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Abstract 

Prediction in financial domains is notoriously difficult for a number of reasons. First, theories tend to be 
weak or non-existent, which makes problem formulation open-ended by forcing us to consider a large 
number of independent variables and thereby increasing the dimensionality of the search space. Second, the 
weak relationships among variables tend to be nonlinear, and may hold only in limited areas of the search 
space. Third, in financial practice, where analysts conduct extensive manual analysis of historically well 
performing indicators, a key is to find the hidden interactions among variables that perform well in 
combination. Unfortunately, these are exactly the patterns that the greedy search biases incorporated by 
many standard rule algorithms will miss. In this paper, we describe and evaluate several variations of a new 
genetic learning algorithm (GLOWER) on a variety of data sets. The design of GLOWER has been motivated 
by financial prediction problems, but incorporates successful ideas from tree induction and rule learning. 
We examine the performance of several GLOWER variants on two UCI data sets as well as on a standard 
financial prediction problem (S&P500 stock returns), using the results to identify and use one of the better 
variants for further comparisons. We introduce a new (to KDD) financial prediction problem (predicting 
positive and negative earnings surprises), and experiment withGLOWER, contrasting it with tree- and rule- 
induction approaches. Our results are encouraging, showing that GLOWER has the ability to uncover 
effective patterns for difficult problems that have weak structure and significant nonlinearities. 
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1. Introduction 

Our experience in financial domains is that decision makers are more likely to invest 
capital using models that are easy to understand. More specifically, decision makers want 
to understand when to pay attention to specific market indicators, and in particular, in 
what ranges and under what conditions these indicators produce good risk-adjusted 
returns. Indeed, many professional traders have remarked that they are occasionally 
inclined to make predictions about market volatility and direction, but cannot specify 
these conditions precisely or with any degree of confidence. Rules generated by pattern 
discovery algorithms are particularly appealing in this respect because they can make 
explicit to the decision maker the particular interactions among the various market 
indicators that produce desirable results. They can offer the decision maker a "loose 
theory" about the problem that is easy to critique. 

Financial prediction problems tend to be very difficult to model. Investment professionals 
who use systematic trading strategies invariably experience periods where their models 
fail. Modelers often refer to these periods as "noise," although it can be argued that the 
so-called noise arises from the limitations of the model rather than unpredictable aspects 
of the problem. 

What are the characteristics of financial problems that make it difficult to induce robust 
predictive models? First, the dimensionality of the problem is high. It is common 
practice, for example, to derive "telescoped" moving averages of variables (Barr and 
Mani, 1994) in order to be able to capture the impact of temporal histories of different 
lengths such as 10, 60, 250 prior data points (days, minutes, etc). This enables the 
discovery of patterns that capture not only long- and short-term relationships, but also the 
transitions between them. For example, if a long-term indicator is high but a short-term 
indicator is low, it may indicate a recent "cooling down" phenomenon. While the use of 
telescoping allows for the discovery of such effects, it increases the dimensionality, and 
correspondingly, the size of the search space increases exponentially. 

Secondly, relationships among independent and dependent variables are weak and 
nonlinear. The nonlinearities can be especially pronounced towards the tails of 
distributions, where a correlation becomes stronger or weaker than it is elsewhere. For 
example, a common type of nonlinearity in technical analysis is trend reversal, where 
price trends change direction after a prolonged period. In this case, "more" (trend) is not 
always better; the hazard of assuming that the trend will continue may increase as the 
trend continues. Similarly, an earnings revision on a stock by an analyst may have no 
impact on its price unless the revision exceeds some threshold. In other words, the effect 
holds only in the tail-end of the distribution. 

Thirdly, variable interactions can be significant. For example, we may observe that a 
"negative earnings surprise" (i.e., the earnings reported by a company are lower than 
expected) has no effect on returns in general. On the other hand, we may find that if we 
were to make the rule more specific, by eliminating "market leaders" in the "technology" 
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sector, the effect is dramatic. It is important for a learning algorithm to be able to 
discover such interaction effects in a way that makes the induced relationship as accurate 
and general as possible. In domains such as these, where much manual analysis 
concentrates on following trails of well performing indicators, it is exactly the hidden 
interactions that are important. 

Our basic assumption in predicting financial markets is that it is not possible to do so 
most of the time. This is consistent with remarks many financial professionals have made. 
In particular, many trading professionals do feel that there are times, admittedly few, 
where they can predict better than at most other times. This philosophy, "generally 
agnostic but occasionally making bets," has important implications for how we approach 
the modeling problem. One of the major challenges is to reduce the "noisy" periods by 
being more selective about the conditions under which to invest--to find patterns that 
offer a reasonable number of opportunities to conduct high risk-adjusted-return trades. In 
doing so, we must consider explicitly the tradeoff between model coverage and model 
accuracy. Trying to give an accurate prediction for all data points is unlikely to succeed. 
On the other hand, a single small, accurate rule probably will not apply often enough to 
be worthwhile. The model (for us a set of rules) must be accurate enough and 
simultaneously general enough to allow sufficient high-probability opportunities to trade 
effectively. 

In the next section we go into more detail on the benefits and limitations of genetic search 
for data mining. It turns out that we can address the limitations by enhancing 
genetic search with basic heuristics inspired by work on tree induction and rule induction. 
We present results comparing the augmented genetic learning algorithm (GLOWER) to tree 
induction and rule induction for a difficult financial prediction problem. The results are as 
we would expect based on an analysis of the strengths and weaknesses of the various 
approaches: GLOWER is able to find significantly better rules than its competitors based on 
the domain-specific notion of rule quality. 

In section 3 we define the problem-specific notions of accuracy and generality in terms of 
confidence and support. In section 4 we introduce a "generic" algorithm used for genetic 
rule discovery, its dynamics, and extensions that take advantage of niching techniques 
that are commonly employed by genetic algorithms. In section 5 we introduce a new 
hybrid genetic rule-learning algorithm that combines an entropy reduction heuristic (as 
used by TI algorithms) and an inductive strengthening heuristic (as used by rule induction 
algorithms) with standard genetic search. We describe how we used three benchmark 
data sets to do a comparison of several options for instantiating the genetic algorithm. 
After choosing a particular instantiation, based on the results of this study, in section 7 
we apply GLOWER to a new (to KDD) financial problem, predicting earnings surprises, 
and contrast the results with those obtained with tree induction and with rule learning. 
Finally, we discuss further considerations in using genetic algorithms for pattern 
discovery in finance, and further directions for research. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-00-02 



2. Benefits and Limitations of Genetic Search for Rules 

Our objective is to find rule-like patterns in the data. Various candidate algorithms for 
doing so have been studied, most notably tree induction (TI) algorithms (Quinlan, 1986; 
Breiman et al. 1984; separate-and-conquer rule-learning algorithms (Furnkranz, 1999), 
and systematic rule-space search algorithms (Provost, Aronis and Buchanan, 1999). 
These algorithms all search the space of conjunctive rules; most search the space from 
general rules (syntactically simple, covering many data) to specific rules (having more 
conditions, covering fewer data). 

The KDD literature has paid less attention to genetic algorithms for searching the rule 
space. Genetic algorithms (Packard, 1989; Goldberg, 1989, Holland, 1992) have been 
shown to be well suited to learning rule-like patterns. They have the ability to search 
large spaces for patterns without resorting to heuristics that are biased against term 
interactions. In this paper, we focus on the use of genetic algorithms-particularly as 
applied to financial data mining problems. To provide contrast with common data 
mining practice, we pay particular attention to how genetic algorithms differ from tree 
and rule induction algorithms. 

