
Building and Querying Large Modelbases
Alexander Tuzhilin

Leonard N. Stern School of Business
 New York University

atuzhili@stern.nyu.edu

Bing Liu
Department of Computer Science

University of Illinois at Chicago
liub@cs.uic.edu

Jie Hu
Leonard N. Stern School of Business

 New York University
jhu@stern.nyu.edu

Abstract
Model building is one of the most important objectives of
data mining and data analysis. As many data mining
applications, such as personalization, bioinformatics and
some large enterprise-wide business applications, become
increasingly complex and require a very large number of
models, it is becoming progressively more difficult for data
analysts to built and to manage a large number of models
in these applications on their own. Therefore, development
of software tools helping data analysts in these tasks is
becoming a pressing issue. This paper presents a model
management system supporting various types of data
mining models. It describes how to build and populate
large heterogeneous modelbases. It also presents a query
language for querying these modelbases and examines
performance results for some of the queries.

1. Introduction
In the past, statistical and data mining applications

required only a few models built by a data analyst. As real-
world applications become more and more complex and
require a larger and larger number of models, it is getting
very hard for a data analyst to manually manage them.
Even in applications that need only a single good model,
the data analyst typically has to try to build a large number
of models based on available data, insight, and domain
knowledge to produce the final model. This process is
labor intensive and very time consuming. Managing such
large collections of models becomes a pressing issue.

For example, customer segmentation is one of the key
concepts of marketing [10]. Marketers traditionally divided
their customer bases into a small number of segments, such
as pool-and-patio (suburban well-to-do customers who
would usually own a house with a pool) and empty-nesters
(middle-aged customers whose children left the house for
college), and manually built statistical models describing
behavior of each segment. Subsequently, they studied a
more refined partitioning of customer bases into smaller
and smaller segments, called micro-segments (or niche-
segments) [10], such as the pool-and-patio customers living
in a certain zip code. In applications with large customer
bases, such as major credit card applications, there can be
thousands of such micro-segments. If purchasing behavior
of each segment is represented with several models
describing different aspects of the customer behavior, then
the total number of models for such applications can be
measured in tens or even hundreds of thousands of models.

Similar situations occur in bio-informatics applications,
such as microarray applications, where dimensionality of
data is very large, often measured in tens of thousands of
variables. To have a good understanding of the problem,
one may need to build a large number of different models
on the microarray data using different subsets of variables.
Due to the combinatorial explosion, this can result in
hundreds of thousands or more models in some cases [18].

Another example requiring management of a large
collection of data mining models occurs when a data
analyst generates a large number of tries before finding the
right model as there are many types of models and so many
ways to built models. Clearly, there is a need to help the
data analyst manage this process and all the different
models so that he/she can easily study the models, ask
questions about them and test them with a minimal effort.

All these examples highlight the necessity to develop a
model management system. Such a system would provide
the following benefits:
• Expand cognitive limitations of data analysts and allow

them to build and manage a much larger number of
models and manage the model building process.

• Make data mining models a commonly shared resource
in an enterprise similar to the way that DBMSes make
data a commonly shared resource. This would allow
naïve end-users with relatively little knowledge of data
mining to access models of interest in the modelbase
through powerful querying tools and run the accessed
models on their data without worrying about the inner
workings of these models. Thus, data mining
technologies would become more accessible to larger
audiences (similar to the way relational databases
opened database technologies to the “masses”).

In this paper, we propose a system that manages very large
heterogeneous modelbases (VLMBs) consisting of large
collections of different types of data mining models. We
describe how to build and populate the modelbases and
also present a query language (ModQL) that is a dialect of
SQL extended with object-relational features for querying
these modelbases. Our aim is to manage (to store and to
query) models using existing object-relational database
systems as much as possible. Although ModQL queries can
be defined in standard object-relational terms, we show in
the paper that the performance of some of the queries is too
slow for “real-world” problems. Therefore, we describe
how to improve their performance using certain indexing
techniques. This still leaves a few “exotic” ModQL queries

for which these indexing techniques are not applicable and
whose performance cannot be improved using the tools of
standard object-relational databases. We conclude with the
discussion if it is necessary to modify existing object-
relational DBMSes to process such queries efficiently.

