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Abstract

This paper is about constructing confidence bands around an ROC
curve such that(1 − δ)% of the ROC curves traced by data sets
of sizer will fall completely within the bands. We introduce to
the machine learning community three methods from the medical
field that are applicable to generate such bands. We then evaluate
these methods on the simple case of “binormal” distributions—
the scores for positive and the score for negative instancesare
drawn from two normal distributions. We show that none of the
methods generate appropriate bands and investigate two types of
variances problems. We show that widening the bands does not
produce the proper bandwidths but that fitting a normal distribu-
tion to the observed drawn samples and drawing samples from
this distribution (parametric bootstrap) does generate bands that
are much closer to the desired coverage although still not perfect.
We tested the original methods as well as parametric bootstrap on
the covertype data set from the UCI ML-repority. The original
methods perform the same as in the synthetic case, whereas the
parametric bootstrap technique did not yield the expected results.
This is primarily due to not being able to generate a good fit for
the score distributions. Whether it is possible to fit well-behaving
parametric distribution to learned models is an open question we
leave to the machine learning community to answer.

1. Introduction

In this paper we address the problem of creating confi-
dence bands around ROC curves. When creating confi-
dence bands, it is necessary to specify exactly what one is
confident will be contained by the bands. For ROC curves
there are various possibilities, and we consider one that is
important for machine learning evaluations.

Many machine learning studies plot ROC curves to il-
lustrate the possible tradeoffs of true-positive and false-
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positive rates that would be expected if a learned model
were to be applied to data drawn from the same domain
(distribution) as the training and testing data. We would
like show the region where we are confident such a curve
would lie. More specifically, since the variance of an ROC
curve depends on the number of data on which it is based,
we would like to plot a region that is expected to contain
(1 − δ)% of the ROC curves traced by data sets of a given
numberr examples. This setting is notably different from
the initial setting for the methods used in this paper, which
were designed to place a confidence band on where the
“true” ROC curve lies. The repercussions, as we shall see,
are that the methods to not generate the proper bands. We
will address two variance issues and propose methods to
overcome them.

We first introduce the machine learning community to sev-
eral existing methods, mostly from the medical literature,
for computing confidence bands on ROC curves. This is a
contribution itself, because rarely if ever do machine learn-
ing researchers plot confidence bands on ROC curves, and
never do they use the more sophisticated of these methods.
We then assess how well these methods work.

Since there has been almost no research on the assessment
of confidence bands from ROC curves, and no research in a
machine learning context (with the exception of the work-
shop paper by Macskassy and Provost (2004), that we here
extend considerably), we start with a simple setting. We
assume that it is desired to compute an ROC curve for a
learned model (in the aforementioned setting), rather than
for a learning algorithm. The latter is an important ex-
tension, but the former simpler question should be treated
first. Furthermore, for purposes of ROC analysis, a learned
model can be abstracted to the class-conditional score dis-
tributions it produces. We evaluate the various methods un-
der the “binormal” assumption—that these score distribu-
tions are normally distributed, because some existing tech-
niques make this assumption.

None of the methods produce appropriate confidence



bands, either being too tight or too wide. We will explain
why these results are as expected below. We point out two
potential variance problems in the estimates, focusing on
a technique for estimating the empirical distribution using
bootstrap sampling. We introduce modifications that ad-
dress these problems, showing that one of them produces
more accurate confidence bands.

The remainder of the paper is outlined as follows: Sec-
tion 2 describes relevant techniques for generating confi-
dence bands, followed by a description of the methods used
in this paper. Section 4 describes our synthetic data genera-
tion model, followed by the evaluation of these methods in
Section 5. We finish in Section 6 with a discussion of open
issues and other concluding remarks.

2. Overview of Existing Relevant Techniques

Prior work in machine learning on creating confidence
intervals for ROC curves has for the most part created
one-dimensional confidence intervals (cf. (Bradley, 1997;
Provost et al., 1998; Fawcett, 2003)), which are not the fo-
cus of this paper–and generally are not useful for creating
confidence bands around ROC curves (due in part to prob-
lems of multiple comparisons).

