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Abstract 
Initially popularized by Amazon.com, recommendation 

technologies have become widespread over the past 
several years, both in the industry and academia.  The 
traditional two-dimensional approach to recommender 
systems, involving the dimensions of Users and Items, has 
been subsequently extended to the multidimensional 
approach supporting additional contextual dimensions 
and OLAP-type aggregation capabilities.  Furthermore, 
the class of all possible recommendations available to the 
users in traditional recommender systems is typically 
determined by the vendor and is quite limited.  In this 
paper we address this limitation by proposing a query 
language RQL that allows the users to formulate various 
types of recommendation requests on their own.  RQL 
adapts OLAP queries to the domain of recommender 
systems and, therefore, is able to support both the 
traditional two-dimensional and the more complex 
multidimensional recommender systems.  The paper also 
presents a recommendation algebra that allows mapping 
RQL queries into the algebraic expressions for the query 
processing purposes.  Finally, the paper presents a 
method for executing RQL queries. 

1.  Introduction 
There has been much work done in the area of 

recommender systems over the past decade since the 
introduction of the first papers on the subject [12, 7, 13], 
especially after these technologies were popularized by 
Amazon.com, Netflix, and other companies.  A recent 
comprehensive survey of the rapidly growing field of 
recommender systems can be found in [2].   

Most of the work in recommender systems focuses on a 
two-dimensional paradigm of recommending items to 
users or users to items (e.g., finding the most relevant 
books to a specific customer or the most likely buyers for 
a specific book).  Although the two-dimensional paradigm 
is suitable for some applications, such as recommending 
books and music CDs, it is significantly less suitable for 
other applications, such as recommending vacations to 
travellers or recommending groceries to purchase by a 
“smart” shopping cart using wireless location-based 
technologies [16].  For example, one would recommend a 

different vacation to a customer in the winter than in the 
summer.  Similarly, a “smart” shopping cart, providing 
real-time recommendations to shoppers, needs to take into 
account not only information about products and 
customers but also such contextual information as 
shopping date/time, store, who accompanies the primary 
shopper, products already placed into the shopping cart, 
and its location within the store. 

To provide recommendations in such “contextually 
rich” applications, one needs to consider other 
dimensions, besides Items and Users, such as Time, 
Location and Companion (i.e., accompanying person).  In 
[3], we proposed a new multidimensional approach to 
recommender systems, in which we incorporated multiple 
dimensions and the OLAP-based multidimensional cubes 
of ratings into the recommendation model.  We also 
proposed a novel reduction-based method for estimating 
missing ratings in multidimensional cubes and showed 
that this method outperforms a traditional collaborative 
filtering method [3]. 

However, the approach described in [3] and the 
classical two-dimensional recommendation methods have 
one significant limitation in common.  These methods are 
hard-wired by the developers into the recommender 
systems, are inflexible and limited in their expressiveness, 
and, therefore, neglect the needs of the users.  For 
example a typical recommender system would 
recommend top k items to a user or a set of users, or 
would recommend the best k users who should be the 
primary targets for a certain product.  This situation is 
quite limited, especially in the multidimensional settings, 
where the number of possible recommendations increases 
significantly with the number of dimensions.   

To address the problem of limited and restricted 
recommendation capabilities in the current generation of 
recommender systems, we present query language RQL 
that allows end-users to express a broad range of 
recommendations.  RQL empowers the users and gives 
them the flexibility to request recommendations that are 
of interest to them.  For example, we may want to 
recommend the best two times to go on vacation to 
Jamaica to Jane Doe and her boyfriend. This 
recommendation can be expressed in RQL as 

 
 



RECOMMEND  Time TO Customer 
FROM  VacationCube 
BASED ON  AVG(Ratings) 
WHERE  Customer.Name = “Jane Doe” AND 

Companion.Type = “Boyfriend” AND 
TravelDestination.Region = “Jamaica” 

AGGR BY  TravelDestination.Region 
SHOW  TOP 2 
 
As this example shows, RQL has an SQL-like syntax 

that is adapted to the context of recommender systems 
and, specifically, to the OLAP-based multidimensional 
recommendation model (based on the data cube).  In 
particular, this query deals with the Customer, Time, 
TravelDestination, and Companion dimensions, with a set 
of ratings stored in ratings cube VacationCube, and shows 
that RQL can support multidimensional recommender 
systems.  One benefit of RQL being based on the 
declarative paradigms of SQL and OLAP is that it hides 
many implementation-related details from the end-user 
and allows the user to express recommendations in a 
declarative and, therefore, more intuitive manner.  For 
example, since there are many resorts in Jamaica, in order 
to recommend the best two travel times to Jane to 
Jamaica, in the implementation of the above query it is 
necessary to average the resort ratings at a given time and 
select the best two times based on these average ratings. 

Besides RQL, we also present a multidimensional 
recommendation algebra that is used for processing 
certain “core” parts of RQL queries.  Finally, we describe 
how these core parts of RQL queries can be processed by 
mapping them into this algebra, then into the relational 
algebra and, finally, into SQL.  We will also demonstrate 
that this mapping can be inefficient in some cases.  
Therefore, good query optimization methods need to be 
deployed along the way to speed the performance of the 
resulting SQL queries. 

Although RQL provides a general method for 
expressing recommendations by the end users, in this 
paper we followed the relational OLAP (ROLAP) 
approach for implementing RQL by mapping RQL 
queries into SQL.  However, query processing 
implementations of RQL are not limited to ROLAP and 
can also include multidimensional OLAP (MOLAP) 
approaches when RQL queries are directly evaluated on 
the rating cubes. 

As with most query languages, including SQL, the 
end-users of RQL can be divided into two main groups: 
the naïve- and the power-users.  As with SQL, the power-
users can express their recommendations directly in RQL.  
However, this task can be difficult for the naïve users.  
Therefore, it is necessary to provide them with a form-
based user interface (UI) that would simplify the process 
of formulating RQL queries.  Moreover, as in the case of 
classical query languages and their form-based UIs (such 

as Microsoft Access UI and underlying SQL), there 
should be a tight coupling between the semantics of the 
graphical recommendation interface and RQL so that the 
simple and direct translation between the two is possible.  
This means that RQL is necessary not only for the power 
users, but also as a guide for designing proper semantics 
of the form-based UI used by the naïve users.1 

The rest of the paper is organized as follows. Section 2 
provides background information on multidimensional 
recommendation systems.  Section 3 presents the RQL 
language, and Section 4 describes the corresponding 
recommendation algebra RA.  Section 5 describes how 
RQL queries are processed, and the conclusions and the 
future research directions are presented in Section 6. 

