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Abstract 

Data mining research has not only development a large number of algorithms, but also 

enhanced our knowledge and understanding of their applicability and performance. 

However, the application of data mining technology in business environments is sdll no  

very common, despite the fact that organizations have access to large amounts of data 

and make deasions that could profit from data mining on a daily basis. One of the 

reasons is the mismatch between data representation for data storage and data analysis. 

Data are most commonly stored in multi-table relational databases whereas data mining 

methods require that the data be represented as a simple feature vector. This work 

presents a general framework for feature construction from multiple relational tables for 

data mining applications. The second part describes our prototype implementation 

ACORA (Automated Construction of Relational Feanues). 

Cclircr for D i ~ i r n l  Fco~io~ii! IIcsenrcl~ 
S1cl.n School of H~~.;incs.; 
Uorhinx I';~pcr IS-02-04 



Introduction 

Given the successful development of a multitude of data mining algorithms, approaches and methods, one 

would expect their application to be standard practice in organizations that have access to large amounts 

of data and make decisions on a daily basis. However, the number of organizations that apply data mining 

methods for decision support is still relatively small. One of the reasons is the mismatch between data 

representation for data storage and data analysis. Data are most commonly stored in multi-table relational 

databases. Evely table has a number of atuibutes and the tables can be related to each other using keys. A 

customer database for example can contain two tables CUSTOMER and PAST-PURCHASES and both 

tables contain the attribute CUSTOMERID. 

On the other hand data mining methods (e.g. decision trees and neural networks) and statistical 

analysis tools (e.g. linear regression) require that the data be represented asa feature vector (x,,. . ., x,,, y) of 

n ataibutes for each observation. In the example above the important information about past purchases is 

stored in a separate table with potentially multiple transactions per customer and the number of entries 

varies for each customer. For some inactive customers, only one past purchase may be available whereas, 

for some highly active customers there could be more than hundred. If the objective of a marketing expert 

is to identify those customers who are likely to  buy a new product after a direct marketing action, we 

would like to identify those customers who are most likely to respond to the direct marketing based on 

their past purchases. Faced with this situation, a marketing expert would manually have to generate the 

features xi by joining both tables and aggregating the information about the sets of past purchases. A 

typical aggregate is, for instance, "amount spent within the last 2 months". 

Not only does this manual feature construction require significant technical expertise (e.g., knowledge 

of SQL), but also strong prior ideas what kind of features might be important. The manual process of 

feature construction is very time consuming and becomes infeasible for a large number of tables. 



This work provides a framework for the automated construction of relevant features for data mining from 

multiple relational tables. We use the term data mining in a very broad sense including machine learning 

and statistical analysis. Our approach will however be focused on predictive tasks (e.g., regression, 

dassification, and probability estimation). Throughout the paper we will use the wordsjaiuns and afm'bufes 

as synonyms. 

A Transformation-Based Framework for Relational Data Mining 

Our framework as presented in figure 1 takes a transformation-based approach to data mining, where 

learning is perceived as a sequence of successive steps of data transformation. In the first step TI, we 

construct features from relational tables. The result is a feature vector that is augmented in T2 and can be 

used in the last step T3 to learn a predictive model. The transformation T2 creates new non-relational 

features from mathematical combinations and transformations of existing features. A typical example is 

the introduction of interaction effects and higher order terms in linear models and re-scaling of features 

using logs (e.g., x,-= In(%,+)). 

Relational Tables Feature Vector 
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Figure 1: Transformation-based framework of data mining 

The focus of our work is the feature construction step TI. The traditional manual approach to relational 



data analysis has been expen-guided feature construction TI. It is possible to view the process of feature 

construction from relational data as a special case of preprocessing. Howevcr we argue that this step is 

extremely important and should receive its due attention as a main part of the modeling effort, as noted by 

Langley and Simon (1995) among many others. 

De Raedt (1998) showed that for most relational databases (no recursive concepts) complete 

transformations (without loss of information) are possible, but result in an exponentially growing feature 

space with potentially sparse feature vectors. However the objective of the transformation TI  is not a 

complete mansformation but rather the extraction and creation of valuable features for the modeling task. 

