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Abstract 

In many cost-sensitive environments class probabihty estimates are used by deci- 
sion makers to evaluate the expected utility from a set of alternatives. Supervised 
learning can be used to build class probability estimates; however, it often is very 
costly to obtain training data with class labels. Active samplmg acquires data in- 
crementally, at each phase identifying especially useful addttional data for labeling, 
and can be used to economize on examples needed for learning. We outline the 
critical features for an active sampling approach and present an active sampling 
method for estimating class probabilities and ranking. ROOTSTRAP-I~V identifies par- 
ticularly informative new data for learning based on the variance in probability es- 
timates, and by accounting for a particular data item's informative value for the 
rest of the input space. We show empirically that the method reduces the number 
of data items that must be obtained and labeled, across a wide variety of domains. 
We investigate the contribution of the components of the algorithm and show that 
each provides valuable information to help identify informative examples. We also 
compare B o m s r ~ z ~ - r . v  with UNCERTAIN~Y SALPI-ING, an existing active samplmg 
method designed to maximize classification accuracy. The results show that Boo-r- 
STIWP-I~V uses fewer examples to exhibit a certain class probability estimation accu- 
racy and provide insights on the behavior of the algorithms. Finally, to further our 
understanding of the contributions made by the elements of BOOTSTRAP-I~V, we ex- 
periment with a new active sampling algorithm drawing from both UNCERTAINIY 
SA~PI.ING and BOOTSTMP-LV and show that it is significantly more competitive 
with Boursr~i . - r , \~  compared to UNCIIRTAIN.IY SAMPI~ING. The analysis suggests 
more general implications for improving existing active sampling algorithms for 
classification. 

Keyword: Active learning, class probability estimation, cost-sensitive learning 
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1. Introduction 

Supervised classifier learning requires data with class labels. In many applications, 
procuring class labels can be costly. For example, to learn lagnostic models experts 
may need to read many historical cases. To learn document classifiers experts may 
need read many documents and assign them labels. To learn customer response mod- 
els, consumers may have to be gven costly incentives to reveal their preferences. 

Active samplmg processes data incrementally, using the model learned "so far" to 
select particularly helpful additional training examples for labehg. When successful, 
active samplmg methods reduce the number of instances that must be labeled to 
achieve a particular level of accuracy. Most existing methods and particularly empiri- 
cal approaches for active learning address classification problems-they assume the 
task is to assign cases to one of a f ~ e d  number of classes. 

Many applications, however, require more then simple classification. In particular, 
probabhty estimates are central in decision theory, allowing a decision maker to in- 
corporate costs/benefits for evaluating alternatives. For example, in target marketing 
the estimated probab~lity that a customer d respond to an offer is combined with 
the estimated profit (Zadrozny and Elkan, 2001) to evaluate various offer proposi- 
tions. Other applications require r a n h g  of cases, to improve consumer response rate 
to offer propositions, as well as to add flexibhty for user processing'. For example, 
documents can be ranked by their probability of being of interest to the user, and 
offers to consumers may be presented/proposed in order of the probabhty of pur- 
chase or of the expected benefit to the seller. We therefore focus on learning class 
probabhty estimation (CPE) models. 

143 343 543 7 43 943 1143 
, . I raining set stze 

Classification accuracy has been criticized previously as a metric for machine learning research 
(Provost et al., 1998). 
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Figure 1: Learning curves for active samphg vs. random sampling 
In tlvs paper we consider active samphg to produce accurate CPEs and class-based 
r a n h g s  from fewer learning examples. Figure 1 shows the desired behavior of an 
active learner. The horizontal axis represents the information needed for learning, 
i.e., the number of training examples, and the vertical axis represents the error rate of 
the probabiltties produced by the learned model. Each learning curve shows how error 
rate decreases as more training data are used. The upper curve represents the de- 
crease in error from randomly selecting training data; the lower curve represents ac- 
tive learning. The two curves form a "banana" shape: very early on, the curves are 
comparable because a model is not yet available for active learning. The active sam- 
p h g  curve soon accelerates, because of the careful choice of training data. Given 
enough data, random selection catches up. 

We introduce a new active sampling technique, Hoo-rs~%\~-r.v, for learning CPEs. 
ROOTSTRAI~-I~V uses bootstrap samples (Efron and Tibshirani, 1993) of avadable training 
data to examine the variance in the probabhty estimates for not-yet-labeled data, and 
employs a weight sampling procedure to finally select particularly informative exam- 
ple for learning. We show empirically across a wide range of data sets that B o o ~ s r ~ n ~ ~ -  
1.v decreases the number of labeled instances needed to aclveve accurate probabiltty 
estimates, or alternatively that it increases the accuracy of the probabiltty estimates for 
a fixed number of training data. careful analysis of the algonthm's characteristics 
and performance reveals the contributions of its components. The analysis also leads 
to a new algorithm for active sampling that is more competitive compared to other 
methods with respect to Boo-rs.r~\~-r~v and has computational advantages. The latter 
further demonstrates how the components of the Boms- i -~~- r ,v  algorithm contribute 
to its efficacy and highlights why existing algorithms do not perform well for CPE. 

2. Active Learning and the Bootstrap-LV Algorithm 

The fundamental notion of active sampling has a long history in machme learning. 
To our knowledge, the first to &scuss it explicitly were (Simon and Lea, 1974) and 
(Winston, 1975). Simon and Lea describe how machine learning is different from 
other types of problem solving, because learning involves the simultaneous search of 
two spaces: the hypothesis space and the instance space. The results of searchmg the 
hypothesis space can affect how the instance space wdl be sampled. Winston &s- 
cusses how the best examples to select next for learning are "near misses," instances 
that miss being class members for only a few reasons. Subsequently, theoretical re- 
sults showed that the number of training data can be reduced substantially if they can 
be selected carefully (Angluin, 1988). The term active learning was coined later to de- 
scribe induction where the algorithm controls the selection of potential unlabeled 
training examples (Cohn e t  aL, 1994). 
X generic algorithm for active learning is shown in Figure 2. A learner first is ap- 

plied to an initial set L of labeled examples (usually selected at random or provided by 
an expert). Subsequently, sets of M examples are selected in phases from a set of 
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unlabeled examples UL, until some predefined condition is met (e.g., the labehg 
budget is exhausted). In each phase, each candidate example x, E UL is assigned an 
effectiveness score E S ~  based on an objective function, reflecting its contribution to 
subsequent learning. Examples then are selected for labehg based on their effective- 
ness scores. Often, multiple examples, rather than a single example, are selected in 
each phase due to computational constraints. Once examples are selected, their labels 
are obtained (e.g., by querying an expert) before being added to L, to whlch the 
learner is apphed next. 

Input: an initial labeled set L, an unlabeIed set UL, an inducer I, 
a stopping criterion, and an integer M specifying the number of actively selected exam- 
ples in each phase. 

1 While stopping criterion not met 
/* perform next w: */ 

2 Apply inducer I to L 
3 For each example { 3 1 x; E UL) compute ES, , the effectiveness score 

4 Select a subset S of size &I from CrL based on ES, 
5 Remove S from UL, label examples in S, and add S to L 
Output: estimator E Induced wlth I from the h a 1  labeled set L 
Figure 2: Generic Active Learning Algorithm 

The objective of active learning is to select examples that d reduce the generahza- 
tion error of the model the most. The generali~ation error is the expected error across 
the entire example space. Therefore when evaluating a learning example an optimal 
active learning approach must evaluate the expected reduction in generahzation error 
if the example were to be added to the training set from which the model would be 
induced. The example that is expected to reduce the generalization error the most 
should be added to the training set. 