2. Related Work
Model management has been studied in the Information

Systems (IS) community in the context of decision support
systems (DSS) since the mid-70’s when the term “model
management” was coined in [15][22]. It was argued that, as
in databases, it is important to insulate users from physical
details of storing and processing models [4]. This led to the
approach of treating models as black boxes having only
names, inputs and outputs, and to the development of query
languages and algebras for manipulating the models that
had such operators as model solution, model composition
and sensitivity analysis [3]. Work was also done on model
lifecycle [5]. Some query languages were proposed [17]
that were highly specialized and dealt exclusively with
querying modelbases. However, the IS research focused
mainly on Operations Research/Management Science
(OR/MS) types of models, e.g mathematical programming,
distribution, and transportation models [5]. A survey of
these activities can be found in [11]. There was little work
done on managing and querying data mining models.

In the data mining community, the problem of
managing large numbers of discovered rules was studied
by several researchers within the context of data mining
query languages. One of the early query languages is the
one based on templates [8]. In this technique, the user uses
a template to specify what items should be in or not in a
rule, and what level of support and/or confidence are
required. The system then finds the matching rules.

In [6], Han et al presents a data mining query language,
called DMQL. DMQL allows the user to specify from what
table to mine what types of rules. [13] proposes a SQL-like
operator for data mining (MINE RULE). Both these
approaches are not designed for querying the mined rules,
but enabling the user to specify what data mining task to
perform and what its required data is.

[20] reports a more powerful query language, called
MSQL. MSQL can be used for both rule generation and
rule querying. With regard to rule querying, MSQL is
similar to templates but allows more complex conditions.

The rule query language, Rule-QL [19], advances the
technology further by allowing querying multiple
rulebases. It has rigorous theoretical foundations of a rule-
based calculus based on the full set of first-order logic
expressions. It was shown that different types of rules that
can be found by previous techniques and query languages
can all be found by issuing appropriate Rule-QL queries.

Grouping and filtering rules were also studied in such
applications as personalization and bioinformatics [1][18].
However, their querying capabilities were more limited.

The idea of managing large collections of data mining
models, beyond querying large numbers of association
rules, has been expressed recently in the data mining
community. For example, Usama Fayyad stated it as one of
the top 10 important data mining problems in his invited
talk at the IEEE ICDM Conference in November 2003.

Bernstein studied the model management problem in
the database context [2]. Although it uses the same name,
the concepts are quite different. In his work, models mainly
refer to schemas and meta-data of relational database
systems. Note that the reason that we use the term “model
management” is because it is a standard term in data
analysis and business communities.

3. Defining and Building Modelbases
In this section, we define a modelbase – a large

collection of related models that are stored together in the
same model repository and are manipulated and retrieved
using data manipulation and query languages.

3.1 Defining Modelbases
Heterogeneous models can be organized in modelbases

by either grouping them based on the application or on the
model type. In the former approach, models belonging to
the same application are stored in the same table. In the
latter approach, models of the same type are stored in the
same table, for example, all the decision trees are stored in
a separate table, all the logistic regressions in another table,
etc. Although each method has its advantages, in this
paper, we adopt the latter approach and assume that models
are grouped together based on the same type.

The approach presented in this paper is applicable to a
broad range of data mining models, including decision
trees, regression models, SVMs, rules, and other models.
Although modelbases of different types differ from each
other, they all have several common characteristics. In
particular, they are stored in object-relational model tables
having schemas with attributes of the following types:
• ModelID: the key attribute uniquely identifying a model

in the model table. It admits only the equality operator,
e.g., ModelId1 = ModelId2.

• TrainDataID: a pointer to the data file used for building
the model, such as a decision tree. This data file can be
a real physical or a virtual file. In the latter case, we
define a database view on the real file as described
below. TrainDataID attribute admits the equality
operator, e.g., MB2.TrainDataID = MB1.TrainDataID,
and also a set of methods for retrieving the properties of
the dataset defined by TrainDataID. For example,
TrainDataID.RecNo() is a method returning the number
of records in the dataset, and TrainDataID.Attributes()
is the method returning the list of attributes of the
dataset pointed to by the TrainDataID field.

• TestDataID: the same as a TrainDataID, but pointing to
a data file used in testing a model for accuracy. This

field is optional because some models (a) do not require
test data (e.g., association rules), or (b) use cross-
validation testing on the TrainDataID field.

• Model Attribute: the attribute that actually stores a
model as an “object.” For example, a decision tree is
stored as a DecisionTree object. Each model table has
only one model object attribute, and it has its own set of
methods defined for it. For example, if the model
attribute type is “DecisionTree”, then some of the
methods for this type include NumberOfNodes(),
specifying the number of nodes in the decision tree, and
Accuracy() specifying the accuracy of the decision tree.

Since each model table is of a particular type, this
means that each table has its own set of methods
associated with this model type.