Constructing Features from Relational Data 

Figure 2 shows our modular framework of feanue construction P I )  as a three-step procedure. We will 

use the expression "target relation" to refer to the table that contains the objects of interest for which a 

prediction will be made. In the previous example it is the .customer table since we want to predict the 

probability that a customer will buy the product. 
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Figure 2: Framework for feature construction from relational tables 

In the exploration step we join the target relation with other tables in the database that have at least one 

key atuibute in common with the target relation. The second step is the application of aggregation 

methods to the results of the join. Each of those aggregation methods generates one value (either numeric 



or categorical) per row in the target relation. After this generation of new features a selection procedure 

identifies valuable features for the modeling task T3. The three steps are described in more detail in the 
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following paragraphs. 

Structural Exploration 

For the target relation R,(a , , . . . ,  ai ,..., ad there is a set of background relations R, @ ,,..., bin. ..,bJ which 

can be related to RT, given a key attribute. Formally, the operation is a join a,=b, where we only select the 

attributes @,,. . ., b,. . .,bJ from relation R,. Depending on the cardinality of the relationship between the 

two relations, this may produce the same number of objects (as in the case of a 1-to-1), or a variable 

number (as in the case of l-to-n). For example, two tables CUSTOMER and PAST-PURCHASES could be 

joined on the key CUSTOMERID (see Figure 3). The result of the join has multiple rows for each customer 

and the numb- of rows is equal to the number of transactions the customer has performed in the past. 

Conceptually there is a tree of all possible joins (potentially over multiple tables) with the target relation 

being the top of the tree. The nodes in layer of depth n correspond to all possible joins over n relations. 

Each path from the top to a node involves multiple joins and 

generates one table. The only requirement is that every node has to 

share at least one key vatiable with one of the nodes in its path. It is 

possible to explore this tree using any standard tree-search algorithm 

(e.g., hreadth-first search). Figure 3 shows the tree (after pruning 

identical joins) of depth 3 for the marketing example assuming that 

available keys are CUSTOMERID and PRODUCTID. The 3 joins 

corresponding to the full path would return the sets of all customers 

that bought at least one product identical to any one bought by the 

customer in the target relation. 

Figure 3: Exploration tree for marketing example 



Aggregation: 

Structural exploration produces a table with a set of entries for each object in the target relation as shown 

on the example of customer transactions. The task of the aggregation operators is to construct single- 

valued attributcs from each column of those sets. Depending on the data type, different aggregation 

operators can be applied. Figure 2 shows the 2 main groups of aggregation operators based on the data 

type (categorical or numerical) of the column. The column "Price" of the PAST-PURCHASE table, for 

example, is numeric and can be aggregated using simple sample statistics such as median, mean, min, and 

max. Categorical aggregation can involve the creation of dummies or counts for each value. One can 

however extend the current approach with much more complex operators like estimation of set- and 

density-distances (e.g., KuUback-Leibler) to a reference set. 

Selection: 

The aggregation step can create a significant number of potential features. Most predictive data mining 

methods show decreasing performance as the dimensionality of the input space increases ("the curse of 

dimensionality")). It is therefore useful to implement a feature selection step that assesses the value of a 

feature for the modeling task. It is a design question how much effort should be put into the evaluation of 

the usefulness of a feature since it involves a significant computational effort. In the simplest case tbis can 

be done using only the particular feature in question. The disadvantage is that one might miss features that 

are conditionally predictive. The decision as to how much computational effort is optimal depends also on 

the desired run time behavior, the choice of model class, and domain properties such as number of tables. 

Implementation: ACORA 

We have impleme~lted a prototype of our feature consuucdon framework called ACORA (Automated 

Construction Of Relational Attributes). The general philosophy is to allow the user to provide as rich a 

specification as he or she wants and to provide additionally default heuristics for all things the user does 



not want to specify. This flexibility allows the comparison of methods and enables users with different 

technical competencies to interact with the system. The goal is to develop robust mechanisms that can 

guaranty good performance on a number of domains and prediction tasks. The following table gives a 

short overview of the system parameters and guidelines for the development of heuristics. 

computational cost), or on the number of features (e.g., the ratio of observations to features should 
be at least 5 for hear models). If the selection is not sufficiently aggressive, the stopping criteria 
might be reached without sufficient exploration of the fearure space. A heuristic that takes both 
factors into account could create a high number of features, rank them based on the selection 

Table 1: System Parameters 

One open research question is the degree of automation that can be achieved without losing much 

performance on a number of domains. Of additional interest are the interaction effects of those heuristics 

on run time and prediction performance of various data mining methods. 