2.  Background: Multidimensional 
Recommender Systems 

In addition to the standard User and Item dimensions 
of the traditional recommender systems, the 
multidimensional approach considers other contextual 
dimensions [3].  Formally, given a recommendation space 
S = D1× D2× …× Dn consisting of dimensions D1, D2, …, 
Dn, where Di is a subset of a Cartesian product of some 
attributes Aij, (j = 1,…,ki), i.e., Di ⊆ Ai1× Ai2 × …× Aiki

, and 
a partially defined rating function R: D1 × …× Dn → 
Rating mapping dimensions into an ordered discrete finite 
set of ratings, the recommendation problem is defined as 
follows.  First, the system needs to estimate the unknown 
ratings and make the rating function R total [3].  Second, 
in order to make some recommendation, one needs to 
select certain “what” dimensions Di1, …, Dik (k < n) and 
certain “for whom” dimensions Dj1, …, Djl (l < n) that do 
not overlap, i.e., {Di1, …, Dik} ∩ {Dj1, …, Djl}=∅, and 
recommend for each tuple (dj1, …, djl)∈ Dj1×…×Djl the 
tuple (di1, …, dik)∈ Di1×…×Dik that maximizes the rating 
R(d1,…,dn) across all the tuples (d1,…,dn) that coincide 
with (dj1, …, djl)∈ Dj1×…×Djl on dimensions Dj1, …, Djl. 
 
Example 1.  Consider the application for recommending 
movies to users and having the following dimensions:  
• Movie: the set of all the movies that can be 

recommended; it is defined as Movie(MovieID, 
Name, Studio, Director, Year, Genre, MainActors). 

• User: the people to whom movies are recommended; 
it is defined as User(UserID, Name, Address, Age, 
Occupation, etc.). 

• Theater: the movie theaters showing the movies; it is 
defined as Theater(TheaterID, Name, Address, 

                                                           
1  We would like to point out that SQL is not suitable for defining the 
model-theoretic semantics of this form-based recommendation interface, 
because the semantics in this case should be defined in terms of the 
multidimensional recommendation model rather than the relational 
model.  This point will be discussed further in Section 3. 



Capacity, Location, County, State). 
• Time: the time when the movie can be or has been 

seen; it is defined as Time(TimeOfDay, DayOfWeek, 
Month, Year). 

• Companion: represents a person or a group of 
persons with whom one can see the movie.  
Companion consists of a single attribute having 
values “alone,” “friends,” “girlfriend/boyfriend,” 
“family,” “co-workers,” and “others.”  

We also use two rating measures in this example: 
PublicRating, specifying how much the general public 
liked the movie, and PersonalRating, specifying how 
much a particular person liked the movie in the settings 
specified by the Time, MovieTheater, and Companion 
dimensions.  The PersonalRating assigned to a movie by a 
person depends on where and how the movie has been 
seen, with whom and at what time.  For example, the type 
of a movie to recommend to college student Jane Doe can 
differ significantly depending on whether she is planning 
to see it on a Saturday night with her boyfriend in a movie 
theater as opposed to on a weekday with her parents at 
home.        
 

The ratings R(d1, …, dn) of the recommendation 
space S = D1× D2× …× Dn are either explicitly provided 
by the users or are implicitly inferred by the system [2] 
and are stored in a partially filled multidimensional cube.  
For example, R(Aviator, Jane, UA-NYC-34St, 2/19/2005, 
boyfriend) = 6 means that Jane gave rating 6 to “Aviator” 
that she saw with her boyfriend on February 19, 2005 in 
the movie theater UA-NYC-34St.   

Since the rating cube is only partially filled, it is 
important to estimate the unspecified ratings for 
recommendation purposes.  This multidimensional rating 
estimation problem is addressed in [3], where the 
reduction-based method of estimating unknown ratings in 
terms of the known ratings is presented.  To understand 
how it works, assume that we want to recommend a 
movie to Jane Doe who wants to see it with her boyfriend 
on a Saturday night in a movie theater.  If the Time 
dimension is partitioned into weekend and weekday 
components and since Saturday night falls on a weekend, 
the reduction-based approach uses only the ratings for the 
movies seen on weekends by customers with their 
boy/girlfriends in the movie theaters in order to provide 
recommendations for Jane Doe.  It was shown that this 
approach outperforms the standard collaborative filtering 
in multidimensional settings under certain conditions [3]. 

Finally, the multidimensional recommendation model 
allows for OLAP-based aggregation hierarchies [3].  For 
example, movies can be classified into genres, people into 
segments of customers, and time has its standard 
classification hierarchies (such as day of week, month, 
year, etc.).  These hierarchies help aggregate ratings 
according to the methods described in [3].  The 

aggregation capabilities can be used in RQL when 
formulating complex recommendations. 

The work described in [3] focuses on the 
multidimensional recommendation model and on the 
reduction-based approach to estimating unknown ratings.  
However, it does not specify how to express the wide 
variety of recommendations that are possible in 
multidimensional settings, and simply assumes that the 
recommendation algorithms are “hard-wired” into the 
system by their developers.  In the next section we 
address this limitation by presenting query language RQL 
for expressing such recommendations. 

3.  Recommendation Query Language (RQL) 
In this section, we describe RQL by first providing 

several examples of RQL queries demonstrating various 
features of the language and then presenting a more 
formal definition of the language.  As pointed out in 
Section 1, RQL in its text-based form is designed 
primarily for the power users.  Later in this section we 
will also discuss a UI for the naïve users that allows 
expressing recommendations using a form-based 
approach. 

The first example presents a classic recommendation 
request supported by most recommender systems. 

Query 1: Recommend best movies to users: 
RECOMMEND  Movie TO User  
FROM  MovieRecommender 
BASED ON  PersonalRating    

In Query 1, the RECOMMEND clause specifies that 
movies will be recommended to users, the FROM clause 
specifies that the recommendation is based on the 5-
dimensional MovieRecommender cube of ratings, and the 
BASED ON clause specifies that personal ratings are used 
for the recommendation purposes.  In particular, the 
movies are ordered separately for each user based on the 
PersonalRating measure that is either provided by the user 
or estimated from the set of known ratings as mentioned 
in Section 2.  Some of the specifics of this process will be 
described further when discussing Query 7.  Finally, the 
best movie is selected for the user based on the movie 
ordering. 