Genetic algorithms have several advantages as a rule discovery method. Their two 
primary advantages are the ability to scour a search space thoroughly, and the ability to 
allow arbitrary fitness functions in the search. Their main disadvantages are speed, 
randomness in creating the initial population (and in exploration as well, although some 
may consider this an advantage), and the fact that they can be myopic after they find one 
good solution. We address the limitations except for speed, which is beyond the scope of 
this article, and demonstrate the first two benefits. 

2.1 Limitations of Genetic Search 

Genetic algorithms have several limitations when used for rule mining. One drawback is 
the random creation of initial populations and the randomness of subsequent exploration. 
Why should we start with a random population? Although GLOWER retains the positive 
aspects of randomness such as the ability to escape local maxima, we also overlay 
entropy reduction to focus the genetic search, both to build the initial population and in 
subsequent exploration. 

A second important limitation of genetic algorithms for rule mining is that they have a 
tendency to focus too closely on a single, high-quality solution. The "building blocks" 
(Holland, 1975) of this single solution can distribute themselves rapidly throughout the 
population, and tend to elbow out other potentially good solutions. To address this 
problem, we evaluate several refocusing methods from the literature on genetic 
algorithms and from the literature on rule learning. 
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A third limitation of genetic search is it is comparatively slow, because it re-evaluates 
large populations of rules over and over after making small changes. GLOWER'S 
implementation is highly optimized in terms of its internal representation for fast query 
and evaluation, in the spirit of the ECETE algorithm (Forgy, 1982). However, run time and 
implementation issues are beyond the scope of this paper. 

We want to stress that we are not claiming that genetic algorithms are generally better 
than the other search techniques for finding interesting, usehl rules. We do believe that 
they are a useful alternative, with attractive properties. They should receive greater 
attention in the KDD Iiterature, especially for noisy domains like finance where it is 
important to find small patterns based on combinations of conditions including numeric 
variables. We also want to note that there has been a large volume of work on genetic 
algorithms, both theoretical and empirical. This paper is not meant as a survey of that 
field; interested readers should consider the brief overview recently provided by DeJong 
(1 999), Goldberg (1 989), Packard (1989), Holland (1 995) and others. 

In order to appreciate the "fixes" that are necessary to the genetic algorithm for rule 
learning, it is appropriate to begin by considering the basic limitations of greedy search 
heuristics used in machine learning algorithms. 

2.2 Benefits of Genetic Search 

Figure 1 helps to locate genetic algorithms on the rule-mining landscape. It depicts a 
spectrum of search techniques in terms of the thoroughness of search that they perform. 
On one end of the spectrum are tree induction algorithms that use a highly greedy 
heuristic and perform an irrevocable search. Rule learning algorithms consider a wider 
variety of alternatives and therefore are more thorough. At the other end of the spectrum, 
genetic algorithms are capable of conducting very thorough searches of the space because 
they are less restricted by a greedy search bias. Genetic search performs implicit 
backtracking in its search of the rule space, thereby allowing it to find complex 
interactions that the other non-backtracking searches would miss. To illustrate this 
property, which we believe to be important in financial domains, we treat in detail below 
the problem with using greedy search for rule learning. 

These consist of "separate and conquer" type algorthms (Fuhrenkranz, 19XX) and "systematic rule-based 
search type" algorithms (Provost, 1995). If only categorical attributes are considered, systematic rule 
learning algorithms perform very thorough searches of the rule space. However, for this paper we are 
interested in domains that include (and in fact comprise primarily) continuous attributes, for which 
systematic rule-space search algorithms are less thorough. 
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Figure 1 

GAS have the additional advantage, over other conventional rule-learning algorithms, of 
comparing among a set of competing candidate rules as search is conducted. Tree 
induction algorithms evaluate splits locally, comparing a very few number of rules, and 
only implicitly. Other rule-learning algorithms compare rules to fixed or user-specified 
criteria, but rarely against each other during the ~ e a r c h . ~  A defining characteristic of 
genetic search is that rules compete against each other, based on some fitness criterion. 
This is especially useful in domains where the target evaluation function is not well 
specified at the outset. Unlike many rule-learning algorithms, which are fine-tuned for a 
particular evaluation function (e.g., for maximal classification accuracy), genetic rule- 
learning algorithms can accept arbitrary evaluation criteria as input, including the ability 
to penalize overlap among rules. We will see later that this allows us to find small sets of 
rules that score well with respect to a problem-specific quality measure, dealing explicitly 
with the commonly noted problem of finding "too many" rules, including many small 
variants of some core pattern. 

2.3. The failings of greedy search 

Tree Induction algorithms are currently among the most widely used techniques in data 
mining. They are fast, are surprisingly effective at finding accurate classifiers with little 
knob twiddling, and produce explicit decision trees from which rules can be extracted. 
Another strength of TI algorithms is that they classify the data completely. Every datum 
can be classified into a particular derived class, resulting in 100% coverage of the data. 

But tree induction algorithms generally trade off some accuracy for speed. Most TI 
techniques use recursive partitioning: choose a node in the tree, and evaluate competing 
univariate splits on the original data set based on their ability to produce statistical 
differences in the distribution of the dependent variable. However, regardless of how 
judiciously the algorithm splits the data, the greedy heuristic may overlook multivariate 
relationships that are not apparent by viewing individual variables in isolation. 

The following example illustrates how the greedy search conducted by TI algorithms can 
overlook good patterns. It also illustrates how these techniques can be limited in their 

We should note that separate-and-conquer rule-learning algorithms implicitly do a limited form of 
comparison of hypothesized rules during the search-not enough to warrant a comprehensive discussion 
here. The "conquer without separating7' rule-learning algorithm CWS (Domingos, 1996?) compares rules 
explicitly as they are learned. 
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ability to handle nonlinearities such as interaction effects among problem variables. 
Consider the simple example database shown in Table 1, which comprises 20 records 
with the attributes: 

Gender, Age, State, Consumption 

Consumption represents the dependent variable. We would like to use this database to 
build a model that will predict Con sump t i on for previously unseen records. In this 
simple example, Consumption is the total dollar amount spent by an individual on 
roller-blades during a selected time period, and is coded as "High" or "Low" based upon 
problem-specific criteria. St at e and Ge nde r are categorical variables. Age is a 
continuous variable. 

I Gender I Aae I Sta te  I Consum~tion 

I F 1 36 C A Hiqh 

C A Low 
34 C A Low 

C A Low 
M 
M 
M 

Figure 2 shows how a tree induction algorithm, CART (Breiman et al., 1984), classifies 
the above data (restricting splits to nodes with at least 10 cases). The leftmost cluster in 
Figure 1 shows the complete data set, containing 10 Hi gh and 10 Low consumers as 
circles and crosses, respectively. 

M 
M 
M 
M 
M 
M 
M 
M 
M 
M 

The first split, on Gender, produces a slightly higher proportion of "High" consumers. 
In fact, it is the only attribute on which a split produces any improvement at all using the 
greedy splitting heuristic. The Male group is further partitioned on Age, under and over 
35, yielding a cluster where 62.5% of the cases have Consumpt ion = High. The 
"rule" or pattern that emerges is that males under the age of 35 belong to the High 
Consumption category: 

34 
34 
34 

IF Gender = "Male" AND Age < 35 THEN Consumption = "High" (Rule 1) 

Table 1: A small data set 

34 
34 
34 
34 
34 
36 
36 
36 
36 
36 
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C A 
C A 
C A 

Hiqh 
High  
Hiqh 

C A 
C A 
NY 
N Y 
NY 
N Y 
NY 
C A 
C A 
C A 

H1qh 
H1gh 
Low 
Low 
Low 

Hlqh 
Hlqh 
Low 
Low 
Low 



The parts of the rule before and after the "THEN are referred to as the antecedent and 
the consequent of the rule, respectively. 

