
DISCOVERING INTERESTING PATTERNS FOR INVESTMENT DECISION
MAKING WITH GLOWER O - A GENETIC LEARNER OVERLAID WITH

ENTROPY REDUCTION

Vasant Dhar

Dashin Chou

Foster Provost

Department of Information, Operations, and Management Sciences

Leonard N. Stern School of Business, New York University

44 West 4th Street, New York, NY 100 12

Center for Digital Economy Research
Stern School of Business
Working Paper IS-00-02

Discovering Interesting Patterns for Investment Decision Making with
GLOWER @ - A Genetic Learner Overlaid With Entropy Reduction

Vasant ~ h a r '
Dashin Chou
Foster Provost

Stern School of Business
New York University

44 West 4th Street, Room 9-75
New York NY 100 12

January 2000

Abstract

Prediction in financial domains is notoriously difficult for a number of reasons. First, theories tend to be
weak or non-existent, which makes problem formulation open-ended by forcing us to consider a large
number of independent variables and thereby increasing the dimensionality of the search space. Second, the
weak relationships among variables tend to be nonlinear, and may hold only in limited areas of the search
space. Third, in financial practice, where analysts conduct extensive manual analysis of historically well
performing indicators, a key is to find the hidden interactions among variables that perform well in
combination. Unfortunately, these are exactly the patterns that the greedy search biases incorporated by
many standard rule algorithms will miss. In this paper, we describe and evaluate several variations of a new
genetic learning algorithm (GLOWER) on a variety of data sets. The design of GLOWER has been motivated
by financial prediction problems, but incorporates successful ideas from tree induction and rule learning.
We examine the performance of several GLOWER variants on two UCI data sets as well as on a standard
financial prediction problem (S&P500 stock returns), using the results to identify and use one of the better
variants for further comparisons. We introduce a new (to KDD) financial prediction problem (predicting
positive and negative earnings surprises), and experiment withGLOWER, contrasting it with tree- and rule-
induction approaches. Our results are encouraging, showing that GLOWER has the ability to uncover
effective patterns for difficult problems that have weak structure and significant nonlinearities.

' Email: vdhar@,stern.nvu.edu FAX: (212) 995-4228 TEL: (212) 998-0816

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

1. Introduction

Our experience in financial domains is that decision makers are more likely to invest
capital using models that are easy to understand. More specifically, decision makers want
to understand when to pay attention to specific market indicators, and in particular, in
what ranges and under what conditions these indicators produce good risk-adjusted
returns. Indeed, many professional traders have remarked that they are occasionally
inclined to make predictions about market volatility and direction, but cannot specify
these conditions precisely or with any degree of confidence. Rules generated by pattern
discovery algorithms are particularly appealing in this respect because they can make
explicit to the decision maker the particular interactions among the various market
indicators that produce desirable results. They can offer the decision maker a "loose
theory" about the problem that is easy to critique.

Financial prediction problems tend to be very difficult to model. Investment professionals
who use systematic trading strategies invariably experience periods where their models
fail. Modelers often refer to these periods as "noise," although it can be argued that the
so-called noise arises from the limitations of the model rather than unpredictable aspects
of the problem.

What are the characteristics of financial problems that make it difficult to induce robust
predictive models? First, the dimensionality of the problem is high. It is common
practice, for example, to derive "telescoped" moving averages of variables (Barr and
Mani, 1994) in order to be able to capture the impact of temporal histories of different
lengths such as 10, 60, 250 prior data points (days, minutes, etc). This enables the
discovery of patterns that capture not only long- and short-term relationships, but also the
transitions between them. For example, if a long-term indicator is high but a short-term
indicator is low, it may indicate a recent "cooling down" phenomenon. While the use of
telescoping allows for the discovery of such effects, it increases the dimensionality, and
correspondingly, the size of the search space increases exponentially.

Secondly, relationships among independent and dependent variables are weak and
nonlinear. The nonlinearities can be especially pronounced towards the tails of
distributions, where a correlation becomes stronger or weaker than it is elsewhere. For
example, a common type of nonlinearity in technical analysis is trend reversal, where
price trends change direction after a prolonged period. In this case, "more" (trend) is not
always better; the hazard of assuming that the trend will continue may increase as the
trend continues. Similarly, an earnings revision on a stock by an analyst may have no
impact on its price unless the revision exceeds some threshold. In other words, the effect
holds only in the tail-end of the distribution.

Thirdly, variable interactions can be significant. For example, we may observe that a
"negative earnings surprise" (i.e., the earnings reported by a company are lower than
expected) has no effect on returns in general. On the other hand, we may find that if we
were to make the rule more specific, by eliminating "market leaders" in the "technology"

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

sector, the effect is dramatic. It is important for a learning algorithm to be able to
discover such interaction effects in a way that makes the induced relationship as accurate
and general as possible. In domains such as these, where much manual analysis
concentrates on following trails of well performing indicators, it is exactly the hidden
interactions that are important.

Our basic assumption in predicting financial markets is that it is not possible to do so
most of the time. This is consistent with remarks many financial professionals have made.
In particular, many trading professionals do feel that there are times, admittedly few,
where they can predict better than at most other times. This philosophy, "generally
agnostic but occasionally making bets," has important implications for how we approach
the modeling problem. One of the major challenges is to reduce the "noisy" periods by
being more selective about the conditions under which to invest--to find patterns that
offer a reasonable number of opportunities to conduct high risk-adjusted-return trades. In
doing so, we must consider explicitly the tradeoff between model coverage and model
accuracy. Trying to give an accurate prediction for all data points is unlikely to succeed.
On the other hand, a single small, accurate rule probably will not apply often enough to
be worthwhile. The model (for us a set of rules) must be accurate enough and
simultaneously general enough to allow sufficient high-probability opportunities to trade
effectively.

In the next section we go into more detail on the benefits and limitations of genetic search
for data mining. It turns out that we can address the limitations by enhancing
genetic search with basic heuristics inspired by work on tree induction and rule induction.
We present results comparing the augmented genetic learning algorithm (GLOWER) to tree
induction and rule induction for a difficult financial prediction problem. The results are as
we would expect based on an analysis of the strengths and weaknesses of the various
approaches: GLOWER is able to find significantly better rules than its competitors based on
the domain-specific notion of rule quality.

In section 3 we define the problem-specific notions of accuracy and generality in terms of
confidence and support. In section 4 we introduce a "generic" algorithm used for genetic
rule discovery, its dynamics, and extensions that take advantage of niching techniques
that are commonly employed by genetic algorithms. In section 5 we introduce a new
hybrid genetic rule-learning algorithm that combines an entropy reduction heuristic (as
used by TI algorithms) and an inductive strengthening heuristic (as used by rule induction
algorithms) with standard genetic search. We describe how we used three benchmark
data sets to do a comparison of several options for instantiating the genetic algorithm.
After choosing a particular instantiation, based on the results of this study, in section 7
we apply GLOWER to a new (to KDD) financial problem, predicting earnings surprises,
and contrast the results with those obtained with tree induction and with rule learning.
Finally, we discuss further considerations in using genetic algorithms for pattern
discovery in finance, and further directions for research.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

2. Benefits and Limitations of Genetic Search for Rules

Our objective is to find rule-like patterns in the data. Various candidate algorithms for
doing so have been studied, most notably tree induction (TI) algorithms (Quinlan, 1986;
Breiman et al. 1984; separate-and-conquer rule-learning algorithms (Furnkranz, 1999),
and systematic rule-space search algorithms (Provost, Aronis and Buchanan, 1999).
These algorithms all search the space of conjunctive rules; most search the space from
general rules (syntactically simple, covering many data) to specific rules (having more
conditions, covering fewer data).

The KDD literature has paid less attention to genetic algorithms for searching the rule
space. Genetic algorithms (Packard, 1989; Goldberg, 1989, Holland, 1992) have been
shown to be well suited to learning rule-like patterns. They have the ability to search
large spaces for patterns without resorting to heuristics that are biased against term
interactions. In this paper, we focus on the use of genetic algorithms-particularly as
applied to financial data mining problems. To provide contrast with common data
mining practice, we pay particular attention to how genetic algorithms differ from tree
and rule induction algorithms.

Genetic algorithms have several advantages as a rule discovery method. Their two
primary advantages are the ability to scour a search space thoroughly, and the ability to
allow arbitrary fitness functions in the search. Their main disadvantages are speed,
randomness in creating the initial population (and in exploration as well, although some
may consider this an advantage), and the fact that they can be myopic after they find one
good solution. We address the limitations except for speed, which is beyond the scope of
this article, and demonstrate the first two benefits.