The next example (Query 2) demonstrates the SHOW 
clause and how to use restrictions on recommendation 
criteria.  In Query 2, the WHERE clause is used to select 
specific movies and users satisfying the selection criteria.  
Then only the selected movies are ordered for each 
selected user based on the value of PersonalRating 
measure and the top 5 movies are recommended for each 
user.  We would like to point out that in Query 1 the 
SHOW TOP 1 clause was omitted by default when only 
the best movie was selected for each user.   



Query 2: Recommend, using personal ratings, top 5 
action movies to users older than 18.  

RECOMMEND  Movie TO User 
FROM  MovieRecommender 
BASED ON  PersonalRating 
WHERE  Movie.Genre = “Action” AND  

User.Age >= 18 
SHOW  TOP 5     

The next example shows how ratings are selected 
based on the criteria specified in the WITH clause. 

Query 3:  Recommend top 5 movies to the user to see 
over the weekend, but only if the personal ratings of the 
movies are higher than 7 (if fewer than 5 movies satisfy 
these criteria, then show only those satisfying them). 

RECOMMEND  Movie TO User 
FROM  MovieRecommender 
BASED ON  PersonalRating 
WHERE  Time.WeekTime =”Weekend”  
WITH  PersonalRating > 7  
SHOW  TOP 5     

Query 3 demonstrates that different selection clauses 
(WHERE and WITH) are used for the selections of 
attributes and ratings.  There are two reasons for 
providing different types of restrictions for attributes of 
dimensions and rating measures with separate WHERE 
and WITH clauses.  First, at the OLAP level, restrictions 
on attributes are implemented by slice and dice operation 
[5, 8], whereas restrictions on rating measures are 
implemented by extracting particular rating information 
from the cells of the cube.  Second, it is useful to 
distinguish the two sets of restrictions because they are 
semantically very different: the first provides restrictions 
on the contextual information, while the other on the 
quality of target concept, e.g., how good the movie is.  
Also, this is not unlike the situation in temporal databases, 
where separate WHERE and WHEN clauses are used for 
regular and temporal dimensions [14]. 

The next example shows that more than one 
dimension can be used in recommendations. 

Query 4: Recommend to Tom and his girlfriend top 3 
movies and the best times to see them over the weekend.  

RECOMMEND  Movie, Time TO User, Companion 
FROM  MovieRecommender 
BASED ON  PersonalRating 
WHERE  User.Name = “Tom” AND  

Time.WeekTime =”Weekend” AND 
Companion.Type = “Girlfriend” 

SHOW  TOP 3     

Note that the RECOMMEND clause in Query 4 has 
two dimensions (Movie and Time) and the TO clause has 
also two dimensions (User and Companion).  

Sometimes, a certain group of people may be 
interested in a certain genre of movies.  These types of 
recommendations can be achieved using aggregation 
capabilities of RQL, as the next example shows. 

Query 5: Recommend movie genre to different 
professions using only the movies with personal ratings 
bigger than 6: 

RECOMMEND  Movie.Genre TO User.Profession 
FROM  MovieRecommender 
BASED ON  AVG (PersonalRating) 
WITH  PersonalRating > 6 
AGGR BY  Movie.Genre, User.Profession  

This query aggregates rating scores for individual 
movies into aggregated rating scores for different genres 
of movies.  The aggregated score is calculated by 
averaging individual scores using the AVG function in the 
BASED ON clause.  Besides AVG, other aggregation 
functions may include SUM, MAX, MIN, etc.  Similarly, 
in this example individual users are also aggregated by 
profession, and each profession becomes a new target for 
a recommendation.  Any aggregation operation is 
specified with the AGGR BY clause. 

The next example demonstrates that 
recommendations are not restricted to the User dimension.  
More generally, Query 6 show how different things can 
be recommended to various objects. 

Query 6: Identify the top two professions that appreciate 
the movie “Beautiful Mind” the most. 

RECOMMEND  User.Profession TO Movie  
FROM  MovieRecommender 
BASED ON AVG(PersonalRating) 
WHERE  Movie.Title= “Beautiful Mind” 
AGGR BY  User.Profession 
SHOW  TOP 2     

A rating score for a movie can either be explicitly 
specified by the user or can be estimated from the existing 
user-specified ratings using one of the rating estimation 
methods described in [3].  The next query (Query 7) 
demonstrates this feature of RQL as well as the ability to 
provide recommendations based on multiple ratings. 

Query 7: Show top 5 movies with both public ratings and 
personal ratings bigger than 8 to students based only on 
the movies they have seen. 

RECOMMEND  Movie To User 
FROM  MovieRecommender 
BASED ON PersonalRating, PublicRating 
WHERE  User.Profession = “Student” 
WITH  Public_Rating>8 AND  

RATED (PersonalRating) >8 
SHOW TOP 5     



Note that, since in a recommender system ratings can 
be provided by users or estimated by software, for each 
measure we have an option of specifying the EST rating 
flag to indicate which values for this particular measure 
have been specified by the users (e.g., users saw a movie 
and provided their ratings) and which have been estimated 
by some recommender system.  In Query 7, only 
previously seen movies for each user are used in the 
recommendation.  

More specifically, Query 7 demonstrates how RQL 
differentiates between explicitly specified and estimated 
ratings by supporting RATED, ESTIMATED, and ALL 
qualifiers.  If the RATED qualifier is specified, then only 
the actual ratings (i.e., ratings for which EST rating flag = 
False) are used to compute recommendations.  If the 
ESTIMATED qualifier is used, then only the estimated 
ratings (i.e., where EST rating flag = True) are used for 
this purpose.  If omitted, one of these qualifiers is set as a 
default (e.g., ESTIMATED).2  If the ALL qualifier is used 
then both actual and estimated ratings are used to compute 
recommendations (i.e., EST rating flag is ignored). 

Query 7 also shows how two separate measures are 
used in RQL and how restrictions are imposed on them.  
Also, when multiple measures are used in the BASED ON 
clause, lexicographic ordering is used to order 
recommendation results. 

The next example demonstrates the usage of the 
HAVING clause and multiple aggregations in RQL. 