Figure 2: An example of how a Tree Induction algorithm partitions data into homogeneous 
classes (cross = class 1 = "low" consumers, circle = class 2 = "high" consumers) 

In the example above, each split is on a single variable. Tree induction algorithms 
typically determine split points based on a heuristic such as entropy reduction (which, as 
described below, we use to augment a more traditional genetic algorithm). For example, 
the entropy of a cluster i can be computed using the standard formula: 

H, =-Cpk log2(pk) 
k 

(1) 

wherepk is the probability of an example picked at random in the cluster i belonging to 
the kth class. When applied to a cluster i, Hj, the entropy, measures the average amount 
(number of bits) of information required to identify the class of an example in the cluster. 
The entropy of a cluster is minimum where the probability is 1 ; that is, all members 
belong to the same class. Entropy is maximum where an example is equally likely to 
belong of any class, as in the leftmost cluster of Figure 2, where it is 0.5 for both classes. 

The gain from a split is computed based on the difference between the entropy of the 
parent cluster and the entropy of the child clusters resulting from the split. That is, if a 
cluster i is partitioned into j subsets: 

gain,= Hi- CH. J * R j  
J 

(2) 

where Rj is the ratio of the number of cases in cluster j to those in i. This is an 
information-theoretic measure of the value of information obtained from the split. It is the 
amount of discrimination that the split produces on the distribution of the dependent 
variable. TI algorithms use a measure such as information gain to compare the potential 
splits that can be placed at each node in the decision tree (using, typically, a depth-first 
search). The split with the best score is placed at the node; the (sub)set of data at that 
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node is further partitioned based on the split, and the procedure is applied recursively to 
each subset until some stopping criteria are met.4 

This greedy search is the reason why TI algorithms are fast (Lim, Loh and Shih (2000) 
show just how fast they are). The computation of the splitting metric is simple, and there 
is no backtracking. This enables the algorithm, in many cases, to process databases with 
hundreds of thousands of records in seconds on a powerfbl workstation. 

But why does such an algorithm overlook "good" relationships in the data? Recall that 
the split on G e n d e r  was the only split that produced an improvement. In fact, if we had 
split on S t  a t  e, yielding no immediately apparent improvement, and then again on Age, 
we would have obtained a better rule than did the greedy search-a rule with higher 
confidence, and comparable support. This is shown in Figure 3. The TI algorithm did not 
discover this pattern because the split on s t  a t e  does not produce improved clusters (the 
older people in California are not heavy consumers); it does not reduce the entropy of the 
original data. The algorithm has no way to recover from its initial and irrevocable greedy 
split. We believe that in certain domains there are many valuable patterns that TI 
algorithms overlook. 

Suppport = 7/20 = 0.35 

Figure 3: An Alternative Split 

Rule learning algorithms are fbrther toward the thorough end of the spectrum in Figure 1, 
because their search is "less greedy". Specifically, these algorithms typically consider 
several independent paths in the search space--all need not be rooted at the same node, 
for example (Clark and Niblett, 1989; Clearwater and Provost, 1990; Hong, 199 1 ; Smyth 
and Goodman 1991; Provost, Aronis and Buchanan, 1999). They are better equipped to 
find the smaller patterns that the irrevocable search strategy of tree induction algorithms 
misses. 

In computing the goodness of a split, thisgain value needs to be normalized so that fewer splits and larger 
clusters are favored over smaller ones. Otherwise the algorithm would be overly biased towards producing 
very small clusters (in the extreme case, of size 1 since these would minimize entropy). There are a number 
of heuristics for implementing this normalization (see, for example, Quinlan (1993), Breiman et al. (1 984), 
or Michie, et al. (1994)). 
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It is the search for small, non-overlapping, and useful patterns including continuous 
variables that concerns us. Our experience that predictability in financial domains is 
highly elusive, and is possible only infrequently, at best. We have found that minor 
changes in discretization intervals and granularity can cause the search to produce 
significantly different outputs. A solution to these problems is to perform more search, 
and at the same time to be more selective. We have found genetic search to be 
particularly effective in this respect. However, we believe that techniques such as 
entropy minimization are conceptually sound and are quite useful. Rather than discarding 
them, it is worthwhile for the genetic search to incorporate them. 

3. Evaluation of partial models 
Evaluation of models typically comes in two flavors. Many systems, such as the TI 
algorithms described above, produce models that are intended to apply to all the data 
(100% coverage). Such models often are evaluated by the expected number of errors that 
they would make on (previously unseen) examples drawn from some distribution. The 
other flavor of evaluation is to look at individual rules (or other small-coverage patterns) 
and evaluate them outside the context of the model that together they would form. 

Two commonly used metrics used to measure the goodness of individual rules are 
confidence and support. These metrics have been used for many years in a variety of rule- 
learning algorithms, and have become especially popular in the KDD community because 
of their use in association-rule algorithms. Confidence measures the correlation between 
the antecedent and the consequent of the rule. Support measures how much of the data 
the rule covers. If N is the total number of examples in a data set, then, for a rule of the 
form A -) B: 

confidence = (Number of cases satisfying A and B) / (Number of cases satisfying A) 
= P(A n B) / p(A) 

support = (Number of cases satisfying A ) / N 
= P(A ) 

error = 1 - confidence 

For example, the confidence of Rule 1 from Section 1 is 0.625 (5/8), whereas the support 
is 0.40 (8120). 

These two flavors of evaluation actually apply similar measures to two ends of a 
spectrum of partial models. The former considers models by definition to have 100% 
support, and thus reports only error rate (1-confidence). The latter considers partial 
models at the finest granularity, reporting the error rate of an individual rule and its 
associated support. We are interested in partial models along the spectrum between these 
two extremes. 
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For example, consider the financial problem of predicting earnings surprises. The task is 
difficult, and it is unlikely that a model could be built that classifies all cases accurately. 
On the other hand, viewing the statistics of individual rules out of the context of use 
(presumably as part of a larger model) provides less insight than we would like. Our goal 
is to find models, perhaps comprising a few rules, that predict a useful number of 
earnings surprises with high accuracy. Of course, the definitions of "useful" and "high" 
are problem dependent, to which we will return when we discuss further the earnings- 
surprise prediction problem. Fortunately, statistics such as confidence and support apply 
not only to the two common flavors, but are well suited across the entire spectrum of 
partial models. In fact, if so inclined, one could graph the tradeoff between the two as 
partial models are constructed rule by rule. 

4. Genetic Rule Discovery 

In financial domains, decision makers often are interested in finding easy-to-understand 
rules to govern investment performance. For example, a qualitative rule might be "if the 
short term moving average of prices exceeds the long term moving average and the 
trading volume over the long tern is increasing, buy." In this case, a discovery algorithm 
could fill in the blanks denoted by the italicized phrases. For example, it might find that 
the best buying results (i.e. going long) occur when the following rule is applied: 

Short-term = 5 days, 
Long - term = 30 days, 
Short term-moving-average > Long term moving - average, 
~on~term-volumerate > 2 percent AND 2 5 percent, 
~ 0 2 d ; ~ j e r i o d  = 2 days. 

As we can see, the search space of possible rules is extremely large even for this trivial 
example with only a few variables. It should also be apparent that the representation used 
by the discovery algorithm must be able to deal easily with inequality conditions such as 
"at least 2 percent," "between 2 and 5 percent," "less than 2 or greater than 10," and so 
on. Also, other buying rules should overlap as little as possible with the one above. 

