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Abstract positive rates that would be expected if a learned model
were to be applied to data drawn from the same domain
(distribution) as the training and testing data. We would
like show the region where we are confident such a curve
would lie. More specifically, since the variance of an ROC
curve depends on the number of data on which it is based,
we would like to plot a region that is expected to contain
(1 — §)% of the ROC curves traced by data sets of a given
numberr examples. This setting is notably different from
the initial setting for the methods used in this paper, which
variances problems. We show that widening the bands does nq ere” designed to_place a Confldencg band on where the
rue” ROC curve lies. The repercussions, as we shall see,

produce the proper bandwidths but that fitting a normal ithigtr are that the methods to not generate the proper bands. We
tion to the observed drawn samples and drawing samples from

this distribution (parametric bootstrap) does generatelbahat \(’)v\ll”ei((j)crjrrlgstié\gf variance issues and propose methods to
are much closer to the desired coverage although still m¢qte '

We tested the original methods as well as parametric baptstn ~ We first introduce the machine learning community to sev-
the covertype data set from the UCI ML-repority. The origina eral existing methods, mostly from the medical literature,
methods perform the same as in the synthetic case, whereas tfior computing confidence bands on ROC curves. This is a
parametric bootstrap technique did not yield the expeasdits.  contribution itself, because rarely if ever do machinenear
This is primarily due to not being able to generate a good fit fo ing researchers plot confidence bands on ROC curves, and
the score distributions. Whether it is possible to fit wadhving  never do they use the more sophisticated of these methods.
parametric distribution to learned models is an open coleste ~ We then assess how well these methods work.

leave to the machine learning community to answer.

This paper is about constructing confidence bands aroun®&h R
curve such thatl — §)% of the ROC curves traced by data sets
of sizer will fall completely within the bands. We introduce to
the machine learning community three methods from the naédic
field that are applicable to generate such bands. We thenateal
these methods on the simple case of “binormal” distribigtien
the scores for positive and the score for negative instaaces
drawn from two normal distributions. We show that none of the
methods generate appropriate bands and investigate tws tfp

Since there has been almost no research on the assessment
_ of confidence bands from ROC curves, and no researchin a
1. Introduction machine learning context (with the exception of the work-

In this paper we address the problem of creating confi-z Zfepngaffgs?é’el\r/l:;s';ajvseyjtgftF\:\:ict)xojts(izrgoé)’st;z:lwe C\?er €
dence bands around ROC curves. When creating confi- Y), b 9.

I . assume that it is desired to compute an ROC curve for a
dence bands, it is necessary to specify exactly what one Rarmed model (in the aforementioned setting), rather than
confident will be contained by the bands. For ROC curve 9

. o : Yor a learning algorithm. The latter is an important ex-
there are various possibilities, and we consider one that Bnsi . .
. . . . ension, but the former simpler question should be treated
important for machine learning evaluations. ) )

first. Furthermore, for purposes of ROC analysis, a learned
Many machine learning studies plot ROC curves to il-model can be abstracted to the class-conditional score dis-
lustrate the possible tradeoffs of true-positive and falsetributions it produces. We evaluate the various methods un-
T OMacskassv. SA. P ¢ EJ. Rosset. S. “ROC Confid der the “binormal” assumption—that these score distribu-
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bands, either being too tight or too wide. We will explain tributions. One solution is to transform the points to logit
why these results are as expected below. We point out twepacé, generate the confidence intervals in that space, and
potential variance problems in the estimates, focusing othen convert them back into ROC space (Zou et al., 1997).
a technique for estimating the empirical distribution gsin An alternative transformation also used is that of convert-
bootstrap sampling. We introduce modifications that ading to and from probit spaéeas done in the LABROC4
dress these problems, showing that one of them producedgorithms (Metz et al., 1998b; Metz et al., 1998a). Both
more accurate confidence bands. of these bodies of work assume an underlying binormal
The remainder of the paper is outlined as follows: SeC_distribution and focus on creating either one-dimensional

. . : : .confidence intervals, or joint confidence regions. We use
tion 2 describes relevant techniques for generating confir

. BROC4 to generate confidence bounds under the binor-
dence bands, followed by a description of the methods use?q'i:‘I distribution. as described in Section 3.3.3.

