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1 Overview and motivation 

This paper presents a model of a technology market with horizontally differentiated products, in 

which firms make costly endogenous choices of product scope, the costs of which are influenced 

by an exogenous state of technological progress. We analyze two market structures - symmetric 

oligopoly with and without the threat of entry. We then apply these results to a model in which 

there is a bilateral threat of entry between two converging technology markets. In the process, we 

generalize existing models of horizontally differentiated competition, by providing a richer treatment 

of endogenous product scope, and by incorporating entry deterrence and inter-industry interaction 

within their framework. 

Our context is a market for information technology-based products (henceforth referred to as 

a technology market), examples of which are software, handheld computers, cellular telephones, 

networking equipment and home electronics devices. Often, the level of functionality or scope of 

any individual product is chosen endogenously by its seller, from a wide range of feasible levels, and 

by expending a fixed cost which is increasing in the level of scope chosen. In the software industry, 

this would be the fixed cost of creating the software code. Once the source code has been created, 

per-unit variable costs are negligible. Analogously, in markets for semiconductor-based electronic 

devices, the fixed cost of scope manifests as a product design cost, which increases rapidly as higher 

scope drives up the complexity of the design process'. 

The fixed cost function is also influenced by the stage of advancement of technology, some- 

times within the technology market, but more commonly in an upstream supplier industry, or in a 

downstream industry for a complementary product (Econornides and Salop [1992]). This has been 

recognized in models of general-purpose technologies (see, for instance, Breshanan and Trajtenberg 

[1995]). For instance, the fixed cost of scope for electronic devices and computers depends on the 

state-of-the-art of the semiconductor technology that will eventually implement the product. As 

'As devices of this kind move from a 'hardwired' architecture to one in which the fimct,ionalit.y of a prndud. 

is implemented using software running on general-purpose hardware, the costs of increa-ing product scope become 

increasingly 'fixed', and have a lower influence on unit variable costs. However, even under the current paradigm, the 

variable costs of computers and other semiconductor-based electronics devices are cnmmoditized. Branded cnmputer 

and electronics products are rarely manufactured by the firm whom name is on the device - an increaqining volume of 

this kind of manufacturing is done by contractors such as Flextronics and Solect.mn 



Moore's law ensures continuous rapid progress in this technology, the constraints that drive product 

design costs are relaxed, allowing firms to symmetrically achieve increases in scope at a lower fixed 

cost. The same reasoning applies to software developers, whose design and architecture costs are 

driven by how powerful the machines their software will run on are. Technological progress does 

lower fixed costs in other industries as well, but the rate at which this occurs in technology markets 

is far more substantial, as is its impact on firm strategy. 

Consequently, the extent of competition in technolo~y markets is determined more actively by 

thc incumbent firms, and is more variable than standard models of product differentiation would 

suggest. The level of product differentiation is a function of product scope, which is controlled 

actively and varied over time by sellers. Moreover, product scope determines the fixed costs of each 

firm. This implies that in technology markets, two key inputs to computing zero-profit equilibria, 

and optimal concentration - fixed costs and transportation costs - are no longer exogenous. In 

addition, the fixed cost function itself changes rapidly over time, as technology progresses. These 

issues motivate the model of oligopoly with differentiated products that we describe in Section 2, 

and analyze in Section 3. 

Another crucial determinant of pricing and product strategy in technology markets is the threat 

of entry. This issue has received considerable attention in the context of monopoly, especially in 

light of the recent Microsoft antitrust case. For instance, Fudenberg and Tirole [2000] describe how 

entry threats and the deterring value of an installed base can lower pricing in a technology market 

with network externalities (such as the operating systems market). Schmalensee [I9991 describes 

how Microsoft's pricing is substantially lower than what optimal monopoly pricing would be, and 

that this reduction is largely driven by entry considerations; the magnitude of reduction in price 

and its effects on surplus havc bccn estimated by Hall and Hall [2000], and by Schinkcl [2002], 

among others. A related aspect of Microsoft's strategy that has received somewhat less attention 

is that they have increased their product scope to the point where the fixed costs of entry are 

substantial (upto $9 billion, according to Hall and Hall). This highlights the potential role that 

costly and endogenously chosen product scope can play in deterring entry. 

Microsoft notwithstanding, a majority of technology markets are oligopolies. Moreover, as noted 

by Gilbert and Vives [1986], sustained entry-deterrence by a single firm in a market that is not a 

natural monopoly is rare; a more common entry deterring situation being control by a few firms and 



higher industry concentration levels than can be explained by technological considerations alone. 

This is of particular interest when the fixed costs of scope that are chosen by incumbents can be 

used to deter entry, when the technological considerations are changing rapidly over time, and 

when these dranges may alter whether or nol a market is a natural monopoly (or more generally, 

what its socially optimal concentration is). Many of these issues are addressed in our analysis of 

oligopolistic entry deterrence, presented in Section 4. 

Furthermore, a number of pairs of technology markets display a specific and unique kind of bilat- 

eral entry threat. For instance, progress in networking and communications technology, along with 

the ability to digitize and transmit voice over IP data networks has made it feasible for the providers 

of cable television to enter the residential voice telephony market. Simultaneously, this technology 

also makes it feasible for telephone companies to become providers of digital video entertainment 

aver their telephone lines, which will eventually enable them to threaten entry into the core busi- 

ness of cable television providers. The viability of this kind of bilateral entry threat increases with 

technological progress that leads to higher-bandwidth data networks, as well as more sophisticated 

compression algorithms. Similarly, a move towards operating system and general-purpose hard- 

ware based product architectures in both the cellular telephony and handheld computing markets 

has led to analogous bilateral entry of firms into each others' markets. Progress in semiconductor 

technology makes the underlying hardware more powerful, leading to a corresponding increase in 

the viability of this kind of bilateral entry. 

This kind of technology convergence across markets opens up a unique set of strategic con- 

siderations, wherein firms have to decide whether to enter a rival market while simultaneously 

considering the effects of their actions on entry deterrence and oligopoly profits within their own 

market2. As discussed, progress in technology makes this kind of entry more technologically viable 

- however, it is not clear that it is strategically sound. In fact, as technological progress lowers the 

fixed costs of scope, the optimal strategic response may be to recede into one's core market, and 

focus on sustaining margins that are being eroded by decreased product differentiation. In Section 

5, we analyze a model that captures these considcrations. 

The rest of the paper is organized as follows. We outline the elements of our basic model in 

2~ somewhat similar .set of issues is addressed in Cooper (1989), with two firms and overlapping spatially differ- 

entiated markets. Our model is substantially different from his. 



Section2. The equilibrium of the n-firm oligopoly is derived in Section 3, where we also analyze 

effects of changes in technology, market size and concentration on price and product scope. In 

section 4, we derive the n-firm entry det,erring eqi~ilihrii~m, and contrast its equilibrium scope, 

profits and surplus with both those obtained in the absence of an entry threat, as well as the 

socially optimal levels. In section 5, we apply the results of sections 3 and 4 to analyze a model of 

bilaterd entry across technology markets, derive its unique equilibrium outcome, and describe how 

technological progress can lead to either increased accommodation, or to increased deterrence. We 

discuss our results in section 6, and conclude in section 7. 

