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ABSTRACT

Due to interest in social and economic networks, relational
modeling is attracting increasing attention. The field of rela-
tional data mining/learning, which traditionally was domi-
nated by logic-based approaches, has recently been extended
by adapting learning methods such as naive Bayes, Baysian
networks and decision trees to relational tasks. One aspect
inherent to all methods of model induction from relational
data is the construction of features through the aggregation
of sets. The theoretical part of this work (1) presents an
ontology of relational concepts of increasing complexity, (2)
derives classes of aggregation operators that are needed to
learn these concepts, and (3) classifies relational domains
based on relational schema characteristics such as cardinal-
ity. We then present a new class of aggregation functions,
ones that are particularly well suited for relational clas-
sification and class probability estimation. The empirical
part of this paper demonstrates on real domain the effects
on the system performance of different aggregation meth-
ods on different relational concepts. The results suggest
that more complex aggregation methods can significantly
increase generalization performance and that, in particular,
task-specific aggregation can simplify relational prediction
tasks into well-understood propositional learning problems.

1. MOTIVATION AND INTRODUCTION

Relational learning has attracted significant attention be-
cause of the expressive power of relational models and the
techniques’ ability to incorporate relational background knowl-
edge. The field of relational learning was originally domi-
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nated by Inductive Logic Programming (ILP)[15]. New ap-
proaches include distance-based methods[7], binary propo-
sitionalization[10], SQL-based numeric aggregation[8], and
upgraded propositional learners such as rule learners [11],
Structural Logistic Regression [16], Relational Decision Trees
[5] and Probabilistic Relational Models (PRM)[9]. One es-
sential component that has significant impact on generaliza-
tion performance for domains with important one-to-n re-
lationships is the aggregation of sets into values. However,
with the exception of [8], aggregation has received little di-
rect attention. Aggregation methods can be characterized
along a number of dimensions including the underlying cal-
culus (numeric or logical), the cardinality of the relation in
question, and the complexity of the object being aggregated
(atomic values or feature vectors).

The objective of this paper is to shed new light on the role
of aggregation methods in relational learning. We develop a
hierarchy of types of relational learning problems, and evalu-
ate relational learners on a business domain in order to draw
conclusions about the applicability and performance of dif-
ferent aggregation operators. For this paper we have chosen
the relational database formalism for expressing relational
data and concepts. However the ideas and methods carry
over directly to learning from a graph or first-order-logic
representation.

The paper is orgamized as follows: Section 2 presents an
ontology of increasingly more complex relational concepts,
and discusses the complexity of domains and the relationship
between domain properties and concept complexity. Section
3 presents an overview over existing aggregation methods,
their limitations, and the systems that use them. We present
in addition a novel target-dependent aggregation method,
to begin to flesh out the higher levels of the ontology. The
subsequent empirical study in section 4 compares a number
of aggregation methods on a relational business domain and
shows evidence of the superiority of more complex methods
(viz., target-dependent set aggregation). We conclude with
suggestions for future work with particular focus on more
complex aggregation methods than are currently used.

2. CONCEPT ONTOLOGY

Consider a predictive (rather than clustering or unsuper-
vised) relational learning task as finding a mapping
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M : (T, RDB) — y where T is the target table,' including a
target variable y (either numeric for a regression task or cat-
egorical for classification) and RDB is a relational database
containing additional tables of background knowledge. The
relational database RDB can vary from simple to complex,
in terms of the number of tables, the number of relationships
between tables through shared categorical variables (keys),
and the cardinality of those relationships (one-to-one, one-
to-n, or n-to-m).

Similar to the complexity of the RDB, relational concepts
can have various complexities. In this paper we adopt the
view that a relational concept (X, RDB) — y is a function
F of aggregations A of attributes of objects that are related
to the target case through keys. For example, given the tar-
get table T = Customer(Customerld,Gender,Age) and the
RDB table Transaction(Customerld ,Date Price ProductId),
which are related through the key Customerld that appears
in both tables, one concept of an ActiveCustomer can be ex-
pressed using COUNT for aggregation, JOIN on Customerld
to establish the relationship between Customer and Trans-
action, and a comparison COUNT<20 as the function F.
More generally, the complexity of a relational concept is de-
termined by

o the complexity of the relationships (e.g. cardinalities),
e the complexity of the aggregation operator A,

e and the complexity of F.

The complexity of the relationships is determined by the
domain and the prediction task. Standard machine learning
methods (not to mention relational learning methods) learn
relatively complex functions F. The complexity of the ag-
gregation, however, has received relatively little treatment.

Definition: A simple aggregation A, is a mapping *x1 — a
that takes as input a single bag of variable size
(%) of atomic (1) values (either numerical or
categorical).

Examples of simple aggregation operations for numeric val-
ues are the mean and the maximom. Typical aggregates of
categorical values are the most common value or the count
of the most common value.