in this paper. Section 4 describes our synthetic data genera
tion model, followed by the evaluation of these methods inOne method for generating simultaneous, or joint, con-
Section 5. We finish in Section 6 with a discussion of openfidence bands on ROC curves (Ma & Hall, 1993) is
issues and other concluding remarks. based on the Working-Hotelling hyperbolic confidence
bands for simple regression lines (Working & Hotelling,
2. Overview of Existing Relevant Techniques 1929). Under the binormal model, an ROC curve can
be parameterized a§P = ®(a — b®~(FP)), where
Prior work in machine learning on creating confidence®(z) is the standard-normal cumulative distribution func-
intervals for ROC curves has for the most part createdion (Dorfman & Alf, 1969). Using this parametrization,
one-dimensional confidence intervals (cf. (Bradley, 1997the Working-Hotelling bands can then be applied to ROC
Provost et al., 1998; Fawcett, 2003)), which are not the focurves to generate simultaneous confidence bands. We de-
cus of this paper—and generally are not useful for creatingcribe our use of this method in Section 3.3.3.
confidence bands around ROC curves (due in part to pro

X . bfhe method okimultaneous joint confidence regionses
lems of multiple comparisons).

the distribution theory of Kolmogorov (Conover, 1980) to
Use of the bootstrap (Efron & Tibshirani, 1993) as a ro-generate separate confidence intervals for TP and FP rates
bust way to evaluate expected performance has previousfCampbell, 1994). This is done by finding the Kolmogorov
been suggested in related machine learning work—for evalf1 — §) confidence band for TP (tpd) and FP (fpte). By
uating cost-sensitive classifiers (Margineantu & Dietferi an independence assumption, the rectangle with width
2000). In this work, the bootstrap was used to draw predicand height2d, centered at a given point, should contain
tionsp(i, 7), wherep(i, 7) is the probability that an instance points at the given threshold with confider{de- §)2. We

of classj was predicted to be in clagsUsing these sample describe our use of this method in Section 3.3.1.

predictions,l itwas possible t.o generate final costs based %he method ofixed-widthsimultaneous confidence bands
a cost-matrix. Repeated estimated costs were used to gen- non-parametric method, which generates simultane-

erate confidence bounds on expected cost. ous confidence bands by displacing the entire ROC curve
Medical researchers have examined the use of ROC curvénorthwest” and “southeast” along lines with slope=
extensively and have introduced many techniques for creat—+/(m/n), wherem is the number of true positives and
ing confidence boundaries (intervals or bands). The probr is the number of true negatives (Campbell, 1994). This
lem domains and tasks in medical research are general§lope is an approximation of the ratio of the standard devi-
different from those of machine learning, in that they of- ations for TP and FP—a property which tries to take into
ten consider only small data sets (where one instance igccount the curvature of the ROC plot rather than using a
the test result from a patient). Further, it is often as-displacement along one of the two axes as is done by the
sumed that these data are ordinal in nature—e.g., thahajority of methods described above. Campbell uses the
it is ‘ratings’ data with a small scale such as 'definitely bootstrap to create an empirical distribution from which to
diseased’,'probably diseased’,possibly diseased@gsf-  estimate the distance the curve should be displaced, thereb
bly non-diseased’,probably non-diseased’,'definitenn  generating a “fixed-width” band across the complete curve
diseased’ (Beck & Shultz, 1986; Swets, 1988; Zweig & (fixed-width with respect to the aforementioned slope). We
Campbell, 1993). We focus here on those methods that aescribe how we use this method in Section 3.3.2.

directly applicable to the generation of confidence bands——, ... . .
for cori/'[inggus score distrigutions. “logit(p) = log( )i 1ogit ™ (0) = sy .
2probit(p) = ®(p); probit—'(p') = @1 (p'), whered(z) is

Creating a confidence region in ROC space restricts botke cumulative normal distribution function.
FP and TP rates to the regidf, 1). This restriction can
cause difficulties when using intervals based on normal dis-




