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Abstract 
For many supervised leaming tasks, the cost of acquir- 
ing training data is dominated by the cost of class la- 
beling. In this work, we explore active learning for 
class probability estimation (CPE). Active learning ac- 
quires data incrementally, using the model learned so 
far to help identify especially useful additional data for 
labeling. We prcscnt a new method for activc lcarn- 
ing, BootstrapLV, which chooses new data based on 
the variance in probability estimates from bootstrap 
samples. We then show empirically that the method 
reduces the number of data items that must be labeled, 
across a wide variety of data sets. We also compare 
Bootstrap-LV with Uncertainty Sampling, an existing 
active-learning method for maximizing classification 
accuracy, and show not only that BootstrapLV domi- 
nates for CPE but also that it is quite competitive even 
for accuracy maximi7ation. 

1 Introduction 
In order to undertake supervised learning for classification 

problems, it is necessary to obtain data with class labels. 
Procuring these labels can be costly. Expens may need to be 
consulted, users may need to provide feedback, or a system 
may need to make suboptimal decisions in order to label 
data. For example, consider an automated commerce engine 
that models customw response to offers and uses the= mod- 
els to target future offers. Such a system is faced continu- 
ally with the choice of using the model learned so far to try 
to maximize revenue, versus making possibly suboptimal 
offers in order to label more training data. If possible, the 
system should focus on those data points that will accelerate 
learning the most. 

For this paper, we consider supervised learning for class 
probability estimation. Class probability estimates (CPEs) 
can he combined with decision-making costs/benefits to 
minimize expected cost (maximize expected benefit). Also, 
wc an: intcrcstcd primarily in comprehensible models, so we 
use decision trees to produce class probability estimates 
[Smyth et al. 1995; Bauer and Kohavi 1998; hovost et al. 
19981. However, the method we introduce applies to any 
technique for learning CPEs. 
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Active leaming incrementally acquires training data, using 
the model learned "so far" to select subsequent examples. In 
the case of expensive labeling, active learning methods can 
be used to reduce the number of instances that must be la- 
beled, in order to achieve a particular level of accuracy. 

Figure I shows the ideal behavior of an active learner. 
The horizontal axis represents the number of training data, 
and the vertical axis represents the error rate of the model 
learned. Each leaming cuwe shows how error rate decreases 
as more training data are used. The upper curve uses ran- 
dom sampling; the lower curve uses active learning. The two 
curves form a "banana" shape: very early on, the curves are 
comparable because no model is available yet for active 
learning. However, very quickly the active learning curve 
accelerates, hecause it chooses training data carefully. 
Given enough data, random sampling catches up. 

Figure 1: Learning curves for active leaming and random sampling 

We introduce a new active-learning technique, inspired 
by prior work. BootstrapLV uses bootstrap samples of the 
existing training data to examine the variance in the prob 
ability estimates for not-yet-labeled data. We show empiri- 
cally that across o wide rnnge of data sets Bootstrap-LV 
decreases the number of labeled instances needed to achieve 
accurate probability estimates, or alternatively increases the 
accuracy of the probability estimates for a fixed number of 
training instances. We also show that BootstrapLV is sur- 
prisingly effective even for accuracy maximization. 



2 Active Learning: Prior Work 

The notion of active learning has a long history in machine 
learning. To our knowledge, the first to discuss it explicitly 
were [Simon and Lea 19741 and [Winston 19751. Simon 
and Lea describe how machine learning is different from 
other types of problem solving, because learning involves 
the simultancous scarch of two spaces: the hypothesis space 
and the instance space. The results of searching the hy- 
pothesis space can affect how the instance space will be 
searched. Winston discusses how the best examples to select 
next for learning are "near misses," instances that miss being 
class members for only a few reasons. Subsequently, theo- 
retical results showed that the number of training datacan be 
reduced substantially if they can be selected carefully [An- 
gluin 1988, Valiant 19841. Thc tcrm active learning was 
coined later to describe induction where the algorithm as- 
sumes control over the selection from a set of potential train- 
ing examples [Cohn er 01. 19941. A generic algorithm for 
active learning is shown in Figure 2. 