Definition: A multidimensional aggregation A, is a map-
ping *x N — a that takes as input a bag of ob-
jects in the form of feature vectors (ai,...,anx).
The number of objects (ay, ..., a,) in the bag is
variable, denoted by (%), and can in particular
be zero.

The important difference between nsing multiple simple ag-
gregations and a multidimensional aggregation is that the
attributes in the vectors are not independent and have to be
aggregated together. “The total amount spent over the last

T is a table of traditional feature vectors, including cat-
egorical variables possibly with large numbers of possible
values.

two weeks” is a multidimensional aggregation, since both
Date and Price have to be aggregated jointly. However,
“the number of purchases in the last two weeks” can be
expressed with a simple aggregation using count over the
attribute Date.

Definition: A mulfi-type aggregation A, . 1S a mapping % x
N,* % M — a that takes as inputs two bags of
objects from different tables. The objects in
bag one have a feature vector of length n, the
objects in bag two of length m.

Consider that the RDB also contains the table
ReturnedItems(Customerld, Productld) and we want to find
the most recent date on which a customer bought a product
that was commonly returned before (by other customers).
This aggregation has to incorporate two sets: the products
bought by the customer and the products commonly (for ex-
ample more than 20 times) returned. For this example A,
would be sufficient assuming that the products-returned-
before are one-dimensional.

Given these definitions, we now can present an ontology of
relational concept classes, which are partially ordered by
their expressive power (their complexity). A concept class
Ca is considered more complex than class C'g if any con-
cept ¢; in Cp can be expressed in C4. We will assume a
target table T' with target column y, and background tables
B, C, and D that are related to T and potentially to each
other via keys. A lowercase expression ¢ denotes one row in
a table T. Objects ¢ in T and b in B are related by keys:
kr, B, appears in T as column i and in B as column j, and
is commonly a categorical variable with a large number of
possible values. The operator Tm _____ 5 denotes a
database join under the condition t; = b; and the subse-
quent selection of columns 1,. .. ,f from B. The notation 1:n
(join cardinality) declares that for every value t; there can
be one or more rows in B fulfilling the equality condition
t. = b;. Given the complexity of notation we will keep the
simple form of single joins; however note that it is straight-
forward to extend the hierarchy replacing TE:—b,.‘lz_n By ...f
by a chain of such operators joining across multiple tables
T B Ci...f-

So, the following list shows relational concept classes in or-
der of increasing complexity. *

t;:b,.l:n bp=cg,l:n

1. Propositional:

y=F(t)ory= F(t, F(Tmﬁl _____ n))

A join of cardinality 1:1 returns exactly one object
(feature vector) for each object in T'. There is no need
for aggregation and the features 1,...,h can be con-
catenated directly to the feature vector in 7. A typ-
ical case is a Customer table 7' and a Demographics
table D that contains additional information for each

customer.

2. Abstraction hierarchy:
v=F(t, F(Tr=—y Br..a)
If the cardinality of a join is n:1 there will be ex-
actly one observation in B for each observation in T

*In this paper we assume F to be deterministic but the ob-
servations may be noisy: § = F(x) + .
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and the features 1,....,h can be concatenated to the

feature vector. For example, B might be a Prod-

uct(ProductId,ProductType) table where ProductType
is a classification of particular product as book or com-

puter.

. Bag of attribute values:

y= F(t, AI(TW‘BA))

The least complex case that requires aggregation is a
one-to-n relationship selecting only one attribute. The
example given before of the average price of the prod-
ucts that a customer bought falls into this category: T
is the customer table, B is the Transactions table, the
key is Customerld and h is the Price.

. Independent bags of values within or across ta-

bles:
Y= F(t, Ay (Tmﬁk), ey AI(THTTZB")) or
Y :F(f.,A](TmBkn, ..... A 1(Tm0h))

The next more complex class contains cases where two
bags are necessary for F, but it is possible to them
independently of each other. For example, what if the
learning needs to consider the proportion of products
returned. The first aggregation would be the count of
the products in the transaction table, and the second
aggregation would be the count of products in the Re-
turnedltems table. Calculating the proportion would
be part of the function F, not the aggregation. Note
that this is not really a more complex case than the
bag of attribute values, since the only difference it the
use of multiple aggregations. However it is important
to note that in many cases the aggregation of objects
can be simplified by aggregating the object attributes
independently (and clarifies the next concept class).

. Dependent bags within one table:

y= F(t,fln(T','_—:mBJ ..... n))

The selected n attributes from table B cannot be ag-
gregated independently of each other. In this case the
aggregation A, has to be multidimensional. For exam-
ple, time series often harbor such concepts where the
observation clearly is dependent on a time field, and
separate aggregation would not be meaningful. The
prior example of the total amount spent over the last
two weeks falls into this category.