Query 8: Recommend movie genre to different 
professions and show those results with average ratings 
bigger than 6: 

RECOMMEND  Movie.Genre TO User.Profession 
FROM  MovieRecommender 
BASED ON  AVG (PersonalRating) 
AGGR BY  Movie.Genre, User.Profession 
HAVING  AVG (PersonalRating) > 6   

In Query 8, AGGR BY and HAVING clauses are 
analogous to GROUP BY and HAVING clauses in SQL.  
Also, in this example the aggregated average rating scores 
are restricted to those that are bigger than 6. 

Examples 1–8 of RQL queries introduced various 
features of the language.  A more formal top-level 
specification of RQL syntax is presented in Figure 1. 

As Figure 1 shows, recommendations are restricted to 
a single cube of ratings cube, thus disallowing joins 
between cubes in RQL.  This is the case because 
multicube recommendations seldom have meaningful and 
practically important applications, but lead to many 
complications and side-effects. 

The recommend_dim_attr_list and  recipient_dim_ 

                                                           
2  To simplify the presentation, we assume some default value for the 
ratings qualifier in the remainder of the paper and omit the use of the 
EST flag from the subsequent query processing examples.  

attr_list provide the mutually exclusive lists of either 
dimensions (e.g., Time, User, etc.) or attributes (e.g., 
User.Profession, Movie.Genre, etc.).  Moreover, if RQL 
has an aggregated recommendation in the 
RECOMMEND-TO clause (i.e., it appears in 
recommend_dim_attr_list or in  recipient_dim_attr_list), 
it must also be specified in the AGGR BY clause (i.e., 
appear in aggregation_dim_attr_list). 3   Finally, the 
aggregation_dim_attr_list has the same structure as the 
recommend_dim_attr_list and recipient_dim_attr_list. 

RECOMMEND  recommend_dim_attr_list  
TO  recipient_dim_attr_list 
FROM  cube 
BASED ON  measure_list 
WHERE  dimension_restrictions  //optional 
WITH  measure_restrictions  //optional 
AGGR BY  aggregation_dim_attr_list //optional 
HAVING aggregation_restriction  //optional  
SHOW measure_rank_restriction   
              //optional, default: SHOW TOP 1 

Figure 1.  Top-Level Specification of RQL Syntax. 

The WHERE clause contains dimension_restrictions 
that constitute the standard restrictions of the “slice-and-
dice” operator in OLAP systems.  Measure_list consists 
of one or several measures used for sorting 
recommendations, as shown in Query 7.  If more than one 
measure is used for this purpose, then the ordering is 
lexicographic.  Also, aggregation functions can be applied 
to measures, as is shown in Queries 5 and 8.  Finally, 
measure_restrictions constitute standard restrictions on 
different types of ratings. 

The output of a recommendation is a matrix of the 
“TO” dimensions with the entries consisting of the lists of 
the records corresponding to the “RECOMMEND” 
dimensions.  These lists of records and their measures are 
determined using the rating estimation methods, described 
in Section 2 (and in [3]), and the rating qualifiers, 
described in Query 7.  Finally, these lists of records are 
sorted by the measures in the BASED ON clause and 
truncated according to the SHOW clause. For example, 
the output of Query 4 is a two-dimensional matrix of User 
and Companion dimensions with the restrictions that the 
User is Tom and the companion is his girlfriend, which 
results in a singleton matrix (Tom, girlfriend). The entry 
in this matrix is the list of movies and the best times to 
see these movies sorted by the personal ratings and 
restricted to the top 3 entries. 

The operational semantics of RQL queries is defined 
as follows.  First, the WHERE and WITH clauses are 
applied to restrict the rating cube only to the ratings and 

                                                           
3  This situation is similar to SQL when aggregation is used in the 
SELECT and the GROUP BY clauses. 



values specified in these clauses.  Then, the aggregation 
(based on the AGGR BY clause) is performed to produce 
aggregated ratings.  Then, only the aggregate ratings that 
satisfy the HAVING clause are selected.  Finally, the 
recommendation matrix is generated according to the 
RECOMMEND and SHOW clauses, where entries are 
sorted based on the “BASED ON” clause. 

Although we used the term RQL queries throughout 
the paper, recommendations are really not queries 
according to the standard meaning of the term since they 
return a very idiosyncratic output in the form of the 
recommendation matrix described above.  To address this 
issue, we distinguish between the core RQL query 
containing FROM, BASED ON, WHERE, WITH, AGGR 
BY and HAVING clauses, and the recommendation 
wrapper containing RECOMMEND and SHOW clauses.  
The core RQL query operates on a multidimensional cube 
of ratings and always returns an object of the same type – 
a multidimensional cube of ratings.  In contrast to this, the 
recommendation wrapper takes a multidimensional cube 
of ratings and transforms it to a different type of object – 
the recommendation matrix that is subsequently returned 
as an output to the end-user.  In processing RQL queries, 
first, the core query is evaluated, and then the wrapper 
(RECOMMEND and SHOW clauses) is applied to the 
output of the core RQL query. 

Although RQL is related to OLAP query languages, 
it has certain distinctive characteristics pertaining to 
recommendations that make it different from other 
languages.  In particular, as explained above, RQL queries 
are divided into the “core” and “wrapper” components, 
each component requiring separate evaluation methods.  
Also, ratings can be actual, i.e., specified by the user, or 
inferred, i.e., derived from the actual ratings using various 
estimation methods.  Therefore, RQL provides 
mechanisms for distinguishing between different types of 
ratings, as Query 7 demonstrates.  Finally, the language 
provides various other recommendation-specific 
properties, such as using a single cube of ratings, the 
WITH clause, and recommendation-specific types of 
aggregations, which make RQL uniquely suited for 
recommendation purposes.  

As mentioned earlier, the text-based form of RQL 
will primarily be used by the power users and, therefore, 
it is important to have a graphical UI of RQL for the naïve 
users.  An example of a form-based version of Query 3 is 
provided in Figure 2.  As we can see from this example, 
all the syntax of RQL Query 3, including multiple 
dimensions, what to recommend for whom, which ratings 
to use, and what the selection criteria are, is specified in a 
graphical form understandable for a naïve user.   

Note that, depending on the needs of a specific 
recommendation application, user interface forms could 
be designed to be simpler or more advanced, using the 
same general RQL for their implementation.  Therefore, 

we would like to stress that the semantics of the UI should 
be based on the multidimensional recommendation model 
and on RQL in particular.  This allows to have a tight 
coupling between the UI and RQL primitives (e.g., both 
describe which dimensions to recommend and to whom, 
which ratings to use and how, and so on) and, therefore, 
to use RQL as a guide for designing the form-based UI.  
Alternatively, one could try mapping the UI-based 
requests directly into SQL.  However, this would create 
discontinuity between the front-end UI model and the 
back-end SQL-based recommendation model, thus 
making the semantics of the UI hard to understand and 
causing interpretation errors and problems.  Since RQL is 
needed for the power-users anyway, it is much better to 
define the semantics of the UI in terms of RQL rather than 
SQL. 