Input: an initial lnbeled set L an unlabeled scl U L  an inducer I. 
a stopping criterion, and an integer M specifying lhc number of actively 
selwted examples in each phase. 
While stopping criteria not met 

I' perform next h: *I 
Apply inducer I to L 
For each example {4(  x , ~ u ~ )  compute ES, 

SelectISample a subset S of size M from UL based on ES[ 
Remove S from UL, label S, and add S to L 

Output: estimator E induced with I from the final labeled set L 

Figure 2: Generic Active Learning Algorithm 

A learner first is applied to an initial (usually small) set L 
of labeled examples (usually selected at random or provided 
by an expert). Subsequently, sets of M examples are selected 
in phases from a set of unlabeled examples UL, until some 
predefined condition is met (e.g.. the labeling budget is 
exhausted). In each phase, each candidate example xi€ UL 
is given an effectiveness score ES, based on its contribution 

to an objective function, reflecting the estimated magnitude 
of its contribution to subsequent learning (or simply whether 
it will or  will not contribute). Examples are selected either 
directly by selecting the top M examples in the ranking, or  
via a weighted sample, where the prohahility of an example 
to be sampled is proportional t o m , .  Usually, multiple ex- 

amples, rather than a single example, are selected at each 
phase due to computational constraints. Once examples are 
selected, their lahels are obtained (e.g., via a query to an 
expert) before being added to L on which the learner is a p  
plied next. 

Cohn et al [Cohn et al. 19941 determineES,based on 

identifying what they called the "region of uncertainty," 
defined such that concepts from the current version space 
are inconsistent with respect to examples in the region. The 

region of uncertainty is redetermined at each phase and 
subsequent examples are selected from this region. The main 
practical problem with this approach is that the estimation of 
the uncertainty region becomes increasingly difficult, as the 
concept hecomes more complex. In addition, for complex 
concepts the region of uncertainty may initially span [he 
entire domain before the concept is well understood, render- 
ing the selection process ineffective. A closely related ap- 
proach is Query By Committee [Seung et al. 19921 classifiers 
arc sampled from the version space, and the examples on 
which they disagree are considered for labeling. 

Practically, our technique is inspired most by the work of 
Lewis and Gale [Lewis and Gale 19941. In their Uncertainty 
 sampling,^^, is based on the estimated probability of bi- 

nary class membership. Specifically, a probabilistic classi- 
fier is employed, and examples whose probabilities of class 
membership are closest to 0.5 are considered for labeling. A 
closely rclatcd technique [Iyegar et al. 20001 considers 
adaptive resampling to help compute ES~: examples esti- 

mated to be misclassifid in the next phase are assigned 
higher probability to be sampled at each phase. 

Our approach also uses the generic algorithm shown in 
Firmre 2. but instead of lookine for examoles whose classifi- - 
cation is likely to be erroneous or uncertain, we look for 
examples whose CPEs are uncertain. 

Theoretically, our technique is inspired most by the ap- 
proach presented by Cohn et al. [Cohn et al. 19961 for statis- 
tical learning models. At each phase the learner computes 
the expectation of the model's variance over the example 
space resulting from adding each candidate example to the 
training set. However, this approach requires knowledge ol 
the underlying domain, as well as the computation in closed 
form of the learner's variance, a constraint that renders this 
method impracticable for arbitrary models. 

With our approach ES! is based on the variance of the 

current model on specific example, x, E U L .  To con- 

trast with prior work we call this local variance, or LV. 

3 Our Approach 
We now describe our approach, which actively samples 
examples from UL to learn class probabiliry estimates 
(CPE) from fewer examples. The description we provide 
here pertains to binary class problems where the set of class 
labels is c={o,I). As the discussion above indicates, we 
wish to add to L examples that are likely to improve the 
available evidence pertaining to poorly understood sub- 
spaces of the domain. 

Ideally, the most direct indication of the qualify of the 
current claw prohahility e~limation for examplex, is the 
discrepancy between the estimated probability and its true 
probability. However, the true class probability for an in- 
stance is not known, nor is its actual class. Therefore we use 
the local variance to estimate this quality. If the estimated 
LV is high compared to that of other examples, we infer that 
this example is "difficult" for the learner to estimate given 
the available data, and increase the probability that it will be 



sampled next. Otherwise, if the LV is low, we interpret il as 
an indication that either the class probability is well learned 
or, on the conuary,  hat it will be extremely difficult to im- 
prove. We therefore decrease probability of these examples 
being added to L. 