We are interested in an active learning scheme that will apply to arbitrary learners, 
thus computational considerations may prohibit us from examining the models 
resulting from addmg each potential unlabeled example to the training set (as pre- 
scribed by Roy and McCallum @oy and McCallum, 2001). We therefore resort to an 
indirect estimation of potential learning examples' informative value. Also, we con- 
sider the potential of each learning example to help improve the estimation of other 
examples in the space not only the performance of its own class probabihty, which we 
describe in detad below. 

Given the generic framework presented in Figure 2, BoMS~RAI'-I-V embodles a par- 
ticular instantiation of steps 3 and 4. The description we provide here pertains to 
binary classification problems. 

Since our goal is to reduce the class probabAty estimation (CPE) error, it is useful 
to understand its sources. A model's estimation f ( x  I T )  for a particular input x de- 
pends upon the sample T from whlch the model is induced, and therefore can be 
treated as a random variable. Let f (x) be the underlying function describing the 
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probabdtty of class membership for a case described by input x. One indtcation of the 
qztalig of the current class probability estimate j (x 1 T )  for example x gven a training 
set T is the expected estimation (absolute) error, reflecting the discrepancy between 
the estimated probabhty and the true probabhty, i.e., I f ( x )  - j ( x  I I") I .  We may infer 
from the dscrepancy whether addttional information is needed to improve the 
model's estimation. Note however, that in an inductive learning setting the class prob- 
abi6p for an input, f ( x ) ,  is not known to us, even when an instance's true class is 
known. 

A common formulation of the estimation error (Friedman, 1997) decomposes the 

expected squared estimation error into the sum of two terms: 

~ ~ [ ( f  ( X I  - . f ( x  I T)I' = ~ , [ . f ( x  1 T )  - E ~ . ~ ( x  1 T)]' + [ f (n )  - E , . ~ ( x  I T ) ] ' ,  
E ( . )  represents expectation across training sets T. The first term in the sum is re- 
ferred to as the "variance" of the estimation and reflects the sensitivity of the estima- 
tion to the training sample. The second term is referred to as tI~e (squared) "bidS', 
reflecting the extent to which the induced model can approximate the target function 
f ( x )  (Friedman, 1997). Both the estimation error and the estimation bias refer to the 

actual probabdtty function, f ( x )  , which as mentioned is not avadable for an induc- 
tive learning algorithm to consider. Therefore it is impossible to compute them di- 
rectly. The estimation "variance", however, reflects a behavior of the estimation 
procedzlre without reference to the underlying probabhty finction. 

In order to reduce the estimation error the Boo.r.ss.i~\~~-~~v algorithm estimates and 
then tries to reduce the estimation variance. The estimation variance for a certain 
input is referred to as the "local variance" (LV) to dfferentiate it from the model's 
expected variance over the entire input space. We ignore the bias, or alternatively 
assume the bias is zero. 

The ~ o o r s . s ~ ~ ~ - r ~ v  algorithm, shown in Figure 3, first estimates the estimation vari- 
ance of each potential learning example (the LV). If the LV is high, we infer that this 
example is not well captured by the model gven the avadable data. The local variance 
also reflects the potential error reduction if this variance were reduced as more exam- 
ples become avadable for the learner. BOOTSTRAP-I-v then employs the LV estimations 
together with a specialized sampling procedure to identify the examples that are par- 
ticularly lrkely to reduce the average estimation error across the entire example space 
(i.e., generalization error) the most. We first describe the estimation of the estimation 
variance. We then d dtscuss the sampling procedure. 

Given that an efficient closed-form estimation of the local variance may not be ob- 
tained for arbitrary learners, we estimate it empirically. The variance stems from the 
estimation being induced from a random sample. We therefore emulate a series of 
samples by generating a set of k bootstrap subsamples (Efron and Tibshirani, 1993) 
B, , j = 1, ..., k from L We generate a set of models by applying the inducer I to each 
bootstrap sample Bl , resulting in k estimators E l ,  j = 1, ..., k . To calculate the esti- 
mated variance, for each example in X,  E UL, we estimate the variance among CPEs 
predtcted by the estimators { E, ) . Finally, each example in X ,  E UL is assigned an 
effectiveness score that is proportional to its local variance. 
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Algorithm Roorsrup-LV 

Input: an initial labeled set L sampled at random, an unlabeled set UL, an inducer I ,  a stop- 
ping criterion, and a sample size M. 
2 for (s=l;untd stopping criterion is met; s++) 
3 Generate k bootstrap subsamples B ~ ,  j = l, . . . ,k from L 
4 Apply inducer I on each subrample h, and induce estimator E, 

5 For all examples ( x ,  I x, E UL) compute D( ~ = , ~ , ( + ) - z Y ) E  ,mzn , xi)= R 
6 Sample from the probabihty hstribution q., a subset S of A4 examples from U L  with- 

out replacement 
7 Remove S from UL, label examples in S, and add them to L 
8 end for 
Output: estimator E induced with I from L 

Figure 3: The Roo.rsntk~>-i~v .vAlgorithm 

The local variance provides an indication of the potential error reduction for each 
individual example in the example space if more relevant examples are provided to 
the learner. It does not however provide an indcation of how much is learned from 
each learning example about other examples in the space. We stated earlier that our 
objective is to reduce the generalization error by training a model with fewer, particu- 
larly informative examples, and we emphasized the potential impact a learning exarn- 
ple may have on reducing the estimation error of other examples in the example 
space. Consider an active learning algorithm where the effectiveness score reflects the 
potential contribution of a learning example to reducing its own error. Also assume 
examples are selected in order of their effectiveness score, such that the examples 
with the highest scores are selected for labeling first. We refer to this approach as 
Direct Selection. Direct selection ignores information about how the class probabihty 
estimation error of other examples in the space may be affected by adding an example 
to the training set. The latter, however, is essential to evaluate the expected effect an 
example may have on the generahzation error. 

Random sampling is often referred to in the active learning literature as non- 
informed learning (e.g., (Cohn et al., 1994, Lewis and Gale, 1994)). Nevertheless, 
random samphg is powerfd because it allows the incorporation of information 
about the hstribution of examples even when the information is not known explic- 
itly. For example, consider the case when examples for labeling are sampled at ran- 
dom. An example map inform the learning about other examples in the space if it 
shares some common features with these examples. Consider a set of examples shar- 
ing a set of features. With random sampling, the larger this set the more likely it is 
that an example from t h s  set is sampled, providing information about a larger num- 
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ber of examples. Note that h s  property is obtained without having to capture explic- 
itly how examples are associated with each other. 

In order to reduce the average error across the example space ROOTST&\P-I.V incor- 
porates samphg into the selection of training examples by weight sampling examples 
for labeling. In particular, the probabhty of each example to be sampled is propor- 
tional to its local variance. 

Specifically, the dstribution from which examples are sampled is gven by 

Q(x,)= @ - = l ( p ~ ( x t ) - ~ l ~ ~ E . -  , where pi ( x i )  denotes the estimated probabihty an esdma- 
R 

tor E, assigns to the event that example xi belongs to one of the two classes (the 

choice of performing the calculation for either class is arbitrary because the variance 
for both classes is equal); F~ = C:., P,(x,) ; IS,,,." i s the  average probabhty estimation 

k 

assigned to the minority class by the estimators ( E ! )  , and R is a normahzing factor 
st:e(UL) 

(P j (xi - ~i Y v ~ ~ , r n "  
, so that D~ is a dstribution. R = xi=, 

There is one addtional technical point of note. Consider the case where the classes 
are not represented equally in the training data. When high variance exists in regons 
of the domain for which the minority class is assigned high probability, it is kkely that 
the regon is relatively better understood than regons with the same vdnance but for 
which the majority class is assigned high probabhty. In the latter case, the class prob- 
abhty estimation may be exhibiting high variance due simply to lack of representation 
of the minority class in the training data, and would benefit from samphg more in 
the respected regon. Therefore the estimated variance is dvided by the average value 
of the minority-class probabihty estimates The minority class is determined 
once from the initial random sample. 

