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Abstract

In many cost-sensitive environments class probability estimates are used by deci-
sion makers to evaluate the expected utility from a set of alternatives. Supervised
learning can be used to build class probability estimates; however, it often is very
costly to obtain training data with class labels. Active sampling acquires data in-
crementally, at each phase identifying especially useful additional data for labeling,
and can be used to economize on examples needed for learning. We outline the
critical features for an active sampling approach and present an active sampling
method for estimating class probabilities and ranking. BoorstrAP-LV identifies par-
ticularly informative new data for learning based on the variance in probability es-
timates, and by accounting for a particular data item’s informative value for the
rest of the input space. We show empirically that the method reduces the number
of data items that must be obtained and labeled, across a wide variety of domains.
We investigate the contribution of the components of the algorithm and show that
each provides valuable information to help identify informative examples. We also
compare BOOTSTRAP-LV with UNCERTAINTY SAMPLING, an existing active sampling
method designed to maximize classification accuracy. The results show that Boor-
STRAP-LV uses fewer examples to exhibit a certain class probability estimation accu-
racy and provide insights on the behavior of the algorithms. Finally, to further our
understanding of the contributions made by the elements of BOOTSTRAP-LV, we ex-
periment with a new active sampling algorithm drawing from both UNCERTAINTY
SAMPLING and BOOTSTRAP-LV and show that it is significantly more competitive
with BooTsTRAP-LV compared to UNCERTAINTY SAMPLING. The analysis suggests
more general implications for improving existing active sampling algorithms for
classification.
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1. Introduction

Supervised classifier learning requires data with class labels. In many applications,
procuring class labels can be costly. For example, to learn diagnostic models experts
may need to read many historical cases. To learn document classifiers experts may
need read many documents and assign them labels. To learn customer response mod-
els, consumers may have to be given costly incentives to reveal their preferences.

Active sampling processes data incrementally, using the model learned "so far" to
select particulatly helpful additional training examples for labeling. When successful,
active sampling methods reduce the number of instances that must be labeled to
achieve a particular level of accuracy. Most existing methods and particulatly empiri-
cal approaches for active learning address classification problems—they assume the
task is to assign cases to one of a fixed number of classes.

Many applications, however, require mote then simple classification. In particular,
probability estimates are central in decision theory, allowing a decision maker to in-
corporate costs/benefits for evaluating alternatives. For example, in target marketing
the estimated probability that a customer will respond to an offer is combined with
the estimated profit (Zadrozny and Elkan, 2001) to evaluate various offer proposi-
tions. Other applications require ranking of cases, to improve consumer response rate
to offer propositions, as well as to add flexibility for user processing!. For example,
documents can be ranked by their probability of being of interest to the user, and
offers to consumers may be presented/proposed in order of the probability of pur-
chase or of the expected benefit to the seller. We therefore focus on learning class
probability estimation (CPE) models.

—=— Random Sampling
0.109 - —— Adive Sampling
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i 0.069
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Training set size

! Classification accuracy has been criticized previously as a metric for machine learning research
(Provost et al., 1998).
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Figure 1: Learning curves for active sampling vs. random sampling

In this paper we consider active sampling to produce accurate CPEs and class-based
rankings from fewer learning examples. Figure 1 shows the desired behavior of an
active learner. The horizontal axis represents the information needed for learning,
1.e., the number of training examples, and the vertical axis represents the error rate of
the probabilities produced by the learned model. Each faming curve shows how error
rate decreases as more training data are used. The upper curve represents the de-
crease in error from randomly selecting training data; the lower curve represents ac-
tive learning. The two curves form a "banana" shape: very early on, the curves are
comparable because 2 model is not yet available for active learning. The active sam-
pling curve soon accelerates, because of the careful choice of training data. Given
enough data, random selection catches up.

We introduce a new active sampling technique, Boorstrap-Lv, for learning CPEs.
BootstrAP-LV Uses bootstrap samples (Efron and Tibshirani, 1993) of available training
data to examine the variance in the probability estimates for not-yet-labeled data, and
employs a weight sampling procedure to finally select particularly informative exam-
ple for learning. We show empirically across a wide range of data sets that BooTstrAP-
1v decreases the number of labeled instances needed to achieve accurate probability
estimates, or alternatively that it increases the accuracy of the probability estimates for
a fixed number of training data. A careful analysis of the algorithm’s characteristics
and petformance reveals the contributions of its components. The analysis also leads
to a new algorithm for active sampling that is more competitive compared to other
methods with respect to Boorstrar-Lv and has computational advantages. The latter
further demonstrates how the components of the Bootstrap-Lv algorithm contribute
to its efficacy and highlights why existing algorithms do not perform well for CPE.

2. Active Learning and the Bootstrap-LV Algorithm

The fundamental notion of active sampling has a long history in machine learning.
To our knowledge, the first to discuss it explicitly were (Simon and Lea, 1974) and
(Winston, 1975). Simon and Lea describe how machine learning is different from
other types of problem solving, because learning involves the simultaneous search of
two spaces: the hypothesis space and the instance space. The results of searching the
hypothesis space can affect how the instance space will be sampled. Winston dis-
cusses how the best examples to select next for learning are "near misses," instances
that miss being class members for only a few reasons. Subsequently, theoretical re-
sults showed that the number of training data can be reduced substantially if they can
be selected carefully (Angluin, 1988). The term active learning was coined later to de-
scribe induction where the algorithm controls the selection of potential unlabeled
training examples (Cohn ¢7 a/., 1994).

A generic algorithm for active learning is shown in Figure 2. A learner first is ap-
plied to an initial set L. of labeled examples (usually selected at random or provided by
an expert). Subsequently, sets of M examples are selected in phases from a set of
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unlabeled examples UL, until some predefined condition is met (e.g., the labeling
budget is exhausted). In each phase, each candidate example x, e UL is assigned an
effectiveness score ES, based on an objective function, reflecting its contribution to
subsequent learning. Examples then are selected for labeling based on their effective-
ness scores. Often, multiple examples, rather than a single example, are selected in
each phase due to computational constraints. Once examples are selected, their labels
are obtained (e.g., by querying an expert) before being added to L, to which the
learner is applied next.

Input: an initial labeled set L, an unlabeled set UL, an inducer I,
a stopping criterion, and an integer M specifying the number of actively selected exam-
ples in each phase.

1 While stopping criterion not met

/* perform next phase: */

Apply inducer I to L

For each example { x| x e UL} compute ES,, the effectiveness score

Select a subset § of size M from UL based on ES,

5 Remove S from UL, label examples in .f, and add § to L

Qutpaut: estimator E induced with I from the final labeled set L

= W

Figure 2: Generic Active Learning Algorithm

The objective of active learning is to select examples that will reduce the generaliza-
tion error of the model the most. The generalization error is the expected error across
the entire example space. Therefore when evaluating a learning example an optimal
active learning approach must evaluate the expected reduction in generalization error
if the example were to be added to the training set from which the model would be
induced. The example that is expected to reduce the generalization error the most
should be added to the training set.