. Single-type, dependent bags across tables:

;I',‘=F(f,‘ n(Tt‘_szt ..... lly-'~!Tme|...,ﬂ))
In some cases it is necessary to aggregate the results of
multiple joins producing one result table. An example
is the average age of a person’s cousins if only Parent,
Brother and Sister tables are available as background
knowledge. In order to reach all cousins multiple joins
arc neeessary. However, the results of those joins can
be combined into one bag and the aggregation can be
done on this bag. In contrast, the tofal number of
cousins is not part of this class, but rather falls in to
the (simpler) bag of attribute values; the size of each
join can be counted individually and the sum can be
left to the function F.

. Multiple-type, dependent bags across tables:

y=F(t, Aam (T iz Br s Ti=g;1m Crob))

Level | Characterisitics Concept
Class

1 Single table 1

2 Single table with multiple occur- | 1,3,5
rences of the same key in a 1:1 self-
join

3 Single table with multiple occur- | 1,3,5,7
rences of the same key and a m:n
relationship

4 Multiple tables with 1:1 relation- | 1,2
ships between them

5 Multiple tables with n:1 from the | 1,2,7
target table to background tables

6 Multiple tables with 1:n relation- | 1,3,4,6
ships from the target table to the
background table and each back-
ground table has only one attribute
(besides the key)

7 Multiple tables with 1l:n relation- | 1,3,4,5,6
ship to background tables

8 Multiple tables with n:m relation- | 1,234.56,7
ships of objects

Table 1: Domain complexity and potential concept
class

At times, as in the example of products that are com-
monly returned, it is necessary to aggregate two bags
resulting from two joins into different tables. Since
the two bags have different types they cannot simply
be combined into one.

8. Global graph features:

y= F(A;(TWB,L(;;,)] where
Q = TC(BmC‘, ey Dmbl,m.f)

TC stands for transitive closure. An example of such
a concept is one’s ability to find a job as a function of
the reputation of her advisor. Reputation is a global
concept from social network analysis that may require
from an aggregation operator A, the construction of an
adjacency matrix and the calculation of its Eigenvalues
and Eigenvectors.

The concept of relational autocorrelation has been identified
as a common property of relational domains[6]. To use rela-
tional autocorrelation for learning, one might consider it to
be a special case of single-set-value concept class where the
join links back to the target relation and the target variable
is aggregated ®

Table 1 relates the complexity of a RDB based on the cardi-
nalities of its relationships and the potential complexity of
concepts embedded within it. The mapping in table 1 sug-
gests that even fairly simple relational domains can contain
very complex relational concepts.

?Direct circular dependence to the target on some categor-
_mal valljle_'l'.‘mTy)) 15 essentially propositional learn-
ing. This join addresses the question how many cases in the
training with a particular categorical value for attribute ¢,
are positive or negative.
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3. RELATIONAL AGGREGATION

We now discuss aggregation methods and how they relate
to the concept classes that can be learned by different ap-
proaches. Relational learning has taken two approaches: (1)
aggregation-based feature construction/invention and sub-
sequent model estimation or (2) direct learning of the rela-
tional mapping M. Aggregation must take place in either
approach; the main difference between the two is whether
the aggregation is optimized jointly with the estimation of
F or whether they are performed independently. As shown
for some cases in the presentation of the ontology, there are
interactions between the aggregation and the function. That
notwithstanding, for the remainder of this paper we focus
on the aggregation operators A, assuming the existence of
some strategy for the identification of related objects® as
well as an appropriate learner for F.

Existing aggregation methods differ with respect to the un-
derlying calculus (numeric or logic-based) and to what ex-
tent they are part of the actual learning process (e.g. whether
the aggregation is dependent on task or on the target)

The following sections present three common approaches
to aggregation and one novel approach that combines set-
distances with target-dependent aggregation.

3.1 First-order Logic

The field of relational learning was originally dominated
by Inductive Logic Programming (ILP)[15] and focused on
classification tasks. These first-order-logic-based approaches
search for sets of clauses that identify positive examples such
as:

RichCustomer(x)+ Customer(X,Y Z),
Transaction(X,V,P,W), P<100

The prediction of an ILP concept is positive if at least one
of the clauses is true for the particular case. Binary proposi-
tionalization ([19],[10]) also learns sets of (first-order) clauses,
but rather than using them directly for prediction it con-
struct binary features and then uses a traditional learner
(e.g. logistic regression or decision tree induction) to learn
the function F.

Both approaches use existential unification of first-order-
logic clauses as aggregation mechanism. Given the tables
from section 2 the example clause

Customer(X,Y,Z), Transaction(X,V,P,W) P<100 is 1 for a
particular customer X if he bought a product that cost more
than USD 100. The bag of products that are related to
a customer is aggregated into a single binary value (0 or
1) based on the condition P<100. The major advantage
of logic-based aggregation is its ability to address all levels
of complexity as outlined in section 2, including dependent
bags across tables. The task of identifying customers that
bought a product that was returned by another customer
who bought it after 2001 can be expressed in FOL as:
Customer(X), Transaction(X,V,P,W) Returnedltem(Y,W),
Transaction(A,B,C,W),B<2001

