
SIMPLIFIED READABILITY METRICS

Chung Yung
Department of Information Systems

New York University
Leonard N. Stem School of Business

44 West 4th Street, Suite 9-1 70
New York, NY 10012-1 126
yung@edgar.stem.nyu.edu

January 6,1997

Working Paper Series
Stern #IS-97- 1

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

Extended Abstract

This paper describes a new approach to measuring the complexity of software systems

with considering their readability. Readability Metrics were first proposed by Chung

and Yung 181 in 1990. Software industry uses software metrics to measure the

complexity of software systems for software cost estimation, software development

control, software assurance, software testing, and software maintenance [3], [71, [9], 151,

[18]. Most of the software metrics measure the software complexity by one or more of

the software attributes. We usually class@ the software attributes that software metrics

use for measuring complexity into three categories: size, control flow, and data flow [5],

f71. All the three categories concern with the physical activities of software

development. Readability Metrics have been outstanding among the existing software

complexity metrics for taking nonphysical software attributes, like readability, into

considerations [8]. The applications of Readability Metrics are good in indicating the

additional efforts required for less readable software systems, and help in keeping the

software systems maintainable. However, the numerous metrics and the complicated

formulas in the family usually make it tedious to apply Readability Metrics to large

scale software systems. In this paper, we propose a simplified approach to Readability

Metrics. We reduce the number of required measures and keep the considerations on

software readability. We introduce our Readability model in a more formal way. The

Readability Metrics preprocesses algorithm is developed with compilers front-end

techniques. The experiment results show that this simplified approach has good

predictive power in measuring software complexity with software readability, in

addition to its ease of applying. The applications of Readability Metrics indicate the

readability of software systems and help in keeping the source code readable and

maintainable.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

Simplified Readability Metrics

Chung ~ u n g *
Department of Information Systems

Leonard N. Stern School of Business
New York University

Abstract

This paper describes a new approach to measuring the complexity of software systems
with considering their readability. Readability Metrics were proposed by Chung and
Yung [8] in 1990. Readability Metrics have been outstanding among the existing
software complexity metrics for taking nonphysical software attributes, like readability,
into considerations. The applications of Readability Metrics are good in indicating the
additional efforts required for less readable software system, and help in keeping the
software systems maintainable. However, the numerous metrics and the complicated
formulas in the family usually make it tedious to apply Readability Metrics to large
scale software system. In this paper, we propose a simplified approach to Readability
Metrics. We reduce the number of required measures and keep the considerations on
software readability. We introduce our Readability model in a more formal way. The
Readability Metrics preprocesses algorithm is developed with compilers front-end
techniques. The experiment results show that this simplified approach has good
predictive power in measuring software complexity with software readability, in
addition to its ease of applying. The applications of Readability Metrics indicate the
readability of software systems and help in keeping the source code readable and
maintainable.

1. Introduction

It is widely conceived that more time and money are spent on maintaining existing
software systems than on developing new ones [12]. More and more modern
companies use a maintenance-based software development paradigm, in which

* Chung Yung is currently reachable at yung@edgar.stern.nyu.edu.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

software is developed mainly by m o w i n g the source code of existing software
systems [21]. The maintainability of software systems becomes one of the most
important issues in software industry.

A lot of researches investigate in the techniques of improving software maintainability,
software quality, and software reliability, and propose new methodologies of software
metrics, which are applied to measuring software complexity and to monitoring the
process of software development [3], [9], [15], [18].

The maintainability of software systems is dnven by their complexity [2]. The cost of
maintain legacy program is enormous because of the program's complexity [21]. There
are plenty of materials dedicated to measure and analyze the complexity of software
systems [4], [5], [12], [14], [Z], [23]. Many metrics are famous with their power in
predicting software complexity, such as software science [15], cyclomatic measurement
[lq, and so on. They measure the complexity of software systems by quanbfying
certain attributes of software, such as software size, control flow, data flow, and others

151, m-
Size is one of the most important attributes of software systems [25]. It dominates the
cost for the systems both in man-power and in budget, and both for development and
for maintenance. Size based software metrics indicate the complexity of a software
system mainly by its size attributes. These size base metrics help in predicting the cost
for maintaining the system [5].