2 Basic model 

This section presents our model of a market with endogenous and costly choice of product scope, 

which generalizes the models of both von Ungern-Sternberg [I9881 and Hendel and Figueiredo 

[1997], and also forms the basis for our subsequent analyses of symmetric entry-deterring oligopoly, 

and bilateral oligopolistic entry. 

2.1 Firms and products 

Following Salop (1979), each potential product is represented by a point on thc unit circlc. There are 

n firms, each of which produces exactly one product, and shares identical production technology. 

Each firm j makes a costly choice sj E ( 0 , ~ )  of product scope, and a choice of price pj. For 

analytical simplicity, we assume a constant unit variable cost of production c. The fixed cost of 

scope depends on an exogenous state of technology T, as well as the level of scope s. We make the 

following assumptions about the fixed cost function F(s, T). 

F(s,T) > 0, F~(s,T) > O,F~~(S,T) > 0: Fixed costs are positive, increasing and convex in 

scope. 

FZ(s,7) < 0, F22(s,r) > 0: The cost of providing a fixed level of scope is decreasing and 

convex in the state of technology r. 

FI2(3,7) < 0: The fixed cost of every unit increase in scope is lower at higher states of 

technology. 



Numbered subscripts of functions represent partial derivatives with respect to the corresponding 

variable. This notation is preserved throughout the paper. The convexity of fixed costs in scope 

is widely prevalent for information technology products. For example, the fixed costs of developing 

software are convex in the number of lines of code, and in the number of function points, both of 

which increase with increased software functionality. Alternately, if the number of lines of code is 

constrained by design guidelines based on average end-user memory or processor constraints, then 

adding each new functionality requires a increasing level of investment in careful software architec- 

ture and optimization. Similarly, design costs for electronic devices increase at an incrcosing rate 

if engineers have to incorporate increasing functionality onto a circuit board of limited dimensions, 

with constraints on total battery needs and heat emission. 

The properties we ascribe to F(s,  7) with respect to T are consistent with commonly observed 

cost characteristir2 of technology products. For instance, the fixed costs of delivering a specified 

level of functionality in a cellular handset or a home electronics device decrease continuously as the 

raw power of semiconductor technology increases. This decrease in fixed costs is not due to a drop 

in the price of chips3, but because with more powerful microprocessors, DSP chips and memory 

chips, and higher feasible levels of miniaturization, it takes a lower investment in design or software 

to deliver the same level of functionality in a device. Analogously, when selling to a market in 

which users have personal computers with faster CPUs and more RAM, software manufacturers 

can more easily increase the size of their code base as well as the minimum memory/processor 

requirements. Consequently, their product scope can be increased with far less careful software 

architecture and optimization than was necessary at the lower level of technology (i.e., when their 

target customers had slower PC's). 

2.2 Consumers 

There is a mass of customers of total size m distributed uniformly around the circle. A customer 

located at distance x, from firm j's product that has scope sj receives utility 

U(xi, 8,) = V - ~ . j t ( 3 ~ )  

3 ~ o t e  that there may also be a decrease in the variable cost of production due to a decrease in the cost of chips. 

This effect is likely to strengthen our results; however, in this paper, we focus on changes in fixed casts. 



from this product, where t(s) is the misfit cost function that relates product scope to misfit or 

transportation costs. This function is assumed to have the following properties: 

t(s) > 0, tr(s) < 0: Unit cost of misfit is positive and decreasing in scope 

tll(s) > 0, %(a) 5 0: The unit cost of misfit is sufficiently convex in scope 

The shape of the function t(s) reflects the fact that as scope increases, the products become more 

general-purpose, and consequently, the disutility of misfit faced by consumers decreases. However, 

the benefits from decreasing misfit costs are generally diminishing as scope increases. The final 

(strong) assumption on the convexity of t(s) is necessary to ensure well-behaved best-response 

functions4. 

Each consumer purchases exactly one product, and chooses the one that maximizes their surplus 

U(xj, sj) - p j  As is customary, we assume that v is high enough so that all consumers get non-zero 

surplils from at  least one product in equilibrium. 

2.3 Sequence of events 

Following the standard literature, we assume an exogenously specified symmetric location of firms 

around the unit circle. In the first stage, the firms simultaneously choose their levels of scope and 

prices - that is, each firm j chooses a pair (sj,pj), given their relative locations. In the second 

stage, there may be potential entry. In the final stage of the game, consumers make their purchases. 

given the prices, scope and (symmetric) location of the firms. 

3 Symmetric oligopoly 

In this section, we solve the n-firm symmetric oligopoly model in the absence of any threat of entry. 

The model yields some independently interesting results about the relationship between product 

scope, price and profits, as well as the effects of progress in technology on equilibrium scope, profits 

and surplus. In addition, it serves as a basis for the model of bilateral entry analyzed in section 5. 

'The condition is equivalent to assuming that 2(tl(s))2 -t(s)tll(s) 5 0. It is satisfied, for instance, for any mixture 
" 

of polynomials ais-*' in which oi 2 O,bi 2 1. 
i=, 



3.1 Consumer choice and  demand 

Each consumer's choice is governed by the price and scope of their two closest candidate products. 

A consumer located at a distance x from one of these firms (labeled firm i) will be located at a 

distance $ - x from its other adjacent firm (labeled firm i - 1 ). Refer to Figure 1. Suppose firm 

i has price and scope (p,,si), and firm i- 1 has price and scope (pi-1,si-1). The consumer chooses 

firm 1: if 

1 
u -pi - Xt(8i) 2 v - pi-1 - (; - X)t (~ i_~) .  (1) 

The consumer indifferent between firm i and firm i - 1 is therefore located at x:,~-~, where: 

and the demand received by firm i from the segment between i and i - 1 is m ~ : , ~ + ~ .  Consequently, 

it follows that if firm i chooses @i,si), and its two adjacent neighbors firm i - 1 and firm i + 1 
choose (pi-l,si-I), and (pi+l,~i+l), then the demand for firm i's product is: 

3.2 Equilibrium 

Suppose all firms except firm i choose price and scope @, s). If firm 1: chooses (pi, si), then based 

on equation (4), its demand will be: 

and consequently, its payoff function from the choice (pi,si) will be: 

The symmetric Nash equilibrium can now be derived, and is presented in Proposition 1. All proofs 

are in Appendix A. 
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Figure 1: Illustration of the position of the consumer indiffeerent between firm i and firm i - I ,  for a market with n 
firms. Firm i receives demand xi,,, fmm the segment between i-1 and i, and a similar demandx,,,,, (not illustrated) 
from the segment between i and i+ 1. 



Proposition 1 For an n-firm oligopoly, the symmetric Nash equilibrium choice p;(n),s;l(n) of 

price and scope is unique, and is specified by: 

The choice of the subscript (and subsequently, the superscript) A for the functions describing 

the equilibrium outcomes is because these functions are later used to derive payoffs and welfare 

under entry accommodation, in contrast to entry deterrence. The expression (7) for price is similar 

to what is obtained in the standard model with exogenous misfit costs. 