3. Related Work 

Cohn et al. (Cohn et al., 1996) propose an active learning approach for statistical 
learning models, generating queries (i.e., learning examples) from the input space to 
be used as inputs to the learning algorithm. This approach directly evaluates the effec- 
tiveness score, i.e., the informative contribution of each example to the learning task. 
At each phase the expectation of the variance of the model over the example space is 
used to generate the example that minimizes this variance. Since it requires a compu- 
tation in closed form of the learner's variance, this approach is impracticable for arbi- 
trary models. In addtion, queries are generated whereas here we are interested in 
identifying informative examples from an existing set of avadable unlabeled examples 
(a subset of the set of possible queries). 

When an efficient closed-form estimation of the expected generalization error is 
not avdable, the models that result from adding each potential learning example to 
the training set can be induced in order to estimate the expected changes in generali- 
zation error. Roy and McCallum (Roy and McCallum, 2001) propose this approach 
for buildtng classifiers. At each phase they update the current model with each ad&- 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-0 1-03 



Saar-Tsechansky & Provost 

tional learning example for each possible label and calculate an effectiveness score, 
measured as class entropy, as an estimate of the improvement in classification error. 
They then select the example bringmg about the greatest expected reductJon of en- 
tropy. The algorithm was shown to be effective, reducing the number of examples 
needed to obtain a certain level of accuracy. For many learning algorithms, however, 
the induction of a new model for each possible training example may be prohibitively 
expensive. A critical requirement for their approach, therefore, allowing it to be com- 
putationally tractable, is that the learning algorithm allows efficient incremental up- 
dates of the model, such as the Nalve Bayes algorithm used to classify text documents 
in the paper (Roy and McCallum, 2001). 

When an efficient closed-form computation of the error or incremental model 
updates are not possible, various active learning approaches compute alternative ef- 
fectiveness scores. In particular, the QUERY BY COML~IT~EE (QRC) algorithm (Seung e t  
a1.,1992) was proposed to select learning examples actively for training a binary classi- 
fier. Examples are sampled at random, generating a "stream" of potential learning 
examples, and each example is considered informative (and thus is labeled) if classifi- 
ers sampled from the current version space lsagree regardmg its class prelction. 
The O,RC algorithm employs Qsagreement as a binary effectiveness score, designed 
to capture whether or not uncertainty exists regardmg class prediction given the cur- 
rent labeled examples. 

McCallum and Nigam (McCallum and Nigam, 1998) note that a Qsadvantage of the 
"stream-based7' QBC approach lies in the decision of whether to label an example 
being "made on each document (i.e., example) inlvidually, irrespective of the alterna- 
tives". Alternatively, estimation uncertainty of all the unlabeled learning examples can 
be compared, allowing one to select at each phase the example(s) with the largest 
classification uncertainty. Various other approaches have been developed within the 
Query By Committee framework that identify informative examples for constructing 
classifiers and which use a variety of measures that quantify the level of uncertainty or 
the likehhood of classification error given the current labeled data. In particular, these 
effectiveness scores quantify the estimated informative value of each example to ob- 
tain a rankmg of the examples' informative values. Subsequently the example(s) with 
the highest effectiveness score(s) is (are) selected. 

For instance, Xbe and Mamimtsuka (Abe and Mamimtsuka, 1998) use baggng and 
boosting to generate a committee of classifiers and quantify disagreement as the mar- 
gm (i.e., the lfference in weight assigned to either class). Examples with the mini- 
mum margm are selected for labeling. The final classifier is composed of an ensemble 
of classifiers whose votes are used for class prediction. UNCI~RTAINTY SA~LIPI.ING (Lewis 
and Gale, 1994) was designed to select informative examples to construct binary clas- 
sifiers by adopting the uncertainty notion underlying the QBC approach, but instead 
of generating a committee of hypotheses to estimate uncertainty the algorithm em- 
ploys a single probabhstic classifier. Examples whose probabhties of class member- 
ship are closest to 0.5 are selected for labeling h s t .  UNCI<R.~AINT\' SA~PI~INC;  has several 
attractive properties that we return to below. 
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All these methods, as indicated by their effectiveness scores, are designed to in- 
crease classification accuracy, not to improve CPEs or ranhngs, which is our concern 
in this paper. In addition, differently from the approach we propose in this paper 
these methods do not incorporate the effect of a learning example on other examples 
across the example space. Particularly, they dtsregard the potential effect of a training 
example on reducing the error of other examples in the example space. Examples for 
which the current estimation is most uncertain may have no significant contribution 
to reducing the estimation error of other examples in the instance space. The failure 
to account for &Is effect was noted by Dagan and Engelson (Dagan and Engelson, 
1999) as well as by McCallum and Nigam (I'vfcCallum and Nigam, 1998) who pro- 
posed to incorporate an instance density measure explicitly into the effectiveness 
score, where the density measure reflects how s d a r  are other examples in the space 
to the one examined. The under1y~ng assumption is that the proposed s d a r i t y  
measure captures the relative effect an example would have on reducing the classifica- 
tion error of other examples in the space. The approach was shown to be effective in 
selecting informative examples for document classification. Yet the proposed density 
measure is specific to document items, where s d a r i t y  measures are avadable (e.g., 
TF/IDF'). It is not clear what an appropriate density measure may be for an arbitrary 
domain2. 

Our approach uses weight samphg, by which we argue it implicitly incorporates 
properties of the domain to support the selection of examples more Itkely to be in- 
formative regarding other examples in the space. Note that weight sampling also is 
employed in the ,ldaBoost algorithm (Freund and Shapire, 1996) on which Iyengar et 
al. (Iyengar et al., 2000) base their active learning approach. Their algorithm results in 
an ensemble of classif3ers where weight sampling is used both to select examples 
from which successive classifiers in the ensemble are generated as well as to select - 
examples for labehg. Iyengar et. a1 note that better results were obtained when ex- 
amples were sampled compared to when examples are selected by order of their error 
measure. They propose to study &Is phenomenon further and hypothesize that sam- 
p h g  allows their approach to avoid selecting the same examples repeatedly. How- 
ever, we argue that in addition weight samphg acts to increase the &elhood of 
selecting examples that are particularly informative for reducing the generalization 
error. As we discuss in the previous paragraph, selecting examples should address the 
relevance of each learning example to other examples in order to identify examples 
that wdl better decrease the average estimation error (i.e., the generalization error). 
Moreover, whereas the domain-specific approach of McCallum and Nigam modeled 
the example space explicitly and incorporated a measure of space density into the 
effectiveness score (I'vfcCallum and Nigam, 1998), the weight-sampling mechanism 
can be applied seamlessly for arbitrary domains. 

In sum, R o ~ Y ~ s I x ~ ~ ~ - I ~ v  employs an effectiveness score which identifies examples 
whose CPE varies highly. It uses this measure to indicate the potential improvement 

Roy and McCallum note the domain-specific limitation of this approach [Roy and McCallum, 
ZOOl]. 
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in class probabhty estimation error, rather than classification accuracy. ROOTSTILIP-I~V 

estimates local variance empirically, enabhg its computation with an arbitrary model- 
ing scheme. Lastly, we use a samphg mechanism to complement the selection of 
examples for learning. We argue that weight samphg can help account for the in- 
formative value an example confers for other examples in the space. 

