
Discovery of Actionable Patterns in Databases:
The Action Hierarchy Approach

Gediminas Adomavicius
Computer Science Department

New York University

Alexander Tuzhilin
Leonard N. Stern School of Business

New York University

Workinq Paper Series
Stern #IS-97-8

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-08

T o Appear i n KDD'97

Discovery of Actionable Patterns in Databases:
The Action Hierarchy Approach

Gediminas Adomavicius Alexander Tuz hilin
Computer Science Department Information Systems Department

New York University Stern School of Business, NYU
251 Mercer Street, New York, NY 10012 44 West 4th Street, New York, NY 10012

adomavic@cs.nyu.edu atuzhili@stern.nyu.edu

Abstract

An approach to defining actionability as a measure of
interestingness of patterns is proposed. This approach
is based on the concept of an action hierarchy which
is defined as a tree of actions with patterns and pat-
tern templates (data mining queries) assigned to its
nodes. A method for discovering actionable patterns
is presented and various techniques for optimizing the
discovery process are proposed.

Introduction
Discovering interesting patterns is one of the central
problems in data mining. Several approaches have
been proposed in the KDD literature to define the
concept of interestingness. One of the main reasons
why we want to discover patterns in business appli-
cations is that we may want to do something about
them, such as acting on them to our advantage. Pat-
terns that satisfy this criterion of interestingness are
called actionable (Piatetsky-Shapiro & Matheus 1994;
Silberschatz & Tuzhilin 1995; 1996).

As it was stated in (Silberschatz & Tuzhilin 1996),
the difficulty of capturing actionability arises because
defining any pattern to be actionable requires specifi-
cation of actions for that pattern. This implies that we
have to list all the possible actions for a given applica-
tion and associate these actions with various patterns.
This is problematic for the following reasons. First,
there can be very many different actions for a given
application, and it can be difficult to list all of them
in advance. Second, even if we managed to list all the
possible actions, we still have to assign these actions to
various groups of patterns, and this can also be a very
difficult task. Finally, actions and actionable patterns
can change over time making it difficult to maintain
actions and actionable patterns.

In this paper, we propose an approach to defining ac-
tionability as a measure of interestingness that is based
on the concept of action hierarchy. Action hierarchy
specifies the set of possible actions in an application

Copyright @ 1997, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

in a hierarchical way through the action/subaction re-
lationship. We maintain that this approach solves the
difficulties explained above.

Action trees
Hierarchies of actions. To address the problems
presented in introduction, we propose a hierarchical
approach to action specification. In particular, we pro-
pose to maintain a hierarchy of actions from more gen-
eral actions at the top of the hierarchy to more specific
actions at the bottom. This is illustrated with the fol-
lowing example.

Example. Consider a customer purchase data for a
supermarket application and the actions that the store
manager can take based on this data. All the possi-
ble actions that a supermarket manager can take are
grouped into the product stocking actions, promotion
related actions, customer related actions, advertising
actions, etc. These broad classes of actions can be
further subdivided into more specific actions (subac-
t ions). For example, product stocking actions can be
subdivided into determining what products to buy for
the supermarket and how to arrange products in the
store, and these subactions can be divided into even
finer actions. This shows that the set of all the ac-
tions that a manager can take can be organized into a
hierarchy.

An example of a fragment of such a hierarchy for
the supermarket application is presented in Figure 1.
To demonstrate the process of the top-down construc-
tion of an action hierarchy, consider the node "Product
stocking actions" in Figure 1. As the figure shows,
this action is divided into two subactions: "Determin-
ing what and when to buy" and "Determining how t o
arrange products i n the store". The former is subdi-
vided further into subactions: (Determining what and
when to buy) "Based on selling statistics", "Based o n
season", and '(Based on customer demographics".

The user of a knowledge discovery system should be
given an opportunity to describe actions in some iter-
ative (incremental, step-by-step) fashion, because it is
generally impossible to know all the possible actions
in advance. From this point of view the hierarchi-

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-08

I Actions for supermarket manager I
I

1
I

Customer related actions Product stocking actions Advertising actions Promotion actions

Determining what and when to buy Determining how to arrange products in the store

Based on customer demographics Introduce coupons

Based on season Put product on sale

Figure 1: Fragment of an action tree for the supermarket management.

cal approach is useful because it allows to build the
set of actions gradually in several stages, and not at
once. Moreover, such a top-down design makes action-
able pattern discovery system modular. Therefore, it
is easier to maintain a hierarchical set of actions when
actions change over time. This hierarchical approach
to building a set of actions has the same benefits as
the hierarchical file organization in modern operating
systems (as opposed to the flat structures of files of the
legacy operating systems).