• Model Property Attributes: a set of attributes defining
various properties of the model. These attributes are
derived from the Model Attribute by computing certain
properties and storing the results as relational attributes.
For example, in case of decision trees, we can compute
certain statistics of the models, such as the number of
nodes in the tree, and store it as a model property
attribute. The model property attributes are optional and
vary from one type of a model table to another.
A model table can be implemented as a relational table

with two caveats. First, as stated before, the TrainDataID
(or TestDataID) field needs to be a pointer to a data file
that can be either physical or virtual. The virtual file can be
implemented as a database view [14] by formulating SQL
queries. All these SQL views can be indexed and accessed
via the TrainDataID field. One possible implementation of
this data access is described in Section 3.3.

The second caveat is that the model attribute needs to
be implemented as a CLOB (Character Large OBject),
BLOB (Binary Large OBject), or large text field object
[14], together with the methods defined on it (such as the
number of nodes in the decision tree).

When defining the schema for a model table, it is
necessary to define the model property attributes for the
table and the methods for the model attribute. Of course,
different model types can result in different schemas.
However, even for the same model type, there can be more
than one schema as the following examples demonstrate.
Example 1 (Decision tree model). Assume the underlying
data has k attributes. Then the decision tree table may have
the following schema that we call DTSchemaPlus:
ModelID Integer
TrainDataID Integer
Model CLOB /*decision tree object
Attr_1 Boolean /* TRUE if Attr_1 variable appears

as a node of the tree
…… …… ……
Attr_k Boolean /* same as with Attr_1
Class Character /* name of the class attribute
TestDataID Integer

TestAccuracy Float /* model accuracy on test data
Accuracy Float /* cross-validation accuracy
TreeSize Integer /* Size of the decision tree
NoLeaves Integer /* Number of leaves in the tree

where the presence of each attribute in the tree is specified
with the Boolean field Attr_i. This representation is useful
if the decision trees are all generated from a master data
set, and each tree may be produced with a subset of the
data. In general, model property attributes Attr_i can
represent any property of the model, and not necessarily
the attributes of the dataset used for building the model.

At the other extreme, we can define the decision tree
modelbase schema with only four attributes that we call
DTSchemaBasic:

DT(ModelID, TrainDataID, TestDataID, Model)
All the other attributes in the previous example can be

extracted from the attribute Model using methods, e.g.,
Nodes() /* returns set of nodes in the tree
NumberOfNodes() /* returns number of nodes in the tree
Class() /* names of attributes used as classes.
Accuracy(TestDataID) /* model accuracy on test data

Note that the last three methods correspond to the
model property attributes TreeSize, Class and
TestAccuracy in the alternative schema definition above.

The tradeoff between these two alternative schema
definitions of decision trees is that the latter requires less
storage but more computation to extract all the necessary
information from the attribute Model when needed.

As this example demonstrates, each model type can
have several alternative schemas for the model tables, and
it is necessary to decide which model property attributes to
use in the schema definition according to applications.
Example 2 (Logistic Regression Model). A schema of the
logistic regression model table built using the database with
k attributes is defined as
ModelID Integer
TrainDataID Integer
Attr_1 Boolean /* TRUE if Attr_1 variable appears

in the regression
Beta_1 Float /* Beta coefficient 1
Attr_2 Boolean /* same as with Attr_1
Beta_2 Float /* Beta coefficient 2
…… …… ……
Attr_k Boolean /* same as with Attr_1
Beta_k Float /* Beta coefficient k
DependVar Character /* name of dependent variable
TestDataID Integer
TestAccuracy Float /* accuracy on the test data
Accuracy Float /* cross-validation accuracy.

Note that in this example, we have removed the Model
object from the schema and defined the logistic regression
model in purely relational terms. This also implies that we
do not have to define methods for logistic regressions. In
general, system designers need to decide if it is necessary
to keep Model in the schema and when it can be replaced
with a set of model property attributes, as in this example.

The schema for association rules can be designed
similarly. Each association rule is represented just like a
logistic regression model. However, we may need only one
data set (DataID) from which to generate the rules.

Several types of models, each model type having its
own model table, collectively form a modelbase.