Use of the bootstrap (Efron & Tibshirani, 1993) as a ro-
bust way to evaluate expected performance has previously
been suggested in related machine learning work—for eval-
uating cost-sensitive classifiers (Margineantu & Dietterich,
2000). In this work, the bootstrap was used to draw predic-
tionsp(i, j), wherep(i, j) is the probability that an instance
of classj was predicted to be in classi. Using these sample
predictions, it was possible to generate final costs based on
a cost-matrix. Repeated estimated costs were used to gen-
erate confidence bounds on expected cost.

Medical researchers have examined the use of ROC curves
extensively and have introduced many techniques for creat-
ing confidence boundaries (intervals or bands). The prob-
lem domains and tasks in medical research are generally
different from those of machine learning, in that they of-
ten consider only small data sets (where one instance is
the test result from a patient). Further, it is often as-
sumed that these data are ordinal in nature—e.g., that
it is ’ratings’ data with a small scale such as ’definitely
diseased’,’probably diseased’,’possibly diseased’,’ ’possi-
bly non-diseased’,’probably non-diseased’,’definitely non-
diseased’ (Beck & Shultz, 1986; Swets, 1988; Zweig &
Campbell, 1993). We focus here on those methods that are
directly applicable to the generation of confidence bands
for continuous score distributions.

Creating a confidence region in ROC space restricts both
FP and TP rates to the region(0, 1). This restriction can
cause difficulties when using intervals based on normal dis-

tributions. One solution is to transform the points to logit
space1, generate the confidence intervals in that space, and
then convert them back into ROC space (Zou et al., 1997).
An alternative transformation also used is that of convert-
ing to and from probit space2 as done in the LABROC4
algorithms (Metz et al., 1998b; Metz et al., 1998a). Both
of these bodies of work assume an underlying binormal
distribution and focus on creating either one-dimensional
confidence intervals, or joint confidence regions. We use
LABROC4 to generate confidence bounds under the binor-
mal distribution, as described in Section 3.3.3.

One method for generating simultaneous, or joint, con-
fidence bands on ROC curves (Ma & Hall, 1993) is
based on the Working-Hotelling hyperbolic confidence
bands for simple regression lines (Working & Hotelling,
1929). Under the binormal model, an ROC curve can
be parameterized asTP = Φ(a − bΦ−1(FP)), where
Φ(z) is the standard-normal cumulative distribution func-
tion (Dorfman & Alf, 1969). Using this parametrization,
the Working-Hotelling bands can then be applied to ROC
curves to generate simultaneous confidence bands. We de-
scribe our use of this method in Section 3.3.3.

The method ofsimultaneous joint confidence regionsuses
the distribution theory of Kolmogorov (Conover, 1980) to
generate separate confidence intervals for TP and FP rates
(Campbell, 1994). This is done by finding the Kolmogorov
(1 − δ) confidence band for TP (tp±d) and FP (fp±e). By
an independence assumption, the rectangle with width2e
and height2d, centered at a given point, should contain
points at the given threshold with confidence(1 − δ)2. We
describe our use of this method in Section 3.3.1.

The method offixed-widthsimultaneous confidence bands
is a non-parametric method, which generates simultane-
ous confidence bands by displacing the entire ROC curve
“northwest” and “southeast” along lines with slopeb =
−

√

(m/n), wherem is the number of true positives and
n is the number of true negatives (Campbell, 1994). This
slope is an approximation of the ratio of the standard devi-
ations for TP and FP—a property which tries to take into
account the curvature of the ROC plot rather than using a
displacement along one of the two axes as is done by the
majority of methods described above. Campbell uses the
bootstrap to create an empirical distribution from which to
estimate the distance the curve should be displaced, thereby
generating a “fixed-width” band across the complete curve
(fixed-width with respect to the aforementioned slope). We
describe how we use this method in Section 3.3.2.

1logit(p) = log( p

(1−p)
); logit−1(p′) = 1

1+exp(−p′)
.

2probit(p) = Φ(p); probit−1(p′) = Φ−1(p′), whereΦ(z) is
the cumulative normal distribution function.