4. Experimental Evaluation 

The experiments we descsibe here examine BO~Y~SIR~IP-LV'S performance over a 
range of domains in order to assess its general ability to identify particularly useful 
examples for learning. In section 4.1 we present our experimental setting. Sections 4.2 
and 4.3 present and discuss our results with simple probabhty estimation trees, and 
with bagged probability estimation trees, respectively. We discuss addition evaluation 
measures in section 4.4. In Section 4.5 we compare Ho~r.s-~xii.-~v with UNCEK~AINIY 

SLX~IPLING, an active learning approach for classifiers, to provide insights on the opera- 
tion of the algorithm and its advantage compared to existing approaches. Finally, 
experiments with a new active learning algorithm inspired by the empirical investiga- 
tion provide further insights into the elements of the Hoo.llr.~-~h~>-r~v algorithm. 

4.1 Experimental Setting 

We applied BOO~S~RAP-I ,~  to 20 data sets, 17 from the UCI machine learning reposi- 
tory (Blake et  dl'., 1998) and 3 used previously to evaluate rule-learning algorithms 
(Cohen and Singer, 1999). Data sets with more than two classes were mapped into 
two-class problems. 

For these experiments we use tree induction to produce class probabhty esti- 
mates2. In particular, for the experiments presented here, the underlying probabhty 
estimator is a Probabhty Estimation Tree (PET), an unpruned C4.5 decision tree 
(Quinlan, 1993) for which the Laplace correction (Cestnik, 1990) is applied at the 
leaves. Not pruning and using the Laplace correction had been shown to improve the 
CPEs produced by PETS (Bauer and I<ohavi, 1999; Provost et al., 1998; Provost & 
Domingos, 2000; Perlich et  a1 2001). 

To evaluate the predictive quahty of the CPE models induced by Boorsrw\~-r~v it 
would be desirable to compare against the true class probabhty values, for example, 
computing the mean absolute error with respect to the actual probabilities. However, 
in these data sets only class membership is observed and the true class probabhties 
are unknown. As models are learned from more data, performance improves typically 
as a learning curve; BOOTST~P-LV aims to obtain comparable performance with fewer 
labeled data (recall figure 1). We compare the probabhties assigned by the model 
induced with ROOTXK~P-LV at each phase with those assigned by a "best" estimator, 
E ~ ,  as surrogates to the true probabhties, where E, is induced from the entire set of 

available learning examples L u UL (where the labels of all examples are known to 

Probabiltty estimation trees are easy to build, fast computationally, robust across data sets, 
comprehensible to human experts, and produces surprisingly good probability-based rankings 
perlich et al., 20011 
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us). In particular, we induce E, using bagged PETs, which have shown to produce 

superior probabihty estimates compared to individual PETs (Bauer and Kohavi, 1999; 
Provost et al., 1998; Provost & Domingos, 2000). We then calculate the mean abso- 
lute error, denoted Bh/LAE (Best-estimate Mean Absolute Error), for an estimator E 

with respect to E, 's estimation. BhlAE is gven by BMAE= ~ ~ ~ P E ~ ( I ) - P E ( ~ ) /  , where 
N 

pEB (xi ) is the estimated probabhty gven by E, ; pE (x i  )is the probabhty estimated 

by E, and N i s  the number of (test) examples examined. 
We compare the performance of BOOTSTUP-I~V with a method, denoted by R~NDOM, 

where estimators are induced with the same inducer and the same training-set size, 
but for which examples are sampled at random. We compare across dfferent sizes of 
the labeled set L. In order not have very large sample sizes, M, for large data sets and 
very small ones for small data sets, we applied different numbers of sampling phases 
for dfferent data sets, varying between 10 and 30; at each phase the same number of 
examples was added to L. Results are averaged over 10 random, three-way partitions 
of the data sets into an initial labeled set, an unlabeled set, and a test set against which 
the two estimators are evaluated. For control the same partitions were used by both 
l L \ ~ ~ > ~ ~  and BOOTSI-RAP-~v. 

The banana curve in Figure 4 shows the relative performance for the Car data set. 
As shown in Figure 4, the error of the estimator induced with Boarsr1b\l>-IJv decreases 
faster initially, exhrbiting lower error for fewer examples. This demonstrates that ex- 
amples actively added to the labeled set are more informative (on average), allowing 
the inducer to construct a better estimator for a certain number of learning examples. 
Note that for visibhty the algorithms' performance with the initial labeled set (for 
which all algorithms perform identically) is not shown. 

Evaluations of active learning algorithms often present only the initial part of the 
learning curve to demonstrate the efficacy of the algorithm. We summarize the com- 
parative performance of the competing algorithms also across the entire leaning 
curve. In particular, the objective of Rotrrsr1~\1~-~v is to enable learning with fewer 
examples in order to obtain a certain level of CPE accuracy. For each data set we 
calculate a set of measures pertaining to the gain obtained with BOOTS~~R,\P-I~V in terms 
of the number of examples that d d  not need to be labeled when using Bool.s~m\r-~~v 

instead of R~NDOM. The number of examples gained for a certain performance level is 
demonstrated in Figure 4. For each sampling phase of the algorithm we calculate the 
dfference in the number of examples needed by B o o v s ~ m ~ ~ - ~ v  to obtain the exhibited 
error level and the number needed by R % ~ ~ o n z  to obtain the same error level. We 
calculate the average gain across all samphg phases, referred to as average gain, as 
well as the gain as a percentage of the number of examples needed by R % N ~ o n l  (i.e., 
the percentage of examples gained if BOOTSTK\P-I~V is used instead of IZANI>O~I), referred 
to as average percentage gain. For instance, in the Car domain (Figure 4) the average 
gain is 155 examples and the average percentage gain is 23.3% of the examples 
needed by RANDOM. 
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Because of the natural banana shape of the learning curves, even for the ideal case 
the performance of estimators induced from any two samples cannot be considerably 
different at the final samphg phases, as most of the available examples have been 
used by both sampling methods and therefore the samples obtained by the methods 
become increasingly s d a r .  Therefore an average across all phases merely provides 
an indication of whether BOOTSTR~IP-I-v produces superior estimations. Therefore it is 
even more tellulg to examine the improvement at the "fat" part of the banana (where 
the benefit of active learning is concentrated). To allow a stable assessment we pro- 
vide rather than the single best gain exhibited by Bomsrhii~-~.v in a certain samphg 
phase, the average gain of the top 20% samphg phases in which the largest gains 
were obtained. We call the latter the "top gain". We also compute the top gain as a 
percentage of the examples needed by RANDOM, referred to as percentage top gain. For 
instance, in the Car domain the top gain is 281 examples or 35.4% of the examples 
needed by RINl>Oh[. Lastly, we calculate the percentage of samphg phases in which 
R I N D O ~ ~  needs more examples to obtain the error level exhibited by BOOTSTR\P-I~\~. We 
refer to the latter as the percentage of phases with positive gain. 

Car 

Error redualon 

0 200 400 600 800 1000 1200 

Training set s h e  

Figure 4: Learning behavior of Boursmi\l.-r,v and RANDOM for the Car data set 

Finally, for each data set we also calculated the error reduction achieved by BOOT- 
STRAI>-LV with respect to Rh~noh t  for the same number of training examples. This di- 
mension also is demonstrated in Figure 4. As above we calculate the average error 
reduction for the 20% of the phases in which the largest error reduction is observed, 
and we refer to the latter as the top error reduction. For the Car domain the top error 
reduction is 31.3%. 
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4.2 Results: Bootstrap-LV versus Random Sampling 

For some data sets Aoo.rs.~mi.-I~v exhibits even more dramatic results than those 
presented for the Car data set above; Figure 5 shows results for the Pendtgts data set 
(the most impressive c'win"). BOOTSTRAP-LV achieves its almost minimal level of error at 
about 4000 examples. RANDOM requires more than 9300 examples to obtain this error 
level. It is important to note that an active learnkg algorithm's performance is par- 
ticularly interesting in the initial samphg phases demonstrating the performance that 
can be obtained for a relatively small portion of the data and therefore a small labehg 
cost. As can be seen in Figure 4, in the initial phases the error exlubited by the model 
induced from Boors.r~~.-r_v's selection of learning examples is reduced substantially 
faster than when examples are sampled randomly. 