Given that a closed-form computation/estimation of this 
local variance may not (easily) be obtained, we estimate it 
empirically. We generate a set of k bootstrap subsamples 
[Efron and Tibshirani, 19931 B ,  , j = 1, .... k from L, and 

apply the inducer I on each subsample to generate k estima- 
tors E, j = I, ..., k respectively. For each example in UL we 

estimate the variance in CPEs given by the estimators I E~ 1, 
, = I  ,..., k. Each example in UL is assigned a weight, which 
determines its probability of being sampled, and which is 
proportional to the variance of the CPEs. More specitically, 
the distribution-from which examples are sampled is given 

by D,(.q) = where pj (x,) denotes the 
R 

estimated probability an estimator Ej assigns to the event 

that example Xi belongs to class O,F1 is the average 

, and R is a normalizing factor 
X 

R = CY&:-, - ijl)lliF, SO that D, is a distribu- 

tion. This is the BootstrapLV algorithm, shown in Figure 3. 

Algorithm Bootstrap-LV 
I Input: an initial labeled set L sampled at random, an unlabeled set UL, 
an inducer I ,  a stopping criterion, and a sample size M. 

2 for 1-1 ;unlil slopping criterion is met; st+) 
3 Cmerate k hnmlstrap subsamples B, . j = I.. ... k from L 

4 Apply inducer Ion each subsample B and induce estimator F 
I >, 

respectively 
5 For all examples (a EUL) compute 

Q(x,)= &=I~'~(')-"~~" R (R is s normalizing factor so that 
.. 

D, is a distribution) 
6 Sample a subset S ofMexnmples fmm UL without ceplacement with 

weights from the probability distribution D. 
7 Remove S from UL, label examples in S. and add them lo L 
8 Output eslimalor E induced with I from L 

Figure 3: The Bootstrap-LV Algorithm 

There is one additional technical point of note. Consider the 
case where the classes are not represented equally in the 
training daki. When high variance exists in regions of the 
domain for which the minority class is assigned high prob- 
ability, it is likely that the region is relatively better under- 
stood than regions with the same vnrinnce but for which the 
majority class is assigned high probability. In the lattcr casc, 
the class probability estimation may be exhibiting high vari- 
ance due simply lo lack of representation of the minority 
class in the training data, and would benefit from oversam- 

pling from the respected region. Therefore we also divide 
the estimated variance by the average value of the minority- 
class probability estimates. We estimate this value once 
from the initial random sample. 

4 Experiments and Evaluation 
To evaluate its performance, we applied Bootstrap-LV to 20 
data sets from the UCI repository. Data sets with more than 
two classes were mapped into two-class problems. As men- 
tioned above, because we are interested in comprehensible 
models, for our experiments the underlying prohability esti- 
mator is a probability estimation tree (PET)--a C4.5 decision 
tree [Quinlan, 19931 for which the Laplace correction is 
applied at the leaves [Bauer and Kohavi, 1998; Provost et 
al., 19981. The Laplace correction has been shown to im- 
prove significantly the CPEs produced by decision trees 
[Bauer and Kohavi, 19981. 

If the true underlying class probability distribution were 
known, an evaluation of an estimator's performance could 
be based on a measure of the actual error in probability 
estimation. Since the true probabilities of class membership 
are not known, we compare the probabilities assigned by the 
models induced at each phase with those assigned by a 
"best" estimator, B, as surrogates to the true probabilities. B 
is induced from the entire set of examples (ULU L), using 
bagged-PETS, which have been shown to produce superior 
probability estimates compared to individual PETS [Bauer 
and Kohavi 19981. We compute the mean absolute error 
(MAE) for an estimator E with respect to B's estimation, 

denoted by BMAE, given by BMAE= C:,IP.(X,)- P ~ ( T ) ~ ,  
N 

where p,(xj) is the estimated prohability given by B, 

p,(x,)is the probability estimated by E, and N is the num- 

ber of examples examined. 
We compare the performance of Bootstrap-LV against a 

method denoted hy Random, where estimators are induced 
with the same inducer and training set-size, but for which 
examples are sampled at random. We show the comparison 
for different sizes of the labeled set L. In order not have very 
large sample sizes M for large data sets and very small ones 
for small data sets, we applied different numbers of phases 
for different data sets, varying between 10 and 30; at each 
phase the same number of examples was added to L. Results 
are averaged over 10 random partitions of the data sets into 
an initial labeled set, an unlabeled set, and a test set against 
which the two estimators are evaluated. For control the 
same partitions were used by both Random and Bootstrap- 
LV. Figure 1 above shows results for the Car data set (where 
Active refers to Bnotstrap-1-V). As shown in Figure I ,  the 
error of the estimator induced with our approach decreases 
faster initially, exhibiting lower error for fewer examples. 
This demonstrates that examples actively added to the la- 
beled set are more informative (on average), allowing the 
inducer to construct a better estimator with fewer examples. 