3.2 Building Modelbases
 Once the modelbase schemas are designed, the
modelbase needs to be populated with models. Insertion of
individual models by the end-users of the modelbase works
only for small problems and is not scalable to very large
modelbases. A more scalable approach would be a semi-
automated method. The user can iteratively and
interactively formulate requests of the form:
 For dataset X build the models of type Y and of the form Z
where
• dataset X is defined either by the TrainDataID identifier

or by a SQL query selecting the dataset.
• model of type Y: the type of model corresponding to the

model table to be filled, e.g., decision tree or regression.
• form Z: this is an expression specifying a template

defining the type of model to be built and stored. For
example, we can build all the decision trees having
“Purchase_Decision” as a class attribute and having
Income as the root node. In general, the form can be
expressed as constraints in the WHERE clause of the
ModQL language presented in Section 4.

There are two approaches to handle the Z-form constraints:
1. Filtering: models are first generated, and then those that

do not satisfy the constraints are filtered or deleted.
2. Constrained model generation: constraints are pushed

into the model generation process so that only those
models that satisfy the constraints are generated.

Which approaches to use depends on the available
algorithms. For example, in association rule mining,
constrained rule mining techniques may be used to generate
the required rules for certain types of constraints.

Each model generation request generates multiple
models. The user can grow the modelbase in a controlled
manner by iteratively issuing new requests, examining their
results, inserting only the useful ones into the modelbase
and formulating new requests based on the previously
generated results. To make this whole approach user-
friendly for a non-technical end-user, these requests can be
generated via a front-end GUI, as is often done in databases
when the end-user specifies database commands using a
GUI-based front-end rather than directly in SQL.

3.3 Case Study
To show how to build large modelbases, we applied the

method in Section 3.2 and built a modelbase consisting of
decision tree, logistic regression and association rule tables.

Our study is based on a on-line customer purchases
database that includes such information as demographic
characteristics of the customers and such purchasing
characteristics as the day of the week, category of the
website, product category, the purchasing price, etc. We
segmented the customers based on some demographic
characteristics and split the entire set of customer
purchasing transactions into separate (virtual) datasets
SEGMENTi. For each dataset SEGMENTi, we generated
several database views using SQL statements:

SELECT <Fields > FROM SEGMENTi

where <Fields> are combinations of various purchasing
variables and the remaining demographic variables that
were not used in generating SEGMENTi files.

Altogether, we generated 220,264 virtual datasets
defined by these SQL queries. We stored these 220,264
SQL queries in a separate database having each query
explicitly identified with the unique TrainDataID field
forming the key for that record.

These individual datasets (defined by SQL queries)
were subsequently used for building data mining models by
iteratively feeding them into WEKA system [21]. As a
result, we generated 220,264 Decision Tree models,
220,264 Logistic Regression models and 21,800,733
association rules that we stored in three separate tables.

For the Decision Tree model table, we used the
DTSchemaPlus schema described in Example 1. For the
Logistic Regression model table, we used the schema from
Example 2. As noted earlier, we did not describe the
structure of the association rules because of the space
limitation and because their representation is somewhat
similar to the representation of logistic regressions.

Finally, we note that all the modelbases were generated
using SQL queries and Perl scripts rather than a special-
purpose tool for this task. This was sufficient for our proof-
of-concept purposes. However, it is necessary to develop a
model-building interactive tool for the industrial-strength
applications in the future to improve model building tasks.

4. Modelbase Query Language ModQL

As was mentioned in Section 2, previous approaches to
querying model- or rule-bases were based on specially
designed query languages. In contrast to this, we chose to
deploy standard object-relational query language SQL99
[16] for querying modelbases. In particular, we selected a
certain dialect of SQL99 suitable for querying modelbases,
as will be described in the rest of this section.

As explained in Section 3, each model is defined with a
particular schema that includes ModelID, the model itself
stored as a CLOB object, a set of methods retrieving model
properties from the CLOB, the training (and optionally
testing) data set, and a set of model property attributes. For
example, two decision tree schemas are presented in
Example 1 and a logistic regression schema in Example 2.

ModQL is essentially SQL99 specified on the model
schemas of the types described above. It explicitly deals
with CLOB/BLOB objects, methods defined on these
objects, and training and testing datasets. In addition,
ModQL supports macros, i.e., non-SQL expressions that
can be mapped into standard SQL expressions.