3. ROC Confidence Calculations

In this section we describe our methodology for generat-
ing confidence bands for a classification model or mod-
eling algorithm. We use three of the methods from the
medical field: simultaneous joint confidence regions (SJR),
Working-Hotelling based bands (WHB), and fixed-width
confidence bands (FWB). FWB requires a set of ROC
curves. These can be generated by evaluating the model
on multiple testing sets or by resampling one test set. The
resulting ROC curves will be used to generate confidence
bands about an average curve.

3.1. Parametric vs non-parametric bands

Of course, parametric confidence calculations (intervals,
bands, etc.) should be better when the distributional as-
sumptions are correct—better in the sense that they should
require fewer data to get the same tightness. In the case
of ROC curves, the binormal-based approach has another
advantage: a parametric confidence band is not of constant
width, and thus takes into account the increased or reduced
uncertainty at the ends of the scales (when FP, TP are both
close to 0 or 1).3 The major drawback of parametric confi-
dence bands is, of course, their behavior when the underly-
ing parametric assumptions are violated. In those cases, de-
pending on the nature and extent of the violation, the bands
may simply be meaningless.

A Kolmogorov-Smirnov non-parametric (SJR) band is of
constant width, as it is based on a bound on the maximum
distance possible between the true (mean) curve and the
estimated curve. This bound does accommodate different
width for the band in different regions of ROC space (more
or less powerful models). As we will see, and as would be
expected, the SJR bands typically are very conservative. It
is possible, in principle, to build analytic non-parametric
bands with different width in different regions; however
this involves complicated theory and is unlikely to be prac-
tical.

Resampling-based bands (like bootstrap bands) tend to give
variable-width confidence bands, but are not based on as-
sumed distributional assumptions. They can be consid-
ered a compromise between parametric and non-parametric
curves, in that they do consider the data to “estimate” a dis-
tribution on which to base the bands, but do not assume an
a priori fixed parametric model. Resampling-based curves

3Whether the uncertainty will be reduced or increased depends
on the power of the scoring model and the marginal class distri-
bution of the data. As Stein shows (Stein, 2002) the varianceof
an ROC curve is driven by the number of examples of the minor-
ity class. For a highly unbalanced class distribution, the ends of
the scale will be much more balanced. On the other hand, for an
initially balanced distribution, the ends of the scale for apowerful
scoring model will be highly unbalanced.

require considerable computation; however, this is becom-
ing increasingly less relevant.

3.2. Creating the Distribution of ROC Curves

The bootstrap (Efron & Tibshirani, 1993) is a standard
statistical technique that creates multiple samples by ran-
domly drawing instances, with replacement, from a host
sample (the host sample is a surrogate for the true popula-
tion). Each such set of samples can then be used to generate
an ROC curve. For our setting, we can repeatedly drawr
samples to generate a distribution of ROC curves. To our
knowledge there is only one previous body of work which
has applied the bootstrap to generate multiple ROC curves
to use for estimating confidence bands (Campbell, 1994).
Section 5.1 contains the details on how we use the boot-
strap in our study.

3.3. Generating Confidence Bands

This section describes three methods to generate confi-
dence bands across the complete ROC curve. The seman-
tics for these confidence bands is that we would expect an
ROC curve based on scores drawn from the sameG+ and
G− distributions that were used to generate the bands to
fall completely within these bands with the specified prob-
ability (frequency). This is the basis for evaluating all the
methods.

3.3.1. SIMULTANEOUS JOINT CONFIDENCE REGIONS

(SJR)

The simultaneous joint confidence region (SJR) uses the
Kolmogorov-Smirnov (KS) (Conover, 1980) one-sample
test statistic to identify a global confidence interval for TP
and FP independently (Campbell, 1994). The KS statistic is
used to test whether two sampled sets come from the same
underlying normal distribution by considering the maximal
vertical distance in their respective estimated cumulative
density functions. For our purpose, that means the max-
imal vertical (horizontal) distance allowed from the given
ROC curve to another ROC curve without rejectingH0—
i.e., the confidence interval along FP (TP). Using the KS
one-sample test allows us to identify these two distances,
using the number of instances in each sample—i.e., the
number of true positives,m, and the number of true nega-
tives,n. For sufficiently large set sizes (> 35), these dis-
tances are defined as follows.