Under the symmetric equilibrium, each firm's equilibrium profits are: 

In addition, equilibrium consumer surplus is given by: 

which reduces ta 

cA (s: (n), n) = m(v - c) - 5mt(s>(n)) 
471 ' 

and total surplus is: 

= m(v-c)-  mt(s'(n)) - nF(s2 (n), 7). 
4n 

3.3 Comparative statics 

These comparative statics assume an exogenously specified number5 of firms n. Proposition 2 

examines the effects of changing the number of firms n on the equilibrium choices of scope arid 

price: 

Proposition 2 (a) As n increases, the equilibrium level of scope s;(n) decreases, and the equilib- 

rium level of price p>(n) &o decreases: 

ds;l(n) - 
-- 2mt1 (s;l(n)) 

dn n[2n2F1l(s;(n), 7) + mtll (s;l(n))l 
< 0, 

"Rather than a zero-profit monopolistically competitive muilihrinm nnmher nf firms. 



Part (a) of Proposition 2 indicates that as the oligopoly becomes more concentrated, firms will 

respond by lowering their choices of scope, so as to increase the level of differentiation between their 

products and those of their nearest competitors. This redilces the gross value (before adjusting for 

price changes) of each of the products for almost all consumers. 

As a consequence of this adjustment in scope, the effects driving changes in price are two-fold. 

The second term on the RHS of equation (14) is the direct effect of increasing concentration on 

price, which is the only effect in the usual model with exogenous scope, and is always negative. On 

the other hand, the first term on the RHS of equation (14) represents the positive price adjustment 

by the firm in response to the equilibrium decrease in scope. Proposition 2(b) tells us that under 

the model's convexity assumptions about t(s), the negative effect always dominates the positive 

one, and therefore, increased industry concentration does lead to lower prices. 

Next, we explore the impact of progress in technology, represented by an increase in the state 

of technology T. Intuitively, since F z ( s , ~ )  < 0 and an increase in T shifts the fixed cost curve down 

for all choices of scope, one would expect scope to increase, and correspondingly, for prices to fall. 

This is confirmed in the next result: 

Proposition 3 A s  technology progresses and T increases, s>(n) increases, and p;l(n) decreases: 

and 

The choice of scope is illustrated in Figure 2(a) for two different values of T. The equilibrium 

choice s;l(n) occurs where equation (7) is satisfied. Apart from the convexity of F(s,T) and 

t(s), the key regularity assumption driving this result is that F ~ ~ ( s , T )  < 0, which ensures that 

the 'marginal fixed cost' curve F l ( s , ~ )  is lower everywhere as T increases. In addition, the figure 

illustrates that the uniqueness of the equilibrium is a consequence of the opposite signs of the slopes 
-mt(s) 

of the functions Fl (s, T) and - 
2n2 . 

Variation in the m, which models the size of the market served. vields similar results: 



(a) Changes in equilibrium scope as .r increases 

(b) Changes in equilibrium scope as market size rn increases 

Figure 2: Changes in the equilibrium level of scope sA(n) as technology progresses, and as market size increases. . 



Proposition 4 A s  the size of the market m increases, s;l(n) increases, and p;l(n) decreases: 

and 

Proposition 4, illustrated in Figure 2(b), indicates that enabling incumbent firms to expand sales 

of their products to a new market (for instance, by including consumers in a different geographical 

locution) results in an increme in prodlxct scope and a reduction in price for all consumers, including 

those in the existing market. This may have interesting policy implications for standard setting 

in technology markets, a s  discussed in Section 6. 

An immediate corollary of Propositions 2 and 3 is: 

Corollary 1 An increase in T or m always wsults in a shict increase in consumer surplus. 

A strict increase in consumer surplus is expected for any change that causes a net increase in 

equilibrium scope, since the increase in scope both reduces the prices charged, and reduces the 

disutility from the cost of misfit. In general, the details of the shape of the fixed cost function 

are crucial in predicting an improvement in profitability or total welfare, though the latter always 

occurs at an earlier value of T than the former (based on Corollary 1). Our analysis indicates that 

total surplus is generally increasing in T for a wide range of polynomial cost functions, so long as 

t(s) has the convexity property described in section 2.2. However, individual firm profits are often 

decreasing in T .  This is explored further in an example in section 4.4. 

3.4 Socially optimal scope and  concentration 

A social planner constrained to offering n symmetrically-located products, all with the same level 

of scope, would maximize total welfarc: 

~ ' ( s , n )  = n (19) 

First order conditions yield: 



It is easily verified that Tll(s,n) < 0, and hence the first order conditions are sufficient. Since 

F1(s,7) is positive and strictly increasing in s, and -tl(s) is positive and strictly decreasing in s, 

the value s'(n) specified by (21) is unique. 

Comparing (21) with (7) indicates that s>(n) > s*(n), since F1(sy(n),7) < -. This 

indicates that the oligopolists always overinvest in product scope. A similar result is obtained by 

von-Ungern Sternberg [1988]. This issue is discussed further and contrasted with the equilibrium 

entry-deterring scope, in section 4.4. 

Finally, we allow n to be endogenous, and briefly investigate what the socially optimal level of 

concentration in the industry is. As indicated by Proposition 5, the answer may not be unique: 

Proposition 5 The level of indwtry concentmtion n: which maximizes total surplus (in wnjzmc- 

tion with the corresponding socially optimal choices of scope by each of the n: firms), is given 

where s; is a critical point of the function F(s,r) t(s)  

4 Oligopoly with t h e  threat  of ent ry  

In this section, we solve a model of entry deterrence by incumbent oligopolists. The sequence of 

events we analyze proceeds as follows. There are n incumbents, symmetrically located around 

the unit circle. In stage 1, the incumbents choose price and scope, with the restriction that the 

choices of scope by the incumbents are identical (which also ensure symmetric choices of price in 

equilibrium). In stage 2, a potential entrant evaluates entry, enters if it is profitable to do so at  a 

level of scope identical to that of the incumbents, and chooses the optirnal price for this level of 

scope, given the prices of the incumbents. In stage 3, based on the product offerings and prices, 

consumers make their purchase decisions, and the firms receive their payoffs. 

Non-cooperative entry deterrence models similar to ours have been analyzed before, most com- 

monly in the context of oligopoly with Cournot competition (for instance, Gilbert and Vives [1986]). 

In models of this kind, there is typically a commonly shared fixed cost of entry, and the solution 

is a non-cooperative quantity equilibrium that deters entry. Our model is more involved than this 

kind of model, in that the competing firms control both the level of fixed costs that influence the 



entry decision (through their choice of scope), a s  well as the equilibrium strategic variable (price, in 

our case). Restricting the oligopolistic firms to choosing only identical levels of scope is analogous 

to this choice of fixed cost of entry being an 'industry-wide' entry deterring decision6 (as in Spencn 

[1977]). 