2.1 Limitations of Genetic Search

Genetic algorithms have several limitations when used for rule mining. One drawback is
the random creation of initial populations and the randomness of subsequent exploration.
Why should we start with a random population? Although GLOWER retains the positive
aspects of randomness such as the ability to escape local maxima, we also overlay
entropy reduction to focus the genetic search, both to build the initial population and in
subsequent exploration.

A second important limitation of genetic algorithms for rule mining is that they have a
tendency to focus too closely on a single, high-quality solution. The "building blocks"
(Holland, 1975) of this single solution can distribute themselves rapidly throughout the
population, and tend to elbow out other potentially good solutions. To address this
problem, we evaluate several refocusing methods from the literature on genetic
algorithms and from the literature on rule learning.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

A third limitation of genetic search is it is comparatively slow, because it re-evaluates
large populations of rules over and over after making small changes. GLOWER'S
implementation is highly optimized in terms of its internal representation for fast query
and evaluation, in the spirit of the ECETE algorithm (Forgy, 1982). However, run time and
implementation issues are beyond the scope of this paper.

We want to stress that we are not claiming that genetic algorithms are generally better
than the other search techniques for finding interesting, usehl rules. We do believe that
they are a useful alternative, with attractive properties. They should receive greater
attention in the KDD Iiterature, especially for noisy domains like finance where it is
important to find small patterns based on combinations of conditions including numeric
variables. We also want to note that there has been a large volume of work on genetic
algorithms, both theoretical and empirical. This paper is not meant as a survey of that
field; interested readers should consider the brief overview recently provided by DeJong
(1 999), Goldberg (1 989), Packard (1989), Holland (1 995) and others.

In order to appreciate the "fixes" that are necessary to the genetic algorithm for rule
learning, it is appropriate to begin by considering the basic limitations of greedy search
heuristics used in machine learning algorithms.

2.2 Benefits of Genetic Search

Figure 1 helps to locate genetic algorithms on the rule-mining landscape. It depicts a
spectrum of search techniques in terms of the thoroughness of search that they perform.
On one end of the spectrum are tree induction algorithms that use a highly greedy
heuristic and perform an irrevocable search. Rule learning algorithms consider a wider
variety of alternatives and therefore are more thorough. At the other end of the spectrum,
genetic algorithms are capable of conducting very thorough searches of the space because
they are less restricted by a greedy search bias. Genetic search performs implicit
backtracking in its search of the rule space, thereby allowing it to find complex
interactions that the other non-backtracking searches would miss. To illustrate this
property, which we believe to be important in financial domains, we treat in detail below
the problem with using greedy search for rule learning.

These consist of "separate and conquer" type algorthms (Fuhrenkranz, 19XX) and "systematic rule-based
search type" algorithms (Provost, 1995). If only categorical attributes are considered, systematic rule
learning algorithms perform very thorough searches of the rule space. However, for this paper we are
interested in domains that include (and in fact comprise primarily) continuous attributes, for which
systematic rule-space search algorithms are less thorough.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

Figure 1

GAS have the additional advantage, over other conventional rule-learning algorithms, of
comparing among a set of competing candidate rules as search is conducted. Tree
induction algorithms evaluate splits locally, comparing a very few number of rules, and
only implicitly. Other rule-learning algorithms compare rules to fixed or user-specified
criteria, but rarely against each other during the ~ e a r c h . ~ A defining characteristic of
genetic search is that rules compete against each other, based on some fitness criterion.
This is especially useful in domains where the target evaluation function is not well
specified at the outset. Unlike many rule-learning algorithms, which are fine-tuned for a
particular evaluation function (e.g., for maximal classification accuracy), genetic rule-
learning algorithms can accept arbitrary evaluation criteria as input, including the ability
to penalize overlap among rules. We will see later that this allows us to find small sets of
rules that score well with respect to a problem-specific quality measure, dealing explicitly
with the commonly noted problem of finding "too many" rules, including many small
variants of some core pattern.

2.3. The failings of greedy search

Tree Induction algorithms are currently among the most widely used techniques in data
mining. They are fast, are surprisingly effective at finding accurate classifiers with little
knob twiddling, and produce explicit decision trees from which rules can be extracted.
Another strength of TI algorithms is that they classify the data completely. Every datum
can be classified into a particular derived class, resulting in 100% coverage of the data.

But tree induction algorithms generally trade off some accuracy for speed. Most TI
techniques use recursive partitioning: choose a node in the tree, and evaluate competing
univariate splits on the original data set based on their ability to produce statistical
differences in the distribution of the dependent variable. However, regardless of how
judiciously the algorithm splits the data, the greedy heuristic may overlook multivariate
relationships that are not apparent by viewing individual variables in isolation.

The following example illustrates how the greedy search conducted by TI algorithms can
overlook good patterns. It also illustrates how these techniques can be limited in their

We should note that separate-and-conquer rule-learning algorithms implicitly do a limited form of
comparison of hypothesized rules during the search-not enough to warrant a comprehensive discussion
here. The "conquer without separating7' rule-learning algorithm CWS (Domingos, 1996?) compares rules
explicitly as they are learned.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

ability to handle nonlinearities such as interaction effects among problem variables.
Consider the simple example database shown in Table 1, which comprises 20 records
with the attributes:

Gender, Age, State, Consumption

Consumption represents the dependent variable. We would like to use this database to
build a model that will predict Con sump t i on for previously unseen records. In this
simple example, Consumption is the total dollar amount spent by an individual on
roller-blades during a selected time period, and is coded as "High" or "Low" based upon
problem-specific criteria. St at e and Ge nde r are categorical variables. Age is a
continuous variable.

I Gender I Aae I Sta te I Consum~tion

I F 1 36 C A Hiqh

C A Low
34 C A Low

C A Low
M
M
M

Figure 2 shows how a tree induction algorithm, CART (Breiman et al., 1984), classifies
the above data (restricting splits to nodes with at least 10 cases). The leftmost cluster in
Figure 1 shows the complete data set, containing 10 Hi gh and 10 Low consumers as
circles and crosses, respectively.

M
M
M
M
M
M
M
M
M
M

The first split, on Gender, produces a slightly higher proportion of "High" consumers.
In fact, it is the only attribute on which a split produces any improvement at all using the
greedy splitting heuristic. The Male group is further partitioned on Age, under and over
35, yielding a cluster where 62.5% of the cases have Consumpt ion = High. The
"rule" or pattern that emerges is that males under the age of 35 belong to the High
Consumption category:

34
34
34

IF Gender = "Male" AND Age < 35 THEN Consumption = "High" (Rule 1)

Table 1: A small data set

34
34
34
34
34
36
36
36
36
36

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

C A
C A
C A

Hiqh
High
Hiqh

C A
C A
NY
N Y
NY
N Y
NY
C A
C A
C A

H1qh
H1gh
Low
Low
Low

Hlqh
Hlqh
Low
Low
Low

The parts of the rule before and after the "THEN are referred to as the antecedent and
the consequent of the rule, respectively.

Figure 2: An example of how a Tree Induction algorithm partitions data into homogeneous
classes (cross = class 1 = "low" consumers, circle = class 2 = "high" consumers)

In the example above, each split is on a single variable. Tree induction algorithms
typically determine split points based on a heuristic such as entropy reduction (which, as
described below, we use to augment a more traditional genetic algorithm). For example,
the entropy of a cluster i can be computed using the standard formula:

H, =-Cpk log2(pk)
k

(1)

wherepk is the probability of an example picked at random in the cluster i belonging to
the kth class. When applied to a cluster i, Hj, the entropy, measures the average amount
(number of bits) of information required to identify the class of an example in the cluster.
The entropy of a cluster is minimum where the probability is 1 ; that is, all members
belong to the same class. Entropy is maximum where an example is equally likely to
belong of any class, as in the leftmost cluster of Figure 2, where it is 0.5 for both classes.