3. ROC Confidence Calculations require considerable computation; however, this is becom-

. . . ing increasingly less relevant.
In this section we describe our methodology for generat- g gy

ing confidence bands for a classification model or mod- . o
eling algorithm. We use three of the methods from the3'2' Creating the Distribution of ROC Curves

medical field: simultaneous joint confidence regions (SJR)The bootstrap (Efron & Tibshirani, 1993) is a standard
Working-Hotelling based bands (WHB), and fixed-width statistical technique that creates multiple samples by ran
confidence bands (FWB). FWB requires a set of ROCdomly drawing instances, with replacement, from a host
curves. These can be generated by evaluating the modshmple (the host sample is a surrogate for the true popula-
on multiple testing sets or by resampling one test set. Thé&ion). Each such set of samples can then be used to generate
resulting ROC curves will be used to generate confidencen ROC curve. For our setting, we can repeatedly draw

bands about an average curve. samples to generate a distribution of ROC curves. To our
knowledge there is only one previous body of work which
3.1. Parametric vs non-parametric bands has applied the bootstrap to generate multiple ROC curves

i i i i to use for estimating confidence bands (Campbell, 1994).
Of course, parametric confidence calculat_|on_s ('_merva|35ection 5.1 contains the details on how we use the boot-
bands, etc.) should be better when the distributional asétrap in our study.
sumptions are correct—better in the sense that they should
require fewer data to get the same tightness. In the ca . .
oquOC curves, the bigormal-based a%proach has anoth?e‘?r's' Generating Confidence Bands
advantage: a parametric confidence band is not of constafhis section describes three methods to generate confi-
width, and thus takes into account the increased or reducedkence bands across the complete ROC curve. The seman-
uncertainty at the ends of the scales (when FP, TP are botits for these confidence bands is that we would expect an
close to 0 or 1% The major drawback of parametric confi- ROC curve based on scores drawn from the séimeand
dence bands is, of course, their behavior when the underlya— distributions that were used to generate the bands to
ing parametric assumptions are violated. In those cases, déall completely within these bands with the specified prob-
pending on the nature and extent of the violation, the bandability (frequency). This is the basis for evaluating ak th
may simply be meaningless. methods.

A Kolmogorov-Smirnov non-parametric (SJR) band is of
: - . 3.3.1. SMULTANEOUS JOINT CONFIDENCE REGIONS
constant width, as it is based on a bound on the maximum (SJR)

distance possible between the true (mean) curve and the
estimated curve. This bound does accommodate differerthe simultaneous joint confidence region (SJR) uses the
width for the band in different regions of ROC space (moreKolmogorov-Smirnov (KS) (Conover, 1980) one-sample
or less powerful models). As we will see, and as would betest statistic to identify a global confidence interval fé* T
expected, the SJR bands typically are very conservative. Bind FP independently (Campbell, 1994). The KS statistic is
is possible, in principle, to build analytic non-parametri used to test whether two sampled sets come from the same
bands with different width in different regions; however underlying normal distribution by considering the maximal
this involves complicated theory and is unlikely to be prac-vertical distance in their respective estimated cumugativ
tical. density functions. For our purpose, that means the max-

Resampling-based bands (like bootstrap bands) tend to gi\} al vertical (horizontal) distance allowed from the given

variable-width confidence bands, but are not based on a _OCihcurve ;(()j anothe rt RO(|3 clurve I\:Nléth?_l;t reLJJe(_:UHgth— KS
sumed distributional assumptions. They can be consid-€- the confidence interval along (TP). Using the

ered a compromise between parametric and non-parametr?(f].e'SampIe test allows us to identify these two distances,

curves, in that they do consider the data to “estimate” a disys'n% thefrtlumber ct>f mstanczsthln eacrg) sarrflgle.,—the
tribution on which to base the bands, but do not assume afj}u"'°€ O! tTU€ POsIlivesn, and the number of true hega-

a priori fixed parametric model. Resampling-based curvedVves:n. For sgfﬁmently large set sizes-(35), these dis-
tances are defined as follows.

3Whether the uncertainty will be reduced or increased depend . .
on the power of the scoring model and the marginal classi-distr We look upd ande, the critical distances along TP and FP

bution of the data. As Stein shows (Stein, 2002) the variafice espectively, at confidence levél — §). These identify the

an ROC curve is driven by the number of examples of the minor-simultaneous joint confidence region for a given observed
ity class. For a highly unbalanced class distribution, théseof  point (fp, tp) to be(fp £+ d, tp + ¢) at confidence levell —

the scale will be much more balanced. On the other hand, for a)2, Note that while the confidence level is theoretically
initially balanced distribution, the ends of the scale f@osverful (1 _ 5)2 we empirically test it as though it is at the— o)

scoring model will be highly unbalanced. - X .
level. We show that it generally is too conservative and that
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" False Positive " False Positive slopeb from the ROC curve generated iy to the ROC
_ _ _ _ curve generated by*. We need the maximum distance
Figure 1.Transforming SJR into confidence bands. because this is the width needed in orderfiarto be com-
pletely within the band. Sampling mary«’s, we can then
find the distance needed in order to kdep § of all the
curves completely within the generated bands. Note that
(1 — )2 would therefore be too loose. the distances we sample are the distances along the given