We are interested in an active learning scheme that will apply to arbitrary learners,
thus computational considerations may prohibit us from examining the models
resulting from adding each potential unlabeled example to the training set (as pre-
scribed by Roy and McCallum (Roy and McCallum, 2001). We therefore resort to an
indirect estimation of potential learning examples’ informative value. Also, we con-
sider the potential of each learning example to help improve the estimation of other
examples in the space not only the performance of its own class probability, which we
describe in detail below.

Given the generic framework presented in Figure 2, Boorstrar-Lv embodies a par-
ticular instantiation of steps 3 and 4. The description we provide here pertains to
binary classification problems.

Since our goal is to reduce the class probability estimation (CPE) errorx, it 1s useful
to understand its sources. A model’s estimation f(x|T) for a particular input x de-
pends upon the sample T from which the model is induced, and therefore can be
treated as a random varable. Let f(x) be the underlying function describing the
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probability of class membership for a case described by input x. One indication of the
quality of the current class probability estimate f(x|T) for example X given a training
set T is the expected estimation (absolute) error, reflecting the discrepancy between
the estimated probability and the true probability, i.e., | f(x)— f(x1T)I. We may infer
from the discrepancy whether additional information is needed to improve the
model’s estimation. Note however, that in an inductive learning setting the class prob-
ability for an input, f(x), is not known to us, even when an instance’s true class 1s
known.

A common formulation of the estimation error (Friedman, 1997) decomposes the

expected squared estimation error into the sum of two terms:
E[(f(0) = f(xID)) = E,[f (X1 T) = E, f(xI TP +[f(x)— E, f (x| ),
E(-) tepresents expectation across training sets . The first term in the sum is re-
ferred to as the “variance” of the estimation and reflects the sensitivity of the estima-
tion to the training sample. The second term is referred to as the (squared) “bias”,
reflecting the extent to which the induced model can approximate the target function
f(x) (Friedman, 1997). Both the estimation error and the estimation bias refer to the
actual probability function, f(x), which as mentioned is not available for an induc-
tive learning algorithm to consider. Therefore it is impossible to compute them di-
rectly. The estimation “variance”, however, reflects a behavior of the estimation
procedure without reference to the undetlying probability function.

In order to reduce the estimation error the Boorsirap-Lv algorithm estimates and
then tries to reduce the estimation variance. The estimation variance for a certain
input 1s referred to as the “local variance” (LV) to differentiate it from the model’s
expected variance over the entire input space. We ignore the bias, or alternatively
assume the bias is zero.

The Boorstrap-Lv algorithm, shown in Figure 3, first estimates the estimation vari-
ance of each potential learning example (the LV). If the LV is high, we infer that this
example is not well captured by the model given the available data. The local variance
also reflects the potential error reduction if this variance were reduced as more exam-
ples become available for the learner. Boorsirap-Lv then employs the LV estimations
together with a specialized sampling procedure to identify the examples that are par-
ticularly likely to reduce the awergge estimation etrror across the entire example space
(i.e., generalization error) the most. We first describe the estimation of the estimation
variance. We then will discuss the sampling procedure.

Given that an efficient closed-form estimation of the local variance may not be ob-
tained for arbitrary learners, we estimate it empirically. The variance stems from the
estimation being induced from a random sample. We therefore emulate a series of
samples by generating a set of & bootstrap subsamples (Efron and Tibshirani, 1993)
B;, j=1,..k from L. We generate a set of models by applying the inducer I to each
bootstrap sample B, resulting in £ estimators E;, j=1,..,k. To calculate the esti-
mated variance, for each example in X; € UL, we estimate the variance among CPEs
predicted by the estimators {g, }. Finally, each example in X; € UL is assigned an
effectiveness score that is proportional to its local variance.

5
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Algorithm Boorsrrap-Lv

Input: an initial labeled set L sampled at random, an unlabeled set UL, an inducer [ , a stop-
ping criterion, and a sample size M.
2 for (s=1;until stopping criterion is met; s+-+)

3 Generate £ bootstrap subsamples B> j=1..k from L.
4 Apply inducer I on each subsample g and induce estimator E
/ S
5 For all examples { x. |x e UL} compute ®) {z;[/’;(%]—ﬂ}-}/ﬂ-,m
5 R

6 Sample from the probability distribution l)‘ a subset S of M examples from UL with-
out replacement

T Remove 8 from UL, label examples in S, and add them to L.

8 end for

Output: estimator E induced with I from L.

Figure 3: The Boorstrap-Lv Algorithm

The local vatiance provides an indication of the potential error reduction for each
individual example in the example space if more relevant examples are provided to
the learner. It does not however provide an indication of how much is learned from
each learning example about other examples in the space. We stated earlier that our
objective is to reduce the generalization error by training a model with fewer, particu-
larly informative examples, and we emphasized the potential impact a learning exam-
ple may have on reducing the estimation error of other examples in the example
space. Consider an active learning algorithm where the effectiveness score reflects the
potential contribution of a learning example to reducing its own error. Also assume
examples are selected in order of their effectiveness score, such that the examples
with the highest scores are selected for labeling first. We refer to this approach as
Direct Selection. Direct selection ignores information about how the class probability
estimation error of other examples in the space may be affected by adding an example
to the training set. The latter, however, is essential to evaluate the expected effect an
example may have on the generalization error.

Random sampling is often referred to in the active learning literature as non-
informed learning (e.g., (Cohn et al,, 1994, Lewis and Gale, 1994)). Nevertheless,
random sampling is powerful because it allows the incorporation of information
about the distribution of examples even when the information is not known explic-
itly. For example, consider the case when examples for labeling are sampled at ran-
dom. An example may inform the learning about other examples in the space if it
shares some common features with these examples. Consider 2 set of examples shar-
ing a set of features. With random sampling, the larger this set the more likely it is
that an example from this set is sampled, providing information about a larger num-

6
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ber of examples. Note that this property is obtained without having to capture explic-
itly how examples are assoctated with each other.

In order to reduce the average error across the example space BOOTSTRAP-LV inco1-
porates sampling into the selection of training examples by weight sampling examples
for labeling. In particular, the probability of each example to be sampled is propor-
tional to its local variance.