The action hierarchy presented in Figure 1 forms
a tree. However, it can be a directed acyclic graph
(DAG) in general because some of the actions may have
common subactions. Although the DAG representa-
tion of action hierarchies is more general than the tree
representation, nevertheless, we use the tree model be-
cause a tree is simpler than a DAG, easier to maintain,
and has less complicated dependencies (that is, each
node has a t most one parent node in the hierarchy).
Also, for a tree structure we can have a convenient
implementation using the file system of any modern
operating system (as described below). Also, trees are
more visual than DAGs and provide a more intuitive
description of the hierarchy. We also expect multiple-
parent hierarchies, giving rise to a DAG structure, to
happen infrequently in most of the applications1. Fi-
nally, if a node with the multiple parent nodes does oc-

to be specified in some pattern description language.
For example, we can assign the following association
rule (Agrawal, Imielinsky, & Swami 1993), specifying
the extent to which families with small children buy
sweets, to the action node in Fig. 1 "(Determining what
and when to buy) Based on customer demographics":

ChildrenAgeLessG =j CategorySweets (0.55, 0.01)
(1)

This pattern is assigned to the aforementioned node in
the action hierarchy of Figure 1, because the manage-
ment can use it for the sweets buying decisions.

However, we may end up assigning very many pat-
terns to specific nodes of the action tree in this way.
Therefore, in the second approach, we may want to as-
sign classes of patterns to the nodes of the action tree.
In this paper, we specify these classes with data min-
ing queries (Imielinski, Virmani, & Abdulghani 1996;
Han et al. 1996; Shen et al. 1996) or pattern templates
(Klemettinen et al. 1994). A data mining query (or
pattern template) defines a set of patterns of a certain
type. To L'execute" a data mining query means to find
all patterns that match this query. For example, con-
sider the request: "Find all rules in customer purchase
data specifying which product categories the customers
with children of various ages are buying". This request
can be expressed in the pattern description language
proposed by (Klemettinen et al. 1994) as

ChildrenAge * Category (0 .5 , 0.01) (2)

cur, it can be with This request can also he expressed using other data
one parent each. For all these reasons, we decided to mining query such as M-SQL (Imielinski,
use trees to represent action hierarchies. Virmani, & Abdulghani 1996). More details can be

Action attributes. We show now how to specify found in (Adomavicius & Tuzhilin 1997), actionable patterns using action trees. This can be
achieved in two ways. First, we may want to assign Given an action tree, we assign one or several data
individual patterns to various nodes of the tree, thus mining queries to a node of the tree. To illustrate
declaring these patterns to be actionable (in terms of this approach, again consider the node "Based on cus-
the action of the corresponding node). Patterns have tomer demographics" from the action tree in Figure 1.

We clearly could assign the pattern template (2) to
 ere we can also draw an analogy with UNIX file sys- this node because the patterns generated by this query

tems: although UNIX files can belong to multiple directo- would give insights to the store management about the
ries, this happens quite infrequently in practice. decisions regarding product stocking.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-08

We can also combine these two approaches by assign-
ing individual patterns and data mining queries to the
same node of a tree. Note, that any pattern descrip-
tion language or any data mining query language can
be used to specify patterns and data mining queries
because the action tree concept does not depend on
any specific language.

We call data mining queries and patterns assigned
to a node of an action tree attributes of a node. We
call action trees with attributes assigned to its nodes
attributed action trees.

Note that, when trying to define the actionability
measure of interestingness, one of the key decisions
that we have made was not to specify the semantics
of actions. We felt that the meaning of an action in
the KDD context is very elusive, highly subjective, and
varies significantly from one application to another.
Therefore, we left the task of assignment of data min-
ing queries to the nodes of an action tree to the user.