The way we generate the confidence bands using these r%I_opeb.

gions is by generating a confidence region for each distinc

point on the ROC curve constructed from the scored sam{—a'?"g'(?/\'\/A;ET)ANEOUS WORKING-HOTELLING BANDS
ples inD. We use the upper (lower) points of the confi-
dence region to define the upper (lower) confidence bandje adapt a method for using Working-Hotelling hyperbolic
cropped to stay within ROC space. Figure 1 illustrates thishbands (Working & Hotelling, 1929) to generate simultane-
transformation. ous confidence bands on an ROC curve (Ma & Hall, 1993).

The confidence bands are fitted to a regression line,

3.3.2. AXED-WIDTH BANDS (FWB)

Thefixed-width band§-WB) method works by identifying

a slopeb < 0, along which to displace the original ROC gnd are of the form

curve to generate the confidence bands (Campbell, 1994).

In other words, the upper (lower) confidence band would l(x,£k)=a—-b-z+ k- o(z), 2
consist of all the points of the original observed ROC curve

displaced “northwest” (“southeast”) of their original bsc ~ Wherek > 0 is a constant which we define below, and
tion. This creates a confidence band with a fixed width
across the entire curve. The question is what slope to use o(z) = \/02 — 2poa0p - x4 0F - 22, 3
and what distance to displace the curve. While the ideal

slope would be the ratio of the standard deviations associgs defined by the covariance matkix

ated, respectively, with TP and FP, we here adopt the same )

approximation as that used in the original work and use the n— ( a  P9aT ) ()

slopeb = —+/(m/n). poacy 0

The way we generate the confidence bapds using t.hi§\/e use maximum-likelihood estimation (MLE) to generate
method is by sweeping along the discrete points of the orig-

. ) . Ya regression line to fit the ROC curve. We use a modified
inal ROC curve and adding upper (lower) boundary pOInts1mp|ementation of the LABROC4 algorithm (Metz et al.
by moving a distancé in each direction along the line with '

1998a) to do s6.The LABROC4 algorith ks by first
slopeb = —y/(m/n). Figure 2 illustrates this transforma- todos € bl A

tion. 4The LABROCHA fortran source code was acquired from a pub-
. o lic web-site and modified to tailor its 1/0O to work with our ROC

As with our study, the original work used the bootstrap analysis toolkit. The toolkit, which we will release to thelgic

to identify the distance to displace the curve to generatéater this year, is written in Java 1.5.

y=a—-b-u, 1)




grouping continuous data into 'bins’ or 'runs’ of instances

. : Gaussian Distribution [mode +/- 3.00] [auc 0.89459]
either with the same model score and/or same label. Then 0.14

‘ posifive

it uses an ordinal (‘rating method’) algorithm (Dorfman & o012l negative |
Alf, 1969) to create a smooth binormal ROC curve. The co- '
variance matrix is also calculated as part of the algorithm. 01y
There are various constants,available at confidence level % 008
& 006

(1 — 6), depending upon the type of band being gener-
ated. The original work describes two types of bands— 0.04 -
pointwise andsimultaneous unrestrictedo generate con-

fidence bands, we use the wider simultaneous unrestricted
Working-Hotelling bands (WHB), wheré; is determined o s . -
by the chi-square distribution with 2 degrees of freedom: score(x)

0.02 -

20

ks = /—2In(0) (5) Figure 3.Example distribution used in study below.