Thc system is currently in a development stage with most of the structural exploration and aggregation 

implemented. We plan to provide interfaces to a number of machine learning techniques to evaluate our 

approach on a number of prediction tasks. In particular we will include decision trees (C4.5), logistic and 

linear regression. Our prototype currently requires at least a specification of all relational tables names and 

the types of their atuibutes. After reading in the table specification CUSTOMER(CUSTOMERID, GENDER, 

INCOME, ZIP) for the customer table and PAST~PURCHASES(CUSTOME~D, DATE, PRICE, PRODUCTID), 

the system identifies based on attribute name automatically all possible keys (CUSTOMERID and 

PRODUCTID) on which tables can be joined unless the keys were specified explicitly. The system 

architecture is modular and open to extensions with new aggregation operators. 
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Related Work 

This work is related to a number of research areas: feature construction, inductive logic programming, 

propositionalization, OLAP, and learning from relational databases. 

OLAP enables an analyst to create high-dimensional representations from joins of multiple relations 

and to select subsets and aggregations. The current capabilities of OLAP systems provide an infrasttucture 

for data analysis but lack mechanisms for automated analysis and predictive modeling. Machine learning 

and data mining have developed a suite of algorithms for automated learning of predictive models from 

feature vectors (x,, x,, x,, xq..x,J. The reader is referred to a standard textbook (Mtchell 1997) for an 

overview of existing methods. Kramer et al. (1998) coined the term "propos~tionalization" for the 

uansformation of relational data into a feature-vector (propositional) representation. There exist a number 

of systems (e.g., LINUS, STILL, REPART discussed in h m e r  et al. 2001) that perform 

propositionalization on relational dam automatically and apply a data mining method for prediction. 

However those efforts focus exclusively on binary features in form of logical clauses and are not capable 

of performing numcric aggregation. We are aware of a number of non-automated attempts to use 

aggregation for propositionalization. Knobbe (2001) applied SQL operators successfully to a banking 

domain. Morik and Brockhausen (1996) implemented a prototype for propositionalization called 

T O W E N  as part of the MiningMaa system. 

There exist a number of specialized data mining algorithms that can learn classification models directly 

from multi-relational tables without intermediate feature construction. We are aware of two SQL 

extensions that enable users to learn predictive rules ditectly from ~elational data. The DBMiner system by 

Han et al. (1996) integrates a set of discovery modules into an SQLaccessible database. Imielinski and 

Vinnani (1999) proposed MSQL as a modeling extension to SQL. Both methods requLe a very detailed 

specification of the model form. In the case of DMQL, the form of the rule has to be stated explicitly. 



The user has to know all relevant features in advance in order to formulate such a rule. MSQL similarly 

requires all possible rules to be stored beforehand in a special table. Both methods lack a sufficient degree 

of automation to enable efficient data analysis with minimal user interaction. Morik and Brockhausen 

(1996) showed that the previous approaches are closely related to inductive logic programming (ILP) 

methods. ILP algorithms (see Muggleton and De Readt (1994) for a good introduction) are capable of 

learning relational classification models from multi-table data. The resulting model is a set of existentially 

unified first-order Horn clauses. IOlown disadvantages of ILP approaches are high sensitivity to  noise, 

limited support for numeric features, high computational complexity and the limitation to classification 

tasks. This is a significant drawback for applications in business domains, since we need probability 

estimates for decisions involving expected cost-benefit tradeoffs. 

Discussion 

There are a number of dimensions along which our approach has the potential to improve over existing 

technology. 

Automation: ILP and logic-based propositionalization are currently the only automated approaches to 

relational learning, but both requite sipficant technical knowledge to specify search heuristics for 

particular domains. 

Robustness: Current implementations of relational learners often have inherent search heuristics that are 

tailored to particular domains. Additionally, they are often criticized for low performance on noisy 

domains due thek origins in logic. There is no  consensus upon guidelines as to when an approach is Wtely 

to perform well. 

Usability: All exisring reladonal learners require substantial technical understariding of the 

implementation and very low-level specifications of search constraints. This will deter most domain 

experts from using such a system. 



Probability estimation: One shortcoming of logic-based approaches is their inability to produce 

probability estimates, which is essential for decision-making based on cost-benefit analyses. 