4.1. Representation: Gene and Chromosome Semantics 

Table 2 shows the representation of patterns used by the genetic learning algorithm. Each 
pattern, a chromosome, represents a specific rule. The genetic algorithm works with 
multiple hypothesized rules, which make up its population. A population at any point in 
the search is a snapshot of the solutions the algorithm is considering. The algorithm 
iterates, modi&ing its population with each generation. Each pattern (chromosome) is an 
expression defined over the problern variables and constants using the relational 
operators equal, greater-than, and less-than, and the Boolean operators and, or, and not. 
At the implementation level, chromosomes are queries issued to a database. 
Chromosomes in turn are composed of constraints defined over individual problem 
variables. These are represented as sets of genes. At the lowest level, a gene represents 
the smallest element of a constraint, namely, a variable, constant, or an operator. 
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I Example: 30-day-moving average ofprice (M 30) I 
I Univariate predicate (Single "conjunct") 

I 
I Set of Genes 

Concept 
Variable/ConstantlOperator 

I Example: h.I(A30 > 10 I 1 

Representation 
Gene 

I Example: > 10 ANDMlo  < 5 
I Multiple Patterns 

I 
I Population 

I 

Table 2: The Concept Class Representation 

Example: M 3 o  < 10 OR MAj0 > 90 
Multivariate predicate (Conjunctive pattern) 

The above representation is equivalent to that of tree induction algorithms such as CART 
in that a chromosome (rule) is equivalent to a path from a root to a terminal node in a 
decision tree. In addition, however, a constraint on a single variable can be a disjunct, 
such as " M 3 0  < 10 OR M 3 0  > 90". It should be noted that our system does not 
represent knowledge in the manner commonly associated with genetic classzfier systems 
(see, for example, (Goldberg, 1989) or (Holland, 1992)) where individual chromosomes 
may represent sub-components or interim results that make up some larger chain of 
reasoning represented by groups of chromosomes. We view genetic search simply as an 
alternative algorithm for searching the rule space--one with particular, attractive 
properties. 

Chromosome 

For determining fitness, chromosomes can be evaluated based on criteria such as entropy, 
support, confidence, or some combination of such metrics. By controlling the numbers of 
constrained variables in chromosomes, genetic search can be biased to look for patterns 
of a desired level of specificity. This is a parameter that we can manipulate to control (to 
some extent) the degree of variable interactions, or nonlinearity, we want the algorithm to 
be capable of discovering from the data. 

4.2. Schema Theory: The Basis for Genetic Rule Discovery 

Holland used the term schema in the context of genetic algorithms to explain the theoretic 
basis for genetic search. His basic reasoning is that a single chromosome can implicitly 
cover a large part of the search space, and that a collection of them can scour a large 
search space thoroughly. To see why, consider a problem with, say, 30 variables. 
Suppose that the search is considering a hypothesis where only one variable, say age, is 
constrained, "age < 35," whereas all other variables are unrestricted, i.e. we "don't care" 
about what values they take. Such a chromosome represents a region in the search space. 
Holland referred to such a region as a schema. Fewer, or more precisely, looser 
restrictions represent more general schemata, or larger areas of the search space. For 
example, the constraint on age, "age < 35 ", with "don't care" for all other variables, 
represents a very general schema. The constraint "age < 35 AND state = CA " represents 
a more specific schema. These constraints, such as " are referred to as building 
blocks. Holland demonstrated that if a schema happened to result in better solutions than 
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the population average, then this schema would manifest itself through its building blocks 
in above average proportions (i.e., in many chromosomes) in populations of subsequent 
generations. 

A basic feature of our representation is that it manipulates schemata directly by allowing 
"don't cares" for variables. By specifying the number of don't cares allowed in a 
chromosome, we are able to control to some extent the generality of patterns we are 
interested in discovering. This is an important practical consideration. It influences how 
easy it will be for users to interpret the discovered patterns and has a direct impact on the 
support and confidence of the discovered patterns. We refer to the number of specified or 
constrained variables in a schema as its order. The order of the schema corresponding to 
"age < 35 AND state = CA " therefore is 2. This corresponds directly to restricting tree 
depth in TI algorithms, or restricting rule complexity (or length) in other rule-space 
search algorithms. 

4.3. Population Dynamics 

The pattern discovery process with genetic search works as follows: an initial population 
of patterns (chromosomes) first is created, randomly or biased in some way. Each 
chromosome is evaluated and ranked. The higher-ranked chromosomes are selected to 
participate in "mating" and "mutation" to produce new offspring. Mating essentially 
involves exchanging parts of chromosomes (genes) between pairs. This is called 
crossover. Mutating involves changing the value of a gene, such as a number or an 
operator. By repeating these steps over and over, usually hundreds or thousands of times, 
the search converges on populations of better patterns, as measured using some fitness 
function. The search proceeds according to the equations below. 

Let s(S,,t) be the number of patterns corresponding to some schema S at generation t. If 
the fitness of schema S isf(S), and the average fitness of the population at generation t is 
f(P,,t), then the expected number of chromosomes corresponding to S in the next 
generation is: 

For simplicity, if we assume that f(S)lf(P,g is a constant, l+c, then 

Equation 4 states that selection (or reproduction) allocates members of a schema, i.e. 
patterns corresponding to it, at an exponentially increasing rate if their fitness is above 
the population average, and at an exponentially decreasing rate if below average. For 
example, if the average fitness of the population is 0.5 and that of the schema "age < 35" 
is 0.6, then l+c would be 1.2, meaning that we would expect to see 20% additional 
representatives of the schema in the next generation. 
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The effect of crossover is to break up schemata, in particular, those that have more 
variables specified. The term "order" is used to designate the number of specified 
variables in a schema. Assuming that our crossover involves exchanging exactly one 
variable between chromosomes (regardless of position in the chromo~ome),~ and ignoring 
cases where the chosen position is instantiated identically in the chosen chromosomes, 
the probability of a schema getting disrupted is o(S)/l where o(S) is the order of the 
schema and 1 is the chromosome length. For example, with a chromosome of length 4 and 
a schema of order 2, the probability of disruption would be 214, whereas if all are 
specified, the probability of disruption is 1. If we weaken our assumption and let 
crossover involve the exchange of m variables, the probability of survival becomes: 

If m is picked randomly, i.e. with probability 111, the probability of survival is: 

Combining the above expression with equation 4 gives the combined effect of selection 
and crossover: 

Finally, mutation involves changing a single value in a chromosome. If the probability of 
carrying out a mutation is p,, the probability of survival through mutation is (1 -p,)O(S). 
Sincep, is usually small, i.e. << 1, this can be approximated as (1 - o(S).p,). 

The combined effect of the genetic operations of selection, crossover, and mutation is 
given by the following equation: 

Equation 6 expresses what is referred to in the literature as the Schema Theorem. It shows 
the competing forces on schema survival. The first part of equation 6 says that above 
average schemata are represented in exponentially increasing proportions in subsequent 
generations. The second and third parts of equation 6 say that low-order schemata have a 
higher chance of survival than high-order schemata. 

Why is this interesting? For problems with weak structure, the low order schemata that 
have significantly higher fitness than the population average are likely to be those that 
impose tighter bounds on the specified variables. These low-support but high-confidence 
patterns can serve as the seeds for higher support patterns. The genetic algorithm thereby 
learns through seeding, that is, finding low-coverage but high-fitness patterns that can 
then be "expanded" until their performance begins to degrade. 

This is not a cut-point crossover; it is the simple exchange of a gene. 
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We would like to find patterns with higher support, because although we are happy for 
our partial models to contain multiple rules, for domain-specific reasons a few high- 
support rules is much preferable to a large number of low-support rules. In what follows, 
we present and evaluate empirically a number of competing heuristics that conduct 
intelligent "adaptive sampling" of the database during the search, to help focus it on 
higher-support patterns. 

