can look for oppositions occurring at or close to either the apogee or the perigee,
and derive 7/R as before. Obviously one would expect the observed T, and T, to be
equal and to be the same duration at both ends of the apsidal line."

But what would observations show? To find out, we select triple passages of the
three outer planets in the sequence of years starting with A.D. 100 that fell close to
each planet’s apsidal line. We also include the analogous data for Venus’s inferior
conjunctions, which can be treated just like the oppositions of the outer planets except
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TABLE 1.
Date of Opposition (&} T, T, -
101 January 9 109° (near apogee) 83d 8od 84.5d
103 February 13 142° 83 85 84
105 March 22 180° 77 83 80
107 May 13 229° 68 71 69.5
109 July 27 302° (near perigee) 60 58 59
111 October 6 11° 73 68 70.5
113 November 21 58° 81 79 80

that the longitudes and dates of the conjunction must of course be calculated. The
method is probably not applicable to Mercury because of the difficulty of observing
this planet in the necessary configurations.

Thus for Mars a fifteen-year period of observations might yield the seven oppo-
sitions and associated time intervals shown in Table 1. The variation in 7, is pro-
nounced, and clearly dependent on longitude such that the maximum is at apogee and
the minimum at perigee. Supposing the radial distance R to be a constant 60 units,
and taking the extreme times as pertaining approximately to the situations where the
opposition occurs precisely at apogee and perigee, we find:

Mars T, 1R
Apogee 84.5 42.2/60
Perigee 59 36.3/60

It seems reasonable, however, to posit that » remains constant, in which case the
centre of uniform revolution must lie nearer the apogee than the perigee — that
is, we require an equant. The displacement of the equant C from the centre of the
deferent D (cf. Figure 5) is easy to determine: the angles ACE,, PCE,, CE,® ,,
and CE,®,, are known from the mean motions and the observed T, and T,,, and
hence the ratios of CD and of the epicycle radius to the radius of the deferent can
be calculated trigonometrically. From the above data for Mars, we find that CD is
approximately 5.7 units and 7 is approximately 39.1 units such that the radius is 60
units. These results compare very well with Ptolemy’s determination that CD is 6
units and » 39.5 units.

It will suffice to summarize our simulated “observational” data for the remaining
planets:

Jupiter T, /R
Apogee 121 12.0/60
Perigee 116 11.0/60

CD =26, r=11.5 (Ptolemy: CD =2.75, r =11.5).

Saturn T, r/R
Apogee 136.5 6.7/160
Perigee 130 5.9/60
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FiG. 5. Triple passages observed at apogee and perigee.

CD =4.1,r=6.3 (Ptolemy: CD =342, r = 6.5).

Venus T rR
Apogee 44.5 42.2/60
Perigee 41.5 36.3/60

CD = 1.0, r =43.4 (Ptolemy: CD =1.25, r =43.17).

The variation in Tm,g, which motivates the equant, should have been detectable for all
three planets from careful observations of stellar passages.'*

The location of the observer along the apsidal line can now be estimated from the
observed intervals in time and longitude between a pair of consecutive oppositions
(or, for Venus, conjunctions) near the apogee or perigee. Figure 6 shows the configu-
ration for a pair of oppositions, one of which (®,) is at the apogee; as before, C is
the centre of uniform motion, D is the deferent’s centre, and now 7 is the observer.
Angle CTE is the observed difference in true longitude between the two oppositions,
and angle ACE is the difference in mean longitude, calculated from the observed
difference in time. Since CD has already been determined, CE and hence CT can be
found trigonometrically. In a case where the two oppositions are equally situated on
either side of the apsidal line, one can of course carry out the same computations
using half the observed difference in true longitude as CTE and half the calculated
difference in mean longitude as ACE.

For example, Mars’s opposition of 109 July 27 fell close to the perigee, as is evident
from the near symmetry of 7, in the tabulation above. This opposition is “observed”
as occurring 801 days and 69.4° after its predecessor, and 806 days and 72.4° before
its successor. From the first pair, we find CT = 11.2, and from the second pair, CT
= 11.4 such that R = 60. Again, the oppositions of 101 January 9 and 103 February
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F1G. 6. Two consecutive oppositions.

13 were “observed” to be 765 days and 33.7° apart, being roughly equidistant from
the apogee; from this pair, CT = 11.8.

Again, Jupiter’s opposition of 107 March 6 was “observed” at longitude 163.9°,
close to the apogee, and its predecessor and successor were both separated from it
by 396 days and 30.2°; both pairs yield CT = 5.9. The oppositions of 100 August 18
and 101 September 24 were “observed” at longitudes 322.9° and 359.6°, roughly
equidistant from the perigee. The intervals of 402 days and 36.7° yield CT =5.7.

Data from four pairs oppositions of Saturn, two near apogee and two near perigee,
lead to values of CT ranging from 6.2 to 7.0, with an average CT = 6.7. For Venus
alone the method proves too sensitive to errors in the data to provide a meaningful
estimate of CT.

It is clear that an analysis of oppositions along these lines could easily lead one
to the recognition that CT is approximately twice CD, i.e. to the bisection of the
eccentricity that Ptolemy assumes for all planets except Mercury. The observational
basis that justifies placing the equant and the observer equidistant from the centre
of the deferent is glaringly obvious in the case of Mars, but certainly noticeable
for Jupiter, and perhaps also detectable for Saturn and Venus. The deduction of the
parameters of each model could only be regarded as approximate, because of the
necessity of calculating as if oppositions falling near the apsidal line liec exactly on
it; however, the errors resulting from these simplifications are not large, as can be
seen by comparing the eccentricities found above with those obtained by Ptolemy’s
ostensibly rigorous procedures.
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T have computed from the elements in J. Meeus, Astronomical algorithms (Richmond, 1991),
197-201; for discussion see A Aaboe, Episodes from the early history of astronomy (New York,
2001), 160-8.) Ptolemy’s, in his tropical frame of reference by which longitudes are systematically
about 1° too low for his time, are 233°, 161°, 115.5°, and 55°. Ptolemy’s apogee for Mercury,
at 190°, is notoriously distant from the actual apparent apogee (222.5°), undoubtedly as a
consequence of the patchy observational record for this planet.

14. Babylonian observations of planets passing ‘Normal Stars’ (bright stars in the zodiacal belt) give a

lower bound of what naked eye observation could achieve; see A. Jones, “A study of Babylonian
observations of planets near Normal Stars”, Archive for history of exact sciences (forthcoming,
2004) for general discussion. I know of 71 Babylonian reports of Jupiter, 106 reports of Mars, and
83 reports of Venus passing stars within two degrees of the ecliptic (I exclude reports that had, or
may once have had, a statement that the planet was some distance ahead of or behind the star).
The median absolute difference in longitude for the reported dates in the Jupiter observations is
approximately 0.20°, i.e. a little more than two days of mean motion; the median for the Mars
observations is approximately 0.46°, i.e. less than one day of mean motion; and the median for
the Venus observations is approximately 0.56°, i.e. again less than one day of mean motion.
Observations made carefully for theoretical applications could certainly have improved on these
standards.
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