The disadvantage of logic-based aggregation is the lack of
support for numeric aggregation. In particular, it is impos-

4For example, graph traversal using foreign keys as links and
tables as nodes.

sible to express that the product was returned more than 20
times. A clause can test whether the maximum of a numeric
set is larger than a particular value but it can not estimate
the mean or the cardinality of the set. ®

3.2 Set Distances

Kirsten, Wrobel and Horwath (7] proposed a distance-based
method for relational learning. The approach uses a KNN
methodology to classify objects and uses a predefined rela-
tional distance metric. This metric essentially works as an
aggregation of the two bags of objects related to two cases.
Given two sets of objects of the same type, the distance mea-
sure calculates the minimum vector distance of all possible
pairs of objects, choosing one from one bag and one from
the other. The vector distance is the difference for numeric
values and the edit distance for categorical values, normal-
ized by the number of attributes. If an attribute is a key,
rather than taking the edit distance the algorithm proceeds
recursively and estimates the distance of all objects related
to the current vector using that key.

This form of aggregation can only address identical types
since the vectors have to have identical entries. Additionally
all attributes of the vector are aggregated independently. It
also does not allow for numeric aggregation like count and
average.

3.3 Numeric Aggregation using SQL

Numeric aggregates in combination with logic-based fea-
ture construction were originally proposed by Knobbe et al
([8]). A number of relational approaches including Proba-
bilistic Relational Model (PRM)[9] and ‘upgraded proposi-
tional learners such and Relational Decision Trees [5] rely
on a small set of simple (mostly SQL-based) aggregation
operators such as mean, min, max, count for numerical val-
ues, proportions and most common value for categorical
variables. These operators apply only to bags of single at-
tributes and cannot express concepts that require dependent
aggregation.

3.4 Target-Dependent Set Aggregation

We now describe a methodology that integrates vector dis-
tances and task-specific agpgregation. We are not aware
of any existing system to follow this approach, but it il-
lustrates the higher levels of the concept-class hierarchy.
The method is motivated by the observation that relational
databases commonly have attributes with large numbers
of possible values—and these attributes are unsnitable for
learning. The methodology is easily extended to numeric
values using discretization and coding numerical values as
categorical dummies.

A common method to aggregate a single attribute with nu-
merous categorical values is the selection of a subset of values
that appear most often and convert them into dummy vari-
ables or counts. A bag of colors {red.green,green,red blue,red}
could be aggregated to dummies 0,1 or counts 0,3 if across
all bags 'yellow and 'red were the most common and the first
position stands for yellow,

We extend this approach by aggregating with reference to

*There have been some efforts to extend the numeric capa-
bilities of CProgol4.4 [14].
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(conditioned on) the classes of the training cases. For this
we define:

Definition: Given an order (pairs of value v: index i) of
all possible values of the categorical attribute
BG;, a case vector CV(‘T”: — R s

sition 7 is equal to the number of values v
(v : 1) in the bag returned from the join
T ;=557 BG; for the case t in the target ta-
ble T'.

As an example, the bag {red green,green,red,blue,red} for
case ¢ under the order (yellow:1red:2 green:3,blue:4) would
result in CV* = (0,3,2,1).

Definition: Given an order (v:) of all possible val-
ues of the attribute BG;, a reference vector
RV&-”: o BG;) under the condition ¢ at po-

sition  is equal to the sum of values CV*[i] for
all cases t for which ¢ was true.

J . : c
Definition: The variance vector VV(T!': 1= BG;) 3t po-

i VD2
sition 1 is equal to the variance ECI:/ _'l} over all
case t for which ¢ was true. N, is the number
of cases for which the condition was true.

3.4.1 Single Categorical Value

Rather than selecting values that are most common across
all related objects, a target-dependent approach will select
categorical values that are most commonly related to pos-
itive training cases (y=1) and analogously those that are
most commonly related to negative cases. To create posi-
tive dummies, we select given RV~ those values v given
the order (v : i) for which the RV¥*='[i] is maximal across all
entries in RV¥='. Similarly we select those values v given
the order (v : i) for which the RV¥="[i] is maximal across
all entries in RV*=!,

A more complex, comparative approach selects categorical
values that are common for one class but not common for
the other. In particular we select the values I for which the
absolute value of RVY='[i] — RV*¥=°[4] is maximal.

The Mahalanobis distance[12] improves over this approach
by normalizing the scores by the variances before selecting
the maximum:

RV'='[i] — RV¥="[3]
VVv=I[i] + VVe=0])

I (1)

In total we have five aggregates based on single categorical
values grouped into three groups of increasing complexity:
target independent (first row), dependent on either positive
or negative reference vector (second and third row) and dif-
ference between the positive and negative reference vectors
(fourth row and fifth row).