Specifically, the distribution from which examples are sampled is given by

JZ:JP;(%)‘?’*W Pinis | where p;(x;) denotes the estimated probability an estima-
R

tor E, assigns to the event that example X; belongs to one of the two classes (the

D.(x)

5

choice of petforming the calculation for either class is arbitrary because the variance
for both classes is equal); ﬁ.:E:..P;(XJ; Pima 15 the average probability estimation
k

assigned to the minority class by the estimators {g } , and R is a normalizing factor
R= Z“”‘”” {Zj:. [P; (x,)- P, )’- }/ﬁa,m ,so that p_is a distribution.

i=l

There is one additional technical point of note. Consider the case where the classes
are not represented equally in the training data. When high variance exists in regions
of the domain for which the minority class is assigned high probability, it is likely that
the region is relatively better understood than regions with #he same variance but for
which the majority class is assigned high probability. In the latter case, the class prob-
ability estimation may be exhibiting high variance due simply to lack of representation
of the minority class in the training data, and would benefit from sampling more in
the respected region. Therefore the estimated variance is divided by the average value
of the minority-class probability estimates p, .. The minority class is determined
once from the initial random sample. '

3. Related Work

Cohn et al. (Cohn ef 4/, 1996) propose an active learning approach for statistical
learning models, generating queries (i.e., learning examples) from the input space to
be used as inputs to the learning algorithm. This approach directly evaluates the effec-
tiveness score, i.e., the informative contribution of each example to the learning task.
At each phase the expectation of the variance of the model over the example space 1s
used to generate the example that minimizes this variance. Since it requires a compu-
tation in closed form of the learner’s variance, this approach is impracticable for arbi-
trary models. In addition, queries are generated whereas here we are interested in
identifying informative examples from an existing set of available unlabeled examples
(a subset of the set of possible queries).

When an efficient closed-form estimation of the expected generalization error is
not available, the models that result from adding each potential learning example to
the training set can be induced in order to estimate the expected changes in generali-
zation error. Roy and McCallum (Roy and McCallum, 2001) propose this approach
for building classifiers. At each phase they update the current model with each addi-

7

Center for Digital Economy Research
Stern School of Business

Working Paper [S-01-03



Saar-Tsechansky & Provost

tional learning example for each possible label and calculate an effectiveness score,
measured as class entropy, as an estimate of the improvement in classification error.
They then select the example bringing about the greatest expected reduction of en-
tropy. The algorithm was shown to be effective, reducing the number of examples
needed to obtain a certain level of accuracy. For many learning algorithms, however,
the induction of a new model for each possible training example may be prohibitively
expensive. A critical requirement for their approach, therefore, allowing it to be com-
putationally tractable, is that the learning algorithm allows efficient incremental up-
dates of the model, such as the Naive Bayes algorithm used to classify text documents
in the paper (Roy and McCallum, 2001).

When an efficient closed-form computation of the error or incremental model
updates are not possible, various active learning approaches compute alternative ef-
fectiveness scores. In particular, the Query By Commrriee (QBC) algorithm (Seung ef
al,1992) was proposed to select learning examples actively for training a binary classi-
fier. Examples are sampled at random, generating a “stream” of potential leatning
examples, and each example is considered informative (and thus is labeled) if classifi-
ers sampled from the current version space disagree regarding its class prediction.
The QBC algorithm employs disagreement as a binary effectiveness score, designed
to capture whether or not uncertainty exists regarding class prediction given the cut-
rent labeled examples.

McCallum and Nigam (McCallum and Nigam, 1998) note that a disadvantage of the
“stream-based” QBC approach lies in the decision of whether to label an example
being “made on each document (i.c., example) individually, irrespective of the alterna-
tives”. Alternatively, estimation uncertainty of all the unlabeled learning examples can
be compared, allowing one to select at each phase the example(s) with the largest
classification uncertainty. Various other approaches have been developed within the
Query By Committee framework that identify informative examples for constructing
classifiers and which use a vatiety of measures that quantify the level of uncertainty or
the likelthood of classification error given the current labeled data. In particular, these
effectiveness scores quantify the estimated informative value of each example to ob-
tain a ranking of the examples’ informative values. Subsequently the example(s) with
the highest effectiveness score(s) 1s (are) selected.

For instance, Abe and Mamimtsuka (Abe and Mamimtsuka, 1998) use bagging and
boosting to generate a committee of classifiers and quantify disagreement as the mar-
gin (ie., the difference in weight assigned to either class). Examples with the mini-
mum margin are selected for labeling. The final classifier s composed of an ensemble
of classifiers whose votes are used for class prediction. UNCERTAINTY SAMPLING (Lewis
and Gale, 1994) was designed to select informative examples to construct binary clas-
sifiers by adopting the uncertainty notion underlying the QBC approach, but instead
of generating a committee of hypotheses to estimate uncertainty the algorithm em-
ploys a single probabilistic classifier. Examples whose probabilities of class member-
ship are closest to 0.5 are selected for labeling first. UNCERTAINTY SAMPLING has several
attractive properties that we return to below.
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All these methods, as indicated by their effectiveness scores, are designed to in-
crease classification accuracy, not to improve CPEs or rankings, which is our concern
in this paper. In addition, differently from the approach we propose in this paper
these methods do not incorporate the effect of a learning example on other examples
across the example space. Particularly, they disregard the potential effect of a training
example on reducing the error of other examples in the example space. Examples for
which the current estimation is most uncertain may have no significant contribution
to reducing the estimation error of other examples in the instance space. The failure
to account for this effect was noted by Dagan and Engelson (Dagan and Engelson,
1999) as well as by McCallum and Nigam (McCallum and Nigam, 1998) who pro-
posed to incorporate an instance density measure explicitly into the effectiveness
score, where the density measure reflects how similar are other examples in the space
to the one examined. The underlying assumption is that the proposed similarity
measure captutes the relative effect an example would have on reducing the classifica-
tion error of other examples in the space. The approach was shown to be effective in
selecting informative examples for document classification. Yet the proposed density
measure is specific to document items, where similarity measures are available (e.g.,
TF/IDF). It is not clear what an appropriate density measure may be for an arbitrary
domain?,

Our approach uses weight sampling, by which we argue it implicitly incorporates
properties of the domain to support the selection of examples more likely to be in-
formative regarding other examples in the space. Note that weight sampling also is
employed in the AdaBoost algorithm (Freund and Shapire, 1996) on which Iyengar et
al. (Iyengar et al., 2000) base their active learning approach. Their algorithm results in
an ensemble of classifiers where weight sampling is used both to select examples
from which successive classifiers in the ensemble are generated as well as to select
examples for labeling. Iyengar et. al note that better results were obtained when ex-
amples were sampled compared to when examples are selected by order of their error
measure. They propose to study this phenomenon further and hypothesize that sam-
pling allows their approach to avoid selecting the same examples repeatedly. How-
ever, we argue that in addition weight sampling acts to increase the likelihood of
selecting examples that are particulatly informative for reducing the generalization
error. As we discuss in the previous paragraph, selecting examples should address the
relevance of each learning example to other examples in order to identify examples
that will better decrease the average estimation error (ie., the generalization error).
Moreover, whereas the domain-specific approach of McCallum and Nigam modeled
the example space explicitly and incorporated a measure of space density into the
effectiveness score (McCallum and Nigam, 1998), the weight-sampling mechanism
can be applied seamlessly for arbitrary domains.

In sum, Bootstrar-Lv employs an effectiveness score which identifies examples
whose CPE varies highly. It uses this measure to indicate the potential improvement

* Roy and McCallum note the domain-specific limitation of this approach [Roy and McCallum,
2001].
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in class probability estimation error, rather than classification accuracy. BOOTSTRAP-LV
estimates local variance empirically, enabling its computation with an arbitrary model-
ing scheme. Lastly, we use a sampling mechanism to complement the selection of
examples for learning. We argue that weight sampling can help account for the in-
formative value an example confers for other examples in the space.

