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Abstract attributes). However. Process 2 is valid. because it pre- 
A knowledge discovery (KD) process involves pre- processes the data with a discretization routine, transform- 
processing data, choosing a data-mining algorithm, ing the numeric attributes to categorical ones. 
and postprocessing the mining results. There are very IDAs rely on an explicit ontology of knowledge discov- 
many choices for each of these stages, and non-lrivial ery techniques. For our purposes, the KD ontology defines 
interactions between them. Consequently, both nov- 
ices and data-mining specialists need assistance in the existing techniques and their propenies. Given such an 

navigating the space of possible KD processes. We ontology, an IDA can perform a search of the space of valid 
present the concept of Intelligent Discovery Assistants processes, considering techniques to be operators that 
(IDAs), which provide users with (i) systematic enu- change the world state, with preconditions that constrain 
merations of valid KD processes, so important, poten- their applicability. Figure 2 shows some (simplified) ontol- 
tiallv fruitful ootions are not overlooked, and (ii) oev entries icf.. Fieure 1). 
effktive rankinis of these valid processes by differ.% 
criteria, to facilitate the choice of KD processes to 
execute. We use a prototype to show that an IDA can 
indeed provide useful enumerations and effective rank- 
ings. 

1 Introduction 
The Knowledge Discovery (KD) process is one of the cen- 
tral notions of the field of Knowledge Discovery and Data 
mining. For this paper, we will consider three KD process 
sages: preprocessing data, the application of an induction 
algorithm, and the post-processing of the output. Figure 1 
shows three example KD processes.2 Process 1 comprises 
simply the application of a decision-tree inducer. Process 2 
preprocesses the data by applying discretization of numeric 
attributes, and then builds a nayve Bayesian classifier. 
Process 3 preprocesses the data first by taking a random 
subsample, then applies discretization, and then builds a 
nayve ~ B ~ e s i a n  classifier. 

Figure I.  Three valid KD processes 

We introduce the notion of Intelligent Discovery Assis- 
tants (IDAs). which help data miners with the exploration 
of the space of valid KD processes. A valid KD process 
violates no fundamental constraints of its constituent tech- 
niques. For example, if the input datn set contains numeric 
attributes, simply applying na~ve Bayes is not a valid KD 
process (because nai've Bayes applies only to categorical 

' We thank Shamdra Hill and Yan Mao for their assistance with 
the implementation of the prototype system. 
'~escri~tions of all of the techniques can be found in a data min- 
ing textbcuk [Witlen & Frank, 20001. 

Above we said that an IDA helps a data miner. More 
specifically, an IDA determines characteristics of the data 
and of the desired mining result, and enumerates the KD 
processes that are valid for producing the desired result 
from the given data. Then the IDA provides the user assis- 
tance in choosing processes to execute, by ranking the 
process (heuristically) according to what is important to the 
,.car ""-. . 

Results should be ranked differently for different users. 
The ranking in Figure I is based onthe number of tech- 
niques that form the plan. If the user is interested in mini- 
mizing fuss, this ranking would be a useful suggestion. A 
different user may want to minimize run time, e.g., to get 
some results quickly. In that case, the reverse of the ranking 
shown in Figure 1 would be appropriate. There are many 
other ranking criteria: accuracy, cost sensitivity, compre- 
hensibility. etc., or some combination thereof. 

In this paper, we claim that IDAs can provide users with 
three benefits: 
1.a systematic enumeration of valid KD processes, so they 

do not miss important, potentially fruitful options; 
2.effective rankings of these valid processes by different 

criteria, to help them choose between the options; 
3.an infrastructure for sharing KD knowledge, which leads 

to what economists call network externalities. 
We suppon the f i s t  claim by presenting in more detail the 
design of effective IDAs, including a working prototype. 
We then provide further support by showing some of the 



plans that the prototype produces, and arguing that they 
would he useful even to expert data miners. We provide 
support for the second claim with an empirical study with 
some example ranking heuristics. We show that we can 
rank quite well (prospectively) by speed, and sometimes 
well even by accuracy. We provide support for the third 
claim with a simple example of how an IDA would be es- 
pecially helpful to a team of data miners. 