The confidence bands generated by this method are para-

metric in that they will calculate a TP-interval for any give

FP. This is in contrast to the first two methods which have

discrete bands based on the original ROC curve. Gaussian Distribution ROCs for various modes

4. Data Generator

In order to facilitate a controlled experiment, we used a

synthetic data generator such that we had complete control

of G* andG~. Prior work has shown that popular ma-

chine learning methods do not induce models which gener-

ate two normally distributed sets of scores but rather these

scores take on score distributions which are a closer fit to ,

asymmetric Laplace distributions or asymmetric Gaussian ol ‘ ‘

distributions (Bennett, 2003). The work further indicated 0 0.2 0.4 __0'6 0.8 1
L . . . . False Positives

that the score distribution for positive instances is gener

ally “fatter" than the distribution for th? nggat-ive instas. . Figure 4ROC curves generated for distribution as we vary

For this paper, we use two normal distributions, the posi-

tive being “fatter” than the negative. This is deliberatetsu

that we can study the behavior of the confidence calcula-

tions in a close to ideal setting to evaluate whether they in

fact generate the proper bounds when their assumptions are

True Positives

met (which we will see is not the case). For the study below, we fi’(+) = 0.5, ot = 3.75,
ando~ = 3.0. We tested a range of values @, where
4.1. Synthetic World we setd™ = {0.75,1.00, 1.50, 2.00, 3.00, 4.00, 5.00}, and

= —0%. Figure 3 shows this distribution when using

D= +15. Figure 4 shows the resulting ROC curves for
all values ofd. These were generated by plotting the points
(cdfg- (z), cdfg+ (2)), forz € {—o0,...,00}.

We make the assumption that the only difference betwee
GT and G~ are their model parameters. Our synthetic
world therefore takes five parameters:

We investigate sensitivity of the confidence calculatians t
the difference in the modes of the distributions. We investi
gate this dimension because it will target sensitivity @& th

1. P(+), the probability that an instance is from the pos-
itive distribution

2. the two model parameters f6r™, ™ ando ™. confidence calculations to the separability®f andG~.
The closer the modes, the closer the true ROC curve is to
3. the two model parameters f6f~, 6~ ando . the random lines = y), and the further the modes are from

each other, the “fatter” the true ROC curve is. The modes
Each random sample drawn from this world has a probabilshown above were selected to yield a range of AUCs from
ity of P(+) for being drawn fronG™. 0.55 t0 0.95.



5. Evaluation 5.2. Evaluating the Confidence Bands

We will examine how well the confidence bands fully con- Figure 5 shows the coverage for théand methods. As
tain ROC curves based on evaluation samples ekam-  we can see, JSR is too wide (albeit the best of the three),
ples each, drawn from the same distribution(s). whereas WHB is far too wide and FWB is too tight.

None of the methods generate the proper b&ndibis is
not surprising and should be expected due to the subtle dif-

To generate and evaluate confidence bands, we use the fégrence in setting between our “machine learning” setting

lowing method based on a bootstrapped empirical samplingnd the setting for which the methods were designed. We
distribution. would like to place a confidence band on the performance

of the model in practice. These methods place a confidence
band on where the “true” ROC curve liésAlthough we
would not be able to assess the latter in an actual machine
and P(+) the probability that a randomly drawn sam- learning context, we can since here we knoyv the true ROC
ple comes fronG+. We setP(+) = 0.5 as defined curves ((_jeflne_d by the cumulative distribution funct|or_15).
above. witho+ = 3.75 ando— — 3.0. As we will clarify next, bands on where the true curve lies
’ should be narrower, so the SJR and WH bands are even
2. Fix a sampling size,r, and sample fromy a  worse, butthe FWB bands perform quite well—and can be
confidence-generation set, of sizer. recommended for this task (at least based on our synthetic
world).

5.1. Bootstrap-based Evaluation

1. Build a synthetic worldyV, consisting of two distribu-
tions,G™ andG~ with modesy) and—6 respectively,

3. Generate confidence bands:

(a) FWB: Generaters, “fitting sets”, F; of sizer ~ 9-3. Avariance problem with the bootstrap

by repeated sampling with replacement frén 4 oyr setting, the FWB bands are too tight. Poten-
For eachr’;, generate an ROC curve, (d6), for a1y there are two types of variance problems with the
the model. The result is a set of ROC curves, j,qqstrap-hased setting. The estimated variance about the
rocr = {roc(F;)}. Generate confidence bands, ¢ ryes could be incorrect, either because the original sam-
C», based o and rog. ple is not adequate (e.g., if the sample by chance contains
(b) WHB,SJR: Generate confidence bands€j,,  all examples with the same score, the bootstrap will yield
based on ro@z), the roc curve based ai. no variance), or because with the bootstrap there will be
(by design) duplicate scores. Duplicate scores tend to lead
to larger steps in the ROC curve (which is a step function
for a finite sample), and thus to larger variance. However,
comparisons of the variance from the bootstrap and from
the actual distribution show that the bootstrap estimates a

