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Abstract 

An approach to defining actionability as a measure of 
interestingness of patterns is proposed. This approach 
is based on the concept of an action hierarchy which 
is defined as a tree of actions with patterns and pat- 
tern templates (data mining queries) assigned to its 
nodes. A method for discovering actionable patterns 
is presented and various techniques for optimizing the 
discovery process are proposed. 

Introduction 
Discovering interesting patterns is one of the central 
problems in data mining. Several approaches have 
been proposed in the KDD literature to define the 
concept of interestingness. One of the main reasons 
why we want to  discover patterns in business appli- 
cations is that we may want to do something about 
them, such as acting on them to our advantage. Pat- 
terns that satisfy this criterion of interestingness are 
called actionable (Piatetsky-Shapiro & Matheus 1994; 
Silberschatz & Tuzhilin 1995; 1996). 

As it was stated in (Silberschatz & Tuzhilin 1996), 
the difficulty of capturing actionability arises because 
defining any pattern to be actionable requires specifi- 
cation of actions for that pattern. This implies that we 
have to list all the possible actions for a given applica- 
tion and associate these actions with various patterns. 
This is problematic for the following reasons. First, 
there can be very many different actions for a given 
application, and it can be difficult to list all of them 
in advance. Second, even if we managed to list all the 
possible actions, we still have to assign these actions to  
various groups of patterns, and this can also be a very 
difficult task. Finally, actions and actionable patterns 
can change over time making it difficult to maintain 
actions and actionable patterns. 

In this paper, we propose an approach to defining ac- 
tionability as a measure of interestingness that is based 
on the concept of action hierarchy. Action hierarchy 
specifies the set of possible actions in an application 
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in a hierarchical way through the action/subaction re- 
lationship. We maintain that this approach solves the 
difficulties explained above. 

Action trees 
Hierarchies of actions. To address the problems 
presented in introduction, we propose a hierarchical 
approach to  action specification. In particular, we pro- 
pose to maintain a hierarchy of actions from more gen- 
eral actions at the top of the hierarchy to more specific 
actions at the bottom. This is illustrated with the fol- 
lowing example. 

Example. Consider a customer purchase data for a 
supermarket application and the actions that the store 
manager can take based on this data. All the possi- 
ble actions that a supermarket manager can take are 
grouped into the product stocking actions, promotion 
related actions, customer related actions, advertising 
actions, etc. These broad classes of actions can be 
further subdivided into more specific actions (subac- 
t ions).  For example, product stocking actions can be 
subdivided into determining what products to buy for 
the supermarket and how to arrange products in the 
store, and these subactions can be divided into even 
finer actions. This shows that the set of all the ac- 
tions that a manager can take can be organized into a 
hierarchy. 

An example of a fragment of such a hierarchy for 
the supermarket application is presented in Figure 1. 
To demonstrate the process of the top-down construc- 
tion of an action hierarchy, consider the node "Product 
stocking actions" in Figure 1. As the figure shows, 
this action is divided into two subactions: "Determin- 
ing what and when to  buy" and "Determining how t o  
arrange products i n  the store". The former is subdi- 
vided further into subactions: (Determining what and 
when to buy) "Based on selling statistics", "Based o n  
season", and '(Based on  customer demographics". 

The user of a knowledge discovery system should be 
given an opportunity to  describe actions in some iter- 
ative (incremental, step-by-step) fashion, because it is 
generally impossible to know all the possible actions 
in advance. From this point of view the hierarchi- 
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I Actions for supermarket manager I 
I 

1 
I 

Customer related actions Product stocking actions Advertising actions Promotion actions 

Determining what and when to buy Determining how to arrange products in the store 

Based on customer demographics Introduce coupons 

Based on season Put product on sale 

Figure 1: Fragment of an action tree for the supermarket management. 

cal approach is useful because it allows to build the 
set of actions gradually in several stages, and not at 
once. Moreover, such a top-down design makes action- 
able pattern discovery system modular. Therefore, it 
is easier to maintain a hierarchical set of actions when 
actions change over time. This hierarchical approach 
to building a set of actions has the same benefits as 
the hierarchical file organization in modern operating 
systems (as opposed to the flat structures of files of the 
legacy operating systems). 

The action hierarchy presented in Figure 1 forms 
a tree. However, it can be a directed acyclic graph 
(DAG) in general because some of the actions may have 
common subactions. Although the DAG representa- 
tion of action hierarchies is more general than the tree 
representation, nevertheless, we use the tree model be- 
cause a tree is simpler than a DAG, easier to maintain, 
and has less complicated dependencies (that is, each 
node has a t  most one parent node in the hierarchy). 
Also, for a tree structure we can have a convenient 
implementation using the file system of any modern 
operating system (as described below). Also, trees are 
more visual than DAGs and provide a more intuitive 
description of the hierarchy. We also expect multiple- 
parent hierarchies, giving rise to a DAG structure, to  
happen infrequently in most of the applications1. Fi- 
nally, if a node with the multiple parent nodes does oc- 

to be specified in some pattern description language. 
For example, we can assign the following association 
rule (Agrawal, Imielinsky, & Swami 1993), specifying 
the extent to which families with small children buy 
sweets, to the action node in Fig. 1 "(Determining what 
and when to buy) Based on customer demographics": 

ChildrenAgeLessG =j CategorySweets (0.55, 0.01 ) 
(1) 

This pattern is assigned to the aforementioned node in 
the action hierarchy of Figure 1, because the manage- 
ment can use it for the sweets buying decisions. 