Run time: Most implementations of ILP as well as propositionalization suffer from unacceptable mn 

time behavior. The presented feature construction approach can take advantage of a number of strategies 

to improve run time behavior. The structural exploration and aggregation can easily be parallelized by 

a s s i p g  each path to a different processor. Due to the modularity of operators it is comparatively simple 

to run a scaled-down version with fewer operators and a more aggressive pruning of the feature-search 

space. The use of sub-samples for feature selection can additionally improve the mn-time behavior. 

Modularity: The modular design of our framework might result in a less efficient implementation but 

improves the ability of a domain expen to provide at least pamal guidance for smaller subtasks. The 

expert might be able to tell that mean aggregation is less useful than maxima. Additionally the modularity 

enhances the comprehensibility of the system. 

Extensions 

As the very next step, we will to conduct a thorough empirical comparison of our feature construction 

approach on a number of relational domains such as Web-logfiles from an online vendor (KDD Cup 

2000), news stories on business co-occurrence (from Yahoo), patent references, initial public offerings, 

medical records, LINUX developer communication, conttact killing, citation networks, movies, and 

nuclear smuggling. p o s e  datasets have already been obtained). We will compare the performance of 

feature construction in combination with decision trees and logistic regression against publicly available 

IIP implementation as well as no  feature construction. Many of the domains mentioned above contain 

information about relationships between humans or business entities. Social Network Analysis (SNA) 

(Scott 1991) was developed in the social sciences for the analysis of the interaction of individuals, with 

particular focus on reputation and centrality measures. SNA has successfully been employed for example 



for profiling in the investigation of money laundering (Sparrow 1991). SNA can easily be introduced into 

our framework using graph extraction as a method for structural exploration and centrality measures for 

aggregation. 
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Abstract 

Data mining research has not only development a large number of algorithms, but also 

enhanced our knowledge and understanding of their applicability and performance. 

However, the application of data mining technology in business environments is still no 

very common, despite the fact that organizations have access to large amounts of data 

and make decisions. that could profit from data mining on a daily basis. One of the 

reasons is the mismatch between data representation for data storage and data analysis. 

Data are most commonly stored m multi-table relational databases whereas data mining 

methods require that the data be represented as a simple feature vector. This work 

presents a general framework for feature consauction from multiple relational tables for 

data mining applications. The second part describes our prototype implementation 

ACORA (Automated Construction of Relational Features). 



Introduction 

Given the successful development of a multitude of data mining algorithms, approaches and methods, one 

would expect their application to be standard practice in organizations that have access to large amounts 

of data and make decisions on a daily basis. However, the number of organizations that apply data mining 

methods for decision support is sdll relatively small. One of the reasons is the mismatch between data 

representation for data storage and data analysis. Data are most commonly stored in multi-table relational 

databases. Every table has a number of attributes and the tables can be related to each other using keys. A 

customer database for example can contain two tables CUSTOMER and PAST-PURCHASES and both 

tables contain the attribute CUSTOMERID. 

On the other hand data mining methods (e.g. decision uees and neural networks) and statistical 

analysis tools (e.g. linear regression) require that the data be represented as a feature vector (x,,. . ., q, y) of 

n attributes for each observation. In the example above the important information about past purchases is 

stored in a separate table with potentially multiple transactions per customer and the number of enmes 

varies for each customer. For some inacdve customers, only one past purchase may be available whereas, 

for some highly active customers there could be more than hundred. If the objective of a marketing expert 

is to identify those customers who are likely to buy a new product after a direct marketing action, we 

would like to identify those customers who are most Wrely to  respond to the direct marketing based on 

thek past purchases. Faced with this situation, a marketing expert would manually have to generate the 

features xi by joining both tables and aggregating the information about the sets of past purchases. A 

typical aggregate is, for instance, "amount spent within the last 2 months". 

Not only does this mariual feature consuuction require significant technical experrise (e.g., knowledge 

of SQL), but also strong prior ideas what kind of features might he important. The manual process of 

feature construction is very time consuming and becomes infeasible for a large number of tables. 



This work provides a framework for the automated construction of relevant features for data mining from 

multiple relational tables. We use the term data mining in a very broad sense including machine learning 

and statistical analysis. Our approach will however be focused on predictive tasks (e.g., regression, 

classification, and probabiliv estimation). Throughout the paper we will use thc wordsjatureer and attributes 

as synonyms. 