Control flow and data flow are two of the most important attributes, other than size, of
software systems [5], m, [9]. Control flow metrics capture the relation between the
logic structures in a program with its complexity, while data flow metrics indicate the
complexity of software system by their data dependency.

Readability is another important attributes of software systems that gives substantial
affect on software maintainability r/l, [8]. The software systems with less readable
source code are recognized as more difficult to maintain than those with more readable
source code. In contrast to the software attributes like size, control flow, and data flow,
software readability attribute is more about psychological activities rather than physical
ones. Readability Metrics are a f d y of software metrics that measure software
complexity with taking readability into considerations.

The family of Simplified Readability Metrics is a new approach to measuring the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

complexity of software systems. In addition to simphfying Readability Metrics, we
develop a new readability model. With the new readability model, we expand the
software science metrics with a family of Readability Metrics. In particular, the
magnitudes of Readability Metrics indicate the readability of software systems in
percentage with respect to the readability of the algorithm implemented. And, we
include the algorithms of Readability Metrics preprocesses and a few modifications we
have made since Readability Metrics was published.

This paper is organized as such. The following section describes the attributes used by
existing software metrics for measuring software complexity. We class* them into
three categories and give examples of the metrics in each category. Section 3 is a more
formal description on our Readability model. In Section 4, we introduce our new
approach to Readability Metrics. We include the Readability Metrics preprocesses
algorithm. We also show how the simplified approach measures the complexity of
software systems by their readability. We include the results of one experiment set in
Section 5. And, at last is a brief conclusion.

2. Attributes for Measuring Software Complexity

We distinguish the existing software complexity metrics by the attributes they use for
measuring and we usually class* them into three categories: size based metrics,
control flow based metrics, and data flow based metrics [5]. Please note that all the
three categories of software attributes used for measuring software complexity are more
about the physical activities in the software development life-cycle while software
readability is more about the physical activities.

The size of a software system is a popularly conceived software attribute that affects
software complexity [71, [25]. The size based metrics measure the complexity of
software systems by their sizes. However, it is still arguable what is the basic unit of
software size. The popularly used size based metrics include token counts, lines of
code, software science, and so on.

A few empirical results indicated that the control flow complexity is well correlated
with the overall complexity of a software system [12], [18], [27]. The control flow based
metrics measure the complexity of software systems on their control flow graphs. Two
of the most famous control flow based metrics are knots metrics and cyclomatic metrics.
McCabe and Butler showed that cyclomatic metric also contributes in software testing

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

and software maintenance, in addition to software complexity measurement [19].

Data flow based metrics measure the complexity of software systems by the inter and
intra data dependency among modules [5], [20]. The results of numerous studies and
experiments indicated that data dependency of a software system has a signhcant
effect on the software complexity [13], [14]. The widely used data flow based metrics
include Oviedo's metrics, live variable metrics, variable span metrics and Chung's
metrics [4].

In the following of this section, we briefly introduce one family of software complexity
metrics in each category as an example and as a comparison,

2.1 Saftware Science

In the early 1970'~~ Halstead investigated on measuring the complexity of software by
analyzing its source code, which is called sop?ome science. Software science used a
series of simple formulas to measure a few characteristics of a software system [16].
There are many papers published and concluded that the predictive power of software
science is pretty well by Gordon [14], Woodfield [27J, and other researchers. The
details about software science are originally appeared in a monograph, Elements of
Software Science [15]. A few later materials also described the metrics [9], [11], [23], [24].

Halstead defined four basic metrics computable from the program source code:

nl = the number of unique operators
n2 = the number of unique operands

N1 = the total number of operator occurrences

N2 = the total number of operand occurrences

where, the operands are the variables or constants, and the operators are the symbols or
combinations of symbols that affect the values or the ordering of operands.

For example, the C subprogram Matrixchain1 in Fig. 1 has 10 distinct operators and 12
distinct operands. The total number of operator occurrences is 44, and the total number
of operand occurrences is 52.