The gain from a split is computed based on the difference between the entropy of the
parent cluster and the entropy of the child clusters resulting from the split. That is, if a
cluster i is partitioned into j subsets:

gain,= Hi- CH. J * R j
J

(2)

where Rj is the ratio of the number of cases in cluster j to those in i. This is an
information-theoretic measure of the value of information obtained from the split. It is the
amount of discrimination that the split produces on the distribution of the dependent
variable. TI algorithms use a measure such as information gain to compare the potential
splits that can be placed at each node in the decision tree (using, typically, a depth-first
search). The split with the best score is placed at the node; the (sub)set of data at that

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

node is further partitioned based on the split, and the procedure is applied recursively to
each subset until some stopping criteria are met.4

This greedy search is the reason why TI algorithms are fast (Lim, Loh and Shih (2000)
show just how fast they are). The computation of the splitting metric is simple, and there
is no backtracking. This enables the algorithm, in many cases, to process databases with
hundreds of thousands of records in seconds on a powerfbl workstation.

But why does such an algorithm overlook "good" relationships in the data? Recall that
the split on G e n d e r was the only split that produced an improvement. In fact, if we had
split on S t a t e, yielding no immediately apparent improvement, and then again on Age,
we would have obtained a better rule than did the greedy search-a rule with higher
confidence, and comparable support. This is shown in Figure 3. The TI algorithm did not
discover this pattern because the split on s t a t e does not produce improved clusters (the
older people in California are not heavy consumers); it does not reduce the entropy of the
original data. The algorithm has no way to recover from its initial and irrevocable greedy
split. We believe that in certain domains there are many valuable patterns that TI
algorithms overlook.

Suppport = 7/20 = 0.35

Figure 3: An Alternative Split

Rule learning algorithms are fbrther toward the thorough end of the spectrum in Figure 1,
because their search is "less greedy". Specifically, these algorithms typically consider
several independent paths in the search space--all need not be rooted at the same node,
for example (Clark and Niblett, 1989; Clearwater and Provost, 1990; Hong, 199 1 ; Smyth
and Goodman 1991; Provost, Aronis and Buchanan, 1999). They are better equipped to
find the smaller patterns that the irrevocable search strategy of tree induction algorithms
misses.

In computing the goodness of a split, thisgain value needs to be normalized so that fewer splits and larger
clusters are favored over smaller ones. Otherwise the algorithm would be overly biased towards producing
very small clusters (in the extreme case, of size 1 since these would minimize entropy). There are a number
of heuristics for implementing this normalization (see, for example, Quinlan (1993), Breiman et al. (1 984),
or Michie, et al. (1994)).

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

It is the search for small, non-overlapping, and useful patterns including continuous
variables that concerns us. Our experience that predictability in financial domains is
highly elusive, and is possible only infrequently, at best. We have found that minor
changes in discretization intervals and granularity can cause the search to produce
significantly different outputs. A solution to these problems is to perform more search,
and at the same time to be more selective. We have found genetic search to be
particularly effective in this respect. However, we believe that techniques such as
entropy minimization are conceptually sound and are quite useful. Rather than discarding
them, it is worthwhile for the genetic search to incorporate them.

3. Evaluation of partial models
Evaluation of models typically comes in two flavors. Many systems, such as the TI
algorithms described above, produce models that are intended to apply to all the data
(100% coverage). Such models often are evaluated by the expected number of errors that
they would make on (previously unseen) examples drawn from some distribution. The
other flavor of evaluation is to look at individual rules (or other small-coverage patterns)
and evaluate them outside the context of the model that together they would form.

Two commonly used metrics used to measure the goodness of individual rules are
confidence and support. These metrics have been used for many years in a variety of rule-
learning algorithms, and have become especially popular in the KDD community because
of their use in association-rule algorithms. Confidence measures the correlation between
the antecedent and the consequent of the rule. Support measures how much of the data
the rule covers. If N is the total number of examples in a data set, then, for a rule of the
form A -) B:

confidence = (Number of cases satisfying A and B) / (Number of cases satisfying A)
= P(A n B) / p(A)

support = (Number of cases satisfying A) / N
= P(A)

error = 1 - confidence

For example, the confidence of Rule 1 from Section 1 is 0.625 (5/8), whereas the support
is 0.40 (8120).

These two flavors of evaluation actually apply similar measures to two ends of a
spectrum of partial models. The former considers models by definition to have 100%
support, and thus reports only error rate (1-confidence). The latter considers partial
models at the finest granularity, reporting the error rate of an individual rule and its
associated support. We are interested in partial models along the spectrum between these
two extremes.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

For example, consider the financial problem of predicting earnings surprises. The task is
difficult, and it is unlikely that a model could be built that classifies all cases accurately.
On the other hand, viewing the statistics of individual rules out of the context of use
(presumably as part of a larger model) provides less insight than we would like. Our goal
is to find models, perhaps comprising a few rules, that predict a useful number of
earnings surprises with high accuracy. Of course, the definitions of "useful" and "high"
are problem dependent, to which we will return when we discuss further the earnings-
surprise prediction problem. Fortunately, statistics such as confidence and support apply
not only to the two common flavors, but are well suited across the entire spectrum of
partial models. In fact, if so inclined, one could graph the tradeoff between the two as
partial models are constructed rule by rule.

4. Genetic Rule Discovery

In financial domains, decision makers often are interested in finding easy-to-understand
rules to govern investment performance. For example, a qualitative rule might be "if the
short term moving average of prices exceeds the long term moving average and the
trading volume over the long tern is increasing, buy." In this case, a discovery algorithm
could fill in the blanks denoted by the italicized phrases. For example, it might find that
the best buying results (i.e. going long) occur when the following rule is applied:

Short-term = 5 days,
Long - term = 30 days,
Short term-moving-average > Long term moving - average,
~on~term-volumerate > 2 percent AND 2 5 percent,
~ 0 2 d ; ~ j e r i o d = 2 days.

As we can see, the search space of possible rules is extremely large even for this trivial
example with only a few variables. It should also be apparent that the representation used
by the discovery algorithm must be able to deal easily with inequality conditions such as
"at least 2 percent," "between 2 and 5 percent," "less than 2 or greater than 10," and so
on. Also, other buying rules should overlap as little as possible with the one above.

4.1. Representation: Gene and Chromosome Semantics

Table 2 shows the representation of patterns used by the genetic learning algorithm. Each
pattern, a chromosome, represents a specific rule. The genetic algorithm works with
multiple hypothesized rules, which make up its population. A population at any point in
the search is a snapshot of the solutions the algorithm is considering. The algorithm
iterates, modi&ing its population with each generation. Each pattern (chromosome) is an
expression defined over the problern variables and constants using the relational
operators equal, greater-than, and less-than, and the Boolean operators and, or, and not.
At the implementation level, chromosomes are queries issued to a database.
Chromosomes in turn are composed of constraints defined over individual problem
variables. These are represented as sets of genes. At the lowest level, a gene represents
the smallest element of a constraint, namely, a variable, constant, or an operator.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

I Example: 30-day-moving average ofprice (M 30) I
I Univariate predicate (Single "conjunct")

I
I Set of Genes

Concept
Variable/ConstantlOperator

I Example: h.I(A30 > 10 I 1

Representation
Gene

I Example: > 10 ANDMlo < 5
I Multiple Patterns

I
I Population

I

Table 2: The Concept Class Representation

Example: M 3 o < 10 OR MAj0 > 90
Multivariate predicate (Conjunctive pattern)

The above representation is equivalent to that of tree induction algorithms such as CART
in that a chromosome (rule) is equivalent to a path from a root to a terminal node in a
decision tree. In addition, however, a constraint on a single variable can be a disjunct,
such as " M 3 0 < 10 OR M 3 0 > 90". It should be noted that our system does not
represent knowledge in the manner commonly associated with genetic classzfier systems
(see, for example, (Goldberg, 1989) or (Holland, 1992)) where individual chromosomes
may represent sub-components or interim results that make up some larger chain of
reasoning represented by groups of chromosomes. We view genetic search simply as an
alternative algorithm for searching the rule space--one with particular, attractive
properties.

Chromosome

For determining fitness, chromosomes can be evaluated based on criteria such as entropy,
support, confidence, or some combination of such metrics. By controlling the numbers of
constrained variables in chromosomes, genetic search can be biased to look for patterns
of a desired level of specificity. This is a parameter that we can manipulate to control (to
some extent) the degree of variable interactions, or nonlinearity, we want the algorithm to
be capable of discovering from the data.