We next present some examples of ModQL queries. We
assume in these examples that all the logistic regressions
are stored in the LR model table, all the decision trees in
the DT model table, and all the association rules in the AR
model table. We also assume that the DT and the LR tables
have the schema structure as described in Section 3.1.
Query 1: Find decision trees having Income variable

among the nodes of the tree.
If DTSchemaBasic schema from Example 1 is used, then
this query is expressed as
 SELECT ModelID
 FROM DT
 WHERE “Income” IN Model.Nodes()

where Model.Nodes() is a method returning the list of
nodes of the decision tree.
If DTSchemaPlus schema is used instead, then this query is
expressed as a standard SQL statement:
 SELECT ModelID
 FROM DT
 WHERE DT.Income = 1

Query 2: Find decision trees having less than 10 nodes.
 SELECT ModelID
 FROM DT
 WHERE DT.NumberOfNodes() < 10

The next query demonstrates how selection criteria are
applicable to logistic regressions.
Query 3: Find logistic regressions having at least one

beta-coefficient greater than 1.
 SELECT ModelID
 FROM LT
 WHERE MAX(LT.Beta()) > 1

In this query, method Beta() returns the list of beta-
coefficients of a logistic regression and function MAX
selects the largest element from the list.

The next query demonstrates how the best-performing
models are selected from a model table.
Query 4: Find the best decision tree model in terms of its

accuracy rates.
 SELECT ModelID
 FROM DT
 WHERE NOT EXITSTS (SELECT R’.*
 FROM DT
 WHERE R’.Accuracy() > R.Accuracy())

where x.Accuracy() specifies the accuracy of a decision
tree based on cross-validation.

The next example shows how queries are asked about

models and the data from which they are built. This ability
to ask questions about both modelbases and databases is an
important and distinguishing property of ModQL.

Query 5: Find the decision tree models that have been
learned from datasets with more than 10,000 records
and having “Purchase_Decision” as the class attribute.

 SELECT ModelID
 FROM DT
 WHERE DT.TrainDataID.NoRecords() > 10,000
 AND DT.Class() = “Purchase_Decision”

The next query demonstrates a self-join operation between
two model tables of the same type and the use of macros.
Query 6: Find minimal association rules, i.e., association

rules whose LHS and RHS do not contain the LHS and
RHS of any other rule respectively.
SELECT R.*
FROM AR R
WHERE NOT EXISTS (SELECT R’.*
 FROM AR R’
 WHERE R.ModelID ≠ R’.ModelID AND
 LHS(R’) CONTAINED_EQ_IN LHS(R) AND

 RHS(R’) CONTAINED_EQ_IN RHS(R))

 This query contains the expression “LHS(R’)
CONTAINED_EQ_IN LHS(R)” that is not a part of SQL
(CONTAINED_EQ_IN means “subset”). However, if the
schema of AR model table contains all the items
(attributes) of the underlying dataset, then this expression is
really a macro that can be formulated in standard SQL as

R’.Item _1 = L ⇒ R.Item _1 = L AND R’.Item _2 = L ⇒
R.Item _2 = L AND … AND R’.Item _k=L ⇒ R.Item_k=L

where Item_1, Item_2, …, and Item_k are all the items
(attributes) of the underlying database, and “L” stands for
the fact that they appear on the left-hand sides of the
association rules R and R’ respectively. In other words, this
expression says that, for any Item_i, if Item_i appears on
the LHS of rule R’, then it should also appear in the LHS
of rule R. Also, expression “RHS(R’)
CONTAINED_EQ_IN RHS(R)” can be specified in SQL
in a very similar manner as the LHS expression above.

The next example demonstrates joins between two
different model tables based on a complex joining criteria.
Query 7: Find decision tree models having the same class

attribute and the same set of nodes as the dependent and
independent variables in some logistic regression model,
that are also generated from the same data as the
logistic regression model and that outperform the
logistic regression model in terms of accuracy.
SELECT DT.ModelID
FROM LR, DT
WHERE LR.TrainDataID = DT.TrainDataID AND

LR.IndepVar() EQUAL DT.Nodes() AND
LR.DepVar() EQUAL DT.Class() AND
DT.Accuracy() > LR.Accuracy()

In this query, we assumed that the list of independent

variables in logistic regressions and the nodes in decision
trees are retrieved using methods IndepVar() and Nodes()
respectively. Therefore, the join operator EQUAL equates
two sets of variables. However, if we define the schemas of
DT and LR tables so that the nodes in DT and independent
variables in LR appear among the model property
attributes, then we can express “LR.IndepVar() EQUAL
DT.Nodes()” as a macro in SQL using methods similar to
those used in Query 6. x.Accuracy() gives the accuracy of
the model x based on cross-validation.