On implementation of action trees. One can
draw a comparison between the organization of an at-
tributed action hierarchy and an organization of a file
system in a modern operating system. More specif-
ically, actions can be compared to directories of the
file system, and attributes can be compared to files
containing attribute information (set of data mining
queries and/or patterns). Thus, we implement an at-
tributed action tree as a hierarchy of directories of
the file system where each directory contains files in
which data mining queries and patterns corresponding
to the given action node are specified. Such implemen-
tation also allows to make changes to the action trees
(addlremove actions, add/remove/modify attributes
of actions) conveniently.

Alternatively, action trees can be implemented as
class/subclass hierarchies using object oriented pro-
gramming techniques.

Discovery of actionable patterns
We use action trees for the discovery of actionable pat-
terns using the following steps.

Building an action tree. First, an action tree
must be built (and maintained later on) for a given ap-
plication. This can be done using techniques described
in the previous section.

Assigning data mining queries. Second, data
mining queries defining actionable patterns for the spe-
cific actions should be assigned to the corresponding
nodes of the tree. For example, a possible data mining
query assigned to the node "Based on customer demo-
graphics" of the tree in Figure 1 could be the query (2).
Additional examples of data mining queries expressed
in pattern template language similar to (Klemettinen
et al. 1994) are:

Query "Find what kinds of product categories sell
well on different days of week" (assigned to the ac-
tion "Based on season"):

DayOfWeek * Category+ (0.4, 0.01) (3)

Query "Find 'cross-selling' categories, that is, find
categories of products that are selling together" (as-
signed to the action "Determining how to arrange
products i n the store"):

Executing data mining queries. Given an at-
tributed action tree, the pattern discovery process con-
sists of the traversal of the whole action tree (say, using
depth-first search) and execution of all the data mining
queries. The discovered actionable patterns are writ-
ten to the files associated with data mining queries.

Discovery optimization
The method for discovering actionable patterns de-
scribed in the previous section does not give an answer
to the question: when or how often to reexecute data
mining queries that are assigned to the nodes of an ac-
tion tree to obtain up-to-date patterns. The straight-
forward approach, which would be to reexecute all data
mining queries whenever data changes in the database,
is too computationally expensive in general. This is
especially true for big applications with large action
trees and many data mining queries. In the remainder
of this section we present two optimization techniques
and explain when they can be used in practice.

Partial tree traversal. The natural optimization
of the action tree traversal technique is a partial traver-
sal of an action tree. In this case, only the nodes of
the tree selected bv the user are traversed and onlv
those data mining "queries that are assigned to these
nodes are executed. Nodes can be selected as individ-
ual nodes or as belonging to the user specified subtree.

The partial tree traversal approach can be used for
applications in which there is no need to keep patterns
up-to-date all the time. Therefore, data mining queries
can be executed "on demand". That is, whenever there
is a need to consider some specific action, only then
data mining queries assigned to that action must be
reexecuted to supply the user with the latest patterns
to help make decisions.

Triggers. Consider an application where it is im-
portant to have up-to-date actionable patterns, such
as stock market analysis applications. In such an ap-
plication, we should rerun data mining queries only
when "substantial" changes occur in the data that af- "
feet the patterns discovered by the queries. This would
save computational resources by avoiding unnecessary
executions of the queries not affected by data changes.

One way to detect such changes is to use the data
monitoring method presented in (Tuzhilin & Silber-
schatz 1996), which uses extended triggers (sometimes
also called D M D T 2 triggers). Such triggers are defined
as follows. Let D be the data stored in the database
and let A D be new data to be added to this database.
In our supermarket application, D could be the super-
market customer purchase data for the last 6 months,

'Data-Monitoring and Discovery-Triggering

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-08

and AD could be the daily customer purchase data
(scanner data) which is recorded daily in the central
database. An extended trigger has the following form:

WHEN new data A D becomes available
IF "significant changes" in the data are found

when A D is added to the old data D
THEN execute the data mining query

We call these triggers "extended" because they are ex-
tensions of classical triggers used in active databases.

We will assign a trigger to each data mining query
in the action tree. Specifications of the WHEN- and
THEN- clauses are straightforward. The most inter-
esting issue is the specification of the IF- clause (or
the so called m o n i t o r (Tuzhilin & Silberschatz 1996)).
A well-specified monitor could prevent data mining
queries from being executed when newly added data
does not alter existing patterns, thus saving compu-
tational resources. We consider two ways to specify
monitors: manual and automatic.