A Transformation-Based Framework for Relational Data Mining 

Our framework as presented in figure 1 takes a transformation-based approach to data mining, where 

learning is perceived as a sequence of successive steps of data transformation. In the first step TI, we 

construct feanues from relational tables. The result is a feature vector that is augmented in T2 and can be 

used in the last step T3 to learn a predictive model. The transformation T2 creates new non-relational 

features from mathematical combinations and transformations of existing features. A typical example is 

the introduction of interaction effects and higher order terms in linear models and re-scaling of features 

using logs (e.g., x,,= In(x,J). 

Relational Tables Feature Vector 

T1 T3 
Y 

Feature Construction Statistical Analysis1 

Data mining 

* 
Transformations 

Figure 1: Transformation-based framework of data mining 

The focus of our work is the feature construction step TI. The uaditional manual approach to  relational 



data analysis has been expert-guided feature consuuction TI. It is possible to view the process of feature 

construction from relational data as a special case of preprocessing. However we argue that this step is 

extremely important and should receive its due attention as a main part of the modeling effort, as noted by 

Langley and Simon (1995) among many others. 

De Raedt (1998) showed that for most relational databases (no recursive concepts) complete 

transformations (without loss of information) are possible, but result in an exponentially growing feature 

space with potentially sparse feature vectors. However the objective of the transformation TI is not a 

complete transformation but rather the extraction and creation of valuable features for the modeling task. 

Constructing Features from Relational Data 

Figure 2 shows our modular framework of feature construction (TI) as a three-step procedure. We will 

use the expression "target relation" to refer to the table that contains the objects of interest for which a 

prediction will be made. In the previous example it is the customer table since we want to predict the 

probability that a customer will buy the product. 
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Figure 2: Framework for feature construction from relational tables 

In the exploration step we join the target relation with other tables in the database that have at least one 

key attribute in common with the target relation. The second step is the application of aggregation 

methods to the results of the join. Each of those aggregation methods generates one value (either numeric 

3 



or categorical) per row in the target relation. After this generation of new fearures a selection procedure 

identifies valuable features for the modeling task T3. The three steps are described in more detail in the 
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following paragraphs. 

Structural Exploration 

For the target relation R,(a ,,..., a ;..., aJ there is a set of background relations RB @,,. .., bi ...., bJ which 

can be related to R,, given a key attribute. Formally, the operation is a join ai=bi, where we only select the 

attributes @,,. .., bi. ..,bJ from relation R,. Depending on the cardinality of the relationship between the 

two relations, this may produce the same number of objects (as in the case of a 1-to-1), or a variable 

number (as in the case of 1-to-n). For example, two tables CUSTOMER and PAST-PURCHASES could be 

joined on the key CUSTOMERID (see Figure 3). The result of the join has multiple rows for each customer 

and the number of rows is equal to the number of transactions the customer has performed in the past. 

Conceptually there is a tree of all possible joins (potentially over multiple tables) with the target relation 

being the top of the uee. The nodes in layer of depth n correspond to all possible joins over n relations. 

Each path from the top to a node involves multiple joins and 

generates one table. The only requirement is that every node has to 

share at least one key variable with one of the nodes in its path. It is 

possible to explore this tree using any standard tree-search algorithm 

(e.g., breadth-hrst search). Figure 3 shows the tree (after pruning 

identical joins) of depth 3 for the marketing example assuming that 

available keys are CUSTOMERID and PRODUCTID. The 3 joins 

corresponding to the full path would return the sets of all customers 

that bought at least onc product identical to any one bought by the 

customer in the target relation. 

Figure 3: Exploration tree for marketing example 



Aggregation: 

Structural exploration produces a table with a set of enuies for each object in the target relation as shown 

on the example of customer transactions. The task of the aggregation operators is to construct single- 

valued amibutes from each column of those sets. Depending on the data type, different aggregation 

operators can be applied. Figure 2 shows the 2 main groups of aggregation operators based on the data 

type (categorical or  numerical) of the column. The column "Price" of the PAST-PURCHASE table, for 

example, is numeric and can be aggregated using simple sample statistics such as median, mean, min, and 

max. Categorical aggregation can involve the creation of dummies or counts for each value. One can 

however extend the current approach with much more complex operators like estimation of set- and 

density-distances (e.g., Kullback-Leibler) to a reference set. 