We look upd ande, the critical distances along TP and FP
respectively, at confidence level(1− δ). These identify the
simultaneous joint confidence region for a given observed
point(fp, tp) to be(fp±d, tp±e) at confidence level(1−
δ)2. Note that while the confidence level is theoretically
(1− δ)2, we empirically test it as though it is at the(1− δ)
level. We show that it generally is too conservative and that



δ
Set Size 0.20 0.15 0.10 0.05 0.01
> 35 1.07√

n
1.14√

n
1.22√

n
1.36√

n
1.63√

n

Table 1.Kolmogorov-Smirnov (KS) critical values for rejecting
H0 for set sizes> 35.
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Figure 1.Transforming SJR into confidence bands.

(1 − δ)2 would therefore be too loose.

The way we generate the confidence bands using these re-
gions is by generating a confidence region for each distinct
point on the ROC curve constructed from the scored sam-
ples inD. We use the upper (lower) points of the confi-
dence region to define the upper (lower) confidence band,
cropped to stay within ROC space. Figure 1 illustrates this
transformation.

3.3.2. FIXED-WIDTH BANDS (FWB)

Thefixed-width bands(FWB) method works by identifying
a slope,b < 0, along which to displace the original ROC
curve to generate the confidence bands (Campbell, 1994).
In other words, the upper (lower) confidence band would
consist of all the points of the original observed ROC curve
displaced “northwest” (“southeast”) of their original loca-
tion. This creates a confidence band with a fixed width
across the entire curve. The question is what slope to use
and what distance to displace the curve. While the ideal
slope would be the ratio of the standard deviations associ-
ated, respectively, with TP and FP, we here adopt the same
approximation as that used in the original work and use the
slopeb = −

√

(m/n).

The way we generate the confidence bands using this
method is by sweeping along the discrete points of the orig-
inal ROC curve and adding upper (lower) boundary points
by moving a distanced in each direction along the line with
slopeb = −

√

(m/n). Figure 2 illustrates this transforma-
tion.

As with our study, the original work used the bootstrap
to identify the distance to displace the curve to generate
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Figure 2.Displacing curve to generate FWB confidence bands.

the confidence bands. Given sampleD, we generate boot-
strap sampleD∗ and calculate the maximum distance along
slopeb from the ROC curve generated byD to the ROC
curve generated byD∗. We need the maximum distance
because this is the width needed in order forD∗ to be com-
pletely within the band. Sampling manyD∗’s, we can then
find the distance needed in order to keep1 − δ of all the
curves completely within the generated bands. Note that
the distances we sample are the distances along the given
slopeb.

3.3.3. SIMULTANEOUS WORKING-HOTELLING BANDS

(WHB)

We adapt a method for using Working-Hotelling hyperbolic
bands (Working & Hotelling, 1929) to generate simultane-
ous confidence bands on an ROC curve (Ma & Hall, 1993).
The confidence bands are fitted to a regression line,

y = a − b · x, (1)

and are of the form

l(x,±k) = a − b · x ± k · σ(x), (2)

wherek ≥ 0 is a constant which we define below, and

σ(x) =
√

σ2
a − 2ρσaσb · x + σ2

b · x2, (3)

as defined by the covariance matrixΣ:

Σ =

(

σ2
a ρσaσb

ρσaσb σ2
b

)

(4)

We use maximum-likelihood estimation (MLE) to generate
a regression line to fit the ROC curve. We use a modified
implementation of the LABROC4 algorithm (Metz et al.,
1998a) to do so.4 The LABROC4 algorithm works by first

4The LABROC4 fortran source code was acquired from a pub-
lic web-site and modified to tailor its I/O to work with our ROC
analysis toolkit. The toolkit, which we will release to the public
later this year, is written in Java 1.5.



grouping continuous data into ’bins’ or ’runs’ of instances
either with the same model score and/or same label. Then
it uses an ordinal (’rating method’) algorithm (Dorfman &
Alf, 1969) to create a smooth binormal ROC curve. The co-
variance matrix is also calculated as part of the algorithm.