4.2. Schema Theory: The Basis for Genetic Rule Discovery

Holland used the term schema in the context of genetic algorithms to explain the theoretic
basis for genetic search. His basic reasoning is that a single chromosome can implicitly
cover a large part of the search space, and that a collection of them can scour a large
search space thoroughly. To see why, consider a problem with, say, 30 variables.
Suppose that the search is considering a hypothesis where only one variable, say age, is
constrained, "age < 35," whereas all other variables are unrestricted, i.e. we "don't care"
about what values they take. Such a chromosome represents a region in the search space.
Holland referred to such a region as a schema. Fewer, or more precisely, looser
restrictions represent more general schemata, or larger areas of the search space. For
example, the constraint on age, "age < 35 ", with "don't care" for all other variables,
represents a very general schema. The constraint "age < 35 AND state = CA " represents
a more specific schema. These constraints, such as " are referred to as building
blocks. Holland demonstrated that if a schema happened to result in better solutions than

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

the population average, then this schema would manifest itself through its building blocks
in above average proportions (i.e., in many chromosomes) in populations of subsequent
generations.

A basic feature of our representation is that it manipulates schemata directly by allowing
"don't cares" for variables. By specifying the number of don't cares allowed in a
chromosome, we are able to control to some extent the generality of patterns we are
interested in discovering. This is an important practical consideration. It influences how
easy it will be for users to interpret the discovered patterns and has a direct impact on the
support and confidence of the discovered patterns. We refer to the number of specified or
constrained variables in a schema as its order. The order of the schema corresponding to
"age < 35 AND state = CA " therefore is 2. This corresponds directly to restricting tree
depth in TI algorithms, or restricting rule complexity (or length) in other rule-space
search algorithms.

4.3. Population Dynamics

The pattern discovery process with genetic search works as follows: an initial population
of patterns (chromosomes) first is created, randomly or biased in some way. Each
chromosome is evaluated and ranked. The higher-ranked chromosomes are selected to
participate in "mating" and "mutation" to produce new offspring. Mating essentially
involves exchanging parts of chromosomes (genes) between pairs. This is called
crossover. Mutating involves changing the value of a gene, such as a number or an
operator. By repeating these steps over and over, usually hundreds or thousands of times,
the search converges on populations of better patterns, as measured using some fitness
function. The search proceeds according to the equations below.

Let s(S,,t) be the number of patterns corresponding to some schema S at generation t. If
the fitness of schema S isf(S), and the average fitness of the population at generation t is
f(P,,t), then the expected number of chromosomes corresponding to S in the next
generation is:

For simplicity, if we assume that f(S)lf(P,g is a constant, l+c, then

Equation 4 states that selection (or reproduction) allocates members of a schema, i.e.
patterns corresponding to it, at an exponentially increasing rate if their fitness is above
the population average, and at an exponentially decreasing rate if below average. For
example, if the average fitness of the population is 0.5 and that of the schema "age < 35"
is 0.6, then l+c would be 1.2, meaning that we would expect to see 20% additional
representatives of the schema in the next generation.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

The effect of crossover is to break up schemata, in particular, those that have more
variables specified. The term "order" is used to designate the number of specified
variables in a schema. Assuming that our crossover involves exchanging exactly one
variable between chromosomes (regardless of position in the chromo~ome),~ and ignoring
cases where the chosen position is instantiated identically in the chosen chromosomes,
the probability of a schema getting disrupted is o(S)/l where o(S) is the order of the
schema and 1 is the chromosome length. For example, with a chromosome of length 4 and
a schema of order 2, the probability of disruption would be 214, whereas if all are
specified, the probability of disruption is 1. If we weaken our assumption and let
crossover involve the exchange of m variables, the probability of survival becomes:

If m is picked randomly, i.e. with probability 111, the probability of survival is:

Combining the above expression with equation 4 gives the combined effect of selection
and crossover:

Finally, mutation involves changing a single value in a chromosome. If the probability of
carrying out a mutation is p,, the probability of survival through mutation is (1 -p,)O(S).
Sincep, is usually small, i.e. << 1, this can be approximated as (1 - o(S).p,).

The combined effect of the genetic operations of selection, crossover, and mutation is
given by the following equation:

Equation 6 expresses what is referred to in the literature as the Schema Theorem. It shows
the competing forces on schema survival. The first part of equation 6 says that above
average schemata are represented in exponentially increasing proportions in subsequent
generations. The second and third parts of equation 6 say that low-order schemata have a
higher chance of survival than high-order schemata.

Why is this interesting? For problems with weak structure, the low order schemata that
have significantly higher fitness than the population average are likely to be those that
impose tighter bounds on the specified variables. These low-support but high-confidence
patterns can serve as the seeds for higher support patterns. The genetic algorithm thereby
learns through seeding, that is, finding low-coverage but high-fitness patterns that can
then be "expanded" until their performance begins to degrade.

This is not a cut-point crossover; it is the simple exchange of a gene.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

We would like to find patterns with higher support, because although we are happy for
our partial models to contain multiple rules, for domain-specific reasons a few high-
support rules is much preferable to a large number of low-support rules. In what follows,
we present and evaluate empirically a number of competing heuristics that conduct
intelligent "adaptive sampling" of the database during the search, to help focus it on
higher-support patterns.

4.4 Focusing Genetic Rule Discovery

In order to focus the genetic search to find interesting patterns, the algorithm "tunes" how
fitness is computed depending on what already has been discovered or explored.
Conceptually, we want to allow the fitness calculation (cf., equation 6) to consider the
"state" of the search. Certain general focusing heuristics have been successful across
other types of rule learning, and we incorporate specific instances into our genetic search.

Consider a data set with 2 independent variables, V1 and V2, and one dependent variable
as shown in Figure 4. The dependent variable can belong to four classes, A, B, C and D.
The patterns A1 and A;! show two disjoint clusters of the class A, corresponding to two
different combinations (ranges) of independent variables. The size of each cluster denotes
its importance, measured in terms of some function of confidence and support. Similarly
for B and C. The remaining area is labeled D.

v2

v 1

Figure 4: Type A, B, and C have 2 patterns each. Type D is the remaining area

A plain genetic rule discovery algorithm tends to do the following: all other things being
equal, since the pattern A1 is the dominant pattern in the data set, chromosomes typically
gather in the neighborhood of A. If such a pattern dominates the early populations, the
algorithm is likely to overlook the other patterns.

This example highlights two problems we would like to overcome. First, we would like
to enable the genetic rule discovery algorithm to find all salient patterns, rather than
letting a few high-quality patterns dominate. Second, we would like to make each of the
blobs in Figure 4 as large as possible by balancing confidence and support during search.

4.4.1 Sequential Niching: SN

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

One standard approach to guiding a genetic algorithm to find all solutions is to use
"niching," where chromosomes are grouped into sub-populations, one for each class.
Niching schemes have been described and their dynamics analyzed extensively as
effective general purpose strategies for dealing with certain types of multimodal
problems (Goldberg and Richardson (1987), Deb and Goldberg (1989), Oei et al. (1991),
Goldberg et al. (1992)). Mahfoud (1995) also provides an extensive survey and
discussion. Niching can be particularly effective when each niche can be made to focus
on a particular cluster.

An alternative to requiring such a priori knowledge is to allow the algorithm to determine
appropriate clusters empirically, focusing on particular parts of the space while they
appear fruitful, and once they produce what seems to be a good rule, focusing the search
elsewhere. Using previously learned knowledge to restrict the search to other parts of the
space is a common heuristic in rule learning. The general notion has been called
inductive strengthening (Provost & Buchanan, 1992): placing stronger restrictions on the
search based on the rules that have been induced.

Inductive strengthening is a method for adaptively adjusting an algorithm's inductive bias
(Mitchell 1980).~ Inductive bias refers to any criteria other than strict consistency with
the training data that are used to select a model. Restriction bias refers to algorithm or
problem design choices that restrict certain models from being chosen. A strong bias is
very restrictive, ruling out many possible hypotheses, and correspondingly, a weak bias
allows a much larger space of hypotheses to be considered. The tradeoff is that a strong
bias is preferable for efficiency reasons (among others); however, unless it is well
chosen, a strong bias may mask desirable rules. Algorithms incorporate inductive
strengthening heuristics in an attempt to get the best of both worlds: start with a weak
bias, and as good rules are induced, restrict the search to look elsewhere for additional
rules.

Genetic search can perform inductive strengthening by niching sequentially. After the
search converges on a high-fitness schema, the evaluation function can be modified to
penalize patterns corresponding to it. Figure 5 shows how this works: the classified area,
A1, is marked. This change forces additional chromosomes that represent 4 no longer to
have good fitness values. Therefore, the genetic algorithm must search for other patterns,
such as A;! and BI. Sequential niching increases the chances of finding more patterns and
of increasing overall coverage.