2 Intelligent Discovery Assistants 
Although domain-specific elements could be incorporated 
into IDAs, for clarity and generality we concentrate on 
domain-independent elemenrs of the KD process. For ex- 
ample, when presented with a data set to mine, a knowl- 
edge-discovery worker (rcscarcher or practitioner) is faced 
with a confusing array of choices [Witten & Frank, 20001: 
should I use C4.5 or naive Bayes or logistic regression? 
Should I use discretization? If so, what method? Should I 
subsample? Should I prune? How do I take into account 
costs of misclassification? 

2.1 Ontology-based IDAs 
The overall process followed by an IDA is shown in Figure 
3. An IDA interac& with the user to ohtain data, goals and 
desiderata. Then it composes the set of valid KD processes, 
according to the constraints implied by the user inputs, the 
data, andlor the ontology. This involves choosing induction 
algorithm(s), and appropriate pre- and post-processing 
modules (as well as other aspects of the process, not con- 
sidered in this paper). Next, the IDA will rank the suitable 
processes into a suggested order based on the user's desid- 
erata. The user can select plans from the suggestion list. 
Finally. the IDA will produce code for and can execute 
(automatically) the suggested processes. 
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Figure 3: The overall process followed by an IDA 

Consider a straightforward example. A user presents a 
very large data set, including both numeric and categorical 
data, and specifies classification as the learning task (along 
with the appropriate dependent variable). The IDA asks the 
user to specify desired tradeoffs between accuracy and 
speed of learning (these are just a couple of possibilities). 

Then the IDA determines, of all the possible KD processes. 
which are appropriate. With a small ontology, there might 
be few, with a large ontology there might be many. For this 
task, decision-tree learning alone might be appropriate. Or. 
a decision-tree program plus subsampling as a preprocess, 
or plus pruning as a post-process. or plus both. Are naive 
Bayes or logistic regression appropriate for this example? 
Not by themselves. Naive Bayes only takes categorical 
data. Logistic regression only numeric. However, a KD 
process with appropriate preprocessing may include them 
(transforming the data type), and may do better than the 
dccision tree. What if the user is willing to trade some 
accuracy to get results fast? 

The IDA uses the ontology to assist the user in compos- 
ing valid and useful KD processes. In our prototype, for 
each operator the ontology contains: 

Human-readable information about each of the operators. 
A specification of the conditions under which the opera- 
tor can be applied. This contains both a pre-condition on 
the state of the KD process as wcll as its compatibility 
with preceding operators. 
A specification of the operator's effects on the KD proc- 
ess's state and its data. 
Estimations of the operator's influence on attributes like 
speed, accuracy, model comprehensibility, etc. 

In addition, the ontology groups the operators into logical 
groups, which can be used to narrow the set of operators to 
be considered at each stage of the KD process. Figure 4 
shows a structural view of our prototype ontology. It groups 
the KD operators into three major groups: pre-processing, 
induction, post-processing. Each of these groups is further 
sub-divided. At the leafs of this tree are the actual operators 
(not shown in the figure. except for one example: C4.5). 
For example, the induction algorithm group is subdivided 
into classifiers, class probability estimators (CPE), and 
regressors. Classifiers are further grouped into decision 
trees and rule learners, and the first of those groups includes 
C4.5 [Quinlan, 19931. 

2.2 IDEA: A Prototype IDA 
The Intelligent Discovery Electronic Assistant (IDEA) is a 
prototype IDA that uses our ontology-based approach. 
Following our general framework for IDAs (see Figure 3) 
IDEA gathers a task specificafion for the KD process. First 
IDEA analyzes the data that the user wishes to mine and 
extracts the relevant mela-information about the data, such 
as the types of attributes included (e.g., continuous, cate- 
gorical). Using a GUI, the user then can complement the '. 
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Figure 4: The Data-mining Ontology (partial view) 



gathered information with additional knowledge about the 
6 

data (such as structural attributes IDEA could not derive 
from the metadata), and can specify the type of informa- 
tionlmodel helshe wishes to mine and desired tradeoffs 
(speed, accuracy, cost sensitivity, comprehensibility, etc.). 