Next, we provide an example of a join between two
model tables having a complex join criterion.
Query 8: Find all pairs of decision tree and logistic

regression models that have at least one variable in
common among the independent variables of the logistic
regression and the nodes of the decision tree.
SELECT DT.ModelID, LR.ModelID
FROM LR, DT
WHERE LR.Model.IndepVar()∩DT.Model.Nodes() ≠ Ø

This query is specified using the basic schema
(DTSchemaBasic) that requires access to the actual
decision tree and logistic regression models. Moreover, DT
and LR tables are joined using a complex joining criteria
involving two sets of variables. This query is evaluated
using the nested join method [14] by considering all the
|LR| × |DT| combinations of the logistic regression and
decision tree models from LR and DT tables, retrieving all
the nodes from the decision tree model, all the independent
variables from the logistic regression model and checking
if their intersection is not empty. Clearly, this is a very slow
and inefficient evaluation method, as shown in Section 5.

Alternatively, this query can be implemented as a SQL
macro assuming the DTSchemaPlus and the LR schema
from Example 2. In this case, the WHERE clause of the
above query is a SQL macro that can be expanded in
standard SQL as

SELECT DT.ModelID, LR.ModelID
FROM LR, DT
WHERE (LR.Attr_1 = 1 and DT.Attr_1 = 1) OR
 (LR.Attr_2 = 1 and DT.Attr_2 = 1) OR
 …………..
 (LR.Attr_k = 1 and DT.Attr_k = 1)

This SQL-based version of the query is evaluated using
standard and reasonably efficient SQL methods.

In summary, all these examples show the power of
ModQL by demonstrating various useful and non-trivial
queries about data mining models that can be expressed in
the language. Moreover, all these queries can be expressed
in a dialect of SQL99. Therefore there is no need to
develop new software systems to support these queries.
The well-established database technologies can be used
instead. This is in contrast to the previous proposals for the
development of new languages specifically designed for
querying model- and rule-bases described in Section 2.

To see how well ModQL works in practice, we
conducted empirical studies described in the next section.

5. Experiments
Since ModQL queries involve models and often need

access to the model “object” itself (CLOB, BLOB, etc.),
some of these queries can be very slow. Therefore, special
care should be taken when formulating such queries. In this
section, we evaluate performance of some of the queries to
gain a better understanding of the query evaluation issues.

As discussed before, ModQL queries are divided into
the following categories:
1. Those that can be expressed and evaluated in pure

relational SQL. For example, the second version of
ModQL Query 1 (evaluated on the DTSchemaPlus
schema) belongs to this category.

2. Those that can be expressed in SQL with macros. For
example, ModQL Query 6 belongs to this category.

3. Those that cannot be evaluated in pure SQL because
they require direct access to the model object using its
methods. For example, the first version of Query 8
belongs to this category.
Moreover, queries of Type 3 are divided into two sub-

categories: those that require joins of two or more model
tables and those that don’t, e.g., the first version of Query
1. To test performance of different types of queries, we
1. executed both versions of Query 1: the one that requires

access to the DT object using the Nodes() method and
the “pure SQL” version.

2. executed both versions of Query 8: the one requiring
access to model objects and the one that can be
expressed in SQL with macros.

3. executed Query 6, expressed in SQL with macros.
These queries were executed on the three model tables

DT, LT and AR described in Section 3.3, having 220,264,
220,264 and 21,800,733 models respectively. These model
tables were stored in a Microsoft’s SQL Server located on
the Pentium 4 server with 3GHz CPU and 1GB of RAM.
The models were generated as character strings by WEKA
and stored as CLOB objects. The methods accessing these
objects were implemented in Perl. Finally, SQL macros
used in some of the queries were decoded manually.

Figures 1, 2 and Table 1 report performance results for
Queries 1 and 8 respectively. Figure 1 shows direct SQL
evaluation is very fast: the whole model table of 220,264
models was processed in less than 1 second. In contrast, the
object access version of Query 1 is much slower. This is
the case because each decision tree object in the DT table
needs to be accessed and searched for the presence of the
Income variable. This problem can be solved by creating
special indices for modelbases (see Section 6).

The performance results for Query 8 are even more
dramatic. For both versions of Query 8 (implemented as a
SQL macro and requiring access to the objects of the
model), it was necessary to do the join on the DT and LR

tables. However, SQL join performed reasonably well, as
column 3 in Table 1 shows. In contrast, the object-access
version of Query 4 was extremely slow, as Table 1 and
Figure 2 demonstrate. In fact, it was so slow that we could
evaluate the query on the join of DT and LT tables
containing only up to 4,000 models (from 220,264 models).

Figure 1: Performance comparison of two versions of Query
1: pure SQL vs. trees access with Model.Nodes() method.