There are various constants,k, available at confidence level
(1 − δ), depending upon the type of band being gener-
ated. The original work describes two types of bands—
pointwise andsimultaneous unrestricted. To generate con-
fidence bands, we use the wider simultaneous unrestricted
Working-Hotelling bands (WHB), where,kδ is determined
by the chi-square distribution with 2 degrees of freedom:

kδ =
√

−2ln(δ) (5)

The confidence bands generated by this method are para-
metric in that they will calculate a TP-interval for any given
FP. This is in contrast to the first two methods which have
discrete bands based on the original ROC curve.

4. Data Generator

In order to facilitate a controlled experiment, we used a
synthetic data generator such that we had complete control
of G+ andG−. Prior work has shown that popular ma-
chine learning methods do not induce models which gener-
ate two normally distributed sets of scores but rather these
scores take on score distributions which are a closer fit to
asymmetric Laplace distributions or asymmetric Gaussian
distributions (Bennett, 2003). The work further indicated
that the score distribution for positive instances is gener-
ally “fatter” than the distribution for the negative instances.
For this paper, we use two normal distributions, the posi-
tive being “fatter” than the negative. This is deliberate such
that we can study the behavior of the confidence calcula-
tions in a close to ideal setting to evaluate whether they in
fact generate the proper bounds when their assumptions are
met (which we will see is not the case).

4.1. Synthetic World

We make the assumption that the only difference between
G+ and G− are their model parameters. Our synthetic
world therefore takes five parameters:

1. P (+), the probability that an instance is from the pos-
itive distribution

2. the two model parameters forG+, θ+ andσ+.

3. the two model parameters forG−, θ− andσ−.

Each random sample drawn from this world has a probabil-
ity of P (+) for being drawn fromG+.
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For the study below, we fixP (+) = 0.5, σ+ = 3.75,
andσ− = 3.0. We tested a range of values ofθ’s, where
we setθ+ = {0.75, 1.00, 1.50, 2.00, 3.00, 4.00, 5.00}, and
θ− = −θ+. Figure 3 shows this distribution when using
θ = ±1.5. Figure 4 shows the resulting ROC curves for
all values ofθ. These were generated by plotting the points
(cdfG−(x), cdfG+(x)), for x ∈ {−∞, . . . ,∞}.

We investigate sensitivity of the confidence calculations to
the difference in the modes of the distributions. We investi-
gate this dimension because it will target sensitivity of the
confidence calculations to the separability ofG+ andG−.
The closer the modes, the closer the true ROC curve is to
the random line (x = y), and the further the modes are from
each other, the “fatter” the true ROC curve is. The modes
shown above were selected to yield a range of AUCs from
0.55 to 0.95.



5. Evaluation

We will examine how well the confidence bands fully con-
tain ROC curves based on evaluation samples ofr exam-
ples each, drawn from the same distribution(s).

5.1. Bootstrap-based Evaluation

To generate and evaluate confidence bands, we use the fol-
lowing method based on a bootstrapped empirical sampling
distribution.

1. Build a synthetic world,W , consisting of two distribu-
tions,G+ andG− with modesθ and−θ respectively,
andP (+) the probability that a randomly drawn sam-
ple comes fromG+. We setP (+) = 0.5 as defined
above, withσ+ = 3.75 andσ− = 3.0.

2. Fix a sampling size,r, and sample fromW a
confidence-generation set,R, of sizer.

3. Generate confidence bands:

(a) FWB: Generaterfit “fitting sets”, Fi of size r
by repeated sampling with replacement fromR.
For eachFi, generate an ROC curve, roc(Fi), for
the model. The result is a set of ROC curves,
rocF = {roc(Fi)}. Generate confidence bands,
Cb, based onδ and rocF .

(b) WHB,SJR: Generate confidence bands,Cb,
based on roc(R), the roc curve based onR.

4. Generatereval “verification” sets,Vj , of sizer by re-
peated sampling fromW . For each such sample, gen-
erate a verification ROC curve,roc(Vj). The result is
a set of ROC curves,rocV = {roc(Vj)}.

5. EvaluateCb. This is done by calculating the percent-
age of ROC curves inrocV that fall completely within
the generated confidence bands,Cb.