IDEA's firs1 core component, the KD-process planner, 
then searches for KD processes that are valid given the task 
specification from within the design space of overall possi- 
ble KD processes, as defined by the ontology. IDEA 
searches the space of valid KD processes starting from the 
start state, finding compatible operators using the compati- 
bilities (the pre-conditions), and transforming the slate 
using the operators' effects. Given the limited number of 
operators in the prototype KD-ontology (currently a few 
dozen) the KD-process planner currently can generate all 
valid processes (up to scvcral hundred for problems with 
few constraints) in less than a second. 

A collection of valid KD processes typically will contain 
a series of processes that are undesirable for certain user 
goals--they make undesirable trade-offs, such as sacrificing 
accuracy completely to obtain the model fast, etc. IDEA's 
second core component, the heuristic ranker, ranks the 
valid KD processes using a heuristic function and the user's 
trade-off preferences as defined by weights entered through 
the GUI. It computes the rankings of the plans by using the 
operators' characteristics (such as their influence on speed, 
accuracy, and model comprehensibility) that are specified 
in the ontology. 

IDEA'S GUI allows the user to son the list of plans using 
any of the rankings, including the combined ranking de- 
rived from applying weights on the different characteristics. 
and to examine the details of any plan. 

3 IDAs can produce useful KD processes 
Our first claim is that ontology-based IDAs can enumerate 
KD processes useful to a data miner. We support our claim 
in two ways. First, the preceding section described how 
the ontology can enable the composition of only valid plans 
(only valid plans will be useful). Second, in this section we 
describe process instances produced by IDEA, in order to 
provide evidence that they can be non-trivial. Even with 
the prototype ontology, IDEA produces good KD process 
enumerations (sometimes surprisingly good). 

3.1 Enumeration using the full ontology 
Given the ontology whose structure is shown in Figure 4, 
the goal of classificntion, and the constsaints imposed by 
the pre- and postconditions of the operators? IDEA pro- 
duces 597 valid orocess instances. It should be clear that 

However, although the benefits of IDAs are clearest for 
novice users, they are valuable even to experts. Consider 
the 2000 KDDCUP, in which 30 teams of data-mining 
researchers and professionals competed to mine knowledge 
from electronic-commerce data [Brodley & Kohavi. 20001. 
Most algorithm types were tried by only a small fraction of 
participants. The only algorithm that was tried by more 
than 20% of the participants was decision-tree induction. 

Consider a specific example. When we give IDEA the 
goal of producing a cost-sensitive classfler for a two-class 
problem, it produces 146 plans, including using class- 
probability estimators or regressors and adjusting the output 
threshold, as well as using class-stratified sampling with 
any classification algorithm. This is a non-trivial enumera- 
tion of KD processes: there are many instances of published 
research on cost-sensitive learning that do not consider 
these options. 

When we give IDEA the goal of producing comprehen- 
sible classifiers, the top-ranked plan is: subsample the 
instances, do feature selection, use a rule 
learner, prune the resultant rule set. Al- 
though comprehensibility is a goal of much machine- 
learning research, we are not aware of this plan being 
usedlsuggested. As another plan highly ranked by compie- 
hensibility. which also had a high accuracy ranking, IDEA 
suggested run ~ 4 . 5 ,  convert tree to rules, 
prune rule set. This also is a non-trivial plan: it is the 
process shown by Quinlan [I9871 to be good for compre- 
hensibility and high accuracy. Although the addition to the 
ontology of convert tree t o  rules cenainly was 
influenced by Quinlan's work, we did not "program" the 
system to produce this plan. IDEA composes plans only 
based on knowledge of individual operators. 
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Table 1: 16 process plans and three rankings 

3.2 Enumeration using a restricted ontology 
For the experiments in the next section. we restricted the 
ontolocv to a subset for which it is feasible to studv an -. 

for a novice data miner, this process space is overwhelm- entire enumeration of plans. The ontology subset uses 
ing? Many novice users simply use the algorithm that they seven common pre-processing, post-processing, and induc- 
are familiar with. with little pre- or post-processing. lion techniques (for which there were appro~riate functions . . . 