Method | Definition
MOC CVTi] where ¢ is the index with maximum
value in unconditional refercence vector RV
MOP CVVi] where i is the index with maximum
value in positive refercence vector RVY=!
MON CV[i] where i is the index with maximum
value in negative refercence vector RV~
MOD CVz] where 7 is the index with maximum ab-
solute value in vector RV¥=' — Ry v=°
MON CV[i] where i is the index with maximum ab-
. RVY=1[1_ RyY=0(;
solute value in vector = Evvv=IL]
3.4.2  Categorical Vectors

The vector distance methodology integrates all entries in
the reference vectors rather than picking anly the value with
the largest counts in the reference vectors. From the case
vector VC and a reference vector RV we estimate four vec-
tor distances: edit distance (ED), Euclidean distance (EU),
Mahalanaobis distance (MA), and Cosine distance (COS). In
addition we calculate for each of the four measures the dif-
ference of the vector distances to the positive and negative
reference vectors:

cos(RVY=' CV) — cos(RVY=!, CV)

Combining the options for distance and target conditions,
we have a three-by-four matrix of vector-based aggregations.

Reference | Euclidean | Edit | Cosine | Mahalanobis
unconditional EU ED COSs MA
y=1 EUP | EDP | COSP MAP

y=0 EUN | EDN | COSN MAN
y=1y=0 EUD | EDD | COSD MAD

3.4.3  Distance Groupings

The vector distances can be grouped similarly into three in-
creasingly more complex groups: target independent (first
row), dependent on either positive or negative reference vec-
tor (second and third row) and difference between the class
distances (fourth row).

It should be noted that since these aggregations use the
target to estimate features, the subsequent model can he
overly optimistic about the value of the feature, which can
lead to overfitting when these features are used for learning,
Therefore, for the results that follow, the reference vectors,
vector distances and special categorical values are estimated
on 50% of the training set and the model is estimated using
the other 50% of the training set.

4. EXPERIMENTAL RESULTS

In this section we present results comparing different ag-
gregation methods on a relational learning problem con-
cerning initial public stock offerings. We include the com-
parative performance of four logic-based relational learners
(FOIL[18], Tilde[1],Lime[13],Progol[14]) since they provide
conditional aggregation methods. The next section gives a
brief overview over the methodology from which the aggre-
gation results were produced.

4.1 Domain: Initial Public Offerings
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Initial public stock offerings have a unique ticker for the firm
that is selling shares of their equity. An IPO is typically
headed by one or occasionally two banks and supported by
a number of additional banks as underwriters. The task of
the bank is to put shares on the market, to set a price, and
to guarantee with their experience and reputation that the
stock of the issuing firm is indeed valued correctly.

The IPO domain consists of 5 tables:

e [PO(Date,Size,Price, Ticker,Exchange,SIC,Runup)
e HEAD(Ticker,Bank)

e UNDER(Ticker,Bank)

IND(SIC.Ind2)

IND2(Ind2,Ind)

The last two relations, IND and IND2 are different abstrac-
tion levels of SIC classifications. For example the industry
code 7372 identifies the division of “Prepackaged software”.
This is particular category of industry group is a particular
member of the major group “Business Services” with the 2
digit code 73.

In this domain, Date, Size, Price and Runup are numerical
variables; Ticker, Bank, SIC, Ind3 are keys, and Ind2 and
Exchange are categorical attributes. The classification task
is to classify whether the offer was (would be) made on the
NASDAQ exchange.

4.2 Methods

We compared the generalization performance of 4 general
approaches: target-dependent set aggregation, simple nu-
meric aggregation, ILP, and logic-based feature construc-
tion. We also constructed two other features from the re-
lational background data: if there is an instance of an ab-
straction hicrarchy (a sequence of n:1 joins) we include the
values directly in the feature vector (AH). We also wanted
to test for (and potentially take advantage of) relational au-
tocorrelation. Therefore, we allowed joins to go back to the
target table and created an “autocorrelation” aggregation
(AC) representing the proportion of linked, positive training
cases (excluding the particular case in question of course).

For the evaluation of the aggregation methods we had to
implement (1) an exploration strategy that finds related ob-
jects, (2) a feature selection step to reduce the number of
features, and (3) a learner that finds a model to predict
the target given the aggregates. We used straightforward
approaches for each of these steps.

Exploration: Given a set of tables and keys, the system
constructs a graph with tables as nodes and keys (Ticker,
Bank, SIC, Ind2) as links between tables and executes a
breadth-first search starting from the target relation over all
possible exploration chains of increasing length. The explo-
ration stops once the number of chains exceeds the stopping
criteria. The second number in the size column in table 2
shows the stopping criterion (maximal number of joins) for

the exploration. For each exploration chain the system exe-
cutes the corresponding join and selects all attributes from
the last table joined to. It then applies the aggregation
methods of varying complexity to every attribute indepen-
dently. The resulting values (one for every row in the target
table) are appended to the original feature vector in the
target table.

Feature Selection: Once the stopping criterion is met
the system selects (10 times) a subset of 10 features using
performance-based weighted sampling. We tried alternative
methods for feature selection without much impact on the
performance.