6. Repeat steps (2)–(5) 10 times to account for variability
in the generated confidence calculations.

This methodology has five parameters: (1) the synthetic
world, which is defined byG+, G−, andP (+), (2) the
ROC-generation size,r, (3) the number of sampling runs,
rfit, used to generate rocF in step 3a to generate the confi-
dence bands using FWB, and (4) the number of sampling
runs,reval, used to generate rocV , and (5) the confidenceδ.

We fix rfit and reval to 1000 and δ = 0.1. We
then examine the sensitivity of the confidence
calculations to the ROC-generation size,r ∈
{25, 50, 100, 250, 500, 1000, 2500, 5000, 10000, 25000}
and the synthetic world used. We described the synthetic
worlds we will use in Section 4.1.

5.2. Evaluating the Confidence Bands

Figure 5 shows the coverage for the3 band methods. As
we can see, JSR is too wide (albeit the best of the three),
whereas WHB is far too wide and FWB is too tight.

None of the methods generate the proper bands.5 This is
not surprising and should be expected due to the subtle dif-
ference in setting between our “machine learning” setting
and the setting for which the methods were designed. We
would like to place a confidence band on the performance
of the model in practice. These methods place a confidence
band on where the “true” ROC curve lies.6 Although we
would not be able to assess the latter in an actual machine
learning context, we can since here we know the true ROC
curves (defined by the cumulative distribution functions).
As we will clarify next, bands on where the true curve lies
should be narrower, so the SJR and WH bands are even
worse, but the FWB bands perform quite well—and can be
recommended for this task (at least based on our synthetic
world).

5.3. A variance problem with the bootstrap

For our setting, the FWB bands are too tight. Poten-
tially, there are two types of variance problems with the
bootstrap-based setting. The estimated variance about the
curves could be incorrect, either because the original sam-
ple is not adequate (e.g., if the sample by chance contains
all examples with the same score, the bootstrap will yield
no variance), or because with the bootstrap there will be
(by design) duplicate scores. Duplicate scores tend to lead
to larger steps in the ROC curve (which is a step function
for a finite sample), and thus to larger variance. However,
comparisons of the variance from the bootstrap and from
the actual distribution show that the bootstrap estimates are
very close to the actuals.

Nevertheless, when we generated the fitting setsFi in step
3a in Section 5.1 fromW rather than fromR, we see bands
that converged to containments of89 ± 0.02%, very con-
sistent across all sample sizes and all values ofθ. The only
difference is the use of the bootstrap.7

The second type of variance is in the observed data.
Clearly, the observed data has a variance about the true
curve, and therefore roc(R) will not lie directly on the true
curve. Since the bootstrap is estimating a confidence band
about roc(R), the bands generated will be off by the same
amount as roc(R) is from the true curve. Figure 6 illus-
trates the problem. The variances about the true and sam-

5We tested with other values ofδ with similar results.
6We would therefore expect the bands to be too tight, as is the

case for FWB, and not too wide as is the case with WHB and JSR.
7Conversely, we also saw that FWB, when centered onR, did

in fact contain the true curve≈ 90% of the cases.
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Figure 5.Coverage of bands atδ = 0.1. The vertical line shows the expected coverage. As we can see, none of the methods generate
the proper bands.
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pled curves are very similar. However, because the sam-
ple is so far off from the true curve, the bands about it are
clearly inappropriate for the purpose of estimating bands
around expected future curves.

5.4. Accounting for the sample variance

There are two ways in which we might account for the sam-
ple variance. Either widen the band to take the variance
into account or estimate what the true ROC curve should
be and use the original bandwidth. We will take a look at
both approaches in this section.

Number of Absolute values ofθ
Samples0.75 1.0 1.5 2.0 3.0 4.0 5.0

25 0.919 0.856 0.774 0.876 0.746 0.851 0.633
50 0.954 0.944 0.934 0.983 0.962 0.961 0.831

100 0.951 0.950 0.964 0.974 0.924 0.887 0.845
250 0.978 0.964 0.985 0.978 0.883 0.931 0.894
500 0.981 0.951 0.948 0.990 0.988 0.951 0.954

1000 0.990 0.981 0.961 0.982 0.974 0.968 0.957
2500 0.965 0.988 0.983 0.956 0.990 0.950 0.980
5000 0.975 0.993 0.958 0.962 0.992 0.951 0.981

10000 0.983 0.992 0.983 0.985 0.977 0.883 0.971
25000 0.992 0.988 0.982 0.990 0.991 0.942 0.976

Table 2.Coverages of FWB using a(1 − δ2) bandwidth. These
bands are too wide.