5. EvaluateCs,. This is done by calculating the percent- Very close to the actuals.

age of ROC curves imcy that fall completely within - Nevertheless, when we generated the fitting $¢is step

the generated confidence bands, 3ain Section 5.1 fromyV rather than fronR, we see bands

6. Repeat steps (2)—(5) 10 times to account for variabiIiw;h;;?}?g\é?g%zdaﬁosgﬁtinsmigtzx :I IO'g?O&?ﬂ% z(:]?'
in the generated confidence calculations. ! bie siz val y

difference is the use of the bootstrap.

4. Generate.., “verification” sets,V;, of sizer by re-
peated sampling fro. For each such sample, gen-
erate a verification ROC curvepc(V;). The result is
a set of ROC curvespcy = {roc(V;)}.

This methodology has five parameters: (1) the synthetidhe second type of variance is in the observed data.

world, which is defined byG*+, G, and P(+), (2) the  Clearly, the observed data has a variance about the true

ROC-generation size;, (3) the number of sampling runs, curve, and therefore ro&) will not lie directly on the true

rqt, used to generate rpdn step 3a to generate the confi- curve. Since the bootstrap is estimating a confidence band

dence bands using FWB, and (4) the number of samplingout ro¢fz), the bands generated will be off by the same

runs,r...1, used to generate rpgand (5) the confidence amount as ro@R) is from the true curve. Figure 6 illus-
trates the problem. The variances about the true and sam-

We fix rg; and reyar to 1000 and & = 0.1. We

then examine the sensitivity of the confidence °We tested with other values 6fwith similar results.
calculations to the ROC-generation sizer c 5We would therefore expect the bands to be too tight, as is the
{25,550, 100, 250, 500, 1000, 2500, 5000, 10000, 25000} case for FWB, and not too wide as is the case with WHB and JSR.

. - . 7Converse|y, we also saw that FWB, when centeredkodid
and the synt_hetlc \{vorld u_sed. We described the synthetlfzn fact contain the true curve 90% of the cases.
worlds we will use in Section 4.1.
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Figure 5.Coverage of bands at= 0.1. The vertical line shows the expected coverage. As we cgmeee of the methods generate
the proper bands.
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Figure 6 Variance problem with initial samplB. Variance about
curves is correct, but the observed curve is off the trueecand

0.4/

0.2

1000 samples, 1000 bootstraps

truth ——
truthb O ——
truthHI ——
sample e ,
sampleLO -
sampleH|

0.96

0.2 0.4 0.6 0.8 1

False Positive

10K samples, 1000 bootstraps

0.94
0.92

0.9 r
0.88 -
0.86 |

0.84( 7
08207

08F

0.78 -

truth —— |
truthLO ——
truthHI ——— ]
sample - 1
sampleLO -]
_ sampleH| -

0.2

025 03 035 04 045 05
False Positive

the estimated bands are therefore off the proper region.

Number of Absolute values of

Samples0.75 1.0 1.5 20 3.0 4.0 5.0
25(0.919 0.856 0.774 0.876 0.746 0.851 0.633
50(0.954 0.944 0.934 0.983 0.962 0.961 0.831
100{0.951 0.950 0.964 0.974 0.924 0.887 0.845
250(0.978 0.964 0.985 0.978 0.883 0.931 0.894
500{0.981 0.951 0.948 0.990 0.988 0.951 0.954
1000{0.990 0.981 0.961 0.982 0.974 0.968 0.957
2500(0.965 0.988 0.983 0.956 0.990 0.950 0.980
5000/0.975 0.993 0.958 0.962 0.992 0.951 0.981
10000]0.983 0.992 0.983 0.985 0.977 0.883 0.971
25000(0.992 0.988 0.982 0.990 0.991 0.942 0.976

Table 2.Coverages of FWB using @ — 6%) bandwidth. These
bands are too wide.

5.4.1. WIDENING THE BAND

We first look at widening the band. Let us consider the
true ROC curve (R), the sample ROC curve jR from
which we’'ll calculate the bands (B) of width d, and the
ROC curves sampled subsequentR,f.) which should
with probability (1 — §) lie within B,,.