In the next section, we present a recommendation 
algebra that is needed for processing RQL queries.  Since 
algebraic operators should return objects of the same type 
as their inputs, we will target the recommendation algebra 
only to the core RQL queries.  To process a complete 
RQL query, we first construct an algebraic expression 
equivalent to the core RQL query, evaluate it, and then 
“feed” the results of the evaluation into the RQL wrapper 
to produce the final output. 
 

 
Figure 2.  Form-based example of Query 3. 



4.  Recommendation Algebra (RA) 
Since multidimensional recommendations are based on 

the OLAP paradigm, we use the OLAP algebras 
introduced in the database community [1, 6, 15, 9, 10] to 
define the recommendation algebra.  However, since the 
RQL language is tailored specifically for the domain of 
recommendations, only a subset of the standard OLAP 
operators is needed to be able to process RQL queries.  
For example, we do not use a join operator in the 
recommendation algebra because RQL deals with only 
one recommendation cube for the reasons explained in 
Section 3.  Similarly, we do not use PUSH and PULL 
operators of the OLAP algebras because they do not occur 
naturally in the recommendation contexts.  In fact, they 
would “destroy” the cube of ratings by pushing other 
dimensions into measures and mixing them with the 
natural recommendation measures, i.e., ratings. 

In the rest of this section, we describe the 
recommendation algebra RA.  We will follow the 
definitions of the OLAP operators introduced in [15].  
However, before introducing the OLAP operators, we 
formally define a data cube as a 5-tuple <D, M, A, f, L>, 
where these five components are defined as: 

• D = {d1, d2, …, dn} is a set of n dimensions, where 
each di is a dimension name representing some 
domain dom(di). 

• M = {m1, m2, …, mk} represents a set of measures, 
where each mi is a different type of a rating 
representing some rating domain dom(mi).  

• A = {a1, a2, …, at} is a set of attributes where each ai 
is an attribute name.   

• f: D → 2A is a mapping that identifies a set of 
attributes for each dimension.  In other words, f plays 
the role of schema – it partitions the set of all 
attributes A among all the dimensions.  Mapping f is 
such that f(di)∩f(dj)=∅ and ∪i f(di) = A.   

• L ={l1, l2, …, lj} denotes a set of cube cells, where 
each cube cell li is represented by its address and its 
content.  That is, li = <addri, conti>, where addri ∈ 
dom(d1) × dom(d2) × … × dom(dn) and conti ∈ 
dom(m1) × dom(m2) × … × dom(mk).   
 
Given this definition, we can introduce the following 

algebraic operators on the cube.  
 
Restriction (RSTR).  The restriction operator defines the 
“slice and dice” operation [5, 8] on the cube by putting 
restrictions on one dimension or multiple dimensions, or 
on the attributes of dimensions.  Similarly, restrictions 
could be put on any of the measures mi.  The restrictions 
are represented by compound predicate  

P = p1 <op> p2 <op> … <op> pn, 

where <op> represents a logical operator AND or OR and 
pi is a domain restriction for a single attribute, e.g., 
“Age>21”.  Then, the restriction operator maps inputs 
CI=<D,M,A,f,L> into outputs CO=<D,M,A,f,Lo> using 
compound predicate P and is denoted as RSTRP(CI)=CO.  
In this case, Lo is calculated simply by retaining those 
elements of L that satisfy predicate P, i.e., as Lo ={l∈L | 
P(l) is true}.   
 
Metric Projection (MRPJ).  The metric projection 
operator restricts the output of a cube to include only a 
subset of the original set of measures.  It is defined as 
MRPJmi(CI)=CO, where CI=<D,M,A,f,L>, CO = 
<D,Mo,A,f,Lo>, Mo=M–{mi}, and Lo is obtained from L by 
taking each element lj = <addrj, contj> and removing the 
ith measure component from the contj vector.  In other 
words, this operator projects the measure mi∈ M out of 
the cube.   
 
Destroy Dimension (DTDM).  The destroy dimension 
operator is denoted as DTDMdi(CI)=CO, where 
CI=<D,M,A,f,L>, CO = <Do,M,Ao,f,Lo>.  Here di is the 
dimension to be destroyed, and the outputs are calculated 
as follows: Do = D – di, Ao =A–f(di), and Lo is obtained 
from L by by taking each element lj = <addrj, contj> and 
removing the ith dimension component from the addrj 
vector.  Note that, after destroying a dimension it is 
possible to have a number of updated lj elements that have 
identical addrj components.  Therefore, all such elements 
are aggregated into a single element <addrj, Faggr.contj> ∈ 
Lo by aggregating each individual measure component of 
the contj vector using some default measure aggregation 
function Faggr.   
 
Aggregation (AGGR).  The aggregation operator 
performs aggregation on one or more dimensions (e.g., 
aggregating a movie dimension based on movie genres).  
This operator applies one of the aggregation functions 
Faggr, such as SUM, AVG, MAX, or MIN, to the cube 
with one or more dimensions specified as grouping 
attributes.  Formally, AGGRdi(CI)=CO, where 
CI=<D,M,A,f,L>, CO = <Do,M,Ao,fo,Lo>.  Here di is the 
dimension being aggregated, which after aggregation 
becomes a modified dimension di

* together with its own 
aggregated attributes and mapping function fo(di

*).  The 
outputs are calculated as follows: Do = D – di + di

*, fo is 
the new mapping function that incorporates the newly 
aggregated dimension, Ao =A–f(di)+fo(di

*), and Lo is 
obtained from L by by taking each element lj = <addrj, 
contj>, replacing the ith dimension component of the addrj 
vector by its aggregate (e.g., replacing individual movies 
by more general movie genres).  Note that, as with 
DTDM operator, after aggregating a dimension it is 
possible to have a number of updated lj elements that have 
identical addrj components.  Therefore, all such elements 



are aggregated into a single element <addrj, Faggr.contj> ∈ 
Lo by aggregating each individual contj component using 
some measure aggregation function Faggr.  

The recommendation algebra RA is formed by the  
composition of these four operators. To illustrate how this 
algebra works, consider the following examples of some 
of the RQL queries expressed in Section 3. 