Center for Digital Economy Research
Stem School of Business
Working Paper 1s-97-01

MatrixChainl ()

{ int n = length;

int i, j, k, 1, q;

for (1=2; l<=n; 1++) {

for (i=l; i<=n-lfl; i++) {

j = i + l - 1 ;

m[i] [j] = 50000;

for (k=i; k<j; k++) {

q = m[il [kl + m[k+ll [jl + p[i-ll*p[kl*p[jl;
if (q < m[il[jl) {

m[il [jl = q;

s[i] [j] = k;

1 1 1 1 1

Fig. 1: MatrixChainl subprogram

The vocabulary n of a program, and the length N of a program were defined as

The volume V of a program, and the effort E of a program can be derived as

where V' is the volume of the algorithm implemented in a procedure call. Since V' is
not easy to calculate, Halstead proposed measuring the effort E by its standard
approximation E" as following:

By Halstead's definition, the effort of a program is the mental activity required for
reducing a preconceived algorithm to an actual implementation in a programming
language 1151.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

measure value ...- * ... --..-.
nl 10

n2 12

N1 4 4

N2 5 2
n 22

N 9 6

V 428

E" 9273

Table I : The software science metrics applied to MatrixChainl

The subprogram Matrixaainl in Fig. 1 is a C program implementing the dynamic
progrannming algorithm solving the matrix-chain multiplication problem. The metrics
of software science applied to MatrixChainl are listed in Table 1.

2.2 Cyclomatic Metric

In 1976, McCabe proposed cyclomatic metric by adapting a mathematical concept from
graph theory [18]. Cyclomatic metric is popularly applied in measuring the software
complexity for its simplicity and its mathematical background. In addition to
measuring software complexity, cyclomatic metric also contribute to software testing
and software maintenance [lg].

For each structured software module, we may derive a directed graph from its control
flow, called control flow graph. A node in the graph corresponds to a block of
sequential code, and an edge in the graph corresponds to control flow in the module.
The cyclomatic metric, derived from control flow graph G [4], [I$], is defined as :

where e is the number of edges and n is the number of nodes in G.

Note that from the view point of graph theory v(G) is the number of linearly
independent paths in G, and that v(G) depends only on the decision structure of the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

control flow graph G. The cyclomatic metric indicates the number of linearly
independent circuits in a strongly connected control flow graph G.

For example, the cyclomatic metric of MatrixChainl in Fig.1 is 4.

2.3 Variable Span Metrics

Variable span metrics measure software complexity by the number of statements
between two successive references of a variable, based on the observation that large
variable span results in higher software complexity [71, 191. Two of the most important
metrics in this family are program total span and program average span. Program total
span metric is the total of the average span of each variable; while program average
span metric is derived from dividing program total span by the number of variables in
the program.

Variable span metrics capture the essence of how often a variable is used in a program.
Furthermore, the size of a span indicates the number of statements that pass between
successive uses of a variable. A large span can require the programmer to remember
during the constructing process a variable that was last used far back in the program

151,191.

For Matrixchain1 in Fig. 1, the span metrics of the variables are shown in Table 2.

3. Readability Model

If an algorithm is implemented by a few programmers with different programming
styles, many different versions of its implementation will appear. The different
versions of implementation have different complexity, different readability, and so on.
One of our goals is to propose a readability model that shows the readability and the
complexity of software systems with considering the readability difference in different
implementations. So that, we have a standard to indicate the readability of the software
system in order to keep it maintainable, and a criterion for measuring the complexity of
software systems with respect to their readability.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

var iab le # of span span sequence average - .. * ..-.........-.... -
n 1 1 1.000

i 1 0 0, o f 1,1, 1, I f o f I f 1 , l 0.700

j 7 1 ,1 ,1 ,0 ,1 ,1 ,1 0.857

k 6 O , O , ~ I O , O , ~ 0 .667

1 4 O , O , 111 0.500

q 2 1,1 1.000

m 1 1 1.000

P 2 0 ,o 0 .000
s 0 0 0 .000

program t o t a l span = 5.724

program average span = 0.636

Table 2 : The variable span metrics applied to MatrixChainl

We start introducing our Readability model with presenting a motivating example
which shows that the software complexity measured by Software Science does not
indicate the relative readability between two versions of implementation of the same
algorithm. And then, we introduce our Readability model in a more formal way.

3.1 A Motivating Example

There are a few attributes which make a software system more readable, such as proper
comments; while some others make a software system less readable, such as badly
named variables. One of the generally recognized attributes which make program
source code cllfficult to read is the highly compound expressions. In such cases,
splitting the highly compound expressions usually helps in making the program more
readable.