Beasley, Bull and Martin (1993) demonstrate such a sequential niching (SN) method. It
works by iterating a simple GA, and maintaining the best solution of each run off line.
Whenever SN locates a good solution, it depresses the fitness landscape at all points
within some radius of that solution (in our implementation, we penalize the region
corresponding to the pattern uniformly). Packard (1989) proposed a similar penalty
bction.

Provost and Buchanan (1995) present a general model of inductive bias, as well as an analysis of systems
that adapt their biases.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

VR 1
Figure 5: When patterns corresponding to the classified area are penalized, the GC

is forced to search elsewhere.

4.4.2 Removing Classified Areas by Data Reduction: DR

The most commonly used heuristic for inductive strengthening is the covering heuristic.
Made popular by the family of separate-and-conquer rule learning algorithms (F u k a n z ,
1999), once a good rule is found the covering heuristic removes the examples it covers
from the data set. Since these algorithms determine rule interestingness (and therefore
search direction) by statistics on rule coverage, removing the covered examples implicitly
leads the search elsewhere.

As an alternative to sequential niching, we can apply the covering heuristic to genetic
search. Specifically, after the search converges on a pattern, instead of penalizing an
area as classified when calculating the fitness function, the data corresponding to the
area are removed from further consideration. This is similar to an approach used by
Sikora and Shaw (1994) for inductive strengthening in their genetic learning algorithm.
Let us compare data reduction to sequential in the context of our genetic search.

With sequential niching, as the larger areas become classified, subsequent search tends to
produce more specialized patterns. Figure 6 shows why. Suppose the dark-shaded area is
not yet classified. The algorithm will tend to produce low-support patterns (small circle),
because larger areas (higher support) have a higher chance of hitting penalty areas. T h s
is an unintended consequence-we do not want to restrict our search from the new, large
pattern, we just want to focus it away from the already-found large pattern.

In contrast, discarding data associated with a discovered pattern has a different effect.
Since there is no penalty area, the new, large pattern will not be penalized. Since it has
larger support, if the confidences are comparable, it will be preferred over the smaller
pattern. Of course, the confidences may not be the same, and indeed, the pattern could
produce higher misclassification rates on the removed data. The effect of this is that the

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

algorithm continues to produce more general patterns (corresponding to the larger area in
Figure 6) later in the search, that is, patterns that tend to have higher support, but
confidence may suffer when applied to the original data. Also, there is less control on
overlap with other rules than in sequential niching.

VR2

VR1
Figure 6: When the larger area has more chance of hitting an already
classified area and getting penalized, the GC will tend to favor more
specific, i.e. patterns with less support.

Thus, one may understand the differences between penalizing the area versus removing
the data as: the former is more likely to produce non-overlapping rules whereas the latter
produces a hierarchy of rules, as shown in Figure 7, which potentially may overlap.

Unclassified data At?

Unclassrfied data

@

Figure 7: The patterns from are not independent but form a hierarchy of rules

One obvious drawback to removing data is that the algorithm may discard both correctly
classified data and misclassified data as shown in Figure 8. In contrast, since sequential
niching does not discard data, there is a chance that data misclassified by an earlier
pattern (A) will be correctly classified by another pattern (B) as shown in Figure 9.
Another way of looking at this is that discarding data removes support for schemata that
overlap with the one for which data were removed.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

5. Genetic Rule Discovery with Entropy Reduction and Inductive Strengthening

VR2

A seemingly obvious solution to the problem of data reduction is to be more judicious in
inductive strengthening, for example, only discard examples that are correctly classified
by the already-learned rules (Provost & Buchanan, 1992). However, the smalIer sample
size that results from the data reduction also tends to increase variance of the dependent
variable, thereby lowering the fitness of the pattern. This undesirable phenomenon is not
relegated to separate-and-conquer rule learners, but also applies to tree induction
algorithms, which also split up the data based on "rules" learned so far (via the higher-
level splits). What we would like is for an inductive strengthening heuristic to be used to
guide the search, but for the statistics used to determine fitness to be gathered over the
entire database. This is the philosophy taken by rule learners such as RL (Clearwater &
Provost, 1990) and CWS (Conquer Without Separating) (Domingos, 1996).

Our genetic learning approach incorporates these ideas as well as those that allow TI
algorithms to find good splits quickly. Genetic Learning Overlaid With Entropy
Reduction (GLOWER) recursively feeds entropy-reducing splits into the genetic search.
The splits used are those that best discriminate the class membership of the dependent
variable. In this way, the genetic algorithm incorporates promising "pieces of patterns,"
the building blocks, into the search and "spreads" them to other patterns through
crossover and mutation.

VRl VRI
Figure 8: Data Reduction removes the area Figure 9: Sequential niching keeps data
covered by pattern A. Thus, part of the misclassified by pattern A, data '2'. This
misclassified data of '2' is lost area can later be correctly classified by

pattern B

VR2

Pattern A

One of the interesting features of this strategy is that, ironically, the genetic algorithm is
able to make much better use of entropy reduction splits than can greedy search
algorithms that split the data. With recursive partitioning, splits lower down in the tree
apply to smaller subsets of the data, thereby producing a higher variance on the
dependent variable class distribution because of smaller sample size. In contrast, the
genetic algorithm gives each split a chance to be evaluated on the entire databa~e.~

Pattern B

Pattern A

This is not always true, but we ask the critical reader to bear with us for the moment.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

Thereby, parts of trees can be combined with others, leading to patterns that are much
harder to find with irrevocable splits. In sum, the genetic algorithm is able to use the
efficient sifting of the data that tree induction methods generate in order to focus its
search to promising areas of the search space, but then allows the genetic search to
assemble the building blocks into even better models.

This hybrid search method uncovers promising components of patterns by comparing the
distributions of class membership based on splits on an independent variable in the same
way that TI classifiers work. However, instead of partitioning the data set irrevocably, it
simply introduces the split as a building block into the search, enabling it to interact with
other promising building blocks. When combined with niching, this allows GLOWER to
focus its search dynamically based on the state of the search.

5.1. Comparison of GLOWER variants: experimental design

We now report results from a set of experiments where our objective was to evaluate
several variations of GLOWER based on the heuristics described above, and to pick a good
one for comparison with TI and rule learning algorithms (section 6). For these
preliminary experiments, three data sets were used. The first two, waveform and
character recognition, are from the UCI repository [UCI, 19951. They represent noisy
problems with numeric attributes and overlapping classes. The third data set is from the
financial arena: the prediction of weekly returns of stocks in the S&P500.

5.1.1. Data
The first data set consists of records corresponding to the three types of waveforms as
shown in Figure 10. It was also used by Breiman et al. (1984) in evaluating CART.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

hl (m) i.....T"'......., 1 3 5 7 9 11 13 15 17 19 21

h2 (m) 2 1 3 5 7 9 11 13 15 17 19 21

h3 (m) 3 1 3 5 7 9 11 13 15 17 19 21

Figure 10: Three Waveforms, each with a 21 dimensional measurement

Each class consists of a random convex combination of two of these waveforms, sampled
at the integers with noise added. There are 2 1 real-valued independent variables.

Type 1 vector X is defined as:
&=u,*hl (m)+(l -&)*h2(m)+&, , , m = l , 2 ,...., 21

Type 2 vector Y is defined as:
Ym =uy * h (m) + (l -I+) * h3(m)+&, , m = 1,2,, 21

Type 3 vector Z is defined as:
2 , = u z * h3(m)+(l -~)*h l (rn)+&, , , m = 1,2 ,...,, 21

where Q, I+, and u, are uniformly distributed in [O,1] and E,, , E,, and E, are normally
distributed, N(0,l). This data set contains 5000 records.

The second data set consists of records where the dependent variable is a letter, from A to
Z. There are 16 independent variables denoting attributes such as shapes and their
positions and sizes. This data set contains 20000 records, with unequal numbers of
examples (cases) in each class. This is a challenging problem, in part due to the large
number of classes (26), and a significant amount of overlap in the patterns of independent
variables corresponding to the various classes.

The third data set consisted of prices of financial instruments constructed from the S&P
500 universe of stocks between January 1994 and January 1996, excluding mergers and
acquisitions. The objective was to predict returns one week ahead. Two classes were
created for the dependent variable, namely, up or down, depending on whether the future

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

return was above a specified "high" threshold, or below a specified "low" threshold (we
ignored the "neutral" cases for this experiment). The classes had roughly equal prior
distributions. Approximately 40 standard technical analysis indicators such as moving
averages and volatilities were computed as in Barr and Mani (1994), which served as the
independent variables. There is a degree of subjectivity in the choice of the prediction
period as well as the various possible data transformations chosen, and other, possibly
better, transformations could have been chosen. However, all of the GLOWER variants had
to deal with the shortcomings of the problem formulation and the data, and in this sense,
they were on an equal footing.