Number of
models

 Object access
(seconds)

SQL
(seconds)

Number of
Matches

1K x 1K 1104 5 813778
2K x 2K 4614 19 3312150
3K x 3K 10458 44 7501820

4K x 4K 18158 113 13413543

Table 1: Performance results for 2 versions of Query 4.

This example demonstrates that ModQL suffers from
the query from hell phenomenon, when some of the queries
are so slow that they would run “forever.” Another
example of such query is Query 6 that was launched on the
whole table of association rules containing 21,800,733
rules. This query was implemented as a SQL macro. It was
executed on the aforementioned SQL Server for more than
72 hours and would not finish (we had to terminate it).

6. Discussions
From the results reported in Sections 3 - 5, we can
conclude that object-relational databases can provide a
basic platform for model management and that no special-
purpose languages are required for querying modelbases.
However, as we also showed, effectiveness of object-
relational databases varies significantly across different
model schemas, queries and other conditions. In particular,
we can make the following conclusions from our work:
1. Generating and storing large numbers of different types

of models is a manageable task, as demonstrated in
Section 3. This capability cannot be directly supported
within existing DBMSes, and the development of a new
interactive model-building tool is required for
industrial-strength applications.

0

5000

10000

15000

20000

1K x 1K 2K x 2K 3K x 3K 4K x 4K

Size of the Modelbase

Perfomance
(Seconds)

Object access SQL

Figure 2: Performance results for 2 versions of Query 4
(graphical representation of results from Table 1).

2. While ModQL performs well for some of the queries, it
has performance problems for others, especially when
they are evaluated in a brute force manner. These
performance problems are often attributed to the queries
that cannot be expressed in pure SQL and require
macros and methods.

3. There is a need to develop efficient query processing
strategies to avoid the “query-from-hell” problems. We
describe possible solutions to this problem below.
One way of dealing with the queries-from-hell problem

is to use indexes on methods. For example, one can build
an index on the method DT.NumberOfNodes() returning
the number of nodes in a decision tree. This index can be
implemented as a B+-tree. Then Query 2 can be evaluated
by accessing this B+-tree index rather than sequentially
scanning model table DT and accessing each method
DT.NumberOfNodes().
 In fact, some DBMS vendors already provide such
capabilities. For example, Oracle 11i supports indextype,
extensible indexing methods for user-defined operators
(such as NumberOfNodes() in the example above)
(www.lc.leidenuniv.nl/awcourse/oracle). Therefore, the
indexing methods described above can be implemented in
Oracle, which can significantly improve the performance of
Query 2 and others from Section 4.

Although such indexing methods can solve some of the
query-from-hell problems, it does not solve all of them
because such indexes can be created only on the methods
returning “indexable” results, such as NumberOfNodes().
In contrast, methods returning “complex objects,” such as
subtrees or lists, cannot be easily indexed using the
aforementioned indextype methods. For example, it is
unclear how to create an index for the first version of
Query 8 where the join condition involves sets of decision
tree nodes and sets of logistic regression variables. Unlike
the NumberOfNodes() method, these complex object types
cannot be easily indexed. Therefore, indexing methods
cannot solve all of the query-from-hell problems.

To deal with this problem, it is necessary to provide
extensions to the DBMS internals in order to support such
indexes. However, it is not clear if making changes to the

0
20
40
60
80
100
120

50k 100k 150k 200k

Size of the Modelbase

Performance
(Seconds)

Object
access

SQ
L

DBMS internals are warranted to support a few “exotic”
queries having methods returning complex objects. An
alternative solution would be for the query preprocessor to
identify such queries, flag them as “queries-from-hell” and
warn the end-user about it. Finally, if such a query is really
important for the application, then the method can be
materialized and stored as a model property attribute, thus
avoiding the query-from-hell problem.

Given the indexing methods described above, the user
has three choices when designing a model table:
1. Use only the methods associated with the model without

using any model property attributes.
2. Materialize some of the methods by defining and

computing model property attributes.
3. Use indexes, instead of the model property attributes,

for some of the methods.
Each of these choices has its strength and weaknesses.

In particular, model property attributes provide for fast
execution of modelbase queries, as shown in Section 4.
However, they require extra space, and maintenance. In
contrast to this, methods do not require any extra storage
and maintenance, but can slow query processing very
significantly, as was shown in Section 5.

Therefore, indexes on methods provide a good
compromise between these two solutions, as discussed
above, but also not requiring much more extra storage and
causing fewer maintenance problems.