The subprogram MatrixChainl in Fig.1 is an implementation of the dynamic
programming algorithm solving the matrix-chain multiplication problem, stated as
follows: given a chain CAI, A;, ..., An> of n matrices, where for i = 1, 2, ..., n, matrix Ai
has dimension pi-I x pi, fully parenthesize the product AI, A;, ..., An in a way that
minimizes the number of scalar multiplications [lo]. In the implementation of

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

Matrixchainl, there is an statement with a highly compound expression which includes
three additions, one subtraction, and two multifications.

Suppose that we have another version of implementation of the same algorithm as
Matrixchainl implements with a different programmjng style, shown as Matrixchain2
in Fig.2. The only difference is on the statement calculating q. In MatrixChain2, the
statement with the highly compound expression is split into two statements, and the
new variable has a logically clear definition. To most of software engineers,
Matrixchain2 is much more readable than MatrixChainl. When maintaining software
systerns, the long compound statements, like the one in MatrixChainl, usually take
much more time for software engineers to understand what it does.

MatrixChain2 ()

{ int n = length;

int i, j, k, 1, q, r;

for (1=2; l<=n; 1++) I
for (i=l; i<=n-l+l; i++) {

j = i + l - 1 ;

m[i] [j] = 50000;

for (k=i; k<j; k++) I
r = pli-11 * p[kl * p[jl;
q = m[i] [k] + m[k+l] [j] + r;
if (q < mEi1 Ejl) I

m[il [j l = q;

s[i] [j] = k;

1 1 1 1 1

Fig. 2 : Matrixchain2 subprogram

The software science metrics applied to Matrixchain2 are listed in Table 3. Compared
with those metrics to MatrixChainl in Table 1, we found that Matrixchain2 has larger
program volume and larger program effort. MatrixChain2 uses simpler statements
which are more readable and thus reduces the effort of maintenance. However,
software science metrics failed in showing the complexity with considering software
readability.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

measure value

nl 10

n2 13

N1 4 5

N2 54
n 2 3

N 9 9

V 448

E* 9305

Table 3: The software science metrics applied to Matrixchain2

In the following section, we develop a readability model as a theoretic background of
measuring software complexity of software systems with considering their readability.

3.2 Readability Model

Theoretically, for a computable algorithm a, its algorithmic volume V(a) and its
algorithmic effort E(a) are constants. That is, the algorithmic volume V(a) and the
algorithmic effort E(a) are independent of the implementation. We state in a more
formal way as follows:

Proposition 1: For any computable algorithm a, V(a) and E(a) are
constant, where V(a) is its algorithmic volume and E(a) is its algorithmic
effort.

Without loss of generality, we assume that the algorithmic volume V(a) and the
algorithmic effort E(a) are measured on the algorithm a in its most readable format.

We denote as Px = L(a) that a programmer x implements algorithm a and results in a
program Px. The developing effort of program Px, which x spent on implementing a, is
denoted as Ed(Px), and the developed volume of program Px is denoted as Vd(a).

We are interested in measuring the effort E,(a) required for reading algorithm a and the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

effort Er(Px) required for reading the developed program Px. However, it is not easy to
measure Er(a) and Er(Px) directly. On the other hand, Er(a) and Er(PJ are usually
related to E(a), and Ed(Px), respectively. We propose that the effort Er(a) required for
reading algorithm a depends linearly on its algorithmic effort E(a), and that, in a
similar way, the effort Er(Px) required for reading the developed program Px depends
linearly on its developing effort Ed(&). We state as the following proposition:

Proposition 2: (1) For a computable algorithm a, &(a) = crE(a), where
Er(a) is the effort required for reading a, E(a) is the algorithmic effort of
a, and cr is called readability coefficient. And, (2) VPx = L(a), Er(Px) =
crEd(Px), where Er(Px) is the effort required for reading Px, and Ed(Px) is the
effort spent on developing P,.

Now we define Readability as follows:

Definition (Readability): The readability of algorithm a, Read(a), is
defined as the effort required for reading a unit volume of a. That is,
Read(@) = Er(a) / V(a). And similarly, the readability of a program Px,
Read(Px), is defined as the effort required for reading a unit volume of Px.
That is, Read(&) = Er(Px) / Vd(Px).