4. Experimental Evaluation

The experiments we describe here examine Boorsirar-LV’s performance over a
range of domains in order to assess its general ability to identify particularly useful
examples for learning. In section 4.1 we present our experimental setting. Sections 4.2
and 4.3 present and discuss our results with simple probability estimation trees, and
with bagged probability estimation trees, respectively. We discuss addition evaluation
measures in section 4.4. In Section 4.5 we compare BoOTSIRAP-LY with UNCERTAINTY
SAMPLING, an active leatning approach for classifiers, to provide insights on the opera-
tion of the algorithm and its advantage compared to existing approaches. Finally,
experiments with a new active learning algorithm inspired by the empirical investiga-
tion provide further insights into the elements of the Boorstrap-Lv algorithm.

4.1 Experimental Setting

We applied Boorstrap-Lv to 20 data sets, 17 from the UCI machine learning reposi-
tory (Blake ef 4/, 1998) and 3 used previously to evaluate rule-learning algorithms
(Cohen and Singer, 1999). Data sets with more than two classes were mapped into
two-class problems.

For these experiments we use tree induction to produce class probability esti-
mates?. In particular, for the experiments presented here, the underlying probability
estimator is a Probability Estimation Tree (PET), an unpruned C4.5 decision tree
(Quinlan, 1993) for which the Laplace correction (Cestnik, 1990) is applied at the
leaves. Not pruning and using the Laplace correction had been shown to improve the
CPEs produced by PETs (Bauer and Kohavi, 1999; Provost et al., 1998; Provost &
Domingos, 2000; Perlich ez a/ 2001).

To evaluate the predictive quality of the CPE models induced by Bootstrap-Lv it
would be desirable to compare against the true class probability values, for example,
computing the mean absolute error with respect to the actual probabilities. However,
in these data sets only class membership is observed and the true class probabilities
are unknown. As models are learned from more data, performance improves typically
as a learning curve; Boo1sTrAP-LV aims to obtain comparable performance with fewer
labeled data (recall figure 1). We compare the probabilities assigned by the model
induced with Boorstrap-Lv at each phase with those assigned by a “best” estimator,
E, , as surrogates to the true probabilities, where E, is induced from the entire set of

available learning examples LU UL (where the labels of all examples are known to

* Probability estimation trees ate easy to build, fast computationally, robust across data sets,
comprehensible to human experts, and produces surprisingly good probability-based rankings
[Perlich e 4/, 2001]
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us). In particular, we induce E, using bagged PETs, which have shown to produce

superior probability estimates compared to individual PETs (Bauer and Kohavi, 1999;
Provost et al,, 1998; Provost & Domingos, 2000). We then calculate the mean abso-
lute error, denoted BMAE (Best-estimate Mean Absolute Error), for an estimator E

N
with respect to E,'s estimation. BMAE is given by payar= 2‘-=I|“r)"—1= (x‘.)—p,_.(x,.)l , where

pp. (x;) 1s the estimated probability given by E,; p,(x;)is the probability estimated

by E, and N is the number of (test) examples examined.

We compare the performance of Boorstrap-Lv with a method, denoted by Ranpow,
where estimators are induced with the same inducer and the same training-set size,
but for which examples are sampled at random. We compate across different sizes of
the labeled set L. In order not have very large sample sizes, M, for large data sets and
very small ones for small data sets, we applied different numbers of sampling phases
for different data sets, varying between 10 and 30; at each phase the same number of
examples was added to L. Results are averaged over 10 random, three-way partitions
of the data sets into an initial labeled set, an unlabeled set, and a test set against which
the two estimators are evaluated. For control the same partitions were used by both
Ranpod and BOOTSTRAP-LV.

The banana curve in Figure 4 shows the relative performance for the Car data set.
As shown in Figure 4, the error of the estimator induced with Bootstrar-Lv decreases
faster initially, exhibiting lower etror for fewer examples. This demonstrates that ex-
amples actively added to the labeled set are more informative (on average), allowing
the inducer to construct a better estimator for a certain number of learning examples.
Note that for visibility the algorithms’ performance with the initial labeled set (for
which all algorithms perform identically) is not shown.

Evaluations of active learning algorithms often present only the initial part of the
learning curve to demonstrate the efficacy of the algorithm. We summatrize the com-
parative performance of the competing algorithms also across the entire leaning
curve. In particular, the objective of Boorstrap-Lv 1s to enable learning with fewer
examples in order to obtain a certain level of CPE accuracy. For each data set we
calculate a set of measures pertaining to the gain obtained with BooTsTrRAP-LV in terms
of the number of examples that did not need to be labeled when using Boorstrar-Ly
instead of Ranpom. The number of examples gained for a certain performance level is
demonstrated in Figure 4. For each sampling phase of the algorithm we calculate the
difference in the number of examples needed by Bootsirar-Lv to obtain the exhibited
error level and the number needed by Ranpom to obtain the same error level. We
calculate the average gain across all sampling phases, referred to as average gain, as
well as the gain as a percentage of the number of examples needed by Ranpom (Le.,
the percentage of examples gained if Boorstrap-Lv 1s used instead of Raxpowm), referred
to as average percentage gain. For instance, in the Car domain (Figure 4) the average
gain 1s 155 examples and the average percentage gain is 23.3% of the examples
needed by RanpOM.

11
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Because of the natural banana shape of the learning curves, even for the ideal case
the performance of estimators induced from any two samples cannot be considerably
different at the final sampling phases, as most of the available examples have been
used by both sampling methods and therefore the samples obtained by the methods
become increasingly similar. Therefore an average across all phases merely provides
an indication of whether Bootstrar-1v produces superior estimations. Therefore it is
even mote telling to examine the improvement at the “fat” part of the banana (where
the benefit of active learning is concentrated). To allow a stable assessment we pro-
vide rather than the single best gain exhibited by Boorstrap-Lv in a certain sampling
phase, the average gain of the top 20% sampling phases in which the largest gains
were obtained. We call the latter the “top gain”. We also compute the top gain as a
percentage of the examples needed by Ranpowm, referred to as percentage top gain. For
instance, in the Car domain the top gain is 281 examples or 35.4% of the examples
needed by Ranpom. Lastly, we calculate the percentage of sampling phases in which
RanpoOM needs more examples to obtain the error level exhibited by Boorstrap-Lv. We
refer to the latter as the percentage of phases with positive gain.