The restriction we place on the entrant - that she be constrained to choosing the same value 

of product scope as the incumbent - is consistent with our assumption of symmetric incumbent 

scope. While we consider the case of a single potential entrant, it is easily shown that if a single 

entrant is deterred, then so are multiple entrants. 

4.1 The entrant's problem 

If the incumbents choose symmetric prices and scope (pn,sn), it can be shown that the entrant 

will choose to locate at a point equidistant from two incumbent firms. As a consequence, upon 

entry, the demand received by the entrant is identical to that received by a firm in an oligopoly 

with a total of 2n firms. Proceeding as in section 3.1 and 3.2, though with a fixed choice of scope, 

if the potential entrant chooses price p and scope so, then the entrant's payoff is: 

The entrant chooses p to maximize this, which leads to the following result: 

Lemma 1 If the symmetric choices of the incumbents are (pD,sD), then the ~.uilihrium entrant 

pay08 upon entry is: 

4.2 Equilibrium with entry deterrence 

Under symmetric choices of scope, entry is deterred only if each of the incumbents choose (pD, sD) 

such that T~(PD,SD)  5 0. Given the restrictions we have imposed on scope, we look for an 

equilibrium of a specific kind. Specifically, we look for a price-scope pair which satisfies the 

following condition: 

'clearly, a model in which the choices of scope form part of a non-cooperative Nash equilibrium would be more 

general - however, tractability reasons preclude that analysis in this paper. 



1. Given symmetric choices of scope s o  by all firms, p~ is a symmetric Nash equilibrium choice 

of price, and 

2. There is no other value of scope sb, which, when chosen symmetrically by all firms, along 

with its corresponding Nash equilibrium price flD, yields a higher payoff to any of the firms 

than the payoffs under the symmetric choice sn,  while simultaneously deterring entry 

The second condition ensures that the industry-wide choice of scope that deters entry is col- 

lectively the best one for incumbents; the first condition simply states that given this choice, the 

price outcomes are the usual symmetric Nash equilibrium for horizontally differentiated products. 

Under the assumption that entry is not blockaded (that is, that thesymmetric n-firm equilibrium 

choices p>(n),s>(n) do not naturally deter entry), the symmetric entry-deterring choices of price 

and scope are as follows: 

Proposition 6 The symmetric n-firm entry-detening choices pb(n), sb(n) of price and scope are 

specified by: 

Note that the expression for price continues to be similar to what is obtained in the standard 

model with exogenous misfit costs. This is not surprising, since firms choose prices with the 

assumption of symmetric scope. Fquilibrium firm profits are: 

mt(sb(n)) 9mt(sb(n)) 7mt(sb(n)) lTD (sk (n) , n) = - - - 
n2 16n2 16n2 ' 

consumer surplus is: 

and total surplus is: 

4.3 Comparative statics 

We continue to treat industry concentration n as an exogenous parameter. As n increases, the 

optirr~al ently-detelring level of scope decreases: 



Proposition 7 (a) As n increases, the eficient level of scope that deters entvy s',(n) decreases: 

dsb(n) - - -18mt(sh(n)) < 0. 
dn n[16n2Fl(s>(n),r) - 9mtl(sb(n))] 

- h t ~  Cs;(n)) (b )  As n increases, the equilibrium price pb(n) decreases zf F l ( s > ( n ) , ~ )  2 16nZ 

Proposition 7(a) makes sense intuitively, because as the concentration of firms in the incum- 

bent,'~ industry increnses, this r d i ~ c ~ ~  the revenue pot,ential from entry for any potential entrant. 

Consequently, a lower equilibrium level of scope is required to deter entry. 

It is likely that prices also decreases as a consequence, though this is not certain. As discussed 

in the proof of Proposition 6, s>(n) > s i (n) ,  which means that: 

and consequently, it is probable that for many specific examples, the condition in Proposition 7(b) 

will be met. However, this is not unambiguously clear for all cost func%ions. 

The sensitivity of scope s>(n) to changes in technology T, and to changes in market size m are 

directionally the same as in the case of oligopoly with no threat of entry: 

Proposition 8 (a) A s  T incrmes, s>(n) increases: 

(b)  As m increases, sb(n) increases: 

In addition, as the equilibrium scope increases, prices are lower (as in Section 3). An intuitive 

explanation for Proposition 8(a) is that as technology progresses and T increases, fixed costs fall 

for all levels of scope (because F~(s,T) < 0). As a consequence, a higher level of scope is necessary 

in order to raise fixed costs to the level where entry is deterred. Similarly, as the market size m 

increases, so does the revenue opportunity of entering, warranting an equilibrium increase in scope. 

4.4 Comparison with socially optimal product  scope 

Recall that a social planner constrained to offering n symmetric products maximizes: 



and chooses scope that satisfies: 

Also recall that s:(n) > s*(n). Under the threat of entry, and absent entry-blockading, this 

over-investment in scope is accentuated further, since s>(n) > s i ( n ) ,  as discussed in the proof of 

Proposition 6. Now, if a social planner were to mandate the socially optimal level of scope, and 

allow firms to compete on price at this exogenously mandated level s*(n),  then it is easily shown 

that the equilibrium price would be the familiar: 

The corresponding firm profits and consumer surplus would be: 

and 

This leads to the following result: 

Proposition 9 Under mandatedprovision of the socially optimal level of swpe s*(n) i n  an oligopoly 

with n f i n s ,  i f  entry is not blockaded at the free market equilibrium level of swpe, 

(a) Finn prvfits are higher than ihe cowesponding equilibrium oliguyuly profib, which are in  

t u n  higher than the entry-deterring equilibrium profits: 

(b) Consumer surplus is  lower than the comsponding consumer surplus under the oligopoly 

equilibrium, which is i n  turn lower than the consumer surplus under the entry-deterring equilibrium: 

(c) Total surplus is higher than the corresponding total surplw under the oligopoly equilibrium, 

which is i n  turn higher than the total surplus under the entry-deterring equilibrium: 



Proposition 9 shows that when firms choose product scope endogenously in an oligopoly, while 

the choices of the oligopolists are socially inefficient, consumers are better off, and firm profits are 

lower, than they would be under a regime where the socially optimal level of scope was mandated. 

Furthermore, all these effects - an overinvestment in product scope, a reduction in profits, yet a 

net increase in consumer surplus - are intensified when there is a threat of entry that is successfully 

deterred. In technology markets, where regulatory policy is often ostensibly aimed at making 

consumers better off, these results have important implications, which are discussed further in 

section 6. 

Technological progress (that is, an increase in T )  does not change the direction of the results of 

Proposition 9. However, it will change the relative magnitude of the differences between profits and 

surplus under the three scenarios. Figure 3 illustrates the variation in the relative magnitudes of 

fixed costs, profits, consumer surplus and total surplus for a specific example in which F(s ,T)  = g, 
and t ( s )  = f ,  for a represe~itative range of values of r. In general, it appears that technological 

progress mitigates the magnitude of overinvestment in scope, and the corresponding distortions 

away from the social optimum. Also, as illustrated in Figure 3(d), in this particular example, the 

symmetric oligopoly outcome yields values of total surplus that, while lower, are fairly close to the 

socially optimal level. 