This is the Readability model that we use to develop our new approach to Readability
Metrics. There are a few measures in Readability model that are not easy for
measuring, such as E(a), c,, and so on. The following section describes our new
methodology. We will show how we measure those difficult measures.

4. Simplified Readability Metrics

To maintain a software system, as we know, involves in dealing with a few jobs on the
software source code [4], [7J. These maintaining jobs include deleting redundant code,
adding new functions, correcting errors, and so on. Before any of the maintaining jobs
gets started, there is one thing we must do, that we need to read through the source
code. Hence, it is obvious that software readability is an important attribute for
maintaining software systems.

One of our goals is to propose a family of metrics that measure the complexity of
software systems by their readability in order to keep the software systems readable

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

and maintainable. Furthermore, our goal is to have a series of metrics that can indicate
the relative readability difference between implementations of the same algorithm by
the difference in magnitudes of the metrics.

In the above section, we give the defdtion of Readabiltity as the effort required for
reading unit volume of the algorithm. But, it is not clear how we may measure the
effort and the volume of an algorithm. In this section, we introduce the hypothesis for
Readability Metrics. We propose two preprocesses that make possible measuring
algorithmic volume and algorithmic effort. We introduce Readability Metrics for
measuring the readability of software systems. And, we include the application of
Readability Metrics to MatrixChainl and MatrixChain.2. More experiment results are
shown in the next section.

4.1 Hypothesis

According to the discussion of above section, we recognize that Matrixchain2 is more
readable than MatrixChainl. There are two properties that make Matrixchain2 more
readable than MatrixChainl, and we will show that they may be quantified and
measured. The two properties are: using simple statements and giving simple variable
definitions.

We further extend on these two properties to a couple of baselines for readable
programs. The readability baselines are stated as follows:

1. using statements as simple as possible, and

2. giving variable dejinitions as simple as possible.

Thus, we make our hypothesis as:

A sofhoare system with fillowing the readability baselines has a laver
complexity; while a sofhoare system without fillowing the readability baselines
has a higher complexity.

4.2 Preprocesses

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

Looking at the software systems currently used in software industry, we can hardly
find any of them exactly following the above baselines. We need to quantdy the factors
in the baselines and measure how far the software systems are away from the baselines
and how much additional effort required for maintaining the less readability software
systems.

Before measuring software complexity, we apply two kinds of program transformations
to the source code. The program transformations are adapted with compiler front-end
techniques, and are listed as follows:

1. Create temporary variables are created for storing the temporary
values in compound statements.

2. Insert necessary assignment statements for assigning the temporary
values to the created temporary variables.

3. Rewrite the compound statements as simple statements with the
created temporary variables.

The algorithm. that we use for the preprocesses is listed in Fig3

1. Parse program source code and locate the compound statements.

2. For each compound statement with n mathematical operators

3. If compound expression is right-hand-side of assignment

4 . Create n-l temporary variables for the temporary values

5. else

6. Create n temporary variables for the temporary values

7. Insert an assignment statement for each temporary variable

8. Rewrite the compound statement as a simple statement

Fig. 3: Preprocesses algorithm

The preprocessed subprogram Matrixchain3 is shown in Fig. 4. It is not difficult to see
that the preprocesses algorithm transforms both Matrixchain1 and Matrixchain2 to
MatrixChain3.

Center for Digital Economy Research
Stern School of Business
Working Paper IS-97-01

MatrixChain3 ()

{ int n = length;

int i, j, k, 1, q;

int tl, t2, t3, t4, t5, t6, t7, t8;

for (1=2; l<=n; I++) {

tl = n - 1;
t2 = tl + 1;
for (i=l; i<=t2; i++) {

t3 = i + 1;
j = t3 - 1;
m[i] [j] = 50000;

for (k=i; k<j; k++) {

t4 = k + 1;
t5 = i - 1;
t6 = p[t51 * p[k] ;
t7 = t6 * p[j];
t8 = m[i] [k] + m[t41 [jl ;

q = t8 + t7;
if (q < mEil [jl) I

m[il [jl = q;

s[i] [j] = k;

1 1 1 1 1

Fig. 4: Preprocessed MatrixChain3 subprogram

measure value

nl 10

n2 2 0

N1 5 2

N2 68
n 3 0

N 12 0

V 5 8 9

E* 9130

Table 4: The software science metrics applied to MatrixChain3

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

After we transform the program by the preprocesses algorithm, we apply the software
science metrics to MatrixChain3. The results are listed in Table 4. Note that the metrics
show that Matrixchain3 requires the most program volume and the least program
effort among the three versions of implementation.