Car
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Figure 4: Learning behavior of Boorstrap-Lv and Ranpowm for the Car data set

Finally, for each data set we also calculated the error reduction achieved by Boor-
strap-Ly with respect to Ranpou for the same number of training examples. This di-
mension also is demonstrated in Figure 4. As above we calculate the average error
reduction for the 20% of the phases in which the largest error reduction is observed,
and we refer to the latter as the top error reduction. For the Car domain the top error
reduction 1s 31.3%.
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4.2 Results: Bootstrap-LV versus Random Sampling

For some data sets Boorstrap-Lv exhibits even more dramatic results than those
presented for the Car data set above; Figure 5 shows results for the Pendigits data set
(the most impressive “win”). Bootstrap-Lv achieves its almost minimal level of error at
about 4000 examples. Ranpom requires more than 9300 examples to obtain this error
level. It is important to note that an active learning algorithm’s performance is par-
ticularly interesting in the initial sampling phases demonstrating the performance that
can be obtained for a relatively small portion of the data and therefore a small labeling
cost. As can be seen in Figure 4, in the initial phases the error exhibited by the model
induced from Bootstrar-1v’s selection of learning examples is reduced substantially
faster than when examples are sampled randomly.
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Figure 5: CPE learning curves for the Pendigits data set. Bootstrap-Lv accelerates error
reduction considerable in the initial sampling phases.

For 5 of the 20 data sets, Boorstrap-Lv did not succeed in accelerating learning
much or at all, as is shown for the Weather data set in Figure 6. Note that the accu-
racy was comparable to that obtained with random sampling, as neither curve consis-
tently resides above the other. This is discussed further below.

Table 1 presents a summary of our results for all the data sets. The second column
shows the percentage of phases with positive gain. The third and fourth columns
show the top percentage gain and the top gain (respectively). The fifth and sixth col-
umns of Table 1 show the average percentage gain and the average gain across all
sampling phases by applying Boorstrar-Lv. The seventh column presents the top error
reduction.
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Figure 6: CPE learning curves for the Weather data set where Bootstrap-lv does not
provide improvement in CPE

In summarizing these tesults, to be conservative we regard the two methods to be
comparable if the percent of phases with positive gain is between 50% % 15%. Thus
our first condition for Bootstrar-Lv to be deemed superior is that it exhibits superior
performance in at least 65% of the phases examined. In addition, in order for Boor-
sTRAP-LV to be supetior we requite that the average examples gained by Booistrap-Lv be
at least 5% or higher (and symmetrically for Ranpom to be superior the average exam-
ples gained must be —5% or lower). As can be seen in Table 1 (in bold), in 15 out of
the 20 data sets Boorstrap-Lv exhibited superior performance®. Particularly, in all but
one data set the percentage of phases with positive gain is 75% or above. In 13 of
those the top percentage gain was 30% or more, and in 9 data sets Boorstrap-1.v used
less than 50% of the number of examples required for Ranpom to achieve comparable
accuracy. For the Sick-euthyroid data set, for example, Boorstrap-Lv gradually im-
proves until it requires fewer than 30% of the examples required by Ranpou to obtain
the same level of accuracy. Since the latter results pertain to the average improvement
obtained for the top-20% phases, the maximal gain is higher.

5 Appendix A shows the actual leaning curves for all data sets; the reader can verify that the conditions
we apply are reasonable.
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Table 1: Improvement in examples needed and improvement in error
'I.].Siflg BOOTSTRAP-LV VErsus RANDOM

Data set Phases with Top gain Top gain Avg gain Avg gain  Top error
positive gain (%) #) (%o) (#) reduction (%)
(%)

abalone 92.5 76.9 1152 349 574 10.1
adult 96 30.2 585 17.8 302 6.6
breast cancer-w 100 51.6 110 23.8 44 9.3
car 89.6 35.4 281 233 155 313
codingl 80 47.1 475 16.2 228 2.5
connect-4 100 75.4 1939 45.5 984 9.5
contraceptive 93.7 42.3 129 18.4 55 5.7
german” 57.1 46.5 113 5.8 7 5.9
hypothyroid 100 69.0 1233 64.6 705 411
ke-vs-kp 100 27.1 57 18.1 37 25.5
letter-a** 72.4 24.8 529 14.5 229 10.4
letter-vowel™ 50 12.8 429 21 121 3.4
movel 65 68.4 75 17.2 23 3.9
ocrl 93.7 42.9 168 24.5 83 21.7
optdigits 94.4 500 762 245 412 32.6
pendigits 100 68.6 5352 61.0 3773 29.9
sick-euthyroid 931 70.2 924 45.2 600 26.2
solar-flare 64.2 41.5 58 135 25 6.3
weather 41.6 359 438 -10.4 -46 1.7
yeast 75 58.7 159 23.6 79 4.9

* German credit database
** letter-recogmtion, letter a

" letter-recognition, vowels

The measures pertaining to the number of examples gained and the error gain
complement each other and can provide interesting insight. For instance, the number
of examples gained can help evaluate the “difficulty” of error reduction, as reflected
by the number of examples required by Ranpowm to obtain such reduction. For exam-
ple, although the top error reduction for Connect-4 is less than 10%, Table 1 shows
that it requires Ranpom 984 additional examples on average to obtain the same im-
provement.

For a single data set (Weather) Bootstrar-Lv exhibited a negative average gain.
However, the percentage of phases with positive gain, showing that BooTsTRAP-LV uses
fewer examples in 41% of phases examined, and Figure 5, both indicate that the two
methods indeed exhibit comparable learning curves for this data set.

An examination of the learning curves for the data sets in which Boorstrar-Lv ex-
hibits insignificant or no improvement at all reveals that training examples chosen at
random seem to contribute to error reduction at an almost constant rate. As shown
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for the Weather data set in Figure 6 and for the data sets in Figure 7, the learning
curves for all these data sets but one (letter-vowel) have an atypical shape, where
additional examples bring an almost constant reduction in error, rather than the ex-
pected decreasing marginal error reduction. This may indicate that learning examples
are equally informative regardless of what or how many examples have been already
used for training. An intelligent selection of learning examples, therefore, is not likely
to improve learning, and will produce results comparable to those obtained with ran-
dom selection.

German Movel
—t— Random —o— Random
—a— Bootstrp-L\’ 0.224 —a— Bootstrap-LV
0244 1
0,234 0.204
L0224 2oy
j : 0,184
:,:_' =
0214 b
0.164
0.204
i 014
184 T T T T ' 0124 T T T
63 163 263 . 363 o o3 563 663 112 612 vl a0 1612
Framung set size Traning sct size
Solar-flare Letter-vowel
7 —a— Random 0.192 1 —a— Random
0.147 BootstapilV —a— Bootstrap-LV
172
0127 4
0152
0107 4 12
=
= 0132
0LO8T A
0112 4
0.067
0.092 4
0.047 T T T r 0072
3 272 ] ] el
2 2 T::Em'g T e e 522 23522 4522 622 82 10522
T'raining set size

Figure 7:  Learning curves for data sets where Boorstrap-Lv and Ranpom show
comparable performance

4.3 Experiments with Bagged PETs Model

In order to verify that Boorstrap-Lv is effective not solely with PETs, we also ex-
perimented with a differently CPE learner. Bagged-PETs is an ensemble of bagged
(Brieman, 1996) trees, where each tree is induced from a differently bootstrap (Efron
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and Tibshirani, 1993) sample. The trees are used to estimate the class probability of
an instance by averaging the CPEs of the PETs in the ensemble. Bagged-PETs are
not comprehensible models, but have been shown generally to produce superior
CPEs compared to single PETs (Bauer and Kohavi, 1999; Provost et al., 1998; Pro-
vost & Domingos, 2000).