352 2352 4352 6352 8352 
Training set size 

Figure 5: CPE learning curves for the Pendtgts data set. BOOTSTUP-I~V accelerates error 
reduction considerable in the initial sampling phases. 

For 5 of the 20 data sets, BOOTSTRAP-LV dtd not succeed in accelerating learning 
much or at all, as is shown for the Weather data set in Figure 6. Note that the accu- 
racy was comparable to that obtained with random samphg, as neither curve consis- 
tently resides above the other. This is dtscussed further below. 

Table 1 presents a summary of our results for all the data sets. The second column 
shows the percentage of phases with positive gain. The third and fourth columns 
show the top percentage gain and the top gain (respectively). The fifth and sixth col- 
umns of Table 1 show the average percentage gain and the average gain across all 
samphg phases by applying NOOTS?I~AP-I.\J. The seventh column presents the top error 
reduction. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-0 1-03 



Saar-Tsechansky & Provost 

0235 

174 674 1174 1674 2174 2674 3174 3674 

Training set size 

Figure 6: CPE learning curves for the Weather data set where Bootstrap-lv does not 
provide improvement in CPE 

In summarizing these results, to be conservative we regard the two methods to be 
comparable if the percent of phases with positive gain is between 50% Ifi 15%. Thus 
our first condtion for Boolsrf i \~-1.v to be deemed superior is that it exhibits superior 
performance in at least 65% of the phases examined. In addition, in order for HooYr- 

STR:\P-I<V to be superior we require that the average examples gained by Bou~sI?I~\~>-I.v be 
at least 5% or higher (and symmetrically for RANDOM to be superior the average exam- 
ples gained must be -5% or lower). As can be seen in Table 1 (in bold), in 15 out of 
the 20 data sets BOU~~S~X~\P-LV exhibited superior performance? Particularly, in all but 
one data set the percentage of phases with positive gain is 75% or above. In  13 of 
those the top percentage gain was 30% or more, and in 9 data sets R O ~ ~ ~ S ~ . R \ P - T . V  used 
less than 50% of the number of examples required for R\NDOM to achieve comparable 
accuracy. For the Sick-euthyroid data set, for example, BO~TSTR~I~-I-V gradually im- 
proves untd it requires fewer than 30% of the examples required by RANDOM to obtain 
the same level of accuracy. Since the latter results pertain to the average improvement 
obtained for the top-20% phases, the maximal gain is higher. 

3 Appendur A shows the actual leamg curves for all data sets; the reader can venfy that the condt~ons 
w-e apply are reasonable. 
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Table 1: Improvement in examples needed and improvement in error 
uslng I ~ o ~ T s ~ R ~ ~ P - I . ~  versus RANDOM 

Data set Phases wth Top g m  Top gatn Avg gatn iivgg;unvg a m  Top error 
posltlve g m  (%I) (#) (O/o) (#) reduction ( Y o )  

("/.I 
abalone 92.5 76.9 1152 34.9 574 10.1 

adult 96 30.2 585 17.8 302 6.6 

breast cancer-w 100 51.6 110 23.8 44 9.3 

car 89.6 35.4 281 23.3 155 31.3 

coding1 80 47.1 475 16.2 228 2.5 

connect-4 100 75.4 1939 45.5 984 9.5 

contraceptive 93.7 42.3 129 18.4 55 5.7 

german" 57 3 46.5 113 5.8 7 5.9 

hypothyroid 100 69.0 1233 64.6 705 41.1 

kr-vs-kp 100 27.1 57 18.1 37 25.5 

letter-a** 72.4 24.8 529 14.5 229 10.4 

letter-vowelt 50 12.8 429 2.1 121 3.4 

move1 65 68.4 75 17.2 23 3.9 

ocrl 93.7 42.9 168 24.5 83 21.7 

optdigits 94.4 50.0 762 24.5 412 32.6 

pendigits 100 68.6 5352 61.0 3773 29.9 

sick-euthyroid 93.1 70.2 924 45.2 600 26.2 

solar-flare 64.2 41.5 58 13.5 25 6.3 

weather 41.6 35.9 438 -10.4 -46 1.7 

yeast 75 58.7 159 23.6 79 4.9 

* German credt database 
** letter-recognihon, letter a 

+ letter-recognitton, ~ ( ~ w e l s  

The measures pertaining to the number of examples gained and the error gain 
complement each other and can provide interesting insight. For instance, the number 
of examples gained can help evaluate the "d~fficulty" of error reduction, as reflected 
by the number of examples required by R;\NIIOM to obtain such reduction. For exam- 
ple, although the top error reduction for Connect-4 is less than lo%, Table 1 shows 
that it requires ~ I N D O ~ I  984 additional examples on average to obtain the same irn- 
provement. 

For a single data set (Weather) BOO'~STRAI~-I~V exhibited a negative average gain. 
However, the percentage of phases with positive gain, showing that B~~CKSTK~II~-I~V uses 
fewer examples in 41% of phases examined, and Figure 5, both indicate that the two 
methods indeed exhbit comparable learning curves for h s  data set. 

An examination of the learning curves for the data sets in which B O O - ~ R A P - I , ~  ex- 
hibits insignificant or no improvement at all reveals that training examples chosen at 
random seem to contribute to error reduction at an almost constant rate. As shown 
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for the Weather data set in Figure 6 and for the data sets in Figure 7, the learning 
curves for all these data sets but one Qetter-vowel) have an atypical shape, where 
additional examples bring an almost constant reduction in error, rather than the ex- 
pected decreasing marginal error reduction. This may indicate that learning examples 
are equally informative regardless of what or how many examples have been already 
used for training. ,-in intelligent selection of learning examples, therefore, is not hkely 
to improve learning, and will produce results comparable to those obtained with ran- 
dom selection. 

u 1s.I -I 
63 163 263 *. 363 463 563 663 

1 raking set size 
612 , 1113 1612 

I'ramrg set size 

72 272 472 672 872 
Training set size 522 2522 4522 6522 , 8522 10522 

Training set size 

Figure 7: Learning curves for data sets where Boo~smzi~-1.v and RINDO~~ show 
comparable performance 

4.3 Experiments with Bagged PETs Model 

In order to verifj7 that R o o l . s - ~ a i ~ - r ~ \ ~  is effective not solely with PETs, we also ex- 
perimented with a differently CPE learner. Ragged-PETS is an ensemble of bagged 
(Brieman, 1996) trees, where each tree is induced from a differently bootstrap (Efron 
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and Tibshrani, 1993) sample. The trees are used to estimate the class probability of 
an instance by averaging the CPEs of the PETS in the ensemble. Ragged-PETS are 
not comprehensible models, but have been shown generally to produce superior 
CPEs compared to single PETS (Bauer and I<ohavi, 1999; Provost et al., 1998; Pro- 
vost & Domingos, 2000). 