4.4 Focusing Genetic Rule Discovery 

In order to focus the genetic search to find interesting patterns, the algorithm "tunes" how 
fitness is computed depending on what already has been discovered or explored. 
Conceptually, we want to allow the fitness calculation (cf., equation 6) to consider the 
"state" of the search. Certain general focusing heuristics have been successful across 
other types of rule learning, and we incorporate specific instances into our genetic search. 

Consider a data set with 2 independent variables, V1 and V2, and one dependent variable 
as shown in Figure 4. The dependent variable can belong to four classes, A, B, C and D. 
The patterns A1 and A;! show two disjoint clusters of the class A, corresponding to two 
different combinations (ranges) of independent variables. The size of each cluster denotes 
its importance, measured in terms of some function of confidence and support. Similarly 
for B and C. The remaining area is labeled D. 

v2 

v 1 

Figure 4: Type A, B, and C have 2 patterns each. Type D is the remaining area 

A plain genetic rule discovery algorithm tends to do the following: all other things being 
equal, since the pattern A1 is the dominant pattern in the data set, chromosomes typically 
gather in the neighborhood of A. If such a pattern dominates the early populations, the 
algorithm is likely to overlook the other patterns. 

This example highlights two problems we would like to overcome. First, we would like 
to enable the genetic rule discovery algorithm to find all salient patterns, rather than 
letting a few high-quality patterns dominate. Second, we would like to make each of the 
blobs in Figure 4 as large as possible by balancing confidence and support during search. 

4.4.1 Sequential Niching: SN 
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One standard approach to guiding a genetic algorithm to find all solutions is to use 
"niching," where chromosomes are grouped into sub-populations, one for each class. 
Niching schemes have been described and their dynamics analyzed extensively as 
effective general purpose strategies for dealing with certain types of multimodal 
problems (Goldberg and Richardson (1987), Deb and Goldberg (1989), Oei et al. (1991), 
Goldberg et al. (1992)). Mahfoud (1995) also provides an extensive survey and 
discussion. Niching can be particularly effective when each niche can be made to focus 
on a particular cluster. 

An alternative to requiring such a priori knowledge is to allow the algorithm to determine 
appropriate clusters empirically, focusing on particular parts of the space while they 
appear fruitful, and once they produce what seems to be a good rule, focusing the search 
elsewhere. Using previously learned knowledge to restrict the search to other parts of the 
space is a common heuristic in rule learning. The general notion has been called 
inductive strengthening (Provost & Buchanan, 1992): placing stronger restrictions on the 
search based on the rules that have been induced. 

Inductive strengthening is a method for adaptively adjusting an algorithm's inductive bias 
(Mitchell 1980).~ Inductive bias refers to any criteria other than strict consistency with 
the training data that are used to select a model. Restriction bias refers to algorithm or 
problem design choices that restrict certain models from being chosen. A strong bias is 
very restrictive, ruling out many possible hypotheses, and correspondingly, a weak bias 
allows a much larger space of hypotheses to be considered. The tradeoff is that a strong 
bias is preferable for efficiency reasons (among others); however, unless it is well 
chosen, a strong bias may mask desirable rules. Algorithms incorporate inductive 
strengthening heuristics in an attempt to get the best of both worlds: start with a weak 
bias, and as good rules are induced, restrict the search to look elsewhere for additional 
rules. 

Genetic search can perform inductive strengthening by niching sequentially. After the 
search converges on a high-fitness schema, the evaluation function can be modified to 
penalize patterns corresponding to it. Figure 5 shows how this works: the classified area, 
A1, is marked. This change forces additional chromosomes that represent 4 no longer to 
have good fitness values. Therefore, the genetic algorithm must search for other patterns, 
such as A;! and BI. Sequential niching increases the chances of finding more patterns and 
of increasing overall coverage. 

Beasley, Bull and Martin (1993) demonstrate such a sequential niching (SN) method. It 
works by iterating a simple GA, and maintaining the best solution of each run off line. 
Whenever SN locates a good solution, it depresses the fitness landscape at all points 
within some radius of that solution (in our implementation, we penalize the region 
corresponding to the pattern uniformly). Packard (1989) proposed a similar penalty 
bction.  

Provost and Buchanan (1995) present a general model of inductive bias, as well as an analysis of systems 
that adapt their biases. 
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VR 1 
Figure 5: When patterns corresponding to the classified area are penalized, the GC 

is forced to search elsewhere. 

4.4.2 Removing Classified Areas by Data Reduction: DR 

The most commonly used heuristic for inductive strengthening is the covering heuristic. 
Made popular by the family of separate-and-conquer rule learning algorithms ( F u k a n z ,  
1999), once a good rule is found the covering heuristic removes the examples it covers 
from the data set. Since these algorithms determine rule interestingness (and therefore 
search direction) by statistics on rule coverage, removing the covered examples implicitly 
leads the search elsewhere. 

As an alternative to sequential niching, we can apply the covering heuristic to genetic 
search. Specifically, after the search converges on a pattern, instead of penalizing an 
area as classified when calculating the fitness function, the data corresponding to the 
area are removed from further consideration. This is similar to an approach used by 
Sikora and Shaw (1994) for inductive strengthening in their genetic learning algorithm. 
Let us compare data reduction to sequential in the context of our genetic search. 

With sequential niching, as the larger areas become classified, subsequent search tends to 
produce more specialized patterns. Figure 6 shows why. Suppose the dark-shaded area is 
not yet classified. The algorithm will tend to produce low-support patterns (small circle), 
because larger areas (higher support) have a higher chance of hitting penalty areas. T h s  
is an unintended consequence-we do not want to restrict our search from the new, large 
pattern, we just want to focus it away from the already-found large pattern. 

In contrast, discarding data associated with a discovered pattern has a different effect. 
Since there is no penalty area, the new, large pattern will not be penalized. Since it has 
larger support, if the confidences are comparable, it will be preferred over the smaller 
pattern. Of course, the confidences may not be the same, and indeed, the pattern could 
produce higher misclassification rates on the removed data. The effect of this is that the 
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algorithm continues to produce more general patterns (corresponding to the larger area in 
Figure 6) later in the search, that is, patterns that tend to have higher support, but 
confidence may suffer when applied to the original data. Also, there is less control on 
overlap with other rules than in sequential niching. 

VR2 

VR1 
Figure 6: When the larger area has more chance of hitting an already 
classified area and getting penalized, the GC will tend to favor more 
specific, i.e. patterns with less support. 

Thus, one may understand the differences between penalizing the area versus removing 
the data as: the former is more likely to produce non-overlapping rules whereas the latter 
produces a hierarchy of rules, as shown in Figure 7, which potentially may overlap. 

Unclassified data At? 

Unclassrfied data 

@ 

Figure 7: The patterns from are not independent but form a hierarchy of rules 

One obvious drawback to removing data is that the algorithm may discard both correctly 
classified data and misclassified data as shown in Figure 8. In contrast, since sequential 
niching does not discard data, there is a chance that data misclassified by an earlier 
pattern (A) will be correctly classified by another pattern (B) as shown in Figure 9. 
Another way of looking at this is that discarding data removes support for schemata that 
overlap with the one for which data were removed. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-00-02 



5. Genetic Rule Discovery with Entropy Reduction and Inductive Strengthening 

VR2 

A seemingly obvious solution to the problem of data reduction is to be more judicious in 
inductive strengthening, for example, only discard examples that are correctly classified 
by the already-learned rules (Provost & Buchanan, 1992). However, the smalIer sample 
size that results from the data reduction also tends to increase variance of the dependent 
variable, thereby lowering the fitness of the pattern. This undesirable phenomenon is not 
relegated to separate-and-conquer rule learners, but also applies to tree induction 
algorithms, which also split up the data based on "rules" learned so far (via the higher- 
level splits). What we would like is for an inductive strengthening heuristic to be used to 
guide the search, but for the statistics used to determine fitness to be gathered over the 
entire database. This is the philosophy taken by rule learners such as RL (Clearwater & 
Provost, 1990) and CWS (Conquer Without Separating) (Domingos, 1996). 