BootstraP-LV's petformance for the bagged-PETs model concurs with the results
obtained for individual PETs. Particularly, for 15 of the data sets Boorstrap-Lv exhib-
ited phases-gained of more than 65% (in 13 of those phases-gained is more than
75%). The average of the top-20% example gain was 25% or higher in 11 of those
data sets. Only in two data sets is phases-gained less than 40%.

Figure 8 shows a comparison between Boorstrap-Lv and Ranpom for individual
PETs and for bagged-PETs. The overall etror exhibited by the bagged-PETs is lower
than for the PET, and for both models Boorstrar-Lv achieves its lowest etror with
considerably fewer examples than are required for RanpOM.
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Figure 8: CPE learning curves for the Hypothyroid data set showing performance for
Bootstrap-Lv and Ranpom with bagged PETSs and single PETs.

4.4  Other Evaluation Criteria

We also evaluated Boorstrar-Lv using alternative performance measures: the 0/1
mean squared error measure used by Bauer and Kohavi (1999), as well as the area
under the ROC curve (denoted AUC) (Bradley 1997), which specifically evaluates
ranking accuracy.

The results for these measures agree with those obtained with BMAE. For exam-
ple, Boorstrar-Lv generally leads to fatter ROC curves with fewer examples. Figure 9
presents learning curves of both measures for the Car and Pendigits and Hypothyroid
data sets, whose learning curves using BMAE were presented earlier. As AUC and
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MSE also measure aspects of CPE accuracy they provide further evidence to the
efficacy of the Boorstrap-Ly algorithm.
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Figure 9: Learning curves for Area Under the ROC Curve and 0/1 MSE, comparing
BootstrRAP-LY and RANDOM

18

Center for Digital Economy Research
Stern School of Business
Working Paper IS-01-03



Active Sampling for Class Probability Estimation and Ranking

4.5 Comparisons with Uncertainty Sampling

We now compare Boorstrap-Lv with an active learning algorithm previously shown
to improve classification accuracy. Since improved classification accuracy may also
result from improved class probability estimation error, it is important to evaluate
whether Bootstrap-Lv provides additional improvements. This comparison also pro-
vides interesting insights into the properties of these algorithms.

For the comparison we selected the well-known UNCERTAINTY SAMPLING algorithm
(Lewis and Gale, 1994), proposed for active learning of binary classifiers. Our choice
was based on the generality of the algorithm, allowing it to be applied with an arbi-
trary modeling scheme (that produces CPEs) and an arbitrary data set. In addition,
UNCERTAINTY SAMPLING focuses on identifying training examples and does not change
the classifier architecture. In contrast, some active learning algorithms result in an
ensemble of classifiers (Abe and Mamitsuka, 1998) (Iyegar ez a/). Comparing these to
active learning for single classifiers (with active or random selection) confounds the
effects of active learning and producing ensembles®. UNCERTAINTY SAMPLING allows us to
compare the selection mechanism of the two algorithms over a wide range of do-
mains.

We present a summary of the comparison results in Table 2, where all the measures
are the same as in Table 1, except that the baseline comparison 15 UNCERTAINTY SAM-
pLING rather than Ranpowm.

Bootstrap-LV exhibits markedly superior performance compared to UNCERTAINTY SAM-
pLinG. Particularly, Boorstrar-Lv is superior for 13 of the data sets (bold), and for 6
data sets the methods exhibit comparable performance, where phases with positive
gain for Boorstrap-LY is between 50% and 60%. UNCERTAINTY SAMPLING exhibits superior
petformance for one data set, Solar-flare, for which it produces better probability
estimations (in the prior comparison for this data set BootstrAp-LV wasn’t considerably
better than RANDOM).

Several factors contribute to the weak performance of UNCERTAINTY SAMPLING for
CPE compared to Boorstrap-Lv. To understand them, recall the differences between
UNCERTAINTY SAMPLING and Bootstrap-Lv: the effectiveness score each algorithm assigns
to potential learning examples and the mechanisms they employ to sample/select
examples for labeling. Consider the latter first. Because it uses direct selection, UNCER-
TAINTY SAMPLING does not account for the potential relevance of a learning cxample for
improving the estimation of other examples in the space. It therefore is susceptible to
selecting examples with little contribution to the average error across the example
space. This may degrade its performance, particularly compared to random sampling.
Second, its effectiveness score causes UNCERTAINTY SAMPLING to prefer examples whose
CPE is close to 0.5. Thus examples whose true class probability is close to 0.5 and

45 . . : .
Ensembles usually improve learning curves even with random selection
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that are captured corvectly by the model (hence their CPE is close to 0.5 as well) are
more likely to be selected, yet they provide little or no new information to the model.
Similarly, UNCERTAINTY SAMPLING 1s less likely to select examples whose CPEs are close
to either 1 or 0, even when these estimations are erroneous. Note that because UncEr-
TAINTY SAMPLING was designed for classification, this is reasonable. A CPE that is on
the “correct” side of the decision boundary is sufficient to make a correct classifica-
tion, even though it may exhibit a large estimation etror. Hence, this policy is likely to
be productive for selecting examples to improve classification accuracy, but will deny
information important for the learner to improve the model’s CPEs.

Table 2: Improvement in examples needed and improvement in error using BOOTSTRAP-LV
versus UNCERTAINTY SAMPLING

Data set Phases with Top per Top gain Avg per gain Avg gain  Top error
positive gain (Yo)  gain # (o) (#) reduction (%)
()

abalone 50.00 61.09 801 17.63 102 14.11
adult 69.23 35.03 284 9.56 69 11.13
breast cancer-w 55.56 49.37 144 10.90 15 20.20
car 62.50 50.46 68 9.95 6 36.30
codingl 93.75 63.25 1027 31.77 686 6.74
connect-4 89.47 85.52 3230 43.89 1958 54.02
contraceptive 50.00 54.87 126 11.76 21 10.01
german 81.25 48.14 146 24.74 69 8.12
hypothyroid 71.43 6230 307 17.10 85 62.72
kr-vs-kp 94.74 57.711 144 33.90 90 60.43
letter-a 85.00 44.34 m 15.50 395 21.29
letter-vowel 100.00 81.27 14210 63.80 11463 44.97
movel 100.00 62.89 247 39.96 194 16.29
ocrl 100.00 51.90 256 35.86 146 34.30
optdigits 100.00 4413 1359 26.08 570 3491
pendigits 95.00 60.85 1636 27.45 996 38.30
sick-euthyroid 100.00 84.12 1692 59.13 1093 40.51
solar-flare 0.00 -2.98 -17 -16.66 -69 -1.64
weather 56.25 35.06 351 6.32 3 1.98
yeast 53.33 40.38 121 7.74 3 6.03

