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1. INTRODUCTION 

A large number of applications such as multimedia 
databases, document retrieval and scientific databases, 
require high-capacity mass storage systems that can hold 
multigigabytes or even terabytes of data. These systems 
contain a hierarchy of storage devices typically consist- 
ing of large robotic tape libraries, optical disks and 
magnetic disks. In such systems, files are automatically 
migrated across the storage hierarchy such that the more 
frequently used files reside on the faster and more 
expensive (in terms of dollars per byte) storage media. In 
this paper we analyse data placement strategies on a 
carousel type robotic tape library. Such devices are quite 
commonly found in mass storage systems, for example 
Magnus Jukebox Library and Lago Systems LS/300L 
are carousel type devices that use 8 mm tape cartridges 
with a total capacity of 270GB (Ranade, 1992). 

The carousel type mass storage system is a configura- 
tion found in systems catering for low to medium tertiary 
storage requirements. The system usually has a number 
of storage locations for cartridges arranged on the inner 
periphery of a carousel (see Figure 1). The system 
responds to a request for loading a cariridge by the 
movement of the carousel to align the required cartridge 
in front of a read/write head, and a robot does the actual 
loading or unloading. The problem addressed in this 
paper is the optimal allocation of cartridges to the 
storage locations and files to the cartridges. 

A similar problem has been solved recently in the 
context of determining warehouse storage by Fujimoto 
(1991). Using a Markovian model, Fujimoto proves the 
optimality of the Organ-Pipe Arrangement when only 
one cartridge is stored per location. An Organ-Pipe 
Arrangement (OPA) is one in which cartridges, or more 
generally items, are first sorted in the descending order of 

the probability that they will be requested. The first item 
is allotted to the central location (for a circular storage 
device such as a carousel, the choice of this location is 
arbitrary). Then the remaining items are placed 
alternatively to the left and right of the central 
location. The picture made by the graph of the 
probabilities with respect to locations resembles an 
organ-pipe. The model solved by Fujimoto is called 
non-anticipatory based on a terminology introduced in 
King (1990). In the non-anticipatory case the storage 
device is not permitted to be repositioned between 
requests even if time is available for doing so; whereas 
in the anticipatory case the controller can reposition the 
device between requests. In Fujimoto's terminology 
the mass storage carousel is a single dimensional 
bi-directional system. Singe refers to the number of 
cartridges per location and the carousel is called 
bi-directional as it can be rotated in either direction. 
Fujimoto gives an extensive literature survey in the area 
of warehousing and also refers to papers on optimal 
spatial permutations (Bergmans, 1972; Groosman 
and Silverman, 1973; Yue and Wong, 1973 and Karp 
et al., 1975). None of these directly address the specific 
problem of allocation of storage space in carousels. 
Fujimoto concludes that the closest paper that solves the 
carousel problem is that of Lim et al, (1985), where the 
optimality of OPA is proved based on Bergmans' 
analysis. Fujimoto adds a missing step in Bergmans' 
proof for the case when only one cartridge (item) can be 
stored per location, and conjectures the optimality of the