The next example illustrates how a simple RQL 
query can be expressed in the recommendation algebra. 

 
Example 2.  This example presents the algebraic 
expression of Query 3 (i.e., recommend top 5 movies to 
the user to see over the weekend, but only if the personal 
ratings of the movies are higher than 7). 

DTDM(MovieTheater, Time, Companion) ( 
MRPJ(PublicRating) ( 

RSTR(PersonalRating > 7) ( 
RSTR (Time.WeekTime="Weekend") ( 

MovieRecommender ) ) ) )  
 
As explained before, this algebraic expression 

specifies only the core part of the RQL query.  The actual 
recommendation results are generated by the RQL 
wrapper from the core query.  Therefore, this algebraic 
expression destroys all other dimensions at the end, 
leaving only the User and Movie dimensions for the 
wrapper to work with.  Also, this example shows how 
MRPJ and DTDM operators remove measures and 
dimensions from the cube; e.g., PublicRating measure and 
MovieTheater, Time, and Companion dimensions are 
removed from the MovieRecommender cube. 

The next example shows how aggregation is done in 
the recommendation algebra. 

 
Example 3.  This example presents the algebraic 
expression of Query 5 (i.e., recommend movie genre to 
different professions using those movies with Personal 
ratings bigger than 6). 

DTDM (Theater, Time, Companion) (  
MRPJ(PublicRating) ( 

AGGR(User.Profession) ( 
AGGR(Movie.Genre) ( 

RSTR(PersonalRating > 6) ( 
MovieRecommender ) ) ) ) )  

 
Next, we present a more complex example of an RQL 

query that has aggregation and a HAVING clause 
selection. 

 
Example 4.  This example presents the algebraic 
expression of Query 8 (i.e., recommend movie genre to 
different professions and show those results with average 
ratings bigger than 6). 

DTDM (Theater, Time, Companion) ( 
MRPJ(PublicRating) ( 

RSTR(PersonalRating>6) ( 
AGGR(User.Profession) ( 

AGGR(Movie.Genre) ( 
MovieRecommender ) ) ) ) )  

 
The resulting recommendation algebra is more 

expressive than RQL.  As will be shown in Section 5, any 
core RQL query can be mapped into the algebra.  
However, for example, the following algebraic expression 
cannot be expressed in RQL: 

 
RSTR(PersonalRating>7) ( 

AGGR(Movie.Genre) ( 
RSTR(PersonalRating > 6) ( 

AGGR(User.Profession) ( 
MovieRecommender ) ) ) ) 

 
This is the case because this algebraic expression 

applies restriction (selection) in two cases: 
RSTR(PersonalRating > 6) for the partially aggregated case and 
subsequently RSTR(PersonalRating > 7) for the fully aggregated 
case.  In contrast to this, RQL can do aggregation and the 
subsequent restriction (selection) only once.  Therefore, 
restriction on partially aggregated ratings, as was done in 
the above algebraic expression, cannot be expressed in 
RQL. 

One way to deal with this problem is to extend RQL 
in such a way that it would be able to express any 
algebraic query.  However, we decided against this, 
because, in our experience, algebraic queries not 
expressible in RQL are of little practical importance in 
recommender systems.  Therefore, the support for these 
queries would only add extra complexity to the language 
without providing any significant results.  

5.  Processing RQL Queries 
As mentioned earlier, we chose to implement RQL 

queries by mapping them into SQL.  This mapping is 
decomposed into the following three stages.  First, we 
translate RQL queries into the recommendation algebra 
RA.  Second, we translate RA expressions into the 
relational algebra.  Third, we translate the relational 
algebra queries into SQL.  We describe these steps in the 
rest of this section. 

5.1.  Translation from RQL to RA  
The mapping from the RQL core query to the 

recommendation algebra is done by parsing the RQL 
query and generating corresponding algebraic operators.  
The MAP algorithm, presented in Figure 3, shows how to 
translate an arbitrary RQL query (as defined in Figure 1) 
with its specific parameters, such as measure_restrictions, 



dimension_restrictions, etc., into an algebraic expression 
in RA. 

Based on the input query RQL_Query, the MAP 
algorithm produces a corresponding algebraic expression 
RA_op in RA.  By default, initially RA_op is assigned the 
identity operator ID (Line 1), i.e., ID(cube) ≡ cube for 
any cube instance.  First, we check whether RQL_Query 
has any restrictions on dimensions (Line 2) or measures 
(Line 4), and if so, we then generate a restriction operator 
RSTR with corresponding parameters (Lines 3 and 5).  
Note, that we build the resulting algebraic expression 
RA_op by composing the current value of RA_op with 
each newly generated operator.  For notational purposes, 
we use the ⊕ symbol to represent the composition of two 
algebraic operators, i.e., op1 ⊕ op2 (cube) = 
op2(op1(cube)) for any cube and any algebraic operators 
op1, op2.   

MAP(RQL_Query) { 

(1) RA_op := ID 

(2) if (∃ WHERE clause in RQL_Query) then 
(3) RA_op := RA_op ⊕ RSTR(dimension_restrictions); 

(4) if (∃ WITH clause in RQL_Query) then 
(5) RA_op := RA_op ⊕ RSTR(measure_restrictions); 

(6) if (∃ AGGR BY clause in RQL_Query) then 
(7) RA_op := RA_op ⊕ AGGR(aggregation_dim_attr_list);  

(8) if (∃ HAVING clause in RQL_Query) 
(9) RA_op := RA_op ⊕ RSTR(aggregation_restriction); 

(10) RA_op := RA_op ⊕ MRPJ(M – measure_list); 

(11) final_dim_list := f –1 (recommend_dim_attr_list) + 
(12)   f –1 (recipient_dim_attr_list); 
(13) RA_op := RA_op ⊕ DTDM (D – final_dim_list); 

(14) Return RA_op; 
} 

Figure 3.  Mapping RQL queries into RA expressions. 