Model:  C4.5[17] was used to learn the model for each
of the 10 feature sets and average the result as the final
prediction. The results did not change significantly using
logistic regression for the modeling.

Logic-Based Feature Construction: In order to evalu-
ate logic-based feature construction we used the ILP system
FOIL[18] to learn n FOL clauses and appended the corre-
sponding binary features to the feature vector in the target
table IPO. This methodology has been applied successfully
by King[20] and Populescul et al [16] to text classification.

ILP: We selected four ILP system based on availability,

platform independence and diversity. FOIL[18] uses a top-

down, separate-and-conquer strategy adding literals to the

originally empty clause until a minimum accuracy is achieved.
Tilde[1] learns a relational decision tree using FOL clauses in

the nodes to split the data. Lime[13] is a top-down ILP sys-

tem that uses Bayesian criteria to select literals. Progol[14]

learns a set of clanses following a bottom-up approach that

generalizes the training examples.

Evaluation: Cencralization performance is evalunated in
terms of classification accuracy and area under the receiver
operating curve (ROC)[2]. Note that ILP systems only pro-
duce class labels but no probability scores. We therefore
included for ILP only the accuracy. All reported results are
generalization performance on a test set of size 800 averaged
over 5 runs. We refrained from including the error bars in
the table but included them in the figures.

4.3 Results

Table 2 shows the generalization performance of the set of
aggregation methods as a function of training-set size and
the number of joins allowed. The methods are grouped
into four classes of increasing complexity: no feature con-
struction (NO), target-independent set aggregation (MOC,
VD, MVD), target-dependent set aggregation on either pos-
itive or negative class (MPN, VDPN, MVDPN), and target-
dependent st aggregation on the difference between the pos-
itive and negative reference vectors (MD, VDD, MVDD). To
help with the abbreviations (needed to make the table leg-
ible)a condensed summary of the different methods under
comparison can be found in table 6. Within each class of
methods, the first column presents an aggregation method
that uses only single categorical aggregation, the second only
vector distances, and the third both.

The best performance for each training size is highlighted in
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Size | NO | MOC | VD | MVD || MPN | VDPN | MVDPN || MD | VDD | MVDD
250: 6 | 0.619 0.641 | 0.679 | 0.634 0.627 0.683 0.671 || 0.635 | 0.675 0.69
250: 9 | 0.619 0.685 | 0.665 | 0.665 0.664 0.685 0.697 || 0.695 | 0.682 0.703
250:12 | 0.619 0.674 | 0.655 | 0.706 0.675 0.714 0.694 || 0.659 | 0.697 0.703
500: 6 | 0.635 0.663 | 0.674 | 0.679 0.674 0.679 0.685 || 0.675 | 0.711 0.741
500: 9 | 0.635 0.706 | 0686 | 0684 0.692 0.705 0.721 || 0.725 | 0.697 0.737
500:12 | 0.635 0.689 | 0.689 0.71 0.706 0.707 0.696 || 0.711 | 0.741 0.739
1000: 6 | 0.671 0.677 | 0.691 0.685 0.667 0.717 0.709 || 0.702 | 0.713 0.747
1000: 9 | 0.671 0.705 | 0.71 0.688 0.715 0.745 0.745 || 0.735 | 0.747 0.747

1000:12 | 0.671 0.702 | 0.705 0.708 0.711 0.723 0.727 || 0.715 | 0.767 0.759
2000: 6 | 0.699 0.675 | 0.689 [ 0.681 0.667 0.709 0.729 || 0.691 0.73 0.758
2000: 9 | 0.699 0.729 | 0.69 | 0.719 0.731 0.728 0.76 || 0.731 | 0.753 0.764
2000:12 | 0.699 0.715 | 0.709 0.73 0.718 0.733 0.723 0.72 | 0.779 0.758

Table 2: Classification accuracy of set aggregation methods grouped by complexity

bold, and the best performance for each of the complexity

classes in italics. The results show that as the complexity of o8 .

the aggregation method increases, the performance increases

as well. The best performance within a block is always one o.m | 4
of the two aggregations including vector distances and using

only single categorical values is almost always outperformed 0.8 i
by vector-distance aggregation. Increasing the exploration

depth (number of joins) improves performance in most cases, suik |

however the marginal effect decreases. Specifically, the in-
crease in performance moving from 6 joins to 9 is larger
than moving from 9 to 12 joins. In some cases moving from
9 to 12 joins hurts the performance for two reasons: (1)
the longer the chain that relates objects to a target case,
the further away the objects and the less relevant they are;
(2) since features are constructed from every join, the num-
ber of features increases linearly in the number of joins and
the feature selection becomes less effective due to multiple .
comparison problems|[4]. ;

D.64 [ : H E

Accuracy

ST I DT R S, " AP S M

0.68 =

Figure 1 shows learning curves for classification accuracy, i !
including error bars of & one standard deviation for the ex- 62 00 e e o
periments exploring 12 joins. The learning curves show that Training size

increasing the training-set size always improves the general-
1zation performance. The graph also highlights the different
performance levels of the 4 classes. The higher the com-
plexity of the aggregation class, the higher the performance.
In addition, the most complex aggregation (VDD) has the
smallest variance of the four contrasted methods.