Our genetic learning approach incorporates these ideas as well as those that allow TI 
algorithms to find good splits quickly. Genetic Learning Overlaid With Entropy 
Reduction (GLOWER) recursively feeds entropy-reducing splits into the genetic search. 
The splits used are those that best discriminate the class membership of the dependent 
variable. In this way, the genetic algorithm incorporates promising "pieces of patterns," 
the building blocks, into the search and "spreads" them to other patterns through 
crossover and mutation. 

VRl VRI 
Figure 8: Data Reduction removes the area Figure 9: Sequential niching keeps data 
covered by pattern A. Thus, part of the misclassified by pattern A, data '2'. This 
misclassified data of '2' is lost area can later be correctly classified by 

pattern B 

VR2 

Pattern A 

One of the interesting features of this strategy is that, ironically, the genetic algorithm is 
able to make much better use of entropy reduction splits than can greedy search 
algorithms that split the data. With recursive partitioning, splits lower down in the tree 
apply to smaller subsets of the data, thereby producing a higher variance on the 
dependent variable class distribution because of smaller sample size. In contrast, the 
genetic algorithm gives each split a chance to be evaluated on the entire databa~e.~ 

Pattern B 

Pattern A 

This is not always true, but we ask the critical reader to bear with us for the moment. 
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Thereby, parts of trees can be combined with others, leading to patterns that are much 
harder to find with irrevocable splits. In sum, the genetic algorithm is able to use the 
efficient sifting of the data that tree induction methods generate in order to focus its 
search to promising areas of the search space, but then allows the genetic search to 
assemble the building blocks into even better models. 

This hybrid search method uncovers promising components of patterns by comparing the 
distributions of class membership based on splits on an independent variable in the same 
way that TI classifiers work. However, instead of partitioning the data set irrevocably, it 
simply introduces the split as a building block into the search, enabling it to interact with 
other promising building blocks. When combined with niching, this allows GLOWER to 
focus its search dynamically based on the state of the search. 

5.1. Comparison of GLOWER variants: experimental design 

We now report results from a set of experiments where our objective was to evaluate 
several variations of GLOWER based on the heuristics described above, and to pick a good 
one for comparison with TI and rule learning algorithms (section 6). For these 
preliminary experiments, three data sets were used. The first two, waveform and 
character recognition, are from the UCI repository [UCI, 19951. They represent noisy 
problems with numeric attributes and overlapping classes. The third data set is from the 
financial arena: the prediction of weekly returns of stocks in the S&P500. 

5.1.1. Data 
The first data set consists of records corresponding to the three types of waveforms as 
shown in Figure 10. It was also used by Breiman et al. (1984) in evaluating CART. 
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hl (m) i.....T"'......., 1 3 5 7 9 11 13 15 17 19 21 

h2 (m) 2 1 3 5 7 9 11 13 15 17 19 21 

h3 (m) 3 1 3  5 7 9 11 13 15 17 19 21 

Figure 10: Three Waveforms, each with a 21 dimensional measurement 

Each class consists of a random convex combination of two of these waveforms, sampled 
at the integers with noise added. There are 2 1 real-valued independent variables. 

Type 1 vector X is defined as: 
&=u,*hl (m)+( l -&)*h2(m)+&, , ,  m = l , 2  ,...., 21 

Type 2 vector Y is defined as: 
Ym =uy * h ( m ) + ( l  -I+) * h3(m)+&, , m =  1,2, ...., 21 

Type 3 vector Z is defined as: 
2 , = u z *  h3(m)+(l  -~ )*h l ( rn )+&, , ,  m =  1,2 ,...,, 21 

where Q, I+, and u, are uniformly distributed in [O,1] and E,, , E,, and E, are normally 
distributed, N(0,l). This data set contains 5000 records. 

The second data set consists of records where the dependent variable is a letter, from A to 
Z. There are 16 independent variables denoting attributes such as shapes and their 
positions and sizes. This data set contains 20000 records, with unequal numbers of 
examples (cases) in each class. This is a challenging problem, in part due to the large 
number of classes (26), and a significant amount of overlap in the patterns of independent 
variables corresponding to the various classes. 

The third data set consisted of prices of financial instruments constructed from the S&P 
500 universe of stocks between January 1994 and January 1996, excluding mergers and 
acquisitions. The objective was to predict returns one week ahead. Two classes were 
created for the dependent variable, namely, up or down, depending on whether the future 
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return was above a specified "high" threshold, or below a specified "low" threshold (we 
ignored the "neutral" cases for this experiment). The classes had roughly equal prior 
distributions. Approximately 40 standard technical analysis indicators such as moving 
averages and volatilities were computed as in Barr and Mani (1994), which served as the 
independent variables. There is a degree of subjectivity in the choice of the prediction 
period as well as the various possible data transformations chosen, and other, possibly 
better, transformations could have been chosen. However, all of the GLOWER variants had 
to deal with the shortcomings of the problem formulation and the data, and in this sense, 
they were on an equal footing. 

5.1.2 Sampling design 
Each of the initial data sets was partitioned into 3 subsets: in-sample training data, in- 
sample testing data (for the evaluations internal to GLOWER), and out-of-sample testing 
data. Table 3 shows the size of each subset for the three data sets. 

Table 3: Data Samples 

Data set 1: Waveform 
Recognition 
Data set 2: Character 
Recognition 
Data set 3: Estimating 
returns of S&P500 stocks 

We chose this multi-level separation because of the several dangers of overfitting. Most 
obviously, the in-samplelout-of-sample division is important so that the model can be 
evaluated in terms of consistency. Within the in-sample data, the training and testing 
division is important, similarly, to allow the genetic algorithm to evaluate the consistency 
of a hypothesis being tested. 

5.2. Assessment of GLOWER Variants 
In this section, we present the results from applying to these data a more-or-less standard 
genetic rule discovery algorithm and three enhancements to it, based on the inductive 
strengthening techniques described above. In particular, we report results from "standard" 
parallel niching, which we consider as the baseline, and the following: 

In-sample 
training data 

3,010 

12,000 

1 1,600 

sequential niching 
sequential niching plus entropy reduction 
data reduction plus entropy reductions 

Figures 1 l a  through 1 1c show the results from the first set of experiments. The waveform 
recognition problem was easy for all algorithms, producing high accuracy and 

In-sample 
testing data 

770 

4,000 

3,200 

Data reduction by itself was not particularly powerful and we do not wish to clutter the results with 
additional uninteresting data. 
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Out-of-sample 
testing data 

1,220 

4,000 

3,200 

total 
5,000 

20,000 

18,000 



confidence. Apparently, for easy problems, the choice of inductive strengthening 
technique makes little difference. 

The character recognition problem is a little harder. The dependent variable comprises 26 
classes, 'A' through 'Z'. All variations of the genetic algorithm did well on confidence, 
but there is a marked increase in support when the entropy reduction heuristic is used in 
conjunction with sequential niching or data reduction. Figure 1 lb  shows that the 
algorithm SNt-H, sequential niching with the entropy reduction heuristic, performed the 
best in terms of confidence (92%) and had a high degree of support (83%). 