Line 6 checks whether RQL_Query requests any 
aggregation, and Line 7 generates the corresponding 
algebraic operator.  Similarly, Lines 8 and 9 handle the 
restrictions on aggregated dimensions, if any.  Since the 
recommendation may be based only on some of the rating 
measures, Line 10 generates a MRPJ operator that 
projects the unused measures out.  Next, we remove the 
dimensions that are not present in 
recommend_dim_attr_list and recipient_dim_attr_list, 
i.e., we only retain the dimensions that are present in 
either RECOMMEND or TO clauses of RQL_Query.  For 
notational simplicity, we define f –1 as the function that 
returns a corresponding dimension for each attribute.  (It 
is not a true inverse of function f as defined in Section 4, 

but it is very easy to construct f –1 if mapping f is known.)  
Then, Lines 11 and 12 compute the list of relevant 
dimensions, and Line 13 generates a DTDM operator that 
removes all other (irrelevant) dimensions.  Finally, Line 
14 returns the resulting algebraic expression. 
 

Note that MAP produces three selection operators 
RSTR corresponding to the compound selection 
statements in the WHERE, WITH, and HAVING clauses 
respectively.  The next step is to decompose them into 
atomic selections having only atomic restriction 
conditions using standard algebraic methods used in query 
optimization [11, 4].  Example in Section 5.4 will 
illustrate this point further. 

5.2.  Translation from RA to Relational Algebra 
In this section we map recommendation algebraic 

operators introduced in Section 4 into relational algebra.  
First, we assume that the multidimensional cube of ratings 
is mapped into its snowflake schema relational 
representation using the standard mapping [5, 8] as 
follows.  The fact table Rating contains tuples that 
represent the cells of the multidimensional cube, where 
each cell is represented by some combination of the 
identifiers (keys) for all dimensions as well as the 
combination of values for all the metrics.  In other words, 
the fact table essentially represents set L, as defined in 
Section 4.  For each dimension di, there is a set of tables 
{Di1, …, Dim} forming the snowflake hierarchy [8] based 
on the foreign key relationships between “neighbouring” 
tables.  Finally, table Di1 represents the “main” table of 
dimension di and can be joined with table Rating on the 
foreign key. 

To illustrate these concepts, consider the 
MovieRecommender cube presented in Example 1  and its 
mapping into the following snowflake schema presented 
in Figure 4.  The User dimension in the 
MovieRecommender cube is represented by User and 
Profession tables in the snowflake schema in Figure 4 that 
can be joined together on ProfessionID and to Rating 
table on UserID.  Given this cube-to-snowflake schema 
mapping, RA algebraic operators are mapped into the 
relational algebra operators as follows. 

 
Restriction (RSTR).  If the restrictions are on measures, 
we do selection on the fact table: 

Rating = Selection Pm(Rating) 

If the restrictions are on dimensions, we need to join 
the corresponding dimension table with fact table and 
then apply the selection (restriction) conditions on the fact 
table and dimension table respectively.  Note that the 
restrictions can be applicable to the n-th level table Din in 
the snowflake hierarchy for dimension di.  These 
restrictions should be propagated from table Din all the 



way down the snowflake hierarchy to table Di1 and into 
the Rating table by joining all these tables.  Let Pdn be the 
restriction condition applicable to table Din.  Then 
operator RSTR can be implemented as  

( 1)

1

( 1) . . ( 1)

. . 1

( )
( ( ( , ))), 2,...,

( ( ( , )))
i j in

i i

in Pdn in

i j Xn D ID D ID i j ij

Xr D ID Rating D ID i

D Selection D
D Projection Join D D j n

Rating Projection Join D Rating
−− = −

=

=
= =

=

 

Note that the first expression updates table Din as 
described above, and the second expression updates all 
the intermediate tables Di(n-1), …, Di1.  Finally, Rating 
table is updated by joining itself with Di1, as shown in the 
third expression.  The projection operator is needed to 
retain the original attributes Xn of the tables after they 
have been joined with other tables. 

Rating (ID, MovieID, UserID, LocationID, TimeID,  
CompanionID, PublicRating, PersonalRating) 

User (UserID, ProfessionID, UserName, Age, Gender)  
Profession (ProfessionID, ProfessionName) 

Movie (MovieID, GenreID, MovieName, Length,  
ReleaseYear)     

Genre(GenreID, GenreName) 

Theater (TheaterID, CityID, ThearterName, Capacity)  
City(CityID, CityName, RegionID)   

Region (RegionID, RegionName) 

Time (TimeStampID, DayofTheWeekID) 
DoW(DayofTheWeekID, Weekend, DayOfTheWeek) 

Companion (CompanionID, CompanionType) 

Figure 4.  Snowflake schema for the rating cube  
from Example 1. 

 
Metric Projection (MRPJ).  To get a subset of measures 
stored in the fact table, we only need to keep remaining 
measures by applying the Projection operator. The 
projected-out measures are denoted as Mp 

Rating = Projection (M – Mp) (Rating) 
 
Destroy Dimension (DTDM).  In order to destroy 
dimension di, we first need to drop all the tables {Di1, …, 
Dim} forming the snowflake hierarchy for dimension di.  
Second, we need to delete corresponding dimension ID 
attribute from the Rating table.  After projecting out the 
dimension, several tuples in the Rating table can have the 
same values for all the remaining foreign keys.  All these 
similar tuples need to be merged and their individual 
ratings aggregated according to the Faggr function 
specified for each measure.4  We follow [4] and use their 
                                                           
4   In the subsequent query processing examples we use the AVG 
function for this purpose. 

relational aggregation operator FN as a part of the 
relational algebra to express this aggregation operation. 
Formally: 

( . ) ( , , )( ( ))
i aggr iD D ID M F D DRating Projection FN Rating− −=  

 
Aggregation (AGGR).  Aggregation needs to be specified 
at a certain level n of the snowflake hierarchy for 
dimension di.  More specifically, it should be applied to 
table Rating and all the tables Di1, …, Din defined earlier 
in Section 5.2, by joining all of these tables and then 
grouping the ratings based on the attribute Din.ID.  
Formally, this can be expressed as: 

( 1)

1

( 1) . . ( 1)

( , , . ) . . 1

1

( , ), 2,...,

( ( , ))
i j ij

aggr in i i

i j D ID D ID i j ij

M F D ID D ID Rating D ID i

i in

D Join D D j n

Rating FN Join D Rating

D D

−− = −

=

= =

=

=
 
After the aggregation, Din becomes the basic table for the 
dimension di (new Di1).  

5.3.  Translation from Relational Algebra to SQL 
Once we map the RA algebraic expressions into the 

relational algebra, the translation from the relational 
algebra into SQL constitutes an old and a well-studied 
problem [11].  Therefore, we omit its coverage and only 
present a translation example in Section 5.4. 