5.1.2 Sampling design
Each of the initial data sets was partitioned into 3 subsets: in-sample training data, in-
sample testing data (for the evaluations internal to GLOWER), and out-of-sample testing
data. Table 3 shows the size of each subset for the three data sets.

Table 3: Data Samples

Data set 1: Waveform
Recognition
Data set 2: Character
Recognition
Data set 3: Estimating
returns of S&P500 stocks

We chose this multi-level separation because of the several dangers of overfitting. Most
obviously, the in-samplelout-of-sample division is important so that the model can be
evaluated in terms of consistency. Within the in-sample data, the training and testing
division is important, similarly, to allow the genetic algorithm to evaluate the consistency
of a hypothesis being tested.

5.2. Assessment of GLOWER Variants
In this section, we present the results from applying to these data a more-or-less standard
genetic rule discovery algorithm and three enhancements to it, based on the inductive
strengthening techniques described above. In particular, we report results from "standard"
parallel niching, which we consider as the baseline, and the following:

In-sample
training data

3,010

12,000

1 1,600

sequential niching
sequential niching plus entropy reduction
data reduction plus entropy reductions

Figures 1 l a through 1 1c show the results from the first set of experiments. The waveform
recognition problem was easy for all algorithms, producing high accuracy and

In-sample
testing data

770

4,000

3,200

Data reduction by itself was not particularly powerful and we do not wish to clutter the results with
additional uninteresting data.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

Out-of-sample
testing data

1,220

4,000

3,200

total
5,000

20,000

18,000

confidence. Apparently, for easy problems, the choice of inductive strengthening
technique makes little difference.

The character recognition problem is a little harder. The dependent variable comprises 26
classes, 'A' through 'Z'. All variations of the genetic algorithm did well on confidence,
but there is a marked increase in support when the entropy reduction heuristic is used in
conjunction with sequential niching or data reduction. Figure 1 lb shows that the
algorithm SNt-H, sequential niching with the entropy reduction heuristic, performed the
best in terms of confidence (92%) and had a high degree of support (83%).

As would be expected, the S&P stock prediction problem was the hardest, because there
is very little structure in the data as is apparent in Figure 1 lc. The results from this
experiment point to the difficulties in market forecasting and illustrate the tradeoffs
among the techniques for finding patterns in this domain. We should note that by
viewing the results of the partial models learned by GLOWER we see a very different
picture from that presented by techniques that try to model the problem as a whole (not
shown). In the latter case, the accuracy of just about any model hovers around the
accuracy of a knowledge-free model (depending on the problem formulation, one may
choose random guessing, buy-and-hold, or some other simple strategy). Any structure
contained in the model is swamped by random variation. What is more, realistic
evaluations (from the perspective of actually making investments) involve costs of
trading. These factors determine the required balance between confidence and support.
Both the confidence and the support must be high enough to provide a good tradeoff of
risk and reward.

Basel ine S N S N + H D R + H

F i g u r e I I b: C h a r a c t e r R e c o g n i t i o n

As is evident from Figure 1 lc, all variations of the genetic learning algorithm had very
low support for this problem. The genetic algorithms, in effect, indicated that they would
not make a prediction most of the time. This makes sense since it is very difficult to

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

make an accurate directional stock-market prediction. The genetic algorithm is unable to
find rules that perform well consistently on its in-sample testing data. However, the
overlaid heuristics did improve the support significantly, with entropy reduction resulting
in the highest support when combined with either sequential niching or data reduction.
While the baseline algorithm produced a support of only 0.7%, sequential niching
improved this to 1.7%, with a confidence of 72%. As with the other data sets, SN+H and
DR+H provided the best overall results, with the former resulting in rules with a
confidence of 73% and support of 3.4%. In effect, the overlaid heuristics provided a
fivefold increase in coverage as compared to the baseline genetic algorithm, while
increasing confidence marginally as well.

In sum, the experiments show that SN+H and DR+H generally are preferable to the
baseline algorithm and to SN alone. The results do not support a strong distinction
between SN+H and DR+H, suggesting that niching and separate and conquer tend to be
similar in terms of their inductive strengthening ability. However, since SN+H had
marginally better performance in terms of confidence on the latter two data sets, we
chose it for the next study that compares GLOWER to tree and rule induction algorithms.

6. Comparison of GLOWER to Tree and Rule Induction

For the main set of experiments we used the best performing GLOWER variant fi-om the
previous study (SN+H) and applied it to another financial problem, namely, to predict
"earnings surprises." This problem has been studied extensively in the business literature.
The objective is to classify a company's next earnings report as "positive," "negative," or
"neutral," depending on whether one predicts that these earnings will significantly
exceed, fall short, or be in line with the average reported expectations of a set of analysts.
It has been shown that positive surprise companies tend to produce returns after the
announcement that are in excess of the market, whereas the opposite is true for the
negative surprise firms. Several explanations have been proposed for this phenomenon.
The details of the earnings surprise research can be found in Chou (1999).

The data set for this study consisted of a history of earnings forecasts and actual reported
earnings for S&P500 stocks between January 1990 and September 1998. These were
used to compute earnings surprise, which is "positive" if actual announced earnings
exceed the analyst consensus estimates by a specified threshold (half a standard deviation

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

of estimate), "negative" if they fall short, and "neutral" otherwise. The prior class
distribution was roughly 13.5 percent positive, 74 percent neutral, and 12.5 percent
negative surprises. In other words, companies report earnings that are mostly within half
a standard deviation of expectations.

Approximately 60 independent variables were chosen based on commonly used
indicators in the fundamental and technical valuation analysis literature (Graham and
Dodd, 1936; Achelis, 1995; Madden, 1996). The technical variables chosen correspond to
price trend and volatility, whereas the fundamental variables are based on financial
statements, such as historical cash flows and earnings. The specific indicators used are
described in Chou (1999). The objective in this problem is to predict 20 days before the
actual earnings announcement whether a specific company will report a positive, neutral,
or negative earnings surprise as defined above. Predicting earnings surprise is one way
of forecasting future returns. The data set sizes used are listed in Table 4, similarly to
Table 3 (described above).

lsurprise I
Table 4: Data Samples

Predicting earnings

We compare GLOWER using sequential niching with the entropy reduction heuristic
(SN+H) to a standard tree induction algorithm, CART (Breiman et.al, 1984), and a rule
learning algorithm, RL, (Clearwater and Provost, 1990).

One way of defining misclassification in earnings surprise prediction is if an actual
positive surprise was predicted as neutral or negative, or if an actual negative surprise
was predicted as neutral or positive. Another way, which we believe to be better for this
domain, is to define a misclassification only if a positive is classified as negative and vice
versa. Economic arguments support this view, since the detriment associated with
misclassifying a positive as a negative is significantly greater than that associated with
misclassifying a positive as a neutral (and similarly for negatives). Our results (see
Figures 12 and 13) use confidence with this latter interpretation of misclassification,
although the comparative results are not materially different with the alternative
interpretation.

In sample
training data

14,490

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

In sample
testing data

9,650

Out of sample
testing data

12,164
Total

36,204

TI:wnf TI:supp RL:conf RL:supp GA:conf GA:supp

Figure 13: Predicting Negative Surprises

Figure 12 shows the results from tree induction, rule learning and genetic learning for
predicting positive surprises based on fifty sets of runs. For each of the three methods, the
figures show the means and standard deviations for confidence and support for each of
the methods. When applied painvise, all means are different at the 0.0001 level of
significance. Confidence and support increase from left to right and the variances of these
measures decrease.

Figure 13 shows the corresponding results for negative surprises. Again, all means
considered pairwise are different at the 0.0001 level of significance except for GLOWER

versus TI confidence means which are different at the 0.1 5 level of significance.

80
70
60
50
40
30
20
10
0

Figure 12: Predicting Positive Surprises

A number of things stand out in the results. Most importantly, perhaps, the results are in
line with what we hypothesized in Figure 1 : the various methods perform along the
spectrum of thoroughness of search that was shown in the figure. GLOWER is indeed more
thorough in its search than rule induction which is in turn better than tree induction.