For some data sets Bootstrap-LV exhibited even more 
dramatic results. For instance, Figure 4 shows results for the 



Pendigits data set. Bootstrap-LV achieved its almost mini- 
mal level of error at 5000 examples. It required Random 
more than 9300 examples to obtain this error level. 
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Figure 4: learning curves for CPE 

For 5 data sets, however, our approach did not succeed in 
accelerating learning much or at all, as can be shown for the 
W data set in Figure 5. Note. however, that neither curve 
consistently resides above the other and the two methods 
exhibit comparable performance, 

1154 2154 3154 
Training set size 

Figure 5: Learning curves for the w data set 

Table 1 presents a summary bf our results for all the data 
sets. The primary motivation for applying active sampling 
techniques is to allow learning with fewer examples. Table I 
provides a set of measures pertaining to the number of ex- 
amples gained via Bootstrap-LV with respect to Random. 
The second column shows the percent of phases in which 
Bootstrap-LV produced the same level of accuracy with 
fewer examples compared to Random. The third and fourth 
columns show the percentage and number of examples 
gained by applying Bootstrap-LV, respectively. The gain is 
calculated as the difference between the number of examples 
used by Random and that used by Bootstrap-LV to obtain 
the same accuracy. The percentage is calculated from the 
number of examples used by Random. Because of the natu- 
ral banana shapc cven for the ideal case, thc pcrformance of 
estimators induced from any two samples cannot be consid- 
erably different at the final phases, thus the averages as well 
as the percentage of positive gain merely provide an indica- 
tion of whether our approach provides superior estimations. 
It is important, also to observe the improvement at the "fat" 
pan of the banana (where the benefit of active learning is 
concentrated). To allow a stable assessment we provide 

rather than the single best gain, the average of the top 20% 
gains. Columns 5 and 6 of Table 1 show the average percent 
and average number of examples gained for the top 20% 
gains respectively. It is important that these figures he 
viewed in tandem with column 2 (pos gain), to ensure that 
there is in fact a banana shape to the graph. 

-- 

cr l  1 93.1 24.4 84 42.d 14 21.4 65. 
pfdqits 1 94.4 24.4 41d 50rN 7 32.4 47. 

tiare I w.2 l3.d 41.51 id 6.4  
I 41.d -10.4 -461 35.q 43@ 1 .d 
I 74 ~ . d  74 58.4 154 11.4 

Table I: Examples and error gain measures for CPE 

Table 1 also includes summary results pertaining to the error 
rates achieved by both methods for the same number of 
examples. Column seven presents thc averagc percent gain 
of the top 20% error reduction. For some data sets the gen- 
eralization error for the initial training sets was small and 
was not considerably reduced even when the entire data was 
used for training (e.g., for connect-4, only 34% error reduc- 
tion was obtained, from 11.7 to 7.7). We therefore also 
provide in the last column, the top 20% error gain as a per- 
centage of the reduction required to obtain the minimal error 
(the latter is referred to in the [able as maximal gain). In the 
Adult data set, for instance, BootsvapLV exhibited only 
6.6% error gain (for the top 20%), but this improvement 
constitutes 25% of the possible improvement were the entire 
data set used for training. 

Since not all plots can be presented due to space con- 
straints, we aimed at expressing in the table various per- 
formance measures that would provide a comprehensive 
perspective. The criterion that we apply to assess Bootstrap- 
LV's success over Random is the combination of the follow- 
ing: the minimal positive gain should he above 60%. both 
the average examples and error gains are positive, and the 
top 20% error from maximal gain is 25% or higher. If the 
positive gain is between 40% and BO% we consider both 
methods lu be comparable, and when it is helow 40% we 
consider BootsvapLV to be inferior. As can be seen in 
Table 1 (in bold), in 15 out of the 20 data sets Bootstrap-LV 
exhibited superior performance. Particularly, in all but one 
the positive gain is 75% and above. In 13 of those, more 
than 30% of the examples were gained (for the top 20%). 
and in 9 data sets our method used less than 50% of the 



number of examples required for Random to achieve the 
same level of accuracy. For the Sick-euthyroid data set, for 
instance, Bootstrap-LV gradually improves until it requires 
fewer than 30% of the examples required by Random to 
obtain the same level of accuracy. As we mentioned earlier. 
these results pertain to the top 20% improvement, thus, the 
maximal gain is indeed higher. For a single data set (W) 
Bootstrap-LV exhibited a negative average examples gain. 
However, both the percent of positive gain, showing that 
Bootstrap-LV bas exhibited examples gain in 41% of phases 
examined, and Figure 5, indicate that the two methods in- 
deed exhibit comparable performance for this data set. 