As would be expected, the S&P stock prediction problem was the hardest, because there 
is very little structure in the data as is apparent in Figure 1 lc. The results from this 
experiment point to the difficulties in market forecasting and illustrate the tradeoffs 
among the techniques for finding patterns in this domain. We should note that by 
viewing the results of the partial models learned by GLOWER we see a very different 
picture from that presented by techniques that try to model the problem as a whole (not 
shown). In the latter case, the accuracy of just about any model hovers around the 
accuracy of a knowledge-free model (depending on the problem formulation, one may 
choose random guessing, buy-and-hold, or some other simple strategy). Any structure 
contained in the model is swamped by random variation. What is more, realistic 
evaluations (from the perspective of actually making investments) involve costs of 
trading. These factors determine the required balance between confidence and support. 
Both the confidence and the support must be high enough to provide a good tradeoff of 
risk and reward. 

Basel ine  S N S N + H  D R + H  

F i g u r e  I I b: C h a r a c t e r  R e c o g n i t i o n  

As is evident from Figure 1 lc, all variations of the genetic learning algorithm had very 
low support for this problem. The genetic algorithms, in effect, indicated that they would 
not make a prediction most of the time. This makes sense since it is very difficult to 
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make an accurate directional stock-market prediction. The genetic algorithm is unable to 
find rules that perform well consistently on its in-sample testing data. However, the 
overlaid heuristics did improve the support significantly, with entropy reduction resulting 
in the highest support when combined with either sequential niching or data reduction. 
While the baseline algorithm produced a support of only 0.7%, sequential niching 
improved this to 1.7%, with a confidence of 72%. As with the other data sets, SN+H and 
DR+H provided the best overall results, with the former resulting in rules with a 
confidence of 73% and support of 3.4%. In effect, the overlaid heuristics provided a 
fivefold increase in coverage as compared to the baseline genetic algorithm, while 
increasing confidence marginally as well. 

In sum, the experiments show that SN+H and DR+H generally are preferable to the 
baseline algorithm and to SN alone. The results do not support a strong distinction 
between SN+H and DR+H, suggesting that niching and separate and conquer tend to be 
similar in terms of their inductive strengthening ability. However, since SN+H had 
marginally better performance in terms of confidence on the latter two data sets, we 
chose it for the next study that compares GLOWER to tree and rule induction algorithms. 

6. Comparison of GLOWER to Tree and Rule Induction 

For the main set of experiments we used the best performing GLOWER variant fi-om the 
previous study (SN+H) and applied it to another financial problem, namely, to predict 
"earnings surprises." This problem has been studied extensively in the business literature. 
The objective is to classify a company's next earnings report as "positive," "negative," or 
"neutral," depending on whether one predicts that these earnings will significantly 
exceed, fall short, or be in line with the average reported expectations of a set of analysts. 
It has been shown that positive surprise companies tend to produce returns after the 
announcement that are in excess of the market, whereas the opposite is true for the 
negative surprise firms. Several explanations have been proposed for this phenomenon. 
The details of the earnings surprise research can be found in Chou (1999). 

The data set for this study consisted of a history of earnings forecasts and actual reported 
earnings for S&P500 stocks between January 1990 and September 1998. These were 
used to compute earnings surprise, which is "positive" if actual announced earnings 
exceed the analyst consensus estimates by a specified threshold (half a standard deviation 
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of estimate), "negative" if they fall short, and "neutral" otherwise. The prior class 
distribution was roughly 13.5 percent positive, 74 percent neutral, and 12.5 percent 
negative surprises. In other words, companies report earnings that are mostly within half 
a standard deviation of expectations. 

Approximately 60 independent variables were chosen based on commonly used 
indicators in the fundamental and technical valuation analysis literature (Graham and 
Dodd, 1936; Achelis, 1995; Madden, 1996). The technical variables chosen correspond to 
price trend and volatility, whereas the fundamental variables are based on financial 
statements, such as historical cash flows and earnings. The specific indicators used are 
described in Chou (1999). The objective in this problem is to predict 20 days before the 
actual earnings announcement whether a specific company will report a positive, neutral, 
or negative earnings surprise as defined above. Predicting earnings surprise is one way 
of forecasting future returns. The data set sizes used are listed in Table 4, similarly to 
Table 3 (described above). 

lsurprise I 
Table 4: Data Samples 

Predicting earnings 

We compare GLOWER using sequential niching with the entropy reduction heuristic 
(SN+H) to a standard tree induction algorithm, CART (Breiman et.al, 1984), and a rule 
learning algorithm, RL, (Clearwater and Provost, 1990). 

One way of defining misclassification in earnings surprise prediction is if an actual 
positive surprise was predicted as neutral or negative, or if an actual negative surprise 
was predicted as neutral or positive. Another way, which we believe to be better for this 
domain, is to define a misclassification only if a positive is classified as negative and vice 
versa. Economic arguments support this view, since the detriment associated with 
misclassifying a positive as a negative is significantly greater than that associated with 
misclassifying a positive as a neutral (and similarly for negatives). Our results (see 
Figures 12 and 13) use confidence with this latter interpretation of misclassification, 
although the comparative results are not materially different with the alternative 
interpretation. 

In sample 
training data 

14,490 
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In sample 
testing data 

9,650 

Out of sample 
testing data 

12,164 
Total 

36,204 



TI:wnf TI:supp RL:conf RL:supp GA:conf GA:supp 

Figure 13: Predicting Negative Surprises 

Figure 12 shows the results from tree induction, rule learning and genetic learning for 
predicting positive surprises based on fifty sets of runs. For each of the three methods, the 
figures show the means and standard deviations for confidence and support for each of 
the methods. When applied painvise, all means are different at the 0.0001 level of 
significance. Confidence and support increase from left to right and the variances of these 
measures decrease. 

Figure 13 shows the corresponding results for negative surprises. Again, all means 
considered pairwise are different at the 0.0001 level of significance except for GLOWER 

versus TI confidence means which are different at the 0.1 5 level of significance. 
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Figure 12: Predicting Positive Surprises 

A number of things stand out in the results. Most importantly, perhaps, the results are in 
line with what we hypothesized in Figure 1 : the various methods perform along the 
spectrum of thoroughness of search that was shown in the figure. GLOWER is indeed more 
thorough in its search than rule induction which is in turn better than tree induction. 

More specifically, we can see from Figure 12 that GLOWER outperforms the other two in 
terms of both confidence and support for predicting positive surprises. For support, 
GLOWER has six times the support of the TI algorithm and one and a half times that of rule 
learning. Also its variances on confidence and support are lower on average. For negative 
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surprises (Figure 13), the confidence levels are similar, but GLOWER is again significantly 
better in terms of support (more than double that of tree induction and roughly double 
that of rule induction). In effect, GLOWER'S rules cover anywhere between two and six 
times the problem space than its competitors without sacrificing performance. Clearly, 
the rules from its competitors are more specialized than is necessary. For problems with 
weak structure, this is a significant difference. The result is in line with our prior 
hypothesis. 

An unexpected result was that the genetic learning algorithm appears to be much more 
suited to capturing symetry in the problem space as is evident in its relatively uniform 
performance at the opposing ends of the problem space. Specifically, the coverage for the 
TI algorithms positive surprises is 5.93% compared to 1.7% for negative surprises, while 
the comparable numbers for the genetic learning algorithm are 13.3 and 10.7 percent 
respectively. TI and RL find it harder to predict a negative earnings surprise than a 
positive one. The result should make us question whether predicting a negative surprise is 
harder, either inherently, or because the available data do not represent this phenomenon 
adequately, making it harder for an algorithm to discover. One interpretation of the 
results, based on observing the rules, is that the greedy heuristic picked up on one major 
effect, momentum, was correlated with surprise, but weakly. Further, this variable was 
not negative often enough in the data, making it hard to find negative surprise rules. 
However, GLOWER was able to identify other variables, such as cash flow based measures 
from balance sheets, in order to identify additional situations that were indicative of 
impending negative surprises. If this is the case, it would be consistent with our analysis 
in section 5 about the ability of GLOWER to splice together different building blocks into 
potentially useful patterns and its ability, via sequential niching and recursive entropy 
reduction splits, to discovery the underlying patterns in the data. Verifying whether this 
indeed is the case is future work for us, and we revisit this issue in the next section. 