More specifically, we can see from Figure 12 that GLOWER outperforms the other two in
terms of both confidence and support for predicting positive surprises. For support,
GLOWER has six times the support of the TI algorithm and one and a half times that of rule
learning. Also its variances on confidence and support are lower on average. For negative

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

surprises (Figure 13), the confidence levels are similar, but GLOWER is again significantly
better in terms of support (more than double that of tree induction and roughly double
that of rule induction). In effect, GLOWER'S rules cover anywhere between two and six
times the problem space than its competitors without sacrificing performance. Clearly,
the rules from its competitors are more specialized than is necessary. For problems with
weak structure, this is a significant difference. The result is in line with our prior
hypothesis.

An unexpected result was that the genetic learning algorithm appears to be much more
suited to capturing symetry in the problem space as is evident in its relatively uniform
performance at the opposing ends of the problem space. Specifically, the coverage for the
TI algorithms positive surprises is 5.93% compared to 1.7% for negative surprises, while
the comparable numbers for the genetic learning algorithm are 13.3 and 10.7 percent
respectively. TI and RL find it harder to predict a negative earnings surprise than a
positive one. The result should make us question whether predicting a negative surprise is
harder, either inherently, or because the available data do not represent this phenomenon
adequately, making it harder for an algorithm to discover. One interpretation of the
results, based on observing the rules, is that the greedy heuristic picked up on one major
effect, momentum, was correlated with surprise, but weakly. Further, this variable was
not negative often enough in the data, making it hard to find negative surprise rules.
However, GLOWER was able to identify other variables, such as cash flow based measures
from balance sheets, in order to identify additional situations that were indicative of
impending negative surprises. If this is the case, it would be consistent with our analysis
in section 5 about the ability of GLOWER to splice together different building blocks into
potentially useful patterns and its ability, via sequential niching and recursive entropy
reduction splits, to discovery the underlying patterns in the data. Verifying whether this
indeed is the case is future work for us, and we revisit this issue in the next section.

7. Discussion

Why are the results reported above interesting? Is there something about the genetic
learning algorithm that enables it to perform better for financial prediction problems?

We already have alluded to the fact that relationships among variables in the financial
arena tend to be weak. A correlation coefficient higher than 0.1 between an independent
and dependent variable is not common. Also the correlation is typically nonlinear: it may
be stronger in the tails and non-existent everywhere else. As we mentioned earlier, a
positive analyst revision on a stock may have no impact on it unless the revision exceeds
some threshold. Even more importantly, the impact may be magnified or damped by
other variables, for example, whether the stock belongs to a high or low growth sector. In
such situations, we might achieve better insight into the domain, and achieve higher
overall predictability, by considering interaction effects. The learning algorithm should
be able to find such effects and still produce patterns with reasonable support.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

GLOWER uses entropy reduction and inductive strengthening heuristics to find the
"interesting seeds" in the problem space and then expands them as much as possible. In
doing so, it also combines these seeds in many ways, thereby capturing interaction effects
among variables. Methods such as tree and rule induction are good at finding interesting
seeds, but often are not able to exploit them any further. For tree induction algorithms
this is largely because the process of splitting the data results in misclassifications from
which they cannot recover, and in higher variances for the dependent variable, which
makes it difficult to find interesting interaction effects. Rule learning does better, but
tends not to explore combinations of variable splits that may be individually suboptimal,
but be collectively better than the combination of the best univariate splits. In contrast,
the genetic algorithm is able to mix and match seeds and it implicitly performs local
sensitivity analyses. If a combination t m s to be potentially robust, i.e. consistently good
results across training and testing sets, this becomes another seed that can be flurther
explored and refined.

Because the traditional methods are reasonable at finding some of the initial seeds, we
found it worthwhile using them as part of the genetic search. In this way, we are able to
combine the speed of these methods with the more comprehensive search of the genetic
algorithm. In effect, the genetic learning algorithm is guided by the splits fed to it by
entropy reduction. Indeed, the range-oriented representation for numeric variables used
by CART works well for GLOWER since they use identical representations for their
concept class. While non-backtracking-based methods such as CART tend not to recover
from the misclassifications that are inevitable with such methods, the genetic algorithm is
less restricted since every split is evaluated against the entire database in conjunction
with many other interesting splits.

From a practical standpoint, for financial problems where there is weak structure and the
objective is to develop investment strategies, it is important that accuracy and support be
at levels such that the corresponding rules are "actionable." Consider the earnings
surprise problem. If our objective is to develop a "long/short" strategy, it is important that
there be enough stocks to "long" and enough to "short." The CART output in the
example, where support is 6% and 1.7% respectively, when applied to the S&P500
universe would result in 30 longs and about 8 shorts. These numbers are on the low side
and highly asymmetric, and an investment professional looking for a "market neutral"
strategy (where equal capital is committed to the long and short sides) would be hesitant
to trade such a strategy. The genetic algorithm, in contrast, would produce about 65 longs
and 55 shorts, which might be a much more desirable strategy to implement in practice.

In summary, the genetic learning algorithms we have described employ useful heuristics
for achieving higher levels of support while maintaining high accuracy. They also enable
us to incorporate domain-specific evaluation criteria, such as how to trade off confidence
and support. In practice, using such patterns, whether for trading, marketing, or customer
profiling, requires taking into account transaction costs and other problem specific factors
such as how much one wants to trade, how many mailings to send out, and so on. This
involves specitjring the appropriate tradeoffs between accuracy and coverage for a
particular problem. The genetic learning algorithm provides us with the knobs for

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

choosing the approximate accuracy and coverage levels we are interested in, and tuning
the search accordingly.

So, should we always prefer to use the genetic algorithm over other algorithms such as
tree induction? Not really. The genetic algorithm is about two to three orders of
magnitude slower than a TI algorithm, which is not surprising considering the number of
computations it has to perform. Roughly speaking, an analysis that takes CART 2
minutes takes the genetic algorithm many hours. The practical implication of this is that
the genetic algorithm is not a rapid experimentation tool. Because of this, it may make
more sense to use greedy search algorithms during the early stages of analysis in order to
get a quick understanding of the more obvious relationships if possible, and using this
information to focus on a limited set of variables for the genetic search.

On a technical note, we view the results as contributing a useful data point to the research
on comparing alternative approaches to pattern discovery. In this case, our choice of
techniques has been driven by the need for high explainability to end users, while
achieving high accuracy. In other words, our objective is not simply prediction, but to
build an explicit model of the domain that can be critiqued by experts. This consideration
has been a major factor in using the rule based concept class representation of the genetic
algorithm. It has also discouraged us from using methods that produce outputs that are
harder to interpret. Decision makers in the financial arena tend not to trust models they
cannot understand thoroughly unless such models guarantee optimality. Rules are easy to
understand and evaluate against expert intuition. This makes rule induction algorithms,
such as GLOWER, attractive pattern discovery methods.

More generally, explainability is an important consideration in using knowledge
discovery methods for theory building. This has been the central focus of the current
research. However, theory building requires taking into consideration other features of
model outputs such as their relative simplicity. Specifically, we have not remarked about
the number of conditions in the rules for which we have presented the results. The more
conditions there are, the more potential for overfitting, and the less transparent the theory.
In our experiments we typically restrict GLOWER to finding patterns with at most four or
five variables in order to make the outputs easier to interpret. The tree induction
algorithm tended to produce more specialized (syntactically) rules than GLOWER.
The tree and rule induction algorithms both produced rules that individually had lower
support than those produced by GLOWER, for comparable confidence levels. We have not
reported on this aspect of theory building because the results in this area are somewhat
preliminary. Similarly, we have not taken into account other considerations, such as
extent to which the outputs produced were consistent with prior background knowledge
and so forth. In future research we will report on these aspects of theory building with
different knowledge discovery methods.

8. Conclusion

This paper has a number of research contributions. We claim that for hard problems,
genetic learning algorithms, appropriately "fixed" up, are more thorough in their search

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

than other rule learning algorithms. Our results support this claim. GLOWER indeed is less
restricted by greedy search biases, and for problems with weak structure or variable
interactions, it is precisely the subtle relationships that one can hope to discover at best.

Genetic algorithms have a number of inherent benefits that we have exploited GLOWER,
including the flexibility to accommodate variable fitness hctions. We have borrowed
heuristics from tree induction and rule induction to fix genetic search's inherent
weaknesses, viz., randomness and myopia in search. In particular, GLOWER takes
advantage of the strengths of entropy reduction and inductive strengthening methods to
focus the search on promising areas and to refocus after interesting individual patterns
have been found.