Selection: 

The aggregation step can create a significant number of potential features. Most predictive data mining 

methods show decreasing performance as the dimensionality of the input space increases ("the curse of 

dimensionality"). It is therefore useful to implement a feature selection step that assesses the value of a 

feature for the modeling task. It is a design question how much effort should be put into the evaluation of 

the usefulness of a feature since it involves a significant computational effort. In the simplest case this can 

be done using only the particular feature in question. The disadvantage is that one might miss features that 

are conditionauy predictive. The decision as to how much computational effort is optimal dcpends also on 

the desired run time behavior, the choice of model class, and domain propemes such as number of tables. 

Implementation: ACORA 

We have implemented a prototype of out feature construction framework called ACORA (Automated 

Construction Of Relational Amibutcs). The general philosophy is to  allow the user to provide as rich a 

specification as he or she wants and to provide additionally default heuristics for all things the user does 



not want to specify. This flexibility allows the comparison of methods and enables users with different 

technical competencies to interact with the system. The goal is to develop robust mechanisms that can 

guaranty good performance on a number of domains and prediction tasks. The following table gives a 

short overview of the system parameters and guidelines for the development of heuristics. 

( large. 
Heuristic t o  select I Operators are constrained by the attribute type. However other factors that determine the 

Heuristic for 
structural exploration 

aggregmtion operators I appropriateness of an operator are for instance the average and variance of the set sizes. 
Selection criterion I Data mining methods mffer in their ability to learn from high-dimensional input spaces with many 

The simplest heuristic is breadth-first tree mversal. There are a number of more elaborate schemes 
that prune the search space aggressively. This is of particular importance if the number of tables is 

~ - 

irrelevant features. Selection should b e ~ m o r e  aggressive for neural network models than for 
decision trees. In the simplest case the selection can be based on a minimum performance of a 

Table 1: System Parameters 

Stopping criterion 

One open research question is the degree of automation that can be achieved without losing much 

model that uses only one aitdbute to predict the target. 
Given the large number of possible joins and features, there should be a limit to the creation of 
fcaturcs. Stopping can bc bascd on the tree depth N, the model performance (at a high 
computational cost), or on the number of features (e.g., the ratio of observations to features should 
be at least 5 for linear models). If the selection is not sufficiently aggressive, the stopping criteria 
might be reached without suf6cient exploration of the feamre space. A heuristic that takes both 
factors into account could create a high number of features, rank them based on the selection 
criteria and pick the top k features. 

performance on a number of domains. Of additional interest are the interaction effects of those heuristics 

on tun h e  and prediction performance of various data mining methods. 

The system is currently in a development stage with most of the structural exploration and aggregation 

implemented. We plan to provide interfaces to a number of machine learning techniques to evaluate our 

approach on a number of prediction tasks. In particular we will include decision trees (C4.5), logistic and 

linear regression. Our prototype currently requires at least a specification of all relational tables names and 

the types of their attributes. After reading in the table specification CUSTOMER(CUSTOMERID, GENDER, 

INCOME, ZIP) for the customer table and PAST~PURCHASES(CU~TOMERID, DATE, PRICE, PRODUCTID), 

the system identifies based on attribute name automatically all possible keys (CUSTOMERID and 

PRODUCTID) on which tables can be joined unless the keys were specified explicitly. The system 

architecture is modular and open to extensions with new aggregation operators. 



Related Work 

This work is related to a number of research areas: feature construction, inductive logic programming, 

propositionalization, OLAP, and learning from relational databases. 

OLAP enables an analyst to create high-dimensional representations from joins of multiple relations 

and to select subsets and aggregations. The current capabilities of OLAP systems provide an infrastructure 

for data analysis but lack mechanisms for automated analysis and predictive modeling. Machine learning 

and data mining have developed a suite of algorithms for automated learning of predictive models from 

feature vectors (x,, x,, x,, x,...xJ. The reader is referred to a standard textbook wtchel l  1997) for an 

overview of existing methods. Krsmer et al. (1998) coined the term "propositionalization" for the 

transformation of relational data into a feature-vector (propositional) representation. There exist a number 

of systems (e.g., LINUS, STILL, REPART discussed in Kramer et al. 2001) that perform 

propositionalization on relational data automaticaUy and apply a data mining method for prediction. 