We can let the user specify monitors manually, as
it is done in the belief-driven discovery framework
(Tuzhilin & Silberschatz 1996). Notice that in this
case the important issues of correctness and compu-
tational efficiency of a monitor depend on the compe-
tency of the user. However, one of the main problems
with manual specification of triggers is the scalability
problem: there can be too many triggers (therefore,
also monitors) in large applications. Therefore, an-
other way to generate monitors is to do it automat-
ically without any user involvement. We propose to
implement the monitors in the following way, which
allows them to be generated automatically.

Suppose, Qi is a data mining query assigned to some
node in the action tree. When new data becomes avail-
able, then the monitor selects a sample of some previ-
ously discovered actionable patterns by the query Qi
and measures3 how much they have changed with the
addition of new data. If changes are substantial, we
have to rerun Qi. The sample can be selected using
any standard sampling techniques (Sudman 1976).

More details and examples of triggers for data min-
ing queries can be found in (Adomavicius & Tuzhilin
1997).

Conclusions and future work
In this paper we proposed an approach to defining ac-
tionability as a measure of interestingness of patterns
based on the concept of act ion hierarchy. Such hierar-
chies are defined as trees of actions with patterns and
pattern templates assigned to the nodes of these trees
and can be implemented in a simple and convenient
way using file systems of modern operating systems.
The hierarchical approach to defining actions and ac-
tionable patterns significantly simplifies the problem

3~ifferent measures are used for different types of pat-
terns. For example, for association rules it may be confi-
dence and support.

of actionable pattern discovery in databases for the
reasons discussed in the paper. We also presented an
approach to discovering actionable patterns using ac-
tion trees and proposed two optimization techniques
for actionable pattern discovery.

We are currently working on the following topics.
First, we are developing methods and algorithms of
maintaining attributed action trees, including determi-
nation of when and how to modify the structure of an
action tree. Second, we are determining how our sys-
tem can simultaneously support different forms of pat-
terns and different data mining query languages. Fi-
nally, we are considering features that could be added
to expand our action hierarchy model.

References
Adomavicius, G., and Tuzhilin, A. 1997. Discovery of ac-
tionable patterns in databases: The action hierarchy ap-
proach. Working Paper IS-97-8, Stern School of Business,
New York University.
Agrawal, R.; Imielinsky, T.; and Swami, A. 1993. Mining
association rules between sets of items in large databases.
In Proceedings of ACM SIGMOD Conference, 207-216.
Han, J.; Fu, Y.; Wang, W.; Koperski, K.; and Zaiane, 0 .
1996. DMQL: A data mining query language for relational
databases. In Proceedings of the SIGMOD Workshop on
Research Issues on Data Mining and Knowledge Discov-
ery.
Imielinski, T.; Virmani, A.; and Abdulghani, A. 1996.
DataMine: Application Programming Interface and
Query Language for Database Mining. In Proceedings of
the Second International Conference on Knowledge Dis-
covery and Data Mining.
Klemettinen, M.; Mannila, H.; Ronkainen, P.; Toivonen,
H.; and Verkamo, A. I. 1994. Finding interesting rules
from large sets of discovered association rules. In Proceed-
ings of the Third International Conference on Information
and Knowledge Management.
Piatetsky-Shapiro, G., and Matheus, C. J. 1994. The
interestingness of deviations. In Proceedings of the A A A I -
94 Workshop on Knowledge Discovery i n Databases.
Shen, W.-M.; Ong, K.-L.; Mitbander, B.; and Zaniolo, C.
1996. Metaqueries for data mining. In Advances i n Knowl-
edge Discovery and Data Mining. AAAI Press. chapter 15.
Silberschatz, A., and Tuzhilin, A. 1995. On subjec-
tive measures of interestingness in knowledge discovery.
In Proceedings of the First International Conference on
Knowledge Discovery and Data Mining.
Silberschatz, A., and Tuzhilin, A. 1996. What makes pat-
terns interesting in knowledge discovery systems. IEEE
Fransactions on Knowledge and Data Engineering 8(6).
Sudman, S. 1976. Applied Sampling. San Francisco: Aca-
demic Press.
Tuzhilin, A., and Silberschatz, A. 1996. A belief-driven
discovery framework based on data monitoring and trig-
gering. Working Paper IS-96-26, Stern School of Business,
New York University.

Center for Digital Economy Research
Stem School of Business
IVorking Paper IS-97-08