5.4.1. WIDENING THE BAND

We first look at widening the band. Let us consider the
true ROC curve (RT ), the sample ROC curve RM from
which we’ll calculate the bands (BM ) of width d, and the
ROC curves sampled subsequently (RM∗) which should
with probability(1 − δ) lie within BM .

We know that RT falls outside BM with probability no
more thanδ. Assuming that the variance about RT is well
estimated from RM (which we have shown is the case),
thenRM∗ will fall outside a band of widthd around RT
with a probability no more thanδ. Therefore RM∗ will fall
outside a2d band around RM with a probability no more
thanδ2. In our case, we wantδ2 = 0.1 and therefore need
a2d band around RM with δ = 0.316.

Table 2 shows the coverages we get from applying this
technique, usingδ = 0.1 (and therefore using double the
widths generated by usingδM = 0.316). We see that in
general these bands are too wide. We next turn to estimat-
ing the true ROC curve as a way to overcome the sampling
variance.



Number of Absolute values ofθ
Samples0.75 1.0 1.5 2.0 3.0 4.0 5.0

25 0.805 0.776 0.854 0.768 0.664 0.679 0.854
50 0.894 0.824 0.830 0.896 0.900 0.775 0.704

100 0.855 0.886 0.775 0.744 0.890 0.912 0.732
250 0.907 0.847 0.847 0.825 0.837 0.841 0.845
500 0.892 0.836 0.739 0.812 0.846 0.855 0.933

1000 0.873 0.873 0.803 0.832 0.771 0.916 0.900
2500 0.930 0.814 0.832 0.899 0.750 0.864 0.929
5000 0.855 0.914 0.773 0.858 0.892 0.876 0.859

10000 0.780 0.938 0.927 0.901 0.824 0.926 0.891
25000 0.933 0.933 0.932 0.893 0.944 0.943 0.910

Table 3.Coverages of FWB using parametric bootstrap and esti-
mate of the true curve. The coverages are not consistently correct,
but they are so the the ones closest to the proper coverage.

5.4.2. ESTIMATING THE TRUE ROC CURVE

In this approach, we try to estimate the true ROC
curve. The true curve is generated by plotting
(cdfG−(x), cdfG+(x)), for x ∈ {−∞, . . . ,∞}. However
we don’t knowG+ andG−. If we could estimate these,
then we could estimate the true curve. For example, we
could assume that they are binormal (which we know is
true for our synthetic world). Under this assumption, we
can estimateθ andσ from the observed samples and use
these to generate the true curve. Further, estimatingP (+)
from the observed data we can now generate a new world,
W ′ from which to estimate the distributions around the true
curve. Thus, we generateW ′ both to estimate the true ROC
curve as well as to draw samples from. We call this sam-
pling techniqueparametric bootstrap.

Table 3 shows the coverages we get by using this technique.
While the bands are too tight for small sample sizes, the
coverages quickly do become respectable although still not
as well fitted as we would have hoped. The bands do end up
too wide with a few exceptions; however they are in much
closer proximity to the coverage we desire than any of the
other methods. On the other hand, parametric bootstrap
requires that we can estimate the true score distributions
G+ andG−.

5.5. Real Data

Estimating the score distributions produced by machine
learning classifiers on real data is critical to parametric
bootstrap. To our knowledge, there is almost no published
work even mentioning these score distributions, let alone
estimating them (the one exception being the work of Ben-
nett, discussed above). Let us now examine the score dis-
tributions for models learned with the covertype data set
from the UCI machine learning repository (Blake & Merz,
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Figure 8.Sample logistic regression score distribution withr =
25000. These distributions are clearly not unimodal.

1998). Covertype examples are described by54 features,
10 being numerical and the rest being binary. To produce a
binary classification problem (for ROC analysis) we chose
the two classes with the most instances (yielding57.2%
base accuracy).