4.3 Readability Metrics

Recall one of our goals is to have a series of metrics that show the readability and the
complexity of software systems with considering the readability difference in different
versions of implementation. In, particular, we need an index for the program
readability indicating the additional program effort of less readable implementations
with respect to the algorithmic effort. First, we need to estirnate the algorithmic volume
and the algorithmic effort.

In most of the cases, the Readability Metrics preprocesses transform the different
versions of implementation on the same algorithm into the same program. For
example, the Readability Metrics preprocesses transform both MatrixChainl and
MatrixChainlL into MatrixChain3. Therefore, we estimate the algorithmic volume and
the algorithmic effort of the implemented algorithm by the program volume and the
program effort of the preprocessed program.

Since the readability and readability coefficient defined in our Readability model are not
easy to measure directly, we define algorithmic readability index AH and program
readability index PRI as follows:

A R I = R e a d (a) / c,
= (E,(a)/ c,) / V(a)
= Efa) / V(a)

PRI = R e a d (Px) / c,

= (E,(Px) / c,) / Vd(Px)
= Ed(Px) / Vd(Px)

where Read(a) is the algorithmic readability, c, is the readability coefficient, E,(a) is the
effort required for reading a, E(a) is the algorithmic effort, V(a) is the algorithmic
volume, Read(Px) is the readability of Px, E,(Px) is the effort required for reading Px,
Ed(Px) is the developing effort of Px, and Vd(P,) is the developed volume of Px.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

According to Halstead's software science, we measure the program effort effort by its
standard approximation. So we get approximated algorithmic readability index ARIA
and approximated program readability index PRIh as follows:

ARIA = E^ (a) / V (a)
= (n ~ (a) x & (a)) / (2 x n2(a)

We define the normalized program readability index NPRI as follows:

And, we interpret NPRI as follows:

The readability of the sofhoare system developed is NPRl percent of the
readability of the implemented algorithm.

From this point of view, a program is perfectly readable if its NPRI is 100.

4.4 Application

The Readability Metrics applied to MatrixChainl and MatrixChain2 are listed in Table
5. Please note that the smaller NPRI of Matrixchain2 shows its relative readability to
Matrixchainl.

Readability Metrics MatrixChainl MatrixChain2

ARI " 15.50 15.50

PRI^ 21.67 20.77

NPRI 140 134

Table 5: Readability Metrics applied to MatrixChainl and Matrixchain2

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

As described in previous section, we may interpret the Readability Metrics listed in
Table 5 as:

The readability of MatrixChainl is 140% of the readability of the Matrixchain
algorithm; while the readability of Matrixchain2 is 134% of the readability of
the same algorithm.

So that, Readability Metrics show that MatrixChain2 is a little more readable than
MatrixChainl by that MatrixChain2 has smaller NPH than MatrixChainl does. As we
know, the improved readability is due to splitting the highly compound statement into
simpler ones.

5. Experiments

We show the result of one of experiment sets in Table 6. In this set, we experiment on
the implementation of three number theoretic algorithms. We measure the software
complexity of each program by our Readability Metrics. The implementation with
smaller NPH is considered as more readable. Thus, we indicate the software
readability of each implementation.

5.1 Experiment Results

This set of experiments include the implementation on three well-known number
theoretic algorithms: extended Euclid's greatest common divisor, modular linear
equation solver, and the Chinese remainder theorem. The details of the each algorithm
can be found in many algorithm books [I], [lo].

The extended Euclid's greatest common divisor algorithm solves the greatest common
divisor problem with giving additional useful information. Specifically, the extended
algorithm computes (d,x,y) such that

The modular linear equation solver algorithm solves the problem of finding solutions to
the equation

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

ax = b (mod n)

The Chinese remainder thwrem provides a correspondence between a system of
equations modulo a set of painvise relatively prime moduli and an equation modulo
their product.