5 Converging technology markets 

In this section, we use the results of section 3 and 4 to analyze a model of converging technol- 

ogy markets. As discussed in Section 1 ,  this model is motivated hy the ohservation that in many 

information technology industries, the primary threat of entry is from existing firms in related 

industries (rather than new start-up firms), and is often triggered by strategic responses to tech- 

nological progress that makes mobility across industry boundaries feasible. Besides, in technology 

markets, this movement is often bilateral - that is, firms in a pair of industries threaten entry into 

each others' corc markets. 

5.1 Sequence and timing of events 

There are two industries 1 and 2, each of which consists of n incumbent firms, and each of which has 

the demand and cost structure describcd in scction 2. Thc consumers in each market are assumed 
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to be distinct. Apart from the firms in these two industries, we assume that there are no other 

potential entrants. The sequence of events we analyze is as follows. In the first stage, firms in each 

industry choose price and levels of scope for the products in their own markets. In the second 

stage, based on the (known) price and scope choices of the firms in the other market, the firms 

decide whether to enter the other market. If entry occurs, the entrants choose optimal prices and 

scope for their products in their new market, under the same symmetric scope restriction imposed 

in Section 4. In the final stage, based on the prices and levels of scope in each market, consumers 

in each market make their purchase decisions, and firms reccivc their payoffs. 

5.2 Firm decisions and  payoffs 

Each firm makes two sets of decisions. In the first stage, a firm chooses price and scope in their 

own industry, towards either trying to deter entry (D) in the later stage, or towards trying to 

accommodate entry ( A )  in the later stage. In the second stage, contingent on the decisions made 

by the firms in the other market, and their own first stage decisions, each firm decides whether to  

stay out (S) of the other industry, or whether to enter (E) the other industry . 
We assume that in each of the industries, the decisions made by each firm are symmetric. 

That is, each firm chooses the same level of price and scope, and also chooses the same d e  

ter/accommodate and enter/stay out decision. However, the symmetric decision can be different 

across the two industries. As in section 4, we assume that entry is not blockaded in either industry. 

Under these assumptions, the choices of price and scope are governed by the equilibria described 

in sections 3 and 4. Therefore, the payoffs to each sequence of decisions can be derived according 

to the eqirilihrium profit functions IIA and ITD, adjusting the total number of firms in each industry 

based on whether firms from the other industry have entered or not. This leads to the following 

components of the final payoffs: 

(a) If firms in an industry choose price and scope to deter entry (D), and entry is successfully 

deterred (S), each incumbent firm gets a payoff of lID(sb(n),n) from that industry7. This is the 

payoff from the entry-deterring equilibrium price and scope of the n-firm oligopoly. Note that D is 

the choice in the firm's own industry, and S is the choice of firms in the other industry. 

'Since incumbent firms do not readjust their locations upon entry, the level of scope required to deter entry of a 

single firm sb is identical to that required to deter entry of n firms. 



Table 1: Summary of payoffs under each combination of actions 

(b) If firms in an industry choose price and scope to deter entry, but entry occurs (E), then 

each incumbent and entrant firm gets a payoff of zero from that industry. This is the payoff from 

the entry-deterring equilibrium price and scope of the n-firm oligopoly, when symmetric entry by 

upto n additional firms occurs. 

(c) If firms in an industry choose price and scope to accommodate entry (A)  and entry occurs 

( E ) ,  then each incumbent and entrant firm gets a payoff of IIA(s%(2n),2n), the equilibrium payoff 

from the 2n-firm oligopoly, from that industry. 

(d) If firms in an i~~dustry choose price and scope to accommodate entry (A)  but entry does 

not occur (S), then each incumbent firm gets a payoff of IIA(s;l(2n),n) from their industry. This 

is the equilibrium payoff from the n-firm oligopoly, when scope is s;(2n), or at the level chosen for 



equilibrium with 2n firms8. 

The payoffs from each combination of decisions, from the point of view of firms in one of the 

two industries, are summarized in Table 1. A comprehensive explanation of each of these payoffs 

is cumbersome, so we describe just a few illustrative cases. Under the first combination of actions 

DSDS, there are n finns in industry 1, each of whom have chosen entry deterrence, and each of 

whom have chosen not to enter industry 2. As a consequence, each firm gets the equilibrium n-firm 

entry-deterring oligopoly payoff lTD(sL(n),n) from industry 1, and gets no payoff from industry 2, 

for a total payoff of IID(sb(n),n). Under the second combination of actions DSDE, on the other 

hand, while firms in industry 1 have chosen to stay out of industry 2 and to deter entry in industry 

1, the firms in industry 2 have chosen to enter industry 1. Consequently, the firms in industry 

1 get zero payoff from their own industry (since entry has occurred by n firms, all firms get zero 

payoff), and zero payoff from industry 2 (since they have chosen to stay out). 

Similarly, under the combination DEAS, firms in industry 1 successfully deter entry from their 

own industry (payoff of nD(s&(n),n)), and enter industry 2, where they are accommodated (payoff 

of lTA(s>(2n),2n)). Under the combination ASDE, the firms accommodate entry in their own 

industry (payoff of lTA(s>(2n), 2n)), and stay out of industry 2 (payoff of zero), for a total payoff of 

IIA(s5(2n), 2n). Similar reasoning yields the payoffs for all the other combinations listed in Table 

1. 

5.3 Equilibrium 

Having specified the payoffs to the firms under each set of actions, we now solve for the subgame 

perfect Nash equilibria of the bilateral entry game. Its extensive form and payoffs are shown in 

Figure 4, for a representative player from each industry. While choosing equilibria in the subgames, 

we assume that if a player is indifferent between E and S (that is, the payoffs from entering and 

'One could argue that under a set of actions in which finns choose to accomodate in an industry, but entry does 

not occur, the equilibrium payoff should be IIA(aX(n),n) -simply the n-firm oligopoly payoff, rather than the higher 

value IIA(s:(2n),n), since IIA(s>(2n),n) is not a Nash equilibrium payoff. However, this would be inconsistent with 

the firm making their price and scope choices prior to knowing whether entry ha. occured. As it turns out, this does 

not affect the results - this outcome is never on the suhgame perfect equilibrium path, and under either assumption 

(or any convex combination thereof), the actual equilibrium remains unchanged. 



Figure 4: Extensive form of the bilateral entry game described in Section 5, with payoffs based on the equilibria 
derived in Sections 3 and 4. 



Table 2: Nash payoffs from second-stage subgames, for each of the first stage actions 

Indwtry 1 

from staying out are equal), then the player chooses S (to stay out)0. 

Proposition 10 The bilateml entry game has a unique subgame perfect Nash equilibrium. 