in Weka, see below). The experimentai t&k is to build a 

%ese are not shown, but are straightforward constraints such as: classifier, and has as its start state a data set containing at 

logistic regression requires numeric attributes, decision-tree prun- least one numeric anribute. Even this small ontology pro- 
ing can only apply to decision trees, etc. duces an interesting variety of KD-process plans. Table 1 
'without theoperator-specific constraints, usingonly theordering shows the list of 16 valid plans for this problem on the left; 
im~orcd bv the ontology, the total number of possible process on the right is a legend describing the 7 operators used. For 



example, the ontology specifies that naive Bayes only con- 
siders categorical attributes, so the planner had to include a 
preprocessor that transformed the data. Indeed, although the 
ontology for the experiments is very small, the diversity of 
plans is greater than in many research papers. 

4 IDAs can produce effective rankings 
In order to provide empirical support for our claim that 
lDAs can produce effective rankings, we implemented a 
code generator for IDEA that exports any collection of 
plans, which then can be run (automatically). Currently it 
generates code for the Weka data-mining toolkit [Witten 
and Frank, 20001, which also allows us to generate lava 
code for executing the plans, as well as code for evaluating 
the resulting models based on accuracy and speed of learn- 
ing.' 

Note that in this section we use the empirical rankings to 
support the claim that IDAs produce effective rankings. 
We do not claim that we have studied the production of 
ranking functions to any depth. and we are sure that better 
ranking functions exist (however, they can not be usedl 
studied effectively without an implemented IDA). 

The plans in Tablc 1 are ranked by the number of steps in 
the plan. This is one option in IDEA, because users who 
will be executing plans manually may be interested in 
minimizing fuss. Not surprisingly, as with the KDDCUP. 
decision-tree learning is at the top of the list. 

Table I also shows the heuristic ranks Tor both accuracy 
and speed for our test problem. The heuristic ranks were 
generated by a functional composition based on the ontol- 
ogy. For example, the ontology specifies a base accuracy 
and speed for each learner, and specifies that random sam- 
pling and discreti~ation will reduce accuracy and will in- 
crease speed. The heuristic functions are subjective, based 
on our experience with the different operators and our read- 
ing of the literature (e.g.. [Lim er al., 20001). The ranking 
functions were decided on before we tried Weka, with one 
exception. Namely, speed ratings differ markedly by im- 
plementation, so we ran Weka on one data set (credit-g) to 
instantiate the base speed for the three learning algorithms 
and made minor changes to the speed improvement factors 
for sampling and for discretization. We chose speed and 
accuracy ranking for the experiments, because they were 
the two criteria we could evaluate objectively. 

Our first experiment examines how well these heuristic 
rankings perform. We ran the 16 plans on 15 UCI data sets, 
using ten-fold cross-validation to compute average classifi- 
cation accuracy and average speed. Table 2 summarizes 
the results of these runs in col~rmns "speed-heuristic" and 
"accuracy-heuristic" (for ease of comparison, Table 2 also 
includes results discussed below). Each result column has 
sub-columns "avg top." "avg bottom," and "1-test." Respec- 
tively, these show the average score (speed or accuracy) for 
the top8 plans and for the bottom-8 plans, and the result of 
running a t-test to determine if the difference in the means 
-- 

%~he last operator in Table I ,  cpe, which places an appropriate 
threshold on a class-probability estimator, becomes a no-op in the 
Weka implementation, because nb thresholds automatically. 

is significant. These results show clearly that the speed 
ranking is effective (at this gross level). The accuracy 
results are less impressive. In some cases, the heuristic 
ordering works well, in other cases it fails completely. The 
latter result is not surprising: researchers have been trying 
for years to predict which algorithm will be more accurate, 
with little success. 

In Table 3 the "heur" column present the correlation be- 
tween the rankings produced by the heuristics and the actual 
speedlaccuracy, using Spearman's r, (recall that a perfect 
rank correlation is 1, no correlation is 0, and a perfectly 
inverted ranking is -1 ; we broke ties in the actual values by 
flipping a coin, and these results are the averages over 100 .. - 
coin tosses). 