7. Discussion 

Why are the results reported above interesting? Is there something about the genetic 
learning algorithm that enables it to perform better for financial prediction problems? 

We already have alluded to the fact that relationships among variables in the financial 
arena tend to be weak. A correlation coefficient higher than 0.1 between an independent 
and dependent variable is not common. Also the correlation is typically nonlinear: it may 
be stronger in the tails and non-existent everywhere else. As we mentioned earlier, a 
positive analyst revision on a stock may have no impact on it unless the revision exceeds 
some threshold. Even more importantly, the impact may be magnified or damped by 
other variables, for example, whether the stock belongs to a high or low growth sector. In 
such situations, we might achieve better insight into the domain, and achieve higher 
overall predictability, by considering interaction effects. The learning algorithm should 
be able to find such effects and still produce patterns with reasonable support. 
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GLOWER uses entropy reduction and inductive strengthening heuristics to find the 
"interesting seeds" in the problem space and then expands them as much as possible. In 
doing so, it also combines these seeds in many ways, thereby capturing interaction effects 
among variables. Methods such as tree and rule induction are good at finding interesting 
seeds, but often are not able to exploit them any further. For tree induction algorithms 
this is largely because the process of splitting the data results in misclassifications from 
which they cannot recover, and in higher variances for the dependent variable, which 
makes it difficult to find interesting interaction effects. Rule learning does better, but 
tends not to explore combinations of variable splits that may be individually suboptimal, 
but be collectively better than the combination of the best univariate splits. In contrast, 
the genetic algorithm is able to mix and match seeds and it implicitly performs local 
sensitivity analyses. If a combination t m s  to be potentially robust, i.e. consistently good 
results across training and testing sets, this becomes another seed that can be flurther 
explored and refined. 

Because the traditional methods are reasonable at finding some of the initial seeds, we 
found it worthwhile using them as part of the genetic search. In this way, we are able to 
combine the speed of these methods with the more comprehensive search of the genetic 
algorithm. In effect, the genetic learning algorithm is guided by the splits fed to it by 
entropy reduction. Indeed, the range-oriented representation for numeric variables used 
by CART works well for GLOWER since they use identical representations for their 
concept class. While non-backtracking-based methods such as CART tend not to recover 
from the misclassifications that are inevitable with such methods, the genetic algorithm is 
less restricted since every split is evaluated against the entire database in conjunction 
with many other interesting splits. 

From a practical standpoint, for financial problems where there is weak structure and the 
objective is to develop investment strategies, it is important that accuracy and support be 
at levels such that the corresponding rules are "actionable." Consider the earnings 
surprise problem. If our objective is to develop a "long/short" strategy, it is important that 
there be enough stocks to "long" and enough to "short." The CART output in the 
example, where support is 6% and 1.7% respectively, when applied to the S&P500 
universe would result in 30 longs and about 8 shorts. These numbers are on the low side 
and highly asymmetric, and an investment professional looking for a "market neutral" 
strategy (where equal capital is committed to the long and short sides) would be hesitant 
to trade such a strategy. The genetic algorithm, in contrast, would produce about 65 longs 
and 55 shorts, which might be a much more desirable strategy to implement in practice. 

In summary, the genetic learning algorithms we have described employ useful heuristics 
for achieving higher levels of support while maintaining high accuracy. They also enable 
us to incorporate domain-specific evaluation criteria, such as how to trade off confidence 
and support. In practice, using such patterns, whether for trading, marketing, or customer 
profiling, requires taking into account transaction costs and other problem specific factors 
such as how much one wants to trade, how many mailings to send out, and so on. This 
involves specitjring the appropriate tradeoffs between accuracy and coverage for a 
particular problem. The genetic learning algorithm provides us with the knobs for 
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choosing the approximate accuracy and coverage levels we are interested in, and tuning 
the search accordingly. 

So, should we always prefer to use the genetic algorithm over other algorithms such as 
tree induction? Not really. The genetic algorithm is about two to three orders of 
magnitude slower than a TI algorithm, which is not surprising considering the number of 
computations it has to perform. Roughly speaking, an analysis that takes CART 2 
minutes takes the genetic algorithm many hours. The practical implication of this is that 
the genetic algorithm is not a rapid experimentation tool. Because of this, it may make 
more sense to use greedy search algorithms during the early stages of analysis in order to 
get a quick understanding of the more obvious relationships if possible, and using this 
information to focus on a limited set of variables for the genetic search. 

On a technical note, we view the results as contributing a useful data point to the research 
on comparing alternative approaches to pattern discovery. In this case, our choice of 
techniques has been driven by the need for high explainability to end users, while 
achieving high accuracy. In other words, our objective is not simply prediction, but to 
build an explicit model of the domain that can be critiqued by experts. This consideration 
has been a major factor in using the rule based concept class representation of the genetic 
algorithm. It has also discouraged us from using methods that produce outputs that are 
harder to interpret. Decision makers in the financial arena tend not to trust models they 
cannot understand thoroughly unless such models guarantee optimality. Rules are easy to 
understand and evaluate against expert intuition. This makes rule induction algorithms, 
such as GLOWER, attractive pattern discovery methods. 

More generally, explainability is an important consideration in using knowledge 
discovery methods for theory building. This has been the central focus of the current 
research. However, theory building requires taking into consideration other features of 
model outputs such as their relative simplicity. Specifically, we have not remarked about 
the number of conditions in the rules for which we have presented the results. The more 
conditions there are, the more potential for overfitting, and the less transparent the theory. 
In our experiments we typically restrict GLOWER to finding patterns with at most four or 
five variables in order to make the outputs easier to interpret. The tree induction 
algorithm tended to produce more specialized (syntactically) rules than GLOWER. 
The tree and rule induction algorithms both produced rules that individually had lower 
support than those produced by GLOWER, for comparable confidence levels. We have not 
reported on this aspect of theory building because the results in this area are somewhat 
preliminary. Similarly, we have not taken into account other considerations, such as 
extent to which the outputs produced were consistent with prior background knowledge 
and so forth. In future research we will report on these aspects of theory building with 
different knowledge discovery methods. 

8. Conclusion 

This paper has a number of research contributions. We claim that for hard problems, 
genetic learning algorithms, appropriately "fixed" up, are more thorough in their search 
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than other rule learning algorithms. Our results support this claim. GLOWER indeed is less 
restricted by greedy search biases, and for problems with weak structure or variable 
interactions, it is precisely the subtle relationships that one can hope to discover at best. 

Genetic algorithms have a number of inherent benefits that we have exploited GLOWER, 
including the flexibility to accommodate variable fitness hctions.  We have borrowed 
heuristics from tree induction and rule induction to fix genetic search's inherent 
weaknesses, viz., randomness and myopia in search. In particular, GLOWER takes 
advantage of the strengths of entropy reduction and inductive strengthening methods to 
focus the search on promising areas and to refocus after interesting individual patterns 
have been found. 

More generally, the research provides a view of the thoroughness of rule space search, in 
particular for financial data. It also provides comparison and contrast of the heuristics 
used by various different rule-mining techniques. Such a comparison is important in our 
ongoing quest to understand the true strengths and weaknesses of the various rule-mining 
methods on practical problems. 
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