However, we may end up assigning very many pat- 
terns to specific nodes of the action tree in this way. 
Therefore, in the second approach, we may want to as- 
sign classes of patterns to  the nodes of the action tree. 
In this paper, we specify these classes with data min- 
ing queries (Imielinski, Virmani, & Abdulghani 1996; 
Han et al. 1996; Shen et al. 1996) or pattern templates 
(Klemettinen et al. 1994). A data mining query (or 
pattern template) defines a set of patterns of a certain 
type. To L'execute" a data mining query means to find 
all patterns that match this query. For example, con- 
sider the request: "Find all rules in customer purchase 
data specifying which product categories the customers 
with children of various ages are buying". This request 
can be expressed in the pattern description language 
proposed by (Klemettinen et al. 1994) as 

ChildrenAge * Category (0 .5 ,  0.01) (2) 

cur, it can be with This request can also he expressed using other data 
one parent each. For all these reasons, we decided to mining query such as M-SQL (Imielinski, 
use trees to represent action hierarchies. Virmani, & Abdulghani 1996). More details can be 

Action attributes. We show now how to specify found in (Adomavicius & Tuzhilin 1997), actionable patterns using action trees. This can be 
achieved in two ways. First, we may want to assign Given an action tree, we assign one or several data 
individual patterns to various nodes of the tree, thus mining queries to a node of the tree. To illustrate 
declaring these patterns to be actionable (in terms of this approach, again consider the node "Based on  cus- 
the action of the corresponding node). Patterns have tomer demographics" from the action tree in Figure 1. 

We clearly could assign the pattern template (2) to 
 ere we can also draw an analogy with UNIX file sys- this node because the patterns generated by this query 

tems: although UNIX files can belong to multiple directo- would give insights to the store management about the 
ries, this happens quite infrequently in practice. decisions regarding product stocking. 
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We can also combine these two approaches by assign- 
ing individual patterns and data mining queries to the 
same node of a tree. Note, that any pattern descrip- 
tion language or any data mining query language can 
be used to specify patterns and data mining queries 
because the action tree concept does not depend on 
any specific language. 

We call data mining queries and patterns assigned 
to a node of an action tree attributes of a node. We 
call action trees with attributes assigned to its nodes 
attributed action trees. 

Note that, when trying to define the actionability 
measure of interestingness, one of the key decisions 
that we have made was not to specify the semantics 
of actions. We felt that the meaning of an action in 
the KDD context is very elusive, highly subjective, and 
varies significantly from one application to another. 
Therefore, we left the task of assignment of data min- 
ing queries to  the nodes of an action tree to the user. 

On implementation of action trees. One can 
draw a comparison between the organization of an at- 
tributed action hierarchy and an organization of a file 
system in a modern operating system. More specif- 
ically, actions can be compared to directories of the 
file system, and attributes can be compared to files 
containing attribute information (set of data mining 
queries and/or patterns). Thus, we implement an at- 
tributed action tree as a hierarchy of directories of 
the file system where each directory contains files in 
which data mining queries and patterns corresponding 
to the given action node are specified. Such implemen- 
tation also allows to make changes to the action trees 
(addlremove actions, add/remove/modify attributes 
of actions) conveniently. 

Alternatively, action trees can be implemented as 
class/subclass hierarchies using object oriented pro- 
gramming techniques. 

Discovery of actionable patterns 
We use action trees for the discovery of actionable pat- 
terns using the following steps. 

Building an action tree. First, an action tree 
must be built (and maintained later on) for a given ap- 
plication. This can be done using techniques described 
in the previous section. 

Assigning data mining queries. Second, data 
mining queries defining actionable patterns for the spe- 
cific actions should be assigned to the corresponding 
nodes of the tree. For example, a possible data mining 
query assigned to the node "Based on customer demo- 
graphics" of the tree in Figure 1 could be the query (2). 
Additional examples of data mining queries expressed 
in pattern template language similar to (Klemettinen 
et al. 1994) are: 

Query "Find what kinds of product categories sell 
well on different days of week" (assigned to the ac- 
tion "Based on season"): 

DayOfWeek * Category+ (0.4, 0.01) (3) 

Query "Find 'cross-selling' categories, that is, find 
categories of products that are selling together" (as- 
signed to the action "Determining how to  arrange 
products i n  the store"): 

Executing data mining queries. Given an at- 
tributed action tree, the pattern discovery process con- 
sists of the traversal of the whole action tree (say, using 
depth-first search) and execution of all the data mining 
queries. The discovered actionable patterns are writ- 
ten to the files associated with data mining queries. 