R~oTs'~K~\P-I~v's performance for the bagged-PETS model concurs with the results 
obtained for inlvidual PETs. Particularly, for 15 of the data sets ROOTSTRM-LV exhib- 
ited phases-gained of more than 65% (in 13 of those phases-gained is more than 
75%). The average of the top-20% example gain was 25% or higher in 11 of those 
data sets. Only in two data sets is phases-gained less than 10%. 

Figure 8 shows a comparison between H O ~ E ~ ~ X P - L V  and R i N D o n r  for in&vidud 
PETS and for bagged-PETS. The overall error exhtbited by the bagged-PETS is lower 
than for the PET, and for both models ROOTSTK~IP-LV achieves its lowest error with 
considerably fewer examples than are required for ~t\~i>onl.  

135 635 1.135 1635 2135 
Traimng set size 

Figure 8: CPE learning curves for the Hypothyroid data set showing performance for 
BOOTST~UI>-LV and RANDO~I  with bagged PETS and single PETs. 

4.4 Other Evaluation Criteria 

We also evaluated BOOTSTK~IP-LV using alternative performance measures: the 0/1 
mean squared error measure used by Bauer and Kohavi (1999), as well as the area 
under the ROC curve (denoted XUC) (Bradley 1997), which specifically evaluates 
ranking accuracy. 

The results for these measures agree with those obtained with BMAE. For exam- 
ple, Boo~rsr~u~-r=\i generally leads to fatter ROC curves with fewer examples. Figure 9 
presents learning curves of both measures for the Car and Penlgits and Hypothyroid 
data sets, whose learning curves using RMAE were presented earlier. As XUC and 
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MSE also measure aspects of CPE accuracy they provide further evidence to the 
efficacy of the H o o . r s r ~ t i i ~ - 1 ~ \ 7  algorithm. 

Car 

0.05 
0.954 0.06 

0.944 
0.05 

0.04 

0.934 0.03 

143 343 543 743 943 1143 143 343 543 743 943 1143 
'Tramg set slze Training sct sue  

352 2352 . 4352 . 6352 8352 
I ramrig set s k c  

352 2352 4352 6352 8352 
'I'ratnmg set size 

l i 5  655 115.5 16.55 7155 155 655 - .  11% 1655 2155 
Training set size I r a m q  set sbe 

Figure 9: Learning curves for Area Under the ROC Curve and 0/1 MSE, comparing 
R o o . r s ' r ~ . \ ~ - r ~ v  and RANDOM 
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4.5 Comparisons with Uncertainty Sampling 

We now compare ]~OOSSSR~~P-I~V with an active learning algorithm previously shown 
to improve classification accuracy. Since improved classification accuracy may also 
result from improved class probabiltty estimation error, it is important to evaluate 
whether BOOTSTLIP-r.v provides additional improvements. This comparison also pro- 
vides interesting insights into the properties of these algorithms. 

For the comparison we selected the well-known UNCI:RT.~IN'IY SA~PI~ING algorithm 
(Lewis and Gale, 1994), proposed for active learning of binary classifiers. Our choice 
was based on the generality of the algorithm, allowing it to be applied with an arbi- 
trary modehg  scheme (that produces CPEs) and an arbitrary data set. In addition, 
UNCI'.RTAINTY SA~,PI.INC; focuses on identifying training examples and does not change 
the classifier architecture. In contrast, some active learning algorithms result in an 
ensemble of classifiers (Abe and Marnitsuka, 1998) (Iyegar et. a4. Comparing these to 
active learning for single classifiers (with active or random selection) confounds the 
effects of active learning and producing ensembles". UNC~:RTAIN~Y S,~~P~.ING allows us to 
compare the selection mechanism of the two algorithms over a wide range of do- 
mains. 

We present a summary of the comparison results in Table 2, where all the measures 
are the same as in Table 1, except that the baseline comparison is UNCERTAINTY SAM- 

PI~INC; rather than R\NDOhf. 
BO~.I'SIRAP-IY exhibits markedly superior performance compared to UNCERT~.IINIY SAM- 

PLING. Particularly, BOO~SIX~P-1.v is superior for 13 of the data sets (bold), and for 6 
data sets the methods exhibit comparable performance, where phases with positive 
gain for RCIUI.SI.KAP-LV is between 50% and 60%. UNCI~KI '~\ IN~Y Sr\hfi>~~lh.'(; exhibits superior 
performance for one data set, Solar-flare, for which it produces better probabhty 
estimations (in the prior comparison for this data set Boo.l-s.~?~\~>-r~v wasn't considerably 
better than ltz~uoiw). 

Several factors contribute to the weak performance of UNCERTAINTY Srihfl>LING for 
CPE compared to BOOTSTRAT-I~V. TO understand them, recall the differences between 
UNCER-I-~IIN-LY SA~PLING and BOOTSTR~\I~-I~V: the effectiveness score each algorithm assigns 
to potential learning examples and the mechanisms they employ to sample/select 
examples for labeling. Consider the latter furst. Because it uses drrect selection, UNCER- 

TXINI'Y SA~IPI-ING does not account for the potential relevance of a lcarning example for 
improving the estimation of other examples in the space. It therefore is susceptible to 
selecting exampIes with little contribution to the average error across the example 
space. This may degrade its performance, particularly compared to random sampling. 
Second, its effectiveness score causes UNCCKS~~IN.IY S,\~PI~INC to prefer examples whose 
CPE is close to 0.5. Thus examples whose true class probability is close to 0.5 and 

Ensembles usually improve learning curves even with random selection 
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that are captured correct4 by the model (hence their CPE is close to 0.5 as well) are 
more likely to be selected, yet they provide little or no new information to the model. 
Sirmlarly, UNC~R~IZISIY SA~WI-ING is less likely to select examples whose CPEs are close 
to either 1 or 0, even when these estimations are erroneous. Note that because UNCER- 

TAINTY SR~WLINC; was designed for classification, this is reasonable. X CPE that is on 
the "correct" side of the decision boundary is sufficient to make a correct classifica- 
tion, even though it may exhibit a large estimation error. Hence, this policy is likely to 
be productive for selecting examples to improve classification accuracy, but will deny 
information important for the learner to improve the model's CPEs. 

Table 2: Improvement in examples needed and improvement in error using H C ~ O I ' S ~ ~ ~ P - L V  
versus UNCEK~I~IN'IY SAMPLING 

Data set Phases with Top per Top gain Xvg per gain Avg gain Top error 
positive gain (O/o) gain (#) ("/.I (#) reduction (O/O) 

(91.) 

abalone 50.00 61.09 801 17.63 102 14.11 

adult 69.23 35.03 284 9.56 69 11.13 

breast cancer-w 55.56 49.37 144 10.90 15 20.20 

car 

coding1 

contraceptive 50.00 54.87 126 11.76 21 10.01 

german 81.25 48.14 146 24.74 69 8.12 

hypothyroid 71.43 62.30 307 17.10 85 62.72 

kr-VS-kp 94.74 57.71 144 33.90 90 60.43 

letter-a 85.00 44.34 771 15.50 395 21.29 

letter-vowel 100.00 81.27 14210 63.80 11463 44.97 

move1 

ocrl 

optdigits 100.00 44.13 1359 26.08 570 34.91 

pendigits 35.00 60.85 1636 27.45 996 38.30 

sick-euthyroid 100.00 84.12 1692 59.13 1093 40.51 

solar-flare 0.00 -2.98 -17 -16.66 -69 -1.64 

weather 

Yeast 

Note that when CPEs are extreme but on the "correct side" of the decision 

boundary, an effort to select examples to improve CPE may undermine an improve- 

ment in classification accuracy. This may be inferred from Friedman's analysis of 
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classification error (Freidman, 1997). In particular, binary classification error is mini- 

mized if the class most kkely to occur is predicted. The probabhty that due to erro- 

neous CPE the prehcted class 5 is not the most likely class, denoted y L ,  is gven by 

p ( j  t y,) = I ( f  < 1 1 2 ) r  p ( j ) d j  + I ( f  2 1/2)f:: ~ ( j ) d !  
1 / 2  

where I@)= 1 , if X is true, and I(A)=O otherwise. 
Assume also that p ( j )  is approximated with a standard normal distribution. This 
probability then is given by: 

- - 

where@ is the upper tail area of the standard normal hstribution, and E denotes a 
statistical expectation5. Given a certain estimation variance, when the true class prob- 
abihty f  and the expected probabhty estimation, ~f , are on the same "side" of the 
decision boundary, the farther@ is from 0.5, the more the probablltty of a classifica- 
tion error is reduced because it is less probable for the estimated class probabdity to 
be on the "wrong" side of the decision boundary. 