We can conclude that most querying capabilities of
ModQL can be directly supported by DBMS vendors. The
remaining functionalities are too specialized for the DBMS
vendors to modify their query processors to speed up such
queries. We thus recommend that DBMS vendors develop
only interactive model management tools discussed in
Section 3 in order to provide for the creation and
maintenance of large collections of data mining models.

7. Conclusions
As data analysis and data mining is increasingly widely

used in practice, there is a need to generate, store and query
very large collections of data mining models. This paper
describes an approach to generating and querying large
modelbases with the query language ModQL. ModQL is an
object-relational dialect of SQL99 with certain features
added to it to incorporate model management capabilities.

We demonstrated that modelbase querying can be done
within the object-relational framework and, therefore, it
can rely on proven database technologies and does not
require any special-purpose query languages and systems
for modelbases, as was advocated before.

 We also tested some of the queries expressed in
ModQL on a large modelbase. While some simple queries
can be processed very quickly in ModQL, others run very
slowly because they require access to the internals of the
models. We then explained how this problem can be solved

by creating indexes on methods, as for example, Oracle 11i
does it with its indextype extensible indexing approach.
However, the methods returning complex objects cannot be
easily indexed and require further studies.

8. References
[1] Adomavicius, G. and Tuzhilin, A. “User profiling in

personalization applications through rule discovery and
validation.” KDD-99, 1999.

[2] Bernstein, P.A. "Applying Model Management to Classical
Meta Data Problems," Proc. CIDR 2003, pp. 209-220.

[3] Blanning, R.W., A Relational Theory of Model
Management. In C. Holsapple and A. Whinston (eds.).
Decision Support Systems: Theory and Applications, 1987.

[4] Dolk, D.K., and B. R. Konsynski, “Knowledge
Representation for Model Management Systems.” IEEE
Transactions on Software Engineering, SE-10(6), 1984.

[5] Geoffrion, A.M., “An Introduction to Structured
Modeling,” Management Science, pp. 547-588, 1987.

[6] Han, J., Fu, Y., Wang, W., Koperski, K. and Zaiane, O.
“DMQL: a data mining query language for relational
databases.” SIGMOD Workshop on DMKD, 1996.

[7] Imielinski, T., and Mannila, H. “A database perspective on
knowledge discovery.” CACM, 39(11), 58-64, 1996.

[8] Klemetinen, M., Mannila, H., Ronkainen, P., Toivonen, H.,
and Verkamo, A.I. “Finding interesting rules from large sets
of discovered association rules.” CIKM-1994, 1994.

[9] Konsynski, B. R., “On the structure of a generalized model
management system,'' Proc. of 14th Hawaii Int. Conf. on the
System Sciences, Vol. 1, pp. 630-638, January 1980.

[10] Kotler, P. Marketing Management, Prentice Hall. 2002.
[11] Krishnan, R. and Chari, K. Model Management: Survey,

Future Directions and a Bibliography, Interactive
Transactions of OR/MS, 3(1), 2000.

[12] Liu, B., Hsu, W., Mun, L., & Lee, H. "Finding interesting
patterns using user Expectations," IEEE Transactions on
Knowledge and Data Engineering, 11(6), p.817-832, 1999.

[13] Meo, R. Psaila, G., and Ceri, S. “A new SQL-like operator
for mining association rules,” VLDB-96, 1996.

[14] Ramakrishnan, and R. Gehrke, J. Database Management
Systems. McGraw-Hill, 2000.

[15] Sprague, R. H. and H. J. Watson, ``Model Management in
MIS'', Proceedings of 17th National AIDS, 1975, 213-215.

[16] SQL99 standard reference. INCITS/ISO/IEC9075-1 and
9075-2 (2 volumes), January, 1999.

[17] Tsai, Y. Structured modeling query language, Ph.D. Thesis,
Andersen Graduate School of Management, UCLA, 1991.

[18] Tuzhilin, A. and Adomavicius, G. “Handling Very Large
Numbers of Association Rules in the Analysis of
Microarray Data,” KDD-02, 2002.

[19] Tuzhilin, A., and Liu, B. "Querying multiple sets of
discovered rules." KDD-2002, 2002

[20] Virmani A., Imielinski, T. “M-SQL: A query language for
database mining.” Journal of DMKD, 1999.

[21] Witten, I.H. and E. Frank, Data mining: practical machine
learning tools and techniques with Java implementations.
2000, San Francisco: Morgan Kaufmann.

[22] Will, H. J. ``Model Management Systems'' in Information
Systems and Organization Structure, ed. by Edwin Grochia
and Norbert Szyperski, 1975 pp. 468-482.