Discovery optimization 
The method for discovering actionable patterns de- 
scribed in the previous section does not give an answer 
to the question: when or how often to reexecute data 
mining queries that are assigned to the nodes of an ac- 
tion tree to obtain up-to-date patterns. The straight- 
forward approach, which would be to  reexecute all data 
mining queries whenever data changes in the database, 
is too computationally expensive in general. This is 
especially true for big applications with large action 
trees and many data mining queries. In the remainder 
of this section we present two optimization techniques 
and explain when they can be used in practice. 

Partial tree traversal. The natural optimization 
of the action tree traversal technique is a partial traver- 
sal of an action tree. In this case, only the nodes of 
the tree selected bv the user are traversed and onlv 
those data mining "queries that are assigned to these 
nodes are executed. Nodes can be selected as individ- 
ual nodes or as belonging to the user specified subtree. 

The partial tree traversal approach can be used for 
applications in which there is no need to keep patterns 
up-to-date all the time. Therefore, data mining queries 
can be executed "on demand". That is, whenever there 
is a need to consider some specific action, only then 
data mining queries assigned to that action must be 
reexecuted to supply the user with the latest patterns 
to help make decisions. 

Triggers. Consider an application where it is im- 
portant to have up-to-date actionable patterns, such 
as stock market analysis applications. In such an ap- 
plication, we should rerun data mining queries only 
when "substantial" changes occur in the data that af- " 
feet the patterns discovered by the queries. This would 
save computational resources by avoiding unnecessary 
executions of the queries not affected by data changes. 

One way to detect such changes is to use the data 
monitoring method presented in (Tuzhilin & Silber- 
schatz 1996), which uses extended triggers (sometimes 
also called D M D T 2  triggers). Such triggers are defined 
as follows. Let D be the data stored in the database 
and let A D  be new data to be added to this database. 
In our supermarket application, D could be the super- 
market customer purchase data for the last 6 months, 

'Data-Monitoring and Discovery-Triggering 
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and AD could be the daily customer purchase data 
(scanner data) which is recorded daily in the central 
database. An extended trigger has the following form: 

WHEN new data A D  becomes available 
IF "significant changes" in the data are found 

when A D  is added to the old data D 
THEN execute the data mining query 

We call these triggers "extended" because they are ex- 
tensions of classical triggers used in active databases. 

We will assign a trigger to each data mining query 
in the action tree. Specifications of the WHEN- and 
THEN- clauses are straightforward. The most inter- 
esting issue is the specification of the IF- clause (or 
the so called m o n i t o r  (Tuzhilin & Silberschatz 1996)). 
A well-specified monitor could prevent data mining 
queries from being executed when newly added data 
does not alter existing patterns, thus saving compu- 
tational resources. We consider two ways to specify 
monitors: manual and automatic. 

We can let the user specify monitors manually, as 
it is done in the belief-driven discovery framework 
(Tuzhilin & Silberschatz 1996). Notice that in this 
case the important issues of correctness and compu- 
tational efficiency of a monitor depend on the compe- 
tency of the user. However, one of the main problems 
with manual specification of triggers is the scalability 
problem: there can be too many triggers (therefore, 
also monitors) in large applications. Therefore, an- 
other way to generate monitors is to do it automat- 
ically without any user involvement. We propose to 
implement the monitors in the following way, which 
allows them to be generated automatically. 

Suppose, Qi is a data mining query assigned to some 
node in the action tree. When new data becomes avail- 
able, then the monitor selects a sample of some previ- 
ously discovered actionable patterns by the query Qi 
and measures3 how much they have changed with the 
addition of new data. If changes are substantial, we 
have to rerun Qi. The sample can be selected using 
any standard sampling techniques (Sudman 1976). 

More details and examples of triggers for data min- 
ing queries can be found in (Adomavicius & Tuzhilin 
1997). 

Conclusions and future work 
In this paper we proposed an approach to defining ac- 
tionability as a measure of interestingness of patterns 
based on the concept of act ion hierarchy. Such hierar- 
chies are defined as trees of actions with patterns and 
pattern templates assigned to the nodes of these trees 
and can be implemented in a simple and convenient 
way using file systems of modern operating systems. 
The hierarchical approach to defining actions and ac- 
tionable patterns significantly simplifies the problem 

3~ifferent measures are used for different types of pat- 
terns. For example, for association rules it may be confi- 
dence and support. 

of actionable pattern discovery in databases for the 
reasons discussed in the paper. We also presented an 
approach to discovering actionable patterns using ac- 
tion trees and proposed two optimization techniques 
for actionable pattern discovery. 

We are currently working on the following topics. 
First, we are developing methods and algorithms of 
maintaining attributed action trees, including determi- 
nation of when and how to modify the structure of an 
action tree. Second, we are determining how our sys- 
tem can simultaneously support different forms of pat- 
terns and different data mining query languages. Fi- 
nally, we are considering features that could be added 
to expand our action hierarchy model. 
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