Note that when CPEs are extreme but on the “correct side” of the decision
boundary, an effort to select examples to improve CPE may undermine an improve-

ment in classification accuracy. This may be inferred from Friedman’s analysis of
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classification error (Freidman, 1997). In particular, binary classification error is mini-
mized if the class most likely to occur is predicted. The probability that due to erro-
neous CPE the predicted class ¥ is not the most likely class, denoted y, , is given by

PG #y,)=1(f <UD[ p(Hdf +1(f 22| p(Hdf

where I(A)= 1, if A is true, and I(A)=0 otherwise.
Assume also that p(f) is approximated with a standard normal distribution. This
probability then is given by:

var f

where® is the upper tail area of the standard normal distribution, and E denotes a
statistical expectation’. Given a certain estimation variance, when the true class prob-
ability f and the expected probability estimation, Ef , are on the same “side” of the
decision boundary, the farther Ef is from 0.5, the more the probability of a classifica-
tion error is reduced because it is less probable for the estimated class probability to
be on the “wrong” side of the decision boundary.

Therefore, for an active learning algorithm aiming to improve classification accu-
racy, it may not be always beneficial to improve CPEs. For instance, consider a true
class probability of 0.6 and a mean estimation for the estimation procedure of 0.8. An
attempt to alter the procedure to reduce the mean estimation to 0.6 increases the
likelihood of an estimation that is below 0.5, particularly when the estimation variance
is large, thus increasing the likelihood of a classification error.

P(y# yL)=¢)[sfgn(f —IIZJM]

4.6 The Effect of Weight Sampling

We argued earlier for the role of weight sampling in generalization error reduction.
Particularly, we argued for its ability to account for an example’s potential for reduc-
ing the error of other examples in the example space. Figure 8 shows for the Pendig-
its data set the error obtained with weight sampling (viz., using BOOTSIRAP-LY),
BootstRAP-LY using direct selection instead (with the same effectiveness score), and
random sampling. For readability we present the first 10 samples.

As can be seen in Figure 8, in the initial and most critical sampling phases for active
learning, weight sampling results in lower error compared to direct selection and to
random sampling. This phenomenon is present for most data sets we experimented
with. The superiority of Boorstrap-Lv over random sampling demonstrates first that
the weights assigned to examples in Boorstrar-Lv, and which underlie the sampling
process, provide useful information for selecting more informative training examples.
The models induced when these weights are ignored and examples are sampled at

5 Note that with respect to an active leaning algorithm the estimation procedure whose vari-
ance and expectation appear in the formulation above also incorporates the choice of learning
examples.
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random (ie., all weights are equal) are inferior to those induced when the assigned
weights are incorporated to direct the sampling process.
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Figure 8: Learning curves for Weight-sampling, Direct Selection with BOOTSTRAP-LV’S
effectiveness score, and RANDOM

Second, weight sampling also is important because direct selection often provides
results inferior to Boorstrap-Lv. As discussed in section 2, we argue that weight sam-
pling is important in order to select examples more likely to affect other examples in
the space, and to avoid selecting training examples that although not well captured by
the model (and hence their estimation may be improved) will not provide information
about (many) other examples in the space, and therefore are not likely to reduce the
generalization error significantly. These considerations may result in worse etror re-
duction for Direct Selection as observed for Direct Selection compared to BOOTSTRAP-
1v. Apparently, making decisions based on the potential of reducing the etror of a
single example, as some methods do, is not sufficient. It is important to consider the
effect of each training example on the general population of examples in the space.
This we argue is enabled with weight sampling.

4.6.1 Improving the Uncertainty Sampling Algorithm for CPE

To demonstrate the effect weight sampling has on identifying informative exam-
ples, we propose an improvement to UNCERTAINTY SAMPLING by incorporating weights
which reflect the UNCERTAINTY SAMPLING rationale (for its effectiveness score) and then
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to weight-sample examples according to their weights. We will show how the per-
formance of this algorithm improves CPE and compare it to BOOTSTRAP-LV.

Since UNCERTAINTY SAMPLING selects examples whose CPE is close to 0.5, we assign
to each example a weight that reflects this distance. In particular, at each sampling
(05-j0.5-p)))

R
R is 2 normalization factor such that W is a distribution. The probability of an exam-
ple being sampled increases the closer its CPE is to 0.5. The algorithm denoted
WEIGHTED UNCERTAINTY SAMPLING (WUS), is described in Figure 9 below.

phase s, the weight assigned to example X; is given by w, (x,)= , where

Input: an initial labeled set L, an unlabeled set UL, an inducer I,
a stopping criterion, and an integer M specifying the number of actively selected ex-
amples in each phase.
1 While stopping criterion not met
/* perform next phase: */

2 Apply inducer I to L
(05-jos5-p])

R
4 Sample from the probability distribution W,, a subset S of M examples from

3 For each example {x |x eUL} assign weight W (x)=

UL without replacement
5 Remove S from UL, label examples in S, and add them to L
6 end for
Output: estimator E induced with I from L

Figure 9: WEIGHTED UNCERTAINTY SAMPLING Algorithm

Comparing the new WUS algorithm with Bootstrar-Lv for CPE we see that WUS is
much more competitive with BoorstraP-Lv than UNCERTAINTY SAMPLING. A summary of
the results is presented in Table 3. Boorstrap-Lv outperforms WUS for 8 data sets (in
bold), Boorstrap-Lv and WUS are comparable for 10 data sets and WUS is superior in
two (italicized). In comparison Boorstrap-Lv provides superior CPEs compared to
UNCERTAINTY SAMPLING for 14 out of 20 data sets. For six data sets in which UncerTaNTY
SAMPLING is inferior to BooTstrap-Lv, WUS exhibits comparable performance to that of
Bootstrap-Lv. Overall Boorstrap-Lv remains superior, yet the new WEIGHTED UNCER-
TAINTY SAMPLING algorithm exhibits improved performance compared to UNCERTAINTY
SAMPLING.

Figure 10 shows CPE learning curves for the BOOTSTRAP-LY, UNCERTAINTY SAMPLING
and UWS for the Connect-4 data set. Whereas UNCERTAINTY SAMPLING is inferior to
Bootstrap-Lv for the Connect-4 data set, WUS’s performance is comparable to that of
Bootstrap-Lv. This can be ptimarily attributed to WUS accounting for a broader set of
considerations when selecting examples, particulatly WUS’s consideration of the po-
tential error reduction effect an example may have on other examples in the space,
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whereas UNCERTAINTY SaMPLING merely considers the potential to improve the examined
example’s classification accuracy.