However those efforts focus exclusively on binary features in form of logical clauses and are not capable 

of performing numeric aggregation. We are aware of a number of non-automated attempts to use 

aggregation for propositionalization. Knobbe (2001) applied SQL operators successfully to a banking 

domain. Morik and Brockhausen (19915) implemented a prototype for propositionalization called 

TOLKIEN as part of the MiningMart system. 

There exist a number of  specialized data mining algorithms that can learn classification models directly 

from multi-relational tables without intermediate feature construction. We are aware of two SQL 

extensions that enable users to learn predictive rules directly from relational data. The DBMiner system by 

Han et al. (1996) integrates a set of discovery modules into an SQLaccessible database. Imielinski and 

Virmani (1999) proposed MSQL as a modeling extension to SQL. Both methods requite a very detailed 

specification of the model form. In the case of DMQL, the form of the rule has to be stated explicitly. 



The user has to know all relevant features in advance in order to formulate such a rule. MSQL similarly 

requires all possible rules to be stored beforehand in a special table. Both methods lack a sufficient degree 

of automation to enable efficient data analysis with minimal user interacaon. Morik and Brockhausen 

(1996) showed that the previous approaches are closely related to inductive logic programming (ILP) 

methods. ILP algorithms (see Muggleton and D e  Readt (1994) for a good introduction) are capable of 

learning relational classification models from multi-table data. The resulting model is a set of existentially 

unified &st-order Horn clauses. Known disadvantages of ILP approaches are high sensitivity to noise, 

limited support for numeric features, high computational complexity and the limitation to classification 

tasks. This is a significant drawback for applications in business domains, since we need probability 

estimates for decisions involving expected cost-benefit aadeoffs. 

Discussion 

There are a number of dimensions along which our approach has the potential to improve over existing 

technology. 

Automation: ILP and logic-based propositionalization are currently the only automated approaches to 

relational learning, but both require s ipf icant  technical knowledge to specify search heuristics for 

particular domains. 

Robustness: Current implementations of relational learners often have inherent search heuristics that are 

tailored to particular domains. Additionally, they are often criticized for low performance on noisy 

domains due their origins in logic. There is no  consensus upon guidelines as to when an approach is likely 

to perform well. 

Usability: All existing relational learners require substantial technical understanding of the 

implementation and very low-level specifications of search constraints. This will deter most domain 

experts from using such a system. 



Probability estimation: One shortcoming of logic-based approaches is their inability to produce 

probability estimates, which is essential for decision-making based on cost-benefit analyses. 

Run time: Most implementations of ILP as well as propositionalization suffer from unacceptable run 

time behavior. The presented feature construction approach can take advantage of a number of strategies 

to improve run h e  behavior. The structural exploration and aggregation can easily be parallelized by 

assigning each path to a different processor. Due to the modularity of operators it is comparatively simple 

to run a scaled-down version with fewer operators and a more aggressive pruning of the feature-search 

space. The use of sub-samples for feature selection can additionally improve the r u n - h e  behavior. 

Modularity: The modular design of our framework might result in a less efficient implementation but 

improves the ability of a domain expert to provide at least pamal grudance for smaller subtasks. The 

expert might be able to tell that mean aggregation is less useful than maxima. Additionally the modularity 

enhances the comprehensibility of the system. 

Extensions 

As the very next step, we will to conduct a thorough empirjcal comparison of our feature construction 

approach on a number of relational domains such as Web-logfiles from an online vendor (KDD Cup 

2000), news stories on business co-occurrence (from Yahoo), patent references, initial public offerings, 

medical records, LlNUX developer communication, contract killing, citation networks, movies, and 

nuclear smuggling. (Those datasets have already been obtained). We will compare the performance of 

feature construction in combination with decision trees and logistic regression against publicly available 

ILP implementation as well as no feature construction. Many of the domains mentioned above contain 

information about relationships between humans or business entities. Social Network Analysis (SNA) 

(Scott 1991) was developed in the social sciences for the analysis of the interaction of individuals, with 

particular focus on reputation and centrality measures. SNA has successfully been employed for example 



for profiling in the investigation of money laundering (Sparrow 1991). SNA can easily be introduced into 

our framework using graph extraction as a method for structural exploration and centrality measures for 

aggregation. 
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