We know that R falls outside B, with probability no
more thany. Assuming that the variance about s well
estimated from R, (which we have shown is the case),

pleq curves are very similar. However, because the_ samhen R, will fall outside a band of width! around R-
ple is so far off from the true curve, the bands about it arewith a probability no more tha#. Therefore R, will fall

clearly inappropriate for the purpose of estimating bandsutside a2d band around R, with a probability no more
around expected future curves.

5.4. Accounting for the sample variance

thand?. In our case, we warnit? = 0.1 and therefore need
a2d band around R with 6 = 0.316.

Table 2 shows the coverages we get from applying this

There are two ways in which we might account for the sam-+echnique, using = 0.1 (and therefore using double the
ple variance. Either widen the band to take the variancevidths generated by usingy, = 0.316). We see that in
into account or estimate what the true ROC curve shouldjeneral these bands are too wide. We next turn to estimat-
be and use the original bandwidth. We will take a look ating the true ROC curve as a way to overcome the sampling
both approaches in this section.

variance.



Number of Absolute values of
Samples0.75 1.0 1.5 20 3.0 4.0 5.0

25(0.805 0.776 0.854 0.768 0.664 0.679 0.854
50(0.894 0.824 0.830 0.896 0.900 0.775 0.704
100]0.855 0.886 0.775 0.744 0.890 0.912 0.732
250(0.907 0.847 0.847 0.825 0.837 0.841 0.845
500(0.892 0.836 0.739 0.812 0.846 0.855 0.933

1000]0.873 0.873 0.803 0.832 0.771 0.916 0.900 ey A .
2500{0.930 0.814 0.832 0.899 0.750 0.864 0.929 20-15-10 -5 0 5 10 15 20 25
5000(0.855 0.914 0.773 0.858 0.892 0.876 0.859
10000{0.780 0.938 0.927 0.901 0.824 0.926 0.891
25000(0.933 0.933 0.932 0.893 0.944 0.943 0.910

Score distribution for Logistic Regression

pdf(s)

S = score

Figure 8.Sample logistic regression score distribution with=

) ] 25000. These distributions are clearly not unimodal.
Table 3.Coverages of FWB using parametric bootstrap and esti-

mate of the true curve. The coverages are not consistentigatp
but they are so the the ones closest to the proper coverage.

1998). Covertype examples are describedsbyeatures,
10 being numerical and the rest being binary. To produce a
5.4.2. ETIMATING THE TRUE ROC CURVE binary classification problem (for ROC analysis) we chose

. _ the two classes with the most instances (yieldiT2%
In this approach, we try to estimate the true ROCpase accuracy).

curve. The true curve is generated by plotting _

(cdfs— (z), cdfgs (2)), for z € {—o0,...,00}. However We randomly sampled00 instances 0 of each class)
we don’t knowG+ andG—. If we could estimate these, and built various learned models using WekaVvitten
then we could estimate the true curve. For example, wé Frank, 2000)—logistic model trees (LMT) (Landwehr
could assume that they are binormal (which we know iset @, 2003), J48, naive Bayes trees (NBT) (Kohavi, 1996),
true for our synthetic world). Under this assumption, welogistic regression (LR), and Naive Bayes (NB). We then
can estimaté and o from the observed samples and use 9€nerated prediction scores forPthe remainifg, 000 in-
these to generate the true curve. Further, estimatihg)  Stances. The log-odds scorés; pgf;;; were used as the
from the observed data we can now generate a new worldyase populatiom? from which to draw predictions. Fig-
W' from which to estimate the distributions around the trueure 7 shows the distributions of scores generated for each
curve. Thus, we general®’ both to estimate the true ROC method for positives and negatives. Although LMT, LR
curve as well as to draw samples from. We call this samand NB have nice smooth distributions, they are clearly not
pling techniqueparametric bootstrap binormal and the distributions of J48 and NBT are even

Table 3 sh th ¢ by using this techni further from gaussian distributions. The naive Bayesidistr
avle s shows the coverages we get by using tis techniqu, ons are more-or-less in line with observations made by