More generally, the research provides a view of the thoroughness of rule space search, in
particular for financial data. It also provides comparison and contrast of the heuristics
used by various different rule-mining techniques. Such a comparison is important in our
ongoing quest to understand the true strengths and weaknesses of the various rule-mining
methods on practical problems.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

References

Achelis, S.B., Technical Analysis From A to Z., Chicago: Irwin, 1995.

Atiya, A., An Analysis of Stops and Profit Objectives in Trading Systems, Proceedings
of the Third International Conference of Neural Networks in Capital Markets (NNCM-
95), London, October 1995.

Barr, D., and Mani, G., Using Neural Nets to Manage Investments, A I Expert, February
1994.

Bauer, R. J., Genetic Algorithms and Investment Strategies, John Wiley & Sons, 1994.

Beasley, D., Bull, D.R., and Martin, R.R. A sequential niche technique for multimodal
function optimization. Evolutionary computation, 1 (2), 10 1-1 25.

Blake, C., Keogh, E., and Merz, C.J.,, Repository of machine learning databases,
University of California, Irvine, Dept. of Information and Computer Sciences, 1998.

Breiman, L., Friedman, J., Olshen, R., and Stone, C., ClassiJcation and Regression
Trees, Wadsworth, Monterey, CA, 1984.

Cartwright, H. M. and Mott, G. F. Looking around: using clues from the data space to
guide genetic algorithm searches. Proceedings of the fourth international conference on
genetic algorithms, 199 1.

Chou, Dashin, The Relationship Between Earnings Events and Returns: A Comparison of
Four Nonlinear Prediction Models, Ph.D Thesis, Department of Information Systems,
Stern School of Business, New York University, 1999.

Clark, P., and Niblett, T., The CN2 Induction Algorithm, Machine Learning, 3, pp 261-
283,1989.

Cleanvater, S., and Provost, F., RL4: A Tool for Knowledge-Based Induction,
Proceedings of the Second International IEEE Conference on Tools for Artificial
Intelligence, pp. 24-30, 1990.

Cohen, William W., and Singer, Yoram., A Simple, Fast, and Effective Rule Learner,
Proceedings of the Sixteenth National Conference on Artificial Intelligence,.American
Association for Artificial Intelligence 1999 (AAAI-99) pp. 335-342.

Deb, K. and Goldberg, D. E. An investigation of Niche and Species Formation in Genetic
Function Optimization. Proceedings of the third international conference on genetic
algorithms, 1989.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

DeJong, Ken., Evolutionary Computation for Discovery, Communications of the ACM,
volume 42, number 1 1, pp. 5 1-53, 1999.

Dhar, V., and Stein, R, Seven Methods for Transforming Corporate Data Into Business
Intelligence, Prentice-Hall, 1997.

Domingos, P., Unifying Instance-Based and Rule-Based Induction, Machine Learning,
24, 141-168, 1996.

Domingos, P., Linear Time Rule Induction, Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining, M I Press, pp. 96- 10 1, 1996.

Forgy, L., RFiTE: A Fast Algorithm for Many Pattern 1 Many Object Pattern Matching,
Artificial Intelligence, 19, pp. 17-37, 1982.

Friedman, J. H. Local learning based on recursive covering. Dept. of Statistics, Stanford
University, 1996.

Furrkranz, J., Separate-and-Conquer Rule Learning, Artzj'icial Intelligence Review,
volume 13, number 1, pp. 3-54, 1999.

George, E. I., Chipman, H. and McCulloch, R. E. Bayesian CART. Proceedings:
Computer Science and Statistics 28th Symposium on the Interface. Sydney, Australia,
1996.

Goldberg, D.E. Genetic algorithms in search, optimization, and machine learning,
reading, MA: Addison-Wesley, 1989.

Goldberg, D. E., Deb, K. and Horn, J., Massive multimodality, deception and genetic
algorithms, Parallel Problem Solving from Nature, 2, Manner, R. and Manderick B., eds.,
Elsevier Science, 1992.

Goldberg, D. E, and Richardson, J. Genetic algorithms with sharing for multimodal
h c t i o n optimization, Proceedings of the Second International Conference on Genetic
Algorithms, 1987.

Graham, B., and Dodd, D., Security Analysis, McGraw-Hill, 1936.

Grefenstette, J.J. Incorporating problem specific knowledge into genetic algorithms. In
Davis, L., editor, Genetic Algorithms and Simulated Annealing, pages 42-60, Los Altos,
CA. Morgan Kaufmann, 1 987

Hekanaho, J. Background knowledge in GA-based concept learning. Proceedings of the
thirteen international conference on machine learning, 1996.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

Hong, J., Incremental Discovery of Rules and Structure by Hierarchical and Parallel
Clustering, in Knowledge Discovery in Databases, Piatetsky-Shapiro and Frawley, eds,
AAAI Press,Menlo Park CA 199 1.

Holland, J. H. Adaptation in natural and artificial systems. Ann Arbor: The University of
Michigan Press. 1975.

Holland, J. H. Adaptation in natural and artificial systems. An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. MIT press, 1992.

Janikow, C.Z. A knowledge-intensive genetic algorithm for supervised learning. machine
Learning, 13: 189-228.

Jensen, David., and Cohen, Paul R., Multiple Comparisons in Induction Algorithms,
Machine Learning, to appear in 2000.

Lim, Tjen-Jen., Loh, Wei-Yin., and Shih, Yu-Shan Shih., A Comparison of Prediction
Accuracy, Complexity, and Training Time of Thirty-three Old and New Classification
Algorithms, Machine Learning, to appear in 2000.

Madden B., The CFROI Life Cycle, Journal oflnvesting, volume 5, number 1, Summer
1996.

Mahfoud, S. W. A comparison of parallel and sequential niching methods. Proceedings
ofthe sixth international conference on genetic algorithms, 1995.

Mahfoud, S. W. Niching methods for genetic algorithms. Urbana: U. of Illinois, Illinois
Genetic Algorithms Lab. 1995.

Michalski, R., Mozetec, I., Hong, J., and Lavrac, N., The Multi-Purpose Incremental
Learning System AQ15 and Its Testing to Three Medical Domains, in Proceedings of the
Sixth National Conference on Artificial Intelligence, 104 1 - 1045, Menlo Park, CA, 1986.

Michie, D., Spiegelhalter, D. J. and Taylor, C. C. Machine Learning, Neural and
Statistical Classification, Ellis Honvood Ltd., 1994.

Mitchell, T.M., The need for biases in learning generalizations, Report CBM-TR-117,
Computer Science Department, Rutgers University, 1980.

Murthy, Sreerama K., Automatic Construction of Decision Trees from Data: A Multi-
Disciplinary Survey, Data Mining and Knowledge Discovery, 2 (4):345-389, December
1998.

Oei, C. K., Goldberg, D. E. and Chang, S., Tournament Selection, Niching and the
Preservation of Diversity, Urbana: U. of Illinois, Illinois Genetic Algorithms Lab. 199 1.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

Packard, N., A Genetic Learning Algorithm, Tech Report, University of Illinois at
Urbana Champaign, 1989.

Provost, F.J. and Buchanan, B.G.), Inductive Policy: The pragmatics of bias selection,
Machine Learning, volume 20, pp. 35-61, 1995.

Provost, F. and Buchanan, B., Inductive Strengthening: The effects of a simple heuristic
for restricting hypothesis space search, In K.P. Jantke (ed.), Analogical and Inductive
Inference (Lecture Notes in Artificial Intelligence 642). Springer-Verlag, 1992.

Provost, F., Aronis, J., and Buchanan,B., Rule-space search for Knowledge-based
Discovery, Report #IS 99-012, IS Dept., Stern School, NYU.

Quinlan, J., Machine Learning and ID3, Morgan Kauffman, Los Altos, 1996.

Sikora, R. and Shaw, M. J., A double-layered learning approach to acquireing rules for
classification: Integrating genetic algorithms with similarity-based learning. ORSA
Journal on Computing 6(2), pp. 334-338, 1994.

Smythe, P., and Goodman, R., Rule Induction Using Information Theory, in Knowledge
Discovery in Databases, Piatetsky-Shapiro and Frawley, eds, AAAI Press,Menlo Park
CA 1991.

UCI Repository of machine learning databases
[http://v\rww.ics.uci.edu/-mlearn/MLRepository.html]. Iwine, CA: University of
California, Department of Information and Computer Science, 1995.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-00-02