Therefore, for an active learning algorithm aiming to improve classification accu- 
racy, it may not be always beneficial to improve CPEs. For instance, consider a true 
class probabdity of 0.6 and a mean estimation for the estimation procedure of 0.8. An 
attempt to alter the procedure to reduce the mean estimation to 0.6 increases the 
likelihood of an estimation that is below 0.5, particularly when the estimation variance 
is large, thus increasing the likelihood of a classification error. 

4.6 The Effect of Weight Sampling 

We argued earlier for the role of weight samphg in generalization error reduction. 
Particularly, we argued for its abdity to account for an example's potential for reduc- 
ing the error of other examples in the example space. Figure 8 shows for the Penhg- 
its data set the error obtained with weight sampling (viz., using Roo~s-r .~~~~r .v) ,  
BoOTSIX~P-I;V using direct selection instead (with the same effectiveness score), and 
random samphg. For readability we present the first 10 samples. 

As can be seen in Figure 8, in the initial and most critical sampling phases for active 
learning, weight samphg results in lower error compared to &ect selection and to 
random sampling. This phenomenon is present for most data sets we experimented 
with. The superiority of Hoo-r.sr~~-r-v over random sampling demonstrates furst that 
the weights assigned to examples in ~oo-r.sm\~-~~v, and which underlie the samplrng 
process, provide useful information for selecting more informative training examples. 
The models induced when these weights are ignored and examples are sampled at 

Note that with respect to an active Ieaning algorithm the estimation procedure whose vari- 
ance and expectation appear in the formulation above also incorporates the choice of learning 
examples. 
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random (i.e., all weights are equal) are inferior to those induced when the assigned 
weights are incorporated to direct the samphg process. 

Random 
+ Bootstrap-I=\' 

352 852 1352 1852 2352 2852 3352 
. I raintng set size 

Figure 8: Learning curves for Weight-sampling, Direct Selection -with Rotrrs?-~~~~-l~v's 
effectiveness score, and RANDOM 

Second, weight sampling also is important because &rect selection often provides 
results inferior to Boarsr~tz~-r<v. As discussed in section 2, we argue that weight sam- 
pling is important in order to select examples more likely to affect other examples in 
the space, and to avoid selecting training examples that although not well captured by 
the rnodel (and hence their estimation may be improved) d l  not provide information 
about (many) other examples in the space, and therefore are not likely to reduce the 
generalization error significantly. These considerations may result in worse error re- 
duction for Direct Selection as observed for Direct Selection compared to ROOTY~RTKAP- 
S.V. Apparently, malung decisions based on the potential of reducing the error of a 
single example, as some methods do, is not sufficient. It is important to consider the 
effect of each training example on the general population of examples in the space. 
This we argue is enabled with weight samphng. 

4.6.1 Improving the Uncertainty Sampling Algorithm for CPE 

To demonstrate the effect weight sampling has on identifying informative exam- 
ples, we propose an improvement to UNCEXI-ASKIT SSA~WI~ING by incorporating weights 
which reflect the UNCERT~~INTY SARIPLING rationale (for its effectiveness score) and then 
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to weight-sample examples accordmg to their weights. We will show how the per- 
formance of this algorithm improves CPE and compare it to B O ~ ~ S S I ~ I J - ~ v .  

Since UNCERTAINTY SA~WLING selects examples whose CPE is close to 0.5, we assign 
to each example a weight 

R is a normahation factor such that Wis a distribution. The probablltty of an exam- 
ple being sampled increases the closer its CPE is to 0.5. The algorithm denoted 
WEI<;HTEU UNCLRTAINTY S A ~ ~ ) I , I N G  (WS), is described in Figure 9 below. 

Input: an initial labeled set L, an unlabeled set UL, an inducer I, 
a stopping criterion, and an integer A4 speciMng the number of actively selected ex- 
amples in each phase. 
1 While stopping criterion not met 

/* perform next u: */ 
2 ~ ~ 6 1 ~  inducer I L 

3 For each example { %  14 E UL) assign weight =: 
(0.5-/0.5-~, 1) 

R 
4 Sample from the probablltty distribution y, a subset S of A4 examples from 

UL without replacement 
5 Remove S from UL, label examples in S, and add them to L 
6 end for 
Output: estimator E induced with I from L 

Figure 9: W t x r  ITI~D UNCERTAIN-IY SAMPI.ING Algorithm 

Comparing the new \%'us algorithm with ROOTSTRAP-1-v for CPE we see that \F'Us is 
much more competitive with HOOTSTRAP-I~V than UNCEXSAINTY SA~~>I.ING. A summary of 
the results is presented in Table 3. BOOTSTRAP-LV outperforms \ws for 8 data sets (in 
bold), BooTs-In,il~-~v and WUS are comparable for 10 data sets and \viuS is superior in 
two (italicized). In comparison ROOTSTRAI~-I.V provides superior CPEs compared to 
UNCEKSAINIY Si\hnwNG for 14 out of 20 data sets. For six data sets in which UNCERTXINIY 

S I i h ~ ~ . ~ ~ ~  is inferior to BOOTSTRAP-I-v, WUS exkbits comparable performance to that of 
R o o ~ I ~ ~ P - I - v .  Overau BOOTSTR~~P-I.V remains superior, yet the new \VEIGIIT~:U UNCI'R- 

-~AINIY S A ~ ~ > I * I N G  algorithm exhibits improved performance compared to UNCI:RX~INTY. 

SA~IPLING. 

Figure 10 shows CPE learning curves for the BOOTSTR~P-I.V, UNCEX~AIN.IY S t \ n n u ~ < ;  

and U\VS for the Connect-4 data set. Whereas UNCEK~AINTY SAI\.PI.ING is inferior to 
H O O ~ - S I ~ P - I ~ V  for the Connect-4 data set, \X%S's performance is comparable to that of 
BOOTS~RAP-I.V. This can be primarily attributed to L ~ S  accounting for a broader set of 
considerations when selecting examples, particularly W S ' s  consideration of the po- 
tential error reduction effect an example may have on other examples in the space, 
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whereas UNcEwmmY SAMPLING merely considers the potential to improve the examined 
example's classification accuracy. 

Figure 11 shows learning curves of the three algorithms for the sick-euthyroid data 
set, where s d a r l y ,  LYWS'S performance is considerably better than that of UNCER- 

- ~ A I N ~ Y  SAMPLING, but the CPE generalization error of R o o ~ s n t i ~ - l ~ v  st111 is better than 
that obtained with \%'us. The improved performance of BOOTSTRAP-LV in 8 data sets 
demonstrates that the weights assigned by R o o ~ s m i \ ~ - r , v  better support the sampling 
mechanism in identifying informative examples to improve CPE. As we discuss in 
section 4.2, weights assigned to examples in UWS may not always be adequate to im- 
prove CPEs. Particularly, the focus on selecting examples whose CPE is closer to 0.5 
and avoiding examples whose CPE is closer to either 0 or 1 sometimes is detrimental 
to reducing CPE generalization error. 