(a) i f  llD(s;(n),n) 2 l'IA(s;l(2n),2n), then the equilibrium strategies of allfinns are DS (de- 

ter, stay out), the equilibrium choice of swpe is s b ( n ) ,  the equilibrium prices are p>(n), and the 

equilibrium payofls to each finn are IID(sb(n), n). 

(b) i f  IID(s>(n),n) < llA(s;l(2n), Zn), then the equilibrium strategies of all fim are AE (ac- 

commodate, enter), the equilibrium choice of swpe is s;l(2n), the equilibrium prices are p>(2n), 

and the equilibrium payofls to each Jinn are 211A(s>(2n), 2n). 

Deter 

Aceommodate 

The derived payoff matrix for the first stage of the game (that is, after solving for the Nash equi- 

librium outcomes of the second stage subgame#" is summarized in Table 2. When IID(sb(n),n)  

i IIA(s;1(2n), Zn), the equilibrium outcome of the game is Pareteefficient, since the payoffs to the 

firms are higher at the equilibrium outcome than in any other feasible outcome. On the other hand, 

if 11~(s;1(2n), 2n) 5 IID(s;(n), n )  < 211A(s;1(2n), 2n), the game becomes similar to a one-shot pris- 

Indwtry 2 

Deter 

IID(s;(n), n), IID(s;(n), n) 

IIA(s>(2n), 2n), 

IID(sb(n), n) + nA(s;1(2n), 2n) 

oners dilcmma. Both firms would be better off under the AccomodatoAccomodate outcome, but 

Accommodate 

n D ( s b ( n ) , n )  + nA(s>(2n), 2 4 ,  

IIA(sl(2n),  2n) 

211A(s> (Zn), 2n), 211A (s> (2n), 273) 

since Deter is a dominant strategy for both players, they end up at the inefficient entry-deterring 

outcome. 

'One could interpret this as implicitly a ~ u m i n g  a small cost of mobility acmxs industries, which would imply that 

unless profits hom entering are strictly higher, the player do- not enter. We do not explicitly specify such a cost, 

however, since it would then affect the optimal choice of entry-deterring scope, thereby complicating the analysis 

substantially. 
''As shown in the proof of Proposition 10, the outcomes of the second-stage subgames are independent of the 

relative values of tIA(s;(2n),2n) and IID(sb(n),n). In a subgame perfect equilibrium, the payoff matrix for the first 

stage is therefore always as illustrated in Table 2. 



5.4 Technological progress and  equilibrium changes 

Proposition 10 shows that the relative magnitudes of thc n-firm entry-dctcrring equilibrium profits 

IID(s>(n),n) and the 2n-firm standard oligopoly profits IIA(s;1(2n),2n) play the crucial role in 

determining the equilibrium outcome of the bilateral entry game. As T increases, both these profit 

functions tend to decrease". If one decreases more rapidly than the other, this can cause a shift 

from one equilibrium outcome to another, resulting in a significant change in industry concentration 

and investment in product scope, and a redistribution of surplus across firms and consumers. In 

this section, we discuss two possible cases where this occurs. 

The first case is illustrated in Figure 5(a), and represents a situation in which technological 

progress has a higher impact on the entry-deterring profits. Roth llD(s>(n), n.) and IIA(s;l(2n), 2n) 

are decreasing as T increases. While IID(s%(n),n) starts out higher (indicating the optimality of 

entry deterrence at  lower levels of technology T), it decreases more rapidly than IIA(s;l(2n),2n). 

At a critical point T*, the profit functions cross, after which accommodation of entry is optimal, and 

IIA(s;(2n), 2n) > IID(sb(n),n). While the progress in T and the changes in these two functions 

were gradual, the changes in firm profits are substantial and discontinuous, since the equilibrium 

outcome now shifts to AEAE, resulting in a doubling of firm profits and industry concentration 

in both industries. Moreover, there is an accompanying substantial drop in product scope, and a 

corresponding drop in fixed costs. In addition, since the equilibrium shifts from an entry-deterring 

one, to a standard 2n firm oligopoly, consumer surplus is likely to drop substantially. 

The second case, illustrated in Figure 5(b), is where technological progress has a greater impact 

on the 2n-firm oligopoly profits. Again, both IID(s5(n),n) and IIA(si(2n),2n) are decreasing 

as T increases, but in this case, IIA(s;l(2n),2n) starts out higher, and decreases more rapidly. 

Consequently, bilateral entry is accommodated initially, until the curves cross, at which point 

entry deterrence becomes the equilibrium strategy. At this point, profits fall substantially, as firms 

recede into their core industries, and raise their investments in product scope, so as to deter entry. 

However, consumer surplus rises sharply, ar the value of individual products ir~creases, with a 

possible drop in prices. While it is technologically feasible (and bilaterally profit improving) to. 

"We know that lTD(sb(n),n) is always strictly decreasing in 7.  A comparable result has not been established for 

nA(s;(2n),2n); however, it appears to decrease over a variety of candidate fixed cost and misfit cost functions, so 

long as the convexity asumptions in Section 2 are satisfied. 
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continue competing in both markets, it is no longer strategically viable to do so. 

The interesting aspect of both these cases is that while technological progress leads to 'inno- 

vation' of sorts in hoth scenarios, the out.comes for firms and consumers are starkly different. In 

the first case, when it is accompanied by an expansion by firms into new markets, and increase in 

the number of firms in both industries, consumers paradoxically suffer on account of technological 

progress. in the latter case, where there is focused and high individual investment by each firm 

in their core markets, albeit at a level that is socially inefficient, consumers nevertheless benefit 

substantially. 

6 Discussion and conclusions 

Our analysis of oligopoly with endogenous scope and the threat of cntry has yielded a number of 

new results. We have shown that when firms in technology markets are able to respond to changes 

in industry concentration by adjusting both prices and product scope, equilibrium reductions in 

scope mitigate the price reductions that would otherwise be warranted. This adjustment leads to a 

lower increase in consumer surplus, as well as a possible increase in each firm's investment in scope 

(which is already at an inefficiently high level, as Proposition 9 has shown). This suggests that 

regulation that aims to improve total welfare by opening up technology markets to new competitors 

must proceed with care. This is even more crucial when dealing with a market in which firm 

strategies are driven by entry deterrence. In this case, an increase in concentration amplifies the 

scope reductions described above, because there is also a response to the reduced threat of entry. 

As a consequence, prices may actually rise, and consumer surplus may fall. 

We have also shown that the equilibriurrl outcome in an oligopoly with or without the threat of 

entry is to choose levels of scope that are socially inefficient. As technology progresses, the response 

by incumbent firms is to further increase product scope, thereby often reducing their own profits, 

and continuing an inefficient transfer of surplus to consumers. This is consistent with observed 

long-term trends of hedonic price reductions in technology markets. In this context, encouraging 

entry-deterring behavior under the argument that it benefits consumers is unlikely to be good long- 

term policy. However, if a policy maker were to attempt to rectify this inefficiency (by mandating 

a level of scope, for instance, while still letting firms compete on price, or by influencing industry 

concentration), this is bound to reduce consumer surplus. The key observation here is that these 



inefficiently high investments in scope always benefit consumers. As a consequence, regulatory 

action that is economically optimal is unlikely to be politically viable, and vice versa. 