Figure 1: Learning curves: accuracy as a function
of training-set size for NO, VD, VDNP, and VDD

simply using no relational background knowledge. There
are three potential reasons for the low performance of the
presents the results for methods that are independent of the logi(‘rba.f;ed m.ethodsz (1) the task is noisy and the search
number of joins: abstraction hierarchies (AH) in the table mechanism within the system is overly sensitive to noise; (2)
IND2 and IND, the four ILP systems FOIL, Tilde, Lime, ILP systems are not optimized for numeric values, and/or
and Progol, relational autocorrelation (AC), and logic-based (3) t_he rel_atlonal domain properties (e.g. cardinality of the
feature construction (LF). relationships) are not suitable for the particular systems.
Logic-based systems can be used on simple feature-vector
domains and have (on those domains) the same expressive
tocorrelation in this domain. AC outperforms all methods power as a decision tree or a rule learner. However doing
in this table only falling short of the best set-aggregation worse than C4.5 on the mostly‘numfarical feature vectors
method MVDD in Table 2. Including the values of the ab- suggests that the search strategy itself is not optimal for this
straction hierarchy improves slightly over no relational back- task or that the regularization mechanism is insufficient and
ground knowledge, but cannot compete with target-based the systems overfit.

set aggregation.

To compare with the results presented in Table 2, Table 3

These results suggest that there is significant degree of au-

The low performance of LF is caused entirely by overfitting

The two ILP systems FOIL and Tilde are still competitive of the training data since it containes, in addition to the
for small datasets but for larger training sets fall short of binary features, the original attribtues from the target table
IPO used by NO. The binary features are learned from the
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Size | NO | AII | FOIL | Tilde | Lime | Progol | AC LF
250 | 0.649 | 0.641 | 0.645 | 0.646 | 0.568 0.594 | 073 | 0.59
500 | 0.65 | 0.665 | 0.664 | 0.628 | 0.563 0.558 | 0.719 | 0.643

1000 | 0.662 | 0.701 | 0.658 0.63 | 0.53 0.53 | 0.724 | 0.638

2000 | 0.681 | 0.711 | 0.671 0.65 | 0.51 0.541 | 0.753 | 0.641

Table 3: Classification accuracy of methods independent of join depth

training set by optimizing classification performance. They
are therefore very predictive on the training set and the
decision tree overestimates their predictive performance.

The results for probability estimation (reported in Table 4)
are similar to the results on accuracy. The most complex ag-
gregation methods (MVDD or VDD) outperform the other
methods and the performances increase in training size. Fig-
ure 2 shows the learning curves of NO,VD,VDPN, and VDD
including error bars of & one standard deviation for 12 joins.

0.9 . T e
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el
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Figure 2: Learning curves: AUC as a function of
training-set size for NO, VD, VDNP, and VDD

Figure 3 shows the ROC curves for NO, MVD, MVDNP, and
MVDD exploring 12 joins. MVDD and MVDNP present an
interesting case where the ROC curves are crossing. MVDNP
is better for high thresholds whereas MVDD performs better
for lower thresholds

Analysing the probability estimation performances of meth-
ods that are independent of join depth in table 4.3 shows
that the autocorrelation aggregator (AC) performs very well
and almost reaches the performance of MVDD. Abstraction
hierarchies (AH) are not as useful for probability estimation
as they were for classification. Note, that ILP systems only
predict a class label and therefore do not appear in the table.

5. CONCLUSION AND FUTURE WORK

The primary contribution of this work is the first detailed
look at aggregation for relational learning. Along with search

Trus Positives

A 1 1 1
o 0.2 0.4 0.6 0.8 1
False Postives

Figure 3: ROC curves for NO, MVD, MVDNP and
MVDD

Size No | AH AC LF
250 | 0.642 | 0.63 | 0.79 | 0.626
500 | 0.666 | 0.673 | 0.814 | 0.694

1000 | 0.672 | 0.699 | 0.821 | 0.703

2000 | 0.709 | 0.714 | 0.838 | 0.702

Table 5: Probability estimation using AUC of meth-
ods independent of join depth

through the relationship graph, aggregation is a major com-
ponent of any relational learning method. We have shown,
through the ontology, that with respect to aggregation there
are various classes of relational learning problems, and that
problems with high aggregation complexity can be decep-
tively simple in description.

We have shown that looking carelully at aggregation for re-
lational learning creates a considerable design space for rela-
tional feature construction (either separately from learning
or internally to a learning program). We are not aware of
any learning program that considers even a small fraction
of these aggregation operators, nor any that uses the more
successful, target-dependent set aggregations.