These results show that in about half of the domains, the 
heuristic accuracy rankings are pretty good, but in some 
domains the heuristic accuracy rankings are worse than 
random! However, it is important to note that the IDA in 
fact can produce a "perfect" ranking even for accuracy: it 
can run all the plans, determine the accuracy, and provide 
the user with the ranking. This of course would be time 
consuming for large data sets or long lists of plans, so an 



important question is: what is the user's desired tradeoff the lowest-accuracy plans for these domains! This is not 
between accuracy and time? We return to this below. predicted by either ranking, but further argues for the need 

For our purpose, the speed results are more interesting, for an IDA that can experiment for the user (automatically) 
because it does not make sense lo run all the plans to de- with different plans. 
termine which to suggest. The rank correlations are im- 
pressive, but the results deserve closer inspection. 
Examining the plans we find that six of the eight top-ranked 
plans start by randomly sampling a subset of 10% of the 
training data. One would expect these to be significantly 
faster than the non-sampled plans (interestingly, the two rs 
plans that use PART are predicted to be in the slower half of 
the speed ranking). Therefore, it is important to ask 
whether the success of the heuristic ranking is due simply to 
the presence of sampling in the faster plans. 

The "sampling" column in Table 3 shows the r, values if 
the predicted ranking is based solely on placing all plans 
using rs at the top of the speed ranking and the non-rs 
plans at the bottom (otherwise ranked randomly). These 
results are striking: the heuristic ranking is in every case 
better. and in some cases much better than can be explained 
solely by the inclusion of random sampling. Furthermore, 
for some domains the heuristic ranking is close to perfect. 
We also include one additional experiment: an alternative 
ranking heuristic is simply to use the speed ranking from 
one domain to predict the rankings for the others. Since we 
examincd credit-g to initialize our heuristic, why not just 
use the credit-g ranking? In fact, as Table 3 shows (in 
column "credit-g"), this produces a better ranking than our 
heuristic does (although it may not be practicable for very 
large ontologies). In fact, in anneal it is very nearly perfect. 

We conclude from these experiments that lDAs can in 
fact produce effective rankings, although how to do so well 
certainly deserves further study (see next section). 

5 On-going work: sampling for accuracy 
Our long-term goal is not simply to be able to rank by speed 
or by accuracy, but to allow users to specify desired trade- 
offs between different criteria. For example, what if I'm 
willing to trade of a little speed for a better accuracy rank- 
ing (but don't want to run all the plans). Why not let the 
IDEA run some very fast plans for the purpose of inferring 
the accuracy of the time-consuming ones? (Since it can 
predict speed pretty well.) 

We ran one additional experiment to test whether a rudi- 
mentary version of this strategy is effective. In particular, 
for each plan there is a version that begins with rs (random 
sampling of 10% of the data). For each domain we evaluate 
the following IDEA strategy: run the rs plans, and use the 
observed ranking for the non-rs plans. 

In some cases (see Table 3, column "Is-pred."), the sam- 
pling-based ranking works surprisingly well. In others it 
does not work as well as the heuristic ranking. These results 
are promising enough (given only a 10% random sample) to 
consider looking further at sampling as an important com- 
ponent for creating accuracy-ranking heuristics. 

There are four domains where neither accuracy ranking 
does well: heart-h, heart-c, credit-a, credit-g. Examining 
the actual plan runs yields a surprising explanation. The 
plans without discretization or random sampling are among 

6 Discussion 
lDAs are particularly useful because they are systematic in 
their exploration of the design space of KD processes. 
Without such a tool users, even experts, are seldom system- 
atic in their search of the KD-process space. and it is 
unlikely that any user will consider all possible process 
plans. Therefore, users may overlook important, useful 
plans. 

Up to this point we have discussed, for emphasis, novice 
users and expert users. However, this is not a true dichot- 
omy. There is a spectrum of expertise along which users 
reside. For the most novice, any help with KD process 
planning will be helpful. For the most expert, an IDA could 
be useful for doublechecking hisher thinking, and for 
automating previously manual tasks. For others along the 
spectrum, IDAs will have both types of benefits. In addi- 
tion, the tool may help to educate the non-expert user. For 
example. when the system produces a highly ranked plan 
that the user had not considered previously, the user can 
examine the ontology, and educate himself on some new 
aspect of the KD process. 