An increase in the total market size for the product results in an increase in product scope and 

a reduction in price for all consumers, including those in the existing market. This is consistent 

with firms being able to spread their fixed costs of scope over a higher number of consumers - 

consequently, they increase scope, and reduce prices in response. For instance, if wireless technology 

developed for a national market were compatible with the standards in other national markets, this 

would translate into gains not just for the manufacturers of wireless handsets and communications 

equipment in the first market, but also for consumers in this market, since they would benefit 

from significantly better products in their own market, at a lower price. Consequently, government 

regulatory policy that encourages (or mandates) shared standards, even at the cost of mandating 

that firms invcst more in product design and software so as to cater to a multinational audience, will 

lead to substantial consumer benefits, and will do so in a manner that improves firm profits. This 

may be instructive for markets like the United States, which has chosen a purely industry-driven 

approach to standards setting for cellular telephony. 

Technological progress often leads firms to compete in each others' previously distinct markets. 

This has been highlighted recently by digital convergence and the sudden increase in products 

and services that span traditionally distinct industry boundaries, but is not a new occurrence in 

technology markets. For instance, Breshanan and Greenstein (1999) talk about the 'competitive 

crash' in the computer industry in the early 19901s, when, as described in their paper, "...seller 

rents were dramatically reallocated across market segments. Firms that had previously supplied 

different segments now competed for the same consumers." This 'competitive crash' was not 

preceded by a technological shock, and for the most part, neither has the current trend towards 

product convergence. 

Our results suggest that over time, gradual progress in technology may lead to cycles in which 

there are periods of gradual price and profit declines, followed by sudden changes as firms cross 

industry boundaries. The sudden changes occur when the equilibrium shifts to one of entry ac- 

commodation. Immediately following this shift, if entry is blockaded, there is a period of relative 

'calm', after which technology progresses to the point where it becomes necessary to deter entry 

in one's markets again. The change at this point, and following it, are still gradual, - until 



technology progresses to the point where accommodation becomes optimal again, thereby causing 

another dramatic industry realignment. 

Formalizing these technology cycles in a dynamic model is one goal of our current work. In 

addition, we are extending the model of section 5 to support asymmetric concentration n and market 

size rn, so ss to enable the analysis of mobility decisions when one firm has more to gain from entry, 

and the other has more to lose from entry. We are also investigating the effects of heterogeneity in 

response to changes in T ,  with possible information asymmetry. We hope to address these issues in 

the ncar future. 
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A Appendix: Proofs 

Proof of Proposition 1 

In a symmetric equilibrium, the choice (pi,si) for firm i should be a best-response to the choice 

(p, s )  by all other firms. The first-order conditions for maximizing n(pi, yip, s )  with respect to pi 

and si yield: 

Solving (40) for pi yields: 
1 t ( s )  

P . -  '- - ( P + C + ~ ) ,  2 



and substituting ( 4 2 )  into ( 4 1 )  yields the following equation for si: 

Since F ( s ~ , T )  is increasing and strictly convex in si, the R,HS of (43) is positive and strictly 

increasing. Also 

Since t l ( s i )  < 0, and under our convexity assumptions, 2(t l(s i))2 - t l l (s i) t (s i)  5 0,  the LHS of 

(43) is strictly decreasing in si. As a consequence, equation (43) is satisfied for a unique si, and 

the best-response of firm i is unique. 

To determine the symmetric equilibrium, first substitute pi = p = p>(n) in equation (42) to 

get: 

and then si = s = s$(n) along with equation (44) to get: 

From equation (44) and the fact that t l ( s )  < 0, it is clear that for a given s l ( n ) ,  the choice of 

p>(n) is unique. Since F(s ,T)  is strictly convex, F t ( s , r )  is positive and strictly increasing in s. 

Also, since t ( s )  is strictly decreasing and strictly convex, -tl ( s )  is positive and strictly decreasing 

in s.  As a consequence, equation (45) specifies a unique value of s>(n), which implies that the 

symmetric equilibrium is unique, and completes the proof. 

Proof of Proposition 2 

(a) Totally differentiating both sides of equation (45) with respect to n yields 

which rearranges to 

ds;((n) = 2mt1(s>(n)) 
dn 2 n 3 F ~ l ( s ; l ( n ) , ~ )  + mntll(s$(n))  ' 

ds* n 
A( ) < 0. Since t l ( s )  < 0, Fl l ( s , r )  > 0, and t l l ( s )  > 0, it follows that - dn 



(b) Totally differentiating both sides of equation (44) with respect to n  yields 

Substituting equation (47) into (48) yields: 

which rearranges to: 

Under the convexity assumptions imposed on t ( s ) ,  we know that 2(tl(s))' - t l l ( s ) t ( s )  5 0. Since 

Fll(s ,  r )  > 0, this implies that the numerator of the RHS of equation (48) is strictly negative. The 

result follows. 

Proof of Proposition 3 

Totally differentiating both sides of equation (45) with respect to T yields: 

which rearranges to: 

ds n  
( ) > 0. Next, totally Since F 1 2 ( s , ~ )  < 0, F ~ ~ ( s , T )  > 0, and t l l ( s )  > 0, it follows that - d r  

differentiating both sides of equation (44) with respect to T yields: 

ds* n  d ~ ; l ( n )  < ,, 
A( ) > 0, it follows that - and since t l ( s )  < 0 and - 
d r  d7 

Proof of Proposition 4 

Totally differentiating both sides of equation (45) with respect to m yields: 

which vields: 



ds' n 
A( ) > 0. Totally differentiating Since t l ( s )  < 0, F ~ ~ ( s , T )  > 0 ,  and t l l ( s )  > 0, it follows that 7 

both sides of equation (44) with respect to m yields: 

dp>(n) - t l ( s ; l (n ) )  ds;lo -- 
dna n dm ' 

and the result follows. 

Proof of Proposition 5 

The social planner solves: 

First order conditions with respect to s and n yield: 

Solving (58) and (59) for s: yields: 

This implies that s: solves: 

The result follows. 

Proof of Lemma 1 

Assuming entry, thc entrant chooses the value of p that maximizes n(plpD, s D ) .  From equation 

(23) ,  first-order conditions for the equilibrium choice of p result in: 

which when substituted back into (23) yields: 

Also, differentiating equation (23) twice with respect to p, one gets: 



which verifies that the entrant's payoff function is strictly concave in p for any pasitive value of s o .  

The result follows. 