The measures pertaining to number of examples gained 
and error gain complement each other and may provide 
interesting insights. For instance, the number of examples 
gained can help evaluate the "difficulty" in error reduction 
in terms of the number of examples required by Random to 
obtain such reduction. For example, although the average 
top 20% error gain for Connect-4 was less than 10%. Table 
1 shows that it required Random 984 additional examples on 
average to obtain the same improvement. 

A single data set, Letter-vowel, exhibited a negative aver- 
age error gain. However, exactly 50% of the phases have 
shown positive examples gain, indicating that Random in- 
deed does not exhibit superior performance overall and that 
both methods exhibited similar performance. 

We also assessed both methods with two alternatives to 
BMAE: the mean squared error measure proposed by Bauer 
and Kohavi [1998], as well as the area under the ROC curve 
[Bradley 19971. The results for these measures agree with 
those obtained with BMAE. For example, Bootstrap-LV 
generally leads to fatter ROC curves with fewer examples. 

Tree-based models offer a comprehensible structure that 
is important in many decision-making contexts. However, 
they do not provide the best probability estimates. In order 
to assess Bootstrap-LV's performance on a better CPE 
learner, we experimented with bagged-PETS, which are not 
comprehensible models, but have been shown to produce 
markedly superior CPEs [Bauer and Kohavi 19981. 
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Figure 6: BMAE learning curves for the Hypothyroid data set 

The results for the the bagged-PETS model also agreed 
with those obtained for individual PETS. Particularly, for 15 
of the data sets Bootsmap-LV exhibited a positive-example 
gain of more than 65% (in 13 of those the positive-example 
gain is more than 75%). The average top example-gain was 
25% or higher in I I of those data sets. Only in two data sets 

was the positive-example gain less than 50%. Figure 6 
shows a comparison between Bootstrap-LV and Random for 
individual and bagged-PETS. As expected, the overall ermr 
exhibited by the bagged-PETS is lower than for the PET, and 
for both models Bootstrap-LV achieves its lowest error with 
considerably fewer examples than required for Random. 

5 Comparison with Uncertainty Sampling 

As described above, Uncertainty Sampling [Lewis and 
Gale, 19941 was proposed for binary text classification. 
However, it too samples examples that are not well under- 
stood by the model. Since it was shown to improve a 
model's classification accuracy, it is bound to improve the 
model's CPE as well. It is therefore interesting to compare 
the improvements exhibited by Bootstrap-LV against Uncer- 
tainty sampling. We present a summary of the comparison 
results in Table 2. 

Bootstrap-LV exhibited superior performance in 13 of the 
data sets. In 6 data sets both methods exhibited comparable 
performance, where the positive examples gain for Boot- 
strap-LV was between 50% and 60%. 

Uncertainty Sampling exhibited superior performance in 
one data set. solar-flare. for which it consistently produced 
better probability estimations. In 9 out of the 14 data sets in 
which Bootstrap-LV was superior, the average top error 
reduction was more than 30%. These results demonstrate 
that Bootstrap-LV has a solid advantage when compared to 
Uncertninty Sampling for class probability estimation. It is 
important to emphasize once again that indeed Uncertainty 
Sampling was not designed to improve class probability 
estimation, but rather to improve classification accuracy. 

We also compared the performance of Uncertainty Sam- 
pling against Bootstrap-LV for improving classification 
accuracy. Since Bootstrap-LV was found to improve CPEs, 
a similar effect may be obtained for classification accuracy, 
but not necessarily: Bootstrap-LV may select examples to 



improve class probability estimation even when the esti- 
mated decision boundary required for classification is al- 
ready well understood, thereby "wasting" examples that do 
not improve classification accuracy. 