Table 3: Improvement in examples needed and improvement in error using 
BOOTSTR~\P-I~V VerSUS WI?IGI Il+I113D UNCER-I'AIN~Y SA~IPZING 

Data set Phases with Top per gain Tqp Xvg per gain Avg gain Top error 
positive gain ?/I) (4'0) gain ('Yo) (#) reduction ( Y o )  

(#) 

abalone 57.1 46.30 577 7.97 62 3.57 

adult 76 14.07 41 4 4.99 123 2.71 

breast cancer-w 44.44 18.75 44 0.10 -9 6.86 
car 92.85 17.62 136 9.74 67 14.08 
coding1 87.5 28.33 671 16.55 379 2.77 

connect-4 47.36 18.11 413 2.10 27 3.07 
contraceptive 33.33 14.15 58 -2.51 -5 3.19 

german 68.75 43.01 133 17.24 43 6.66 

hypothyroid 100 81.83 1782 65.41 1260 62.08 

kr-vs-kp 31.57 3.77 5 -1.34 -5 3.84 

letter-u 30 13.30 693 -7.23 -583 7.26 

letter-vowel 46.66 10.73 765 0.32 -24 3.44 
move1 88.88 26.73 138 13.45 62 8.11 

ocrl  62.5 13.74 66 2.68 16 11.20 
optdigits 64.28 20.40 721 8.32 229 12.14 
pendigits 90 53.40 4064 36.39 2468 22.85 

sick-euthyroid 100 53.61 859 41.33 537 17.54 
sokur;flare 0 2.46 -17 -16.79 -56 -9.1 1 

Weather 52.63 17.80 328 0.35 45 1.50 

yeast 73.33 41.79 189 16.59 64 5.03 
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Figure 10: An example where \WJS is superior to UNCI:K.I.~~~IN?Y SAhnxING and achieves 
performance comparable to that of Boors?.m~-r,v 

Figure 
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BOOTS~ZP-LV remains superior but \%US shows significant improvements 
compared to UN~I:R'~AIN.~Y S.\hri>n~c; 
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The above results suggest that gven an informative effectiveness score, weight 
samplulg indeed provides important additional information, improving the selection 
of informative training examples. Given the performance of the two algorithms, the 
effectiveness score computed in BOOTS~I<.IP-~.V is superior to the score assigned to 
examples by WUS, yet the effectiveness score in \VUS is informative. As we discuss 
earlier in the paper, by preferring examples whose CPE is close to 0.5 R'US identifies 
examples whose class is uncertain; however, such uncertainty also implies uncertainty 
regardmg CPE and can benefit from gaining more relevant evidence. Yet Boo?sr~h~-l~v 
produces better results because WUC may fail to identify all CPE uncertainties, par- 
ticularly when these uncertainties do not imply class uncertainty. In addition, as we 
mentioned above, CPE that is close to 0.5 does not necessady imply class (or CPE) 
uncertainty when the true CPE is also close to 0.5 and is correctly estimated by the 
model. 

Our results with further suggest that algorithms for improving classification 
accuracy can capitalize on weight sampling. For example, it is likely that ULVS wdl also 
exhibit improved performance compared to UNCEIVTAIN.IY SA~PI-ING for classification 
accuracy. Smdarly, other effectiveness scores proposed to identify examples to in- 
crease classification accuracy, such as entropy, and that do not incorporate additional 
measures to capture the effect of a learning example on other examples in the space 
are likely to benefit from weight sampling. 

6 Limitations 

Although BOOTSIXAI~-I~V'S performance surpasses the performance of Weighted UN 

C H ~ ~ I N T Y  SIihnlI.ING, the latter also identify some CPE uncertainty and is computation- 
ally simpler. Hence \mS may be considered for active learning of CPE when 
computational concerns are particularly critical. 

B O O ~ Y ~ ~ P - L X ~  relies on detecting variance in CPE to infer what examples are useful 
to obtain more accurate estimation. Its performance may be hampered when a low 
variance model such as logistic regression is used for learning. 

HOOTSTRAP-LV also does not address computational concerns, as do Lewis and Catlett 
(Lewis and Catlett, 1994). Indeed it requires the induction of multiple models from a 
set of bootstrap samples. However, because of the typical shape of the learning curve, 
beyond a certain training set size the marginal error reduction is insignificant, whether 
active learning or random sampling is employed. Thus, intelhgent selection of exam- 
ples for learning is only critical in the early part of the curve. Therefore, if the number 
of training examples remains relatively small multiple model inductions from boot- 
strap samples do not constitute a considerable computational toll. BOOTYI'RAP-1.v pro- 
vides an appropriate solution whenever labeling costs are more important than 
computational costs, such as when the primary concern is to obtain accurate CPE or 
ranktng with minimal costly labeling. 
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7 Conclusions 

~ o o w s ~ ~ ~ ~ ~ - l . v  was designed to use fewer labeled training data to produce accurate 
class probability estimates. The algorithm addresses two key components of active 
learning: an effectiveness score and a selection procedure, which complement each 
other to identify particularly informative examples for learning class probabhty esti- 
mates. ROOTSTK~\P-I~V is domain independent and is not restricted to a particular learn- 
ing algorithm. 

An empirical evaluation of the approach shows that it performs remarkably well. 
The evaluation encompasses a wide range of benchmark domains providing compre- 
hensive evidence for the efficacy of the algorithm. We show how the information 
provided by the effectiveness scores produces better results than can be obtained 
with random sampling (i.e., when all weights are equal). We also show that B o o ~ R ~ ~ P -  

1-v outperforms an existing active learning method, UNCERT.;~IN?Y SA~PI.ING. We investi- 
gate the properties of the algorithms to explain our empirical results. In particular, the 
experimental results demonstrate how both the weights assigned to potential training 
examples and the weight sampling procedure combine to produce superior CPEs. We 
also examine the properties of the UNCERT~IINIY S A ~ W I ~ I N G  algorithm compared to those 
of BOOTI'STR;~P-S~V to explain the comparison in performance for estimating class prob- 
abiltties. 

Lastly, we use the results of ths  investigation to propose another active learning al- 
gorithm, \Y~~~SGIIT UNCEK~AINIY S r i h f l ; ~ ~ ~ ~ ,  which assigns effectiveness scores reflecting 
the rationale of U N C E ~ I N . I Y  SA~~>I,INC;'S effectiveness score, but which in addition, 
employs the scores to weight sample examples for training. A comparison with ~ooi-- 
STILAP-I~V reveals that ROO~I~STRAP-I-v s td  is superior for improving CPEs, demonstrating 
the value of Boo.rs~n~z~~-r~v's effectiveness score, but also demonstrates the advantages 
conferred by weight sampling. Our empirical analysis suggests the application of 
weight sampling with other effectiveness scores proposed in the literature for the 
active learning of classifiers. 

Mahng decisions in cost sensitive environments often resorts to decision-theoretic 
approaches for evaluating alternatives, requiring the estimation of probabhties of 
events or classes to score alternative outcomes. The cost-sensitive nature of such 
environments can greatly benefit from active learning of class probability estimations 
and r a n h g s  of alternatives. ROOI'S~R~P-I-v was designed to address this need. The 
paper provides a comprehensive study of the performance of the B O O T S ~ P - L V  algo- 
rithm with respect to several alternative approaches and h~ghlights the properties 
responsible for the observed behavior. 
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Appendix A 

Learning curves: BOOTSTRAP-I.V and RANDOM 
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