Figure 11 shows learning curves of the three algorithms for the sick-euthyroid data
set, where similarly, WUS’s performance is considerably better than that of Uncer-
TAINTY SAMPLING, but the CPE generalization error of Boorstrap-Lv still is better than
that obtained with WUS. The improved performance of Boorstrap-Lv in 8 data sets
demonstrates that the weights assigned by Bootstrap-Lv better support the sampling
mechanism in identifying informative examples to improve CPE. As we discuss in
section 4.2, weights assigned to examples in UWS may not always be adequate to im-
prove CPEs. Particularly, the focus on selecting examples whose CPE is closer to 0.5
and avoiding examples whose CPE is closer to either 0 or 1 sometimes is detrimental
to reducing CPE generalization error.

Table 3: Improvement in examples needed and improvement in error using
BOOTSTRAP-LV versus WEIGHTED UNCERTAINTY SAMPLING

Data set Phases with Top pergain  Top  Avg per gain Avg gain  Top error
positive gain (%) (%o) gain (%o) (#) reduction (%)
(#)
abalone 57.1 4630 577 797 62 3.57
adult 76 14.07 414 499 123 2.71
breast cancer-w 44.44 18.75 44 0.10 9 6.86
AL 92.85 17.62 136 9.74 67 14.08
codingl 87.5 28.33 671 16.55 379 2.77
connect-4 47.36 18.11 413 2.10 27 3.07
contraceptive 33.33 14.15 58 251 5 319
german 68.75 43.01 133 17.24 43 6.66
hypothyroid 100 81.83 1782 65.41 1260 62.08
kr-vs-kp 31.57 3.77 5 -1.34 5 3.84
letter-a 30 13.30 693 -7.23 -583 7.26
letter-vowel 46.66 10.73 765 0.32 24 3.44
movel $8.88 26.73 138 13.45 62 8.1
ocrl 625 13.74 66 2.68 16 11.20
optdigits 64.28 20.40 721 8.32 229 12.14
pendigits 90 5340 4064 3639 2468 22.85
sick-euthyroid 100 53.61 859 41.33 537 17.54
solar-flare 0 246 19 1679 56 9.11
Weather 52.63 17.80 328 0.35 45 1.50
yeast 73.33 41.79 189 16.59 64 5.03
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Figure 10: An example where WUS is superior to UNCERTAINTY SAMPLING and achieves
performance comparable to that of Boorstrap-Lv
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Figure 11: Bootstrap-Lv remains superior but WUS shows significant improvements
compared to UNCERTAINTY SAMPLING
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The above results suggest that given an informative effectiveness score, weight
sampling indeed provides important additional information, improving the selection
of informative training examples. Given the performance of the two algorithms, the
effectiveness score computed in Boorstrap-Lv is superior to the score assigned to
examples by WUS, yet the effectiveness score in WUS 1s informative. As we discuss
earlier in the paper, by preferring examples whose CPE is close to 0.5 WUS identifies
examples whose class is uncertain; however, such uncertainty also implies uncertainty
regarding CPE and can benefit from gaining more relevant evidence. Yet BOOTSTRAP-LY
produces better results because WUC may fail to identify all CPE uncertainties, par-
ticularly when these uncertainties do not imply class uncertainty. In addition, as we
mentioned above, CPE that is close to 0.5 does not necessarily imply class (or CPE)
uncertainty when the true CPE is also close to 0.5 and is correctly estimated by the
model.

Our results with WUS further suggest that algorithms for improving classification
accuracy can capitalize on weight sampling. For example, it is likely that UWS will also
exhibit improved performance compared to UNcERTAINTY SAmPLING for classification
accuracy. Similarly, other effectiveness scores proposed to identify examples to in-
crease classification accuracy, such as entropy, and that do not incorporate additional
measures to capture the effect of a learning example on other examples in the space
are likely to benefit from weight sampling.

6 Limitations

Although Bootstrar-1v’s performance surpasses the performance of Weighted Un.
CERTAINTY SAMPLING, the latter also identify some CPE uncertainty and is computation-
ally simpler. Hence WUS may be considered for active learning of CPE when
computational concerns are particularly critical.

Boorstrar-Lv relies on detecting variance in CPE to infer what examples are useful
to obtain more accurate estimation. Its performance may be hampered when a low
variance model such as logistic regression is used for learning.

BootstraP-LV also does not address computational concerns, as do Lewis and Catlett
(Lewis and Catlett, 1994). Indeed it requires the induction of multiple models from a
set of bootstrap samples. However, because of the typical shape of the learning curve,
beyond a certain training set size the marginal error reduction is insignificant, whether
active learning or random sampling is employed. Thus, intelligent selection of exam-
ples for learning is only critical in the early part of the curve. Therefore, if the number
of training examples remains relatively small multiple model inductions from boot-
strap samples do not constitute a considerable computational toll. Boorstrap-Lv pro-
vides an appropriate solution whenever labeling costs are more important than
computational costs, such as when the primary concern is to obtain accurate CPE or
ranking with minimal costly labeling.
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7  Conclusions

Boorstrar-Lv was designed to use fewer labeled training data to produce accurate
class probability estimates. The algorithm addresses two key components of active
learning: an effectiveness score and a selection procedure, which complement each
other to identify particularly informative examples for learning class probability esti-
mates. BoOTsTRAP-LV is domain independent and is not restricted to a particular learn-
ing algorithm.

An empirical evaluation of the approach shows that it performs remarkably well.
The evaluation encompasses a wide range of benchmark domains providing compre-
hensive evidence for the efficacy of the algorithm. We show how the information
provided by the effectiveness scores produces better results than can be obtained
with random sampling (i.e., when all weights are equal). We also show that Bootstrap-
Lv outperforms an existing active learning method, UncerTaINTY SAMPLING. We investi-
gate the properties of the algorithms to explain our empirical results. In particular, the
experimental results demonstrate how both the weights assigned to potential training
examples and the weight sampling procedure combine to produce superior CPEs. We
also examine the properties of the UNCERTAINTY SAMPLING algorithm compared to those
of BooTsTRAP-LV to explain the compatison in performance for estimating class prob-
abilities.

Lastly, we use the results of this investigation to propose another active learning al-
gorithm, WEIGHTED UNCERTAINTY SAMPLING, which assigns effectiveness scores reflecting
the rationale of Uncertainty SAMPLING’S effectiveness score, but which in addition,
employs the scores to weight sample examples for training. A comparison with Boot-
sTRAP-LV reveals that Boorstrap-Lv still is superior for improving CPEs, demonstrating
the value of Boorstrap-Lv’s effectiveness score, but also demonstrates the advantages
conferred by weight sampling. Our empirical analysis suggests the application of
weight sampling with other effectiveness scores proposed in the literature for the
active learning of classifiers.

Making decisions in cost sensitive environments often resorts to decision-theoretic
approaches for evaluating alternatives, requiring the estimation of probabilities of
events or classes to score alternative outcomes. The cost-sensitive nature of such
environments can greatly benefit from active learning of class probability estimations
and rankings of alternatives. Bootsrrap-Lv was designed to address this need. The
paper provides a comprehensive study of the performance of the Bootstrar-Lv algo-
rithm with respect to several alternative approaches and highlights the properties
responsible for the observed behavior.
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Appendix A

Learning curves: BOOTSTRAP-LV and RANDOM
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