5.4.  Example: Mapping RQL Queries into SQL 
To demonstrate the mapping from RQL to SQL, 

consider the following RQL query recommending top 5 
action movies to the female users living in New York: 

 
RECOMMEND  Movie TO User 
FROM         MovieRecommender 
BASED ON        PersonalRating 
WHERE         Movie.Genre = “Action” AND 

       Theater.City = “New York” 
       AND User.Gender = “Female” 

SHOW TOP 5 
 

First, algorithm MAP translates the core of this RQL 
query into the following RA expression: 
 

DTDM (Theater, Time, Company) ( 
MRPJ (PublicRating) ( 

RSTR (Movie.Genre = “Action”AND  

Theater.City = “New York”AND User.Gender = “Female”)     
(MovieRecommender))) 

 
Then the compound selection operator RSTR can be 

decomposed into atomic selections using standard 
methods, resulting in the following RA expression: 



 
DTDM (Theater, Time, Company) ( 

MRPJ (PublicRating) ( 
RSTR (Movie.Genre = “Action”) ( 

RSTR(Theater.City = “New York”) ( 
RSTR (User.Gender = “Female”) ( 

MovieRecommender ) ) ) ) ) 

 
When translating this RA expression into the relational 

algebra, we assume that the MovieRecommender ratings 
cube from Example 1 is mapped into the snowflake 
schema presented in Figure 4.  Then the above RA 
expression is converted into the following sequence of 
relational algebra operators5: 
 

User1= Selection (User.Gender=’Female’) (User) 

Theater1= Join (Theater.TheaterID=City.TheaterID)( 
Selection (City.CityName=’New York’) (City), 
Theater) 

Movie1= Join (Genre.GenreID=Movie.GenreID)( 
Selection (Genre.GenreName=’Action’) (Genre), 
Movie) 

Rating1=Join (Moive1.MovieID=Rating.MovieID)( 
Movie1, 
Join (Theater1.TheaterID=Rating.TheaterID)( 

Theater1, 
Join (User1.UserID=Rating.UserID)(  

User1,  
Rating ) ) ) 

Rating2= 
Projection (PersonalRating) (Rating1) 

Rating3= 
FN(PersonalRating, AVG, {Theater, Time, Company}) (Rating2) 

Rating4=  
Projection (Movie.Name, User.Name, User.ID) (Rating3) 

 
Note that the operator FN aggregates ratings in the 

cube when Theater, Time, and Companion dimensions are 
projected out.  

Finally, this relational algebra expression is mapped 
into SQL by simply simulating in SQL each of the six 
relational algebra operators from that expression in the 
appropriate order and substituting all of them into the 
following compound SQL statement: 

 
 
 

                                                           
5  Note that we should have updated Rating table after each of the three 
selections when we computed User1, Theater1 and Movie1 relations.  
However, this would have complicated the subsequent generation of the 
SQL statement very significantly, and we have decided to optimize the 
translation a little bit, for the purpose of improving readability.   

SELECT R4.MovieID, R4.UserId, R4.PersonalRatings 
FROM  

(SELECT * 
 FROM  

(SELECT * 
FROM Users 
WHERE Users.Gender="female" 
) as U1,  
(SELECT * 
FROM  

(SELECT * 
FROM Theater,  

(SELECT * 
FROM City 
WHERE City.CityName="New York" 
) as A 

WHERE Theater.CityID = A.CityID 
) as T1, 
(SELECT * 
FROM Rating,  

(SELECT * 
FROM Rating,  

(SELECT * 
FROM Movie, 

(SELECT * 
FROM Genre 
WHERE Genre.GenreName  

="Action" 
) as G 

WHERE Movie.GenreId =  
G.GenreId 

) as M1 
WHERE Rating.MovieID =  

M1.MovieID 
) as R1  

WHERE Rating.RatingId=R1.RatingId 
) as R2 

WHERE T1.TheaterId=R2.TheaterId  
) as R3 

WHERE U1.UserId =R3.UserId 
) as R4  

GROUP BY R4.MovieID, R4.UserID 
 
As this example demonstrates, even simple RQL 

queries can produce highly complex SQL expressions as a 
result of the translation method presented in this section.  
Therefore, query optimization methods need to be 
developed to simplify such mapping.  This query 
optimization can be performed in the following two 
places during the translation process:  
• Recommendation algebra: replace the “naïve” 

algebraic expression generated by algorithm MAP in 
Section 5.1 with an equivalent optimized expression. 

• Relational algebra: replace the “naïve” relational 
algebra expression generated in Section 5.2 with an 



equivalent optimized relational algebra expression 
using standard query optimization methods [11]. 

6.  Conclusions 
In this paper we introduced the language RQL for 

querying multidimensional recommender system. RQL 
empowers the end-users by letting them formulate 
recommendations of interest in a flexible and user-
friendly manner. RQL queries are formulated on 
multidimensional cubes of ratings, support OLAP-based 
aggregation capabilities, and are expressed in a SQL-like 
language incorporating idiosyncrasies of recommender 
systems.  Since recommendations are not classical 
queries, RQL consists of the core query that operates on 
multidimensional cubes of ratings and returns rating cubes 
as outputs, and the recommendation wrapper that takes 
these cubes and converts them into the recommendation 
outputs.  Also, the recommendation cubes are only 
partially filled with actual ratings, and require the missing 
ratings to be estimated using various estimation methods. 
Therefore, RQL provides the flexibility by letting the end-
user ask questions about actual, estimated, and overall 
ratings.  

We also addressed the RQL query execution problem 
by mapping RQL queries into the recommendation 
algebra RA and then into relational algebra and SQL. 
However, this mapping can be inefficient in some cases, 
and, therefore, query optimization methods need to be 
developed at the RA and relational algebra levels. We 
plan to study this problem in the future.  

Although our mapping procedure follows the ROLAP 
approach, RQL is a general query language and can be 
implemented using other methods, including the MOLAP 
approach, where RQL queries are evaluated directly on 
the multidimensional cubes of ratings.  One query 
evaluation problem pertaining to recommender systems 
deals with the determination of which new ratings need to 
be evaluated in order to answer a particular RQL query.  
For example, in order to answer the query “which movies 
to recommend to Jane Doe to see on March 5 on Saturday 
night with her boyfriend in a movie theatre,” the system 
may not need to estimate all the ratings in the 
recommendation cube described in Example 1.  Since 
rating estimation becomes query-dependent, an interesting 
and challenging problem is to determine the subset of 
ratings that needs to be estimated to answer a given query.  
We also plan to study this problem in the future. 
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