Although quite suggestive, the generalizability of our pos-
itive findings (in favor of the more complex aggregators)
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Size | NO || MOC | VD | MVD || MPN | VDPN | MVDPN || MD | VDD | MVDD
250: 6 | 0.642 0.697 | 0.717 | 0.691 0.672 0.748 0.716 0.68 [ 0.729 0.734
250: 9 | 0.642 0.707 | 0.711 0.74 0.725 0.756 0.761 || 0.749 0.75 0.764
250:12 | 0.642 0.729 | 0.722 | 0.755 0715 0.79 0.74 || 0.713 | 0.763 0.76
500: 6 | 0.666 0.702 | 0.738 | 0.741 0.72 0.746 0.739 0.75 | 0.774 0.79
500: 9 | 0.666 0.775 | 0.753 | 0.757 0.758 0.77 0.802 || 0.796 | 0.775 0.821
500:12 | 0.666 || 0.741 | 0.744 | 0.787 0.775 0.785 0.76 || 0.792 | 0.812 0.812
1000: 6 | 0.672 0.743 | 0.754 | 0.749 0.735 0.793 0.797 || 0.767 | 0.788 0.802
1000: 9 | 0.672 0.765 | 0.768 | 0.763 0.787 0.808 0.825 | 0.797 | 0.818 0.826

1000:12 | 0.672 0.778 | 0.774 | 0.781 0.78 0.809 0.797 || 0.793 | 0.842 0.829
2000: 6 | 0.709 0.727 | 0.744 | 0.752 0.732 0.795 0.796 || 0.787 | 0.794 0.824
2000: 9 | 0.709 0.785 | 0.772 | 0.781 0.807 0.805 0.885 || 0.799 | 0.832 0.838
2000:12 | 0.709 0.791 | 0.779 | 0.801 0.79 0.81 0.788 || 0.798 | 0.855 0.836

Table 4: Probability estimation performance (AUC) for set aggregation methods, grouped by complexity

Method | Description

Name

NO No feature construction, only the attribtues in the IPO table

MOC Attributes in IPO table and counts of most common categoricals (MOC)

VD Attributes in the IPO table and vector distances EU, ED, COS, MA to unconditional
reference vector

MVD Attributes in IPO table, most common categoricals and unconditional vector distances
(EU, ED, COS, MA)

MPN Attributes in IPO table and counts of most common positive (MOP) and negative

(MON) categoricals

VDPN Attributes in the IPO table and vector distances to positive and negative reference
vectors (EUP, EUN, EDP, EDN, COSP, COSN, MAP, MAN)

MVDPN | Attributes in the IPO table, most common positive (MOP) and negative (MON)
categoricals, and vector distances to positive and negative reference vectors (EUP,
EUN, EDP, EDN, COS5P, COSN, MAP, MAN)

MD Attributes in IPO table and counts of most common discriminative categoricals
(MOD, MOM)

VDD Attributes in the IPO table and differences of the vector distances to positive and
negative reference vectors (EUD, EDD, COSD, MAD)

MVDD Attributes in the IPO table, and counts of most common discriminative categori-

cals (MOD, MOM), and differences of the vector distances to positive and negative
reference vectors (EUD, EDD, COSD, MAD)

AH Attribtues in IPO and attribute Ind in table Ind2 related throght abstraction hierar-
chy

AC Attributes in IPO and proportion of positive training cases (excluding the particular
case) that a case was related to

LF Logic-based features extracted from the clauses learned by FOIL

FOIL ILP system

Tilde ILF system

Lime ILP system

Progol ILP system

Table 6: Method description
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is limited due to the focus on one particular domain and
the limited maximum training size of 2000. Clearly there
is at least one learning task where existing aggregation ap-
proaches are not adequnate. Future work includes extend-
ing these experiments to multiple domains with different
relational characteristics. Within the scope of the IPO do-
main the empirical results demonstrate that aggregation op-
erators of higher complexity can significantly improve the
generalization performance of relational learners. The best
methods (VDD, MVDD) use target-dependent vector-distance
aggregators (that transform the relational task into a con-
ventional feature-vector representation that allows the use
of conventional learning methods). An advantage of this
transformation-based approach is its general applicability to
regression, classification, and probability estimation tasks.

Our results furthermore show that for the same level of per-
formance, increased aggregation complexity can trade off
exploration depth. This is an important point since the size
of the space increases exponentially in the search depth if
the relations have a one-to-n or m-to-n cardinality. Scalabil-
ity of relational learning is still an important research topic
in relational learning[3].

The presented aggregation methods are certainly not com-
plete. Our findings motivate further exploration of poten-
tial aggregation methods. In particular there is still an open
issue of numeric multidimensional and multi-type aggrega-
tion. Another open issue is the joint optimization of aggre-
gation and model estimation. (Rather than treating them
separately, as we have done.)

More generally, this work highlights that existing approaches
to relational classification can show major performance dif-
ferences. The field of relational learning still needs to de-
velop a better understanding of why certain methods out-
perform on certain domains.
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