A unique benefit of an IDA based on an gz&& ontology 
is the synergy it can provide between teams of users. Con- 
sider the following example. George is a member of a large 
team of data miners, with several on-going projects. While 
reading the statistics literature he discovers a technique 
called dual scaling [Nishisato, 19941, a preprocessing op- 
erator that transforms categorical data into numeric data, in 
a manner particularly useful for classification. George 
codes up a new preprocessor (call it DS) and uses it in his 
work. Such discoveries normally are isolated; they do  not 
benefit the team's other projects. However, if George sim- 
ply adds DS into the IDA, and adds the appropriate enby to 
the ontology, whenever someone else uses the system plans 
will be generated that use DS (when appropriate). This is an 
example of what economists call network externalities: 
users get positive value from other people using the "net- 
work." In some cases, these plans will be highly ranked 
(when DS is likely to do a good job satisfying the user's 
criteria). Thus users get the benefit of others' work auto- 
matically--no single member of the gmup has to be an ex- 
pen in the entire body of data-mining technology. 

Finally, we have discussed how users can learn more 
about data mining by using an IDA. It is also possible for 
the IDA to learn about data mining, either on its own or 
through interaction with the users. Since the system can 
evaluate the plans it produces, it can evaluate and improve 
its own ranking functions. 

7 Related Work 
"Automatic bias selection" involves the selection of one of 
the following, based in part on feedback from the perform- 
ance of the learner: vocabulary terms, the induction algo- 



rithm itself, components of the induction algorithm, pa- 
rameters to the induction algorithm [desJardins and 
Gordon, 19951. However, bias-selection work generally 
assumes the goal is accuracy maximization (exceptions are 
Tcheng et al., [I9891 who consider accuracy and speed, and 
Provost and Buchanan 119951, who consider accuracy, 
speed, and cost sensitivity). Moreover, none of this work 
composes KDprocesses, nor is it based on an ontology. 

Engels et a / .  propose to implement a user-guidance mod- 
ule for KD processes (Fngels, 19961, [Engels el al., 19971. 
[Wirth et al., 19971, and [Verdenius and Engels, 19971). In 
particular. the user-guidance module uses a taswmethod 
decomposition [Chandrasekaran et al.. 19921 to guide the 
user through a stepwise refinement of a high-level KD 
process, in order to help the user to construct the best plan 
using a limited model of operations. Finished plans are 
compiled into scripts for execution. This work is similar to 
our approach as it  provides the user with assistance when 
constructing KD processes. In constrast, our approach is 
based on the notion that it is very difficult to discern the one 
best plan, as data-mining results can be unpredictable, and 
users' desired tradeoffs might not be easily specified (or 
even known) at the onset of the investigation. An IDA pre- 
sents the user with many (all) valid plans to choose from 
and helps himlher to choose among them (using heuristic 
rankings). 

Kerber er al. 119981 document the KD process using ac- 
tive links to visually programmed KD processes and to the 
rationale for major design choices. They collect these de- 
scriptions in a repository. This approach facilitates the 
reuse of KD processes, resulting in a knowledge manage- 
ment system for KD processes. It is complementary to our 
approach, as it emphasizes the documentation and retrieval 
of past knowledge, which could be integrated well with our 
notion of active support as represented by IDAs. 

Finally, the StatLog project%as investigated what induc- 
tion algorithms to use given particular circumstances. The 
knowledge generated from such projccts could be of great 
use to populate the ontology, as well as to inform the con- 
struction of more advanced heuristic functions for ranking 
KD processes. 

8 ConcIt~sion 
Both novices and specialists need assistance in navigating 
the space of possible KD processes. We have shown that 
ontology-based lDAs can generate valid, non-uivial, and 
sometimes surprisingly interesting KD-process instances. 
Further, we have given empirical evidence that it is possible 
for IDAs to rank the process instances effectively by vari- 
ous user criteria. Although there is much work to do. we 
believe that our IDEA already is useful to both novicc and 
expert data miners. 
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