While the bar_lds are too tight for small sample sizes_, th‘:"Bennett (Bennett, 2003) (who studied naive Bayes for text
coverages quickly do become respectable although still nO(J."Iassification): they are asymmetric bell-shaped distribu

as we_ll fitte_d aswe would h_ave hoped. The bands c_zlo end YRons, but the negative distribution is fatter than the fhessi
too wide with a few exceptions; however they are in much(Which should not be important here)

closer proximity to the coverage we desire than any of the
other methods. On the other hand, parametric bootstrapor parametric bootstrap, we fit the scores to asymmetric
requires that we can estimate the true score distribution&aussian distributions. We used the evaluation method-

Gt andG~. ology presented above using the same values for the roc-
generation sampling size For each run, we sampled a
5.5. Real Data fitting setF; of r points fromR and then sampled our ver-

o o _ fification setsV; from R N F;.
Estimating the score distributions produced by machine

learning classifiers on real data is critical to parametricUSing the original methods yielded the same results as be-
bootstrap. To our knowledge, there is almost no publishedore, where FWB was too tight, while SIR and WHS-s were
work even mentioning these score distributions, let alond00 Wide. The coverages we get from using the parametric
estimating them (the one exception being the work of BenPootstrap and ROC estimation technique are shown in Ta-
nett, discussed above). Let us now examine the score digle 4.

tributions for models learned with the covertype data set 8&pe use version 3.4.2. Weka is available at
from the UCI machine learning repository (Blake & Merz, http://www.cs.waikato.ac.nz/"ml/weka/
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Figure 7.Score distributions 0% Machine Learning methods on the covertype data set.

Number of 6. Discussion
Samples J48 LMT NBTREE LR NB
25| 0.605 0.587 0.550 0.787 0.797
50 | 0.722 0.693 0.743 0.739 0.883
100 | 0.557 0.816  0.884  0.779 0.827
250 | 0.121 0.862  0.848  0.613 0.640
500 | 0.000 0.823 0.813 0.692 0.574
1000 | 0.000 0.791 0.487 0.340 0.511
2500 | 0.000 0.751 0.229 0.213 0.100
5000 | 0.000 0.727  0.000  0.002 0.008
10000 | 0.000 0.696  0.000  0.000 0.000 However, machine learning studies often are interested in
25000 | 0.000 0.424  0.000  0.000 0.000 the future performance of the model. None of the meth-
ods are designed to produce accurate confidence bands for
Table 4.Coverages of FWB using parametric bootstrap to generthis task, and none do. After showing that the variance es-
ate bands based on prediction scores fronbtheachine learning  timated by bootstrap Samp"ng is reasonable, we introduce
methods on the covertype data sets two techniques to address the variance introduced by pro-
ducing bands about the ROC curve generated from a partic-
ular test set. One method, parametric bootstrap, attempts t
estimate where the true ROC curve lies, and then put a band
around it. This method yielded the best bands on synthetic
We look first to the distributions to see if the problem lies in dgta_for _Wh'Ch the paramgtrlc assumption (a binormal score
badly estimated distributions. This turns out to be the,cased'smbuuon) was appropriate.
as is clear in Figure 8. While the empirical scores form awe also evaluated this methodology on the UCI Covertype
nice smooth distribution, the distribution is not uni-mbda data set. We generated models fréndifferent learning
These peaks in the score distribution translate directly tgnethods and used those models to generate a large set of
peaks in ROC space, which the smoothed asymmetric gauscored predictions. We then used our methodology to gen-
sian distribution did not take into account. In order for theerate, and evaluate, confidence bands based on these pre-
parametric bootstrap technique to work, we must obviouslyiction scores. The parametric bootstrap did not perform

be able to genearet a better fit than the asymmetric gausvell. We showed that the bad performance was due to
sian. Whether this is possible is still an open question.

In this paper we assessed various methods for generating
confidence bands for ROC curves, in the context of ma-
chine learning evaluations. For computing a confidence
band on where the "true” ROC curve for a model lies, a
resampling technique (FWB) from the medical literature
performs well, but (somewhat surprisingly) two other tech-
nigues (WHB and JSR) are far too conservative—even when
the underlying parametric assumptions are correct.




not being able to fit the score distributions well enough.Landwehr, N., Hall, M., & Frank, E. (2003). Logistic Model
Whether it is possible to generate better parametric esti- Trees. Proceedings of the 16th European Conference on Ma-

mates of the scoring distributions is an open question.
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