Metric ExtendedEuclid MLES ChineseRemainder --..
nl 9 13 14

n2 10 19 2 6

N1 2 5 4 6 7 3

N2 34 6 5 98

n 19 32 4 0

N 59 115 171

V 251 575 910

E^ 3840 12786 24010

ARI^ 12.81 19.05 22.70

PRI" 15.30 22.24 26.38

& 119 117 116

Table 6: The result of an experiment set

By Readability Metrics, we indicate that the readability of ExtendedEuclid is 119% of the
readability of the extended Euclid's greatest common divisor algorithm; that the
readability of MLES is 117% of the readability of the modular linear equation solver
algorithm; and that the readability of ChineseRemainder is 116% of the readability of
the Chinese remainder theorem. So that, ChineseRemainder is considered as the most
readable of the three programs in the experiment set. Recall that the readability is
defined as the effort required for reading the unit volume of the program

5.2 Experiment Summary

When applying Readability Metries for measuring software complexity, we get serveral
information from the magnitudes of the metrics:

Center for Digital Economy Research
Stem School of Business
Working Paper IS-97-01

With applying software science metrics, the program volume and the
program effort are good in indicating the size of developed software
systems and the effort spent on developing the software systems. By
the Halstead's definitions [I51 that the program effort is the mental
activity required to implement a preconceived algorithm to an actual
program in a programming language. However, the program effort
measure does not show the effort required for maintaining the
software systems.

2. When an algorithm is implemented by programmers with different
programming styles, a few different versions of implementation will
appear. Software science fails in showing the software complexity
difference between the versions due to the difference in their
readability. The Readability model describes the effort required for
reading the source code of a software system, and reading the source
code is one of the most mental activities in maintaining a software
system. Readability Metrics indicate the readability of each version
of the implementation.

3. To indicate the additional effort required for reading the software
system due to the less readability of its the source code, we need to
estimate the effort required for reading the algorithm that it
implements. Readability preprocesses are proposed for measuring
the readability of the algorithm.

4. The metric NPRT is proposed to indicate the readability of a software
system. In the case that software systems are developed with
following the proposed readability baselines, the NPRT metric to the
systems is 100, which indicates reading the source code of the
software system requires effort as much as the implemented
algorithm requires; that is, no extra effort is required due to the less
readable programming style.

6. Conclusion

A new approach to measuring the complexity of software systems with considering
their readability is proposed. We develop a Readability model for describing the effort

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

required for reading the source code since reading the source code is one of the most
important activities of maintenance. The readability preprocesses are proposed for
measuring the readability of the algorithm. Readability Metrics are proposed with
Readability model for measuring the readability of software systems. The applications
of Readability Metrics help in keeping the source code of software systems readable so
that the software systems are maintainable in the later phases of the software
development life-cycle.

One possible direction of our future researches is exploring more attributes that are not
taken into consideration by the existing software complexity metrics. We are also
interested in investigating more on applying our model to reverse engineering.

Acknowledgement

The author appreciates Professor Ajit Kambil for his kind support and encouragement
on the progress of this research work. The author is grateful to Professor Edward Stohr
for his help in making publishing this paper possible. The author thanks Professor
Ellaine Weyuker for her precious comments on the earlier version of this paper.

References

[I] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley Press, 1975.

(21 C. M. Chung, W, R. Edwards, and M. G. Yang, "A Software Environment Combining
Metrics, Program Information, and Testing Methodologies," Proceedings of Intemafional
Computer Symposium 1988, Taipei, Taiwan, Vol. 1, pp. 696 - 703.

[3] C. M. Chung, W. R. Edwards, and M. G. Yang, "Static and Dynamic Data Flow Metrics,"
Policy and Infmation, Vol. 13, No. 1, pp. 91-103, June 1989.

[4] C. M. Chung, and M. G. Yang, "A Software Maintainability Measurement," Proceedings of
The 1988 Science, Engineering and Technology Seminars, Houston, Texas, pp. V4-12 - V4-16.

[5] C. M. Chung, and M. G. Yang, "A Software Meh7ics Based Software Environment for
Coding, Testing and Maintenance," Proceedings of The 1988 Science, Engineering and
Technology Seminars, Houston, Texas, pp. T3-13 - T3-17.