Proof of Proposition 6 

Suppose p>(n), s is a candidate symmetric equilibrium choice in stage 1 which deters entry. If 

entry is deterred, the demand that each firm receives in the final stage is governed by the same 

equations as in the n-firm oligopoly. Under symmetric scope, in order for p>(n) to be part of a 

symmetric Nash equilibrium, it must satisfy the first-order condition analogous to equation (40),  

or: 
1 t ( s )  

p b ( n )  = Z ( P > ( ~ )  + c + -1, n (65) 

which solves to: 

Given a price p>(n), using Lemma 1, any value of scope s that deters entry must satisfy: 

Substituting equation (66) into equation (67) yields: 

Now, the profits to each firm from a choice p>(n), s are: 

which when combined with equation (66) yields: 

Equation (71) indicates that x is strictly decreasing in s. In addition, since entry is not blockaded, 

it follows that at the equilibrium oligopoly choices of price and scope &(n), s;l(n)), the entrant 

finds it profitable to enter: 



Substituting the expression for p;l(n) from equation (44) into equation (72), one gets: 

Moreover, the RHS of equation (69) is strictly increasing in s ,  and the LHS is strictly decreasing in 

s.  This implies that if 3 satisfies (69), s > s;l(71). Consequer~tly, the equilibrium value of s, denoted 

s>(n) satisfies (69) as a strict equality, or: 

which completes t,he proof. 

Proof  of Proposition 7 

(a) Totally differentiating both sides of equation (25) with respect to n: 

which can be rearranged to yield: 

Since t ( s )  > 0, t l ( s )  < 0, and Fl(s , r )  > 0, the result follows. 

(h) Totally differentiating both sides of equation (??) with respect to n: 

Substituting equation (76) into (77) and rearranging yields: 

dp>(n) -t(s>(n)) 16n2Fl(sb(n), r )  + 9mtl(sb(n)) -- - 
dn n2 16n2Fl(sb(n), T )  - Smtl(sb(n)) 

The result follows. 

Proof of Proposition 8 

(a) Totally differentiating both sides of equation (25) with respect to r: 

ds' n 
D( ) +F2(sb(n) , r )  = 9mtl ( ~ ; ) ( n ) )  dsb(n) 

Fl(sb(n)? 16n2 dr ' 

which rearranges to 

dsb(n) -= -F2(sb(n), 7 )  
amt,(q, (n)) ' d7 Fl(s>(n\ 7) - - - 



Since Fz(s,r) < 0, Fl(s,r)  > 0, and tl(s) < 0 for all s, the result follows. 

(b) Totally differentiating both sides of equation (25) with respect to m: 

which rearranges to 

Since t(s) > 0, FI(S,T) > 0, and tl(s) < 0 for all s, the result follows. 

Proof of Proposition 9 

(a) In each of the three cases, given the appropriate (i.e. either equilibrium or mandated) level 

of scope s, the expression for profits is 

Since tl(s) < 0 and F~(s ,T)  > 0, the expression above is strictly decreasing in s. Consequently, 

using s*(n) < s;l(n) < s>(n), the result follows. 

(b) In each of the three cases, given the appropriate (i.e. either equilibrium or mandated) level 

of scope s, the expression for consumer surplus is 

Since tl(s) < 0 , the expression above is strictly increasing in s; we know that s*(n) < s>(n) < 

sb(n), and therefore, the result follows. 

(c) From (32), at a given level of scope s, the expression for total surplus is 

Differentiating both sides of (85) twice with respect to s: 

-mtll(s) - nFll(s, r), T ~ l ( s , n )  = 4n 

and since tll(s) > 0 and F l l ( ~ , r )  > 0 for all S, this establishes that T(s,n) is strictly concave 

in s. Now, by definition, s*(n) is the global maximizer of T(s,n), which, when combined with 

the strict concavity of T(s,n), implies that T(s,n) is strictly decreasing in s for s > s*(n). Since 

s*(n) < s;l(n) < s$(n), the result follows. 



Proof of Proposition 10 

First, consider the payoff matrix for the second-stage subgame that follows a choice of Deter by 

firms in both industries (the DD subgame): 

Industry 2 

Stnv out (S) flnter ( E )  

Industry 1 

Clearly, S is a weakly dominant strategy for both players. Since we choose S over E when they 

Enter (E) 

yield the same payoffs, the Nash equilibrium of this subgame is SS. 

Stay out (S) 

Next, consider the payoff matrix for the DA subgame: 

Subgame DD 
nD(s>(n),n), 0 

Industry 2 

D * 
nD(s;7(n), n), lI (sD(n), n)  

0, 0 

I I I Stay out (S) I Enter (E) I 

0, IID(s;(n), n) 

lIA(s>(2n), 2n) 
Subgame DA 

Industry 1 

S is a weakly dominant strategy for firms in industry 2, and E is a dominant strategy for firms 

in industry 1. Consequently, the Nash equilibrium is ES. 

Stay out (S) 

Enter(E) 

Next, consider the payoff matrix for the AD subgarne: 

IID(sb(n),n), IIA(si(2n), n) 
A * 

n D ( s > ( n ) , n ) + n  (sA(2n),2n), 

I Industry 1 I Stay out (S) I IIA(s>(2n), n), IID(sb(n), n) I lTA(s>(2n), 2n), I 

0, IIA(s;(2n.),n) 

A * nA(s;(2n),2n),II (sA(2n),2n) 

Industry 2 

Stag out (S) Enter (E) 

This is simply the DA payoff matrix transposed, with payoffs exchanged. In this case, S is a 

Enter (E) nA(s>(2n), n), 0 I IIA(s;(2n), Zn), IIA(s;(2n), 2n) I 
Subgame AD 



weakly dominant strategy for firms in industry 1, and E is a dominant strategy for firms in industry 

2, which leads to the Nash equilibrium SE. 

Finally, the payoff matrix for the AA subgame is: 

Industry 1 

Clearly, E is a dominant strategy for both players, leading to the Nash equilibrium EE. 

Enter ( E )  

Therefore, under subgame perfcction, thc payoffs as seen by the players when making their 

Stay out ( S )  

stage 1 dmisions are as follows: 

IIA(s;l(2n), n )  + lTA(s;l(2n), 2n), 

Indwtry 2 

Stay out ( S )  

lTA(s;l(2n), n), IIA(s;l(2n), n )  

IIA(s>(2n), n )  + lTA(s>(2n), 2n) 

211A(s>(2n), 2n), 211A(s>(2n), 2n) 

Enter ( E )  

nA(s>(2n), 2 4 ,  

Industy 2 

neter 

lTD(s&(n), n) + IIA(.q>(2n.), 2n) 
First s tage payoffs, given Nash outcomes in  the second stage 

Accommodate 

Industry 1 

If lTD(s;(n), n )  > IIA(s>(2n),2n), then Deter ( D )  is a dominant strategy for both players. On 

the other hand, if IID(s>(n),n) < IIA(s>(2n),2n), then Accommodate (A )  is a dominant strategy 

Deter 

for both players. If IID(s>(n),n) = lTA(s>(2n),2n), then any combination of actions is a Nash 

equilibrium. Consistent with our earlier assumption of firms choosing to stay out rather than 

lT D ( sD(n) ,  I n) ,  lTD(s$(n),n) 

enter, we choose DD as the outcome in this case (it is a knife's edge case and has no bearing on 

IID(8>(n),n) + IIA(s>(2n),2n), 

IIA(s>(2n), 2n) 

the subsequent discussion). The result follows. 