We randomly sampled100 instances (50 of each class)
and built various learned models using Weka8 (Witten
& Frank, 2000)—logistic model trees (LMT) (Landwehr
et al., 2003), J48, naive Bayes trees (NBT) (Kohavi, 1996),
logistic regression (LR), and Naive Bayes (NB). We then
generated prediction scores for the remaining490, 000 in-
stances. The log-odds scores,log P (+|x)

P (−|x) , were used as the
base populationR from which to draw predictions. Fig-
ure 7 shows the distributions of scores generated for each
method for positives and negatives. Although LMT, LR
and NB have nice smooth distributions, they are clearly not
binormal and the distributions of J48 and NBT are even
further from gaussian distributions. The naive Bayes distri-
butions are more-or-less in line with observations made by
Bennett (Bennett, 2003) (who studied naive Bayes for text
classification): they are asymmetric bell-shaped distribu-
tions, but the negative distribution is fatter than the positive
(which should not be important here).

For parametric bootstrap, we fit the scores to asymmetric
Gaussian distributions. We used the evaluation method-
ology presented above using the same values for the roc-
generation sampling sizer. For each run, we sampled a
fitting setFi of r points fromR and then sampled our ver-
ification setsVi from R ∩ Fi.

Using the original methods yielded the same results as be-
fore, where FWB was too tight, while SJR and WHS-s were
too wide. The coverages we get from using the parametric
bootstrap and ROC estimation technique are shown in Ta-
ble 4.

8We use version 3.4.2. Weka is available at
http://www.cs.waikato.ac.nz/˜ml/weka/
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Figure 7.Score distributions of5 Machine Learning methods on the covertype data set.

Number of
Samples J48 LMT NBTREE LR NB

25 0.605 0.587 0.550 0.787 0.797
50 0.722 0.693 0.743 0.739 0.883

100 0.557 0.816 0.884 0.779 0.827
250 0.121 0.862 0.848 0.613 0.640
500 0.000 0.823 0.813 0.692 0.574

1000 0.000 0.791 0.487 0.340 0.511
2500 0.000 0.751 0.229 0.213 0.100
5000 0.000 0.727 0.000 0.002 0.008

10000 0.000 0.696 0.000 0.000 0.000
25000 0.000 0.424 0.000 0.000 0.000

Table 4.Coverages of FWB using parametric bootstrap to gener-
ate bands based on prediction scores from the5 machine learning
methods on the covertype data sets

We look first to the distributions to see if the problem lies in
badly estimated distributions. This turns out to be the case,
as is clear in Figure 8. While the empirical scores form a
nice smooth distribution, the distribution is not uni-modal.
These peaks in the score distribution translate directly to
peaks in ROC space, which the smoothed asymmetric gaus-
sian distribution did not take into account. In order for the
parametric bootstrap technique to work, we must obviously
be able to genearet a better fit than the asymmetric gaus-
sian. Whether this is possible is still an open question.

6. Discussion

In this paper we assessed various methods for generating
confidence bands for ROC curves, in the context of ma-
chine learning evaluations. For computing a confidence
band on where the ”true” ROC curve for a model lies, a
resampling technique (FWB) from the medical literature
performs well, but (somewhat surprisingly) two other tech-
niques (WHB and JSR) are far too conservative–even when
the underlying parametric assumptions are correct.

However, machine learning studies often are interested in
the future performance of the model. None of the meth-
ods are designed to produce accurate confidence bands for
this task, and none do. After showing that the variance es-
timated by bootstrap sampling is reasonable, we introduce
two techniques to address the variance introduced by pro-
ducing bands about the ROC curve generated from a partic-
ular test set. One method, parametric bootstrap, attempts to
estimate where the true ROC curve lies, and then put a band
around it. This method yielded the best bands on synthetic
data for which the parametric assumption (a binormal score
distribution) was appropriate.

We also evaluated this methodology on the UCI Covertype
data set. We generated models from5 different learning
methods and used those models to generate a large set of
scored predictions. We then used our methodology to gen-
erate, and evaluate, confidence bands based on these pre-
diction scores. The parametric bootstrap did not perform
well. We showed that the bad performance was due to



not being able to fit the score distributions well enough.
Whether it is possible to generate better parametric esti-
mates of the scoring distributions is an open question.
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