[6] C. M. Chung, M. G. Yang, J. H. Chou, and Y. H. Chou, "Algorithms for Finding the Most
Complicated Loop-Eree and Loop-once Paths," Proceedings of National Computer Symposium
1989, Taipei, Taiwan, pp. 522-530.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

[7] C. M. Chung, and C. Yung, "Measuring Software Complexity Considering Both Readability
and Size," Infomration and Communication, Tamkang Univ., Taiwan.

[8] C. M. Chung, and C. Yung, "Readability Metrics," The Proceedings of Mid-America Chinese
Projkssional Annual Convention 1990, Chicago, Illinois.

[9] S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Sofhoare Engineering Mmcs and Models,
Benjamin/Cummings Press, 1986.

[lo] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introducfion fo Algorithms, The MIT Press,
1991.

[ll]N. S. Coulter, "Software Science and Cognitive Psychology," Mar. 1983, IEEE Transactions on
Sofhuare Engineering, Vol. SE-9, No. 2, pp. 166 - l7l.

[12] B. Curtis, S. B. Sheppard, P. Mdliman, M. A. Borst, and T. Love, "Measuring the
Psychological Complexity of Software Maintenance Tasks with the Halstead and McCabe
Metrics," Mar. 1979, IEEE Transactions on Sofhoare Engineering, Vol. SE-5, No, 2, pp. 96 -
104.

[13] H. E. Dunsmore, and H. D. Gannon, "Data Referencing: an Empirical Investigation," IEEE
Computer, pp. 50-59, Dec. 1983.

[I41 R. D. Gordon, "Measuring Improvements in Program Clarity," Mar. 1979, IEEE Transactions
on Sofhuare Engineen'ng, Vol. SE-5, No. 2, pp. 79 - 90.

[I51 M. H. Halstead, Elernenfs of Sofhoare Science, Elsevier North-Holland Press, New York, 1977.

[I61 M. H. Halstead, "Guest Editorial on Software Science," Mar. 1979, IEEE Transacfions on
Sofhoare Engineering, Vol. SE-5, No. 2, pp. 74 - 75.

[17] B. W. Kernighan, and D. M. Richie, The C Programming Language, 2nd Edition, Prentice-
Hall Press, 1988.

[I81 T. J. McCabe, "A Complexity Measure," IEEE Transactions on Sofhoare Engineering, Vol. SE-
2, No. 4, pp. 308-320, Dec. 1976.

[I91 T. J. McCabe, and C. W. Butler, "Design Complexity Measurement and Testing,"
Communications of the ACM, Vol. 23, No. 12, pp. 1415 - 1425, Dec. 1989.

[20] E. Oviedo, "Control Flow, Data Flow and Program Complexity," Proceedings of The IEEE
COMPSAC 1980, pp. 146-152.

[21] C. V. Ramamoothy, and W-T. Tsai, "Advances in Software Engineering," IEEE Computer,
Vol. 29, No. 10, pp. 47-58, Od. 1996.

[22] B. Ramamurthy, and A. Melton, "A Synthesis of Software Science Measures and the
Cyclomatic Number," Aug. 1988, IEEE Transactions on Sofhoare Engineering, Vol. 14, No. 8,
pp. 1116 - 1121.

[23] W. H. Shaw, J. W. Howatt, R. S. Maness, and D. M. Miller, "A Software Science Model of
Compile Time,", IEEE Transach'ons on Sofhoare Engineering, Vol. 15, No. 5, pp. 543 - 549, May
1989.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

[24] V. Y. Shen, S. D. Conte, and H. E. Dunsmore, "Software Science Revisited: A Critical
Analysis of the Theory and Its Empirical Support," Mar. 1983, IEEE Transactions on Software
Engineering, Vol. SE-9, No. 2 pp. 155 - 165.

[25] J. Verner, and G. Tate, "A Software Size Model," IEEE Transactions on Software
Engineering, Vol. 18, No. 4, pp. 265 - 278, Apr. 1992.

[26] E. J. Weyuker, "Evaluating Software Complexity Measures," IEEE Transactions on Software
Engineering, Vol. 14, No. 9, pp. 1357-1365,1988.

[27l S. N. Woodfield, "An Experiment on Unit Increase in Problem Complexity," IEEE
Transaciim on Software Engineering, Vol. SE-5, No. 2, pp. 76-79.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-01