Our results for classification accuracy show that in 11 
data sets Bootstrap-LV exhibited superior performance. 
Uncertainty Sampling was superior in 7 data sets and both 
methods exhibited comparable performance for the remain- 
ing two. These results indicate that although Boolstrap-LV is 
not generally superior lo Uncertainty Sampling for classifi- 
cation tasks, it should be considered a viable alternative--it 
often yields much better pcrformancc. Intcrcstingly, in most 
cases where Bootstrap-LV does not dominate, it performs 
better in the initial phases, whereas Uncertainty sampling 
surpasses Bootstrap-LV in later phases. This phenomenon is 
demonstrated in Figure 7 for the Breast-Cancer data set. 
Recall that Uncertainty Sampling uses the CPEs to deter- 
mine the potential contribution of an example for learning. 
Therefore, its performance will be sensitive to the accuracy 
of the CPEs. Poor CPEs produced in the initial phases un- 
dermine the data selections by Uncertainty Sampling. On 
the other hand, in later phases, more accurate probability 
estimations allow the selection process to focus in on the 
decision boundary. Bootstrap-LV, on the contrary, focuses 
early on improving the CPEs, and therefore performs well 
even very early on the learning curve, however, later on it 
indeed "wastes" examples to improve CPE as described 
above. 

Figure 7: Classification accuracy rate 

In light of this typical hehavior, a hetter strategy for actively 
improving classification accuracy may be a hybrid approach. 
where Bootstrap-LV is applied in initial phases and Uncer- 
tainty Sampling in later ones. When to switch is still an open 
question. 

6 Conclusion 

We introduced a new technique for active learning. Boot- 
strap-LV was designed to use fewer labeled training data to 
produce better class-probability estimates from fewer la- 
beled data. We showed empirically that it does this re- 
markably well, and performs better than prior active learning 
methods. We also showed that BootstrapLV is competitive 
with prior methods even for accuracy maximization. These 

last results suggest a hybrid strategy that may be even more 
effective than either technique alone. 

References 

[Angluin 19881 Angluin. D. Queries and concept learning. 
Machine Learning, 2319-342, 1988. 

[Bauer and Kohavi, 29981 Bauer, E., Kohavi, R. An 
Empirical Comparison of Voting Classification Algo- 
rithms: Bagging, Boosting, and Variants. Machine 
Learning, 36, 105-142 (1998). 

[Bradley 19971 Bradley, A. P. The use of the area under the 
ROC curve in the evaluation of machine learning algo- 
rithms. Pattern Recognition, 30(7), 1145-1 159, 1997. 

[Cohn et al. 19941 Cohn, D., Atlas, L. and Ladner, R. Im- 
proved generalization with active leaning. Machine Learn- 
ing, 15:2111-221, 1994. 
[Cohn et al. 19961 Cohn, D., Ghahramani, Z., and Jordan M. 

Active learning with statistical models. Journal of Anifi- 
cia1 Intelligence Research, 4:129-145, 1996. 

[Efron and Tibshirani, 19931 Efron, B. and Tibshirani, R. 
An irltroducrion to rite Bootstrap, Chapman and Hall, 
1997. 

[Iyegar el al. 20001 Iyegar, V. S., Apte, C., and Zhang T. 
Active Learning using Adaptive Resampling. In 
SICKDD-2000. Pages 92-98, Aug 2000. 

[Lewis and Gale 19941 Lewis, D. D. and Gale, W. A. 
A sequential algorithm for training text classifiers. In 
ACM-SIGIR-94, pages 3-12, Springer-Verlag. 

[Seung et al. 19921 H .  S. Seung, M. Opper, and H. 
Smopolinsky. Query by committee. In Proceedings of the 
Fifh Annual ACM Workrhop on Computational Learning 
Theory, pages 287-294, 1992. 

[Provost et al 19981 Provost, F.; Fawcett, T.; and Kohavi, R. 
The case against accuracy estimation for comparing clas- 
sifiers. In Proceedings of the Fifreenth International Con- 
ference on Machine Learning, 1998 

[Quinlan 19931 Quinlan, 1. R,. C4.5:  program.^ for machine 
learning. Morgan Kaufman, San Mateo, California, 1993. 

[Simon and Lea 19741 Herbert A. Simon and Glenn Lea, 
Problem solving and rule induction: A unified view. In 
L.W. Gregg (Ed.), Knowledge and cognition (Chap. 5). 
Potomac, MD: Erlbaum, 1974. 

[Smyth et al. 19951 Smyth, P.; Gray, A and Fayyad U. M. 
Retrofitting Decision Tree Classifiers using density esti- 
mation In Proceedings of the 12" International Confer- 
ence on Machine Learning. Pages 506-514,1995. 

[Valiant 19841 Valiant L. G. A theory of the learnable. 
Communications of the ACM, 27:1134-1142, 1984. 

[Winston 19751. Winston, P. H. Learning structural descrip- 
tion< from examples. In "The Psyrhology of Computer Vi- 
sion", edited by Patrick H. Winston, McGraw-Hill Book 
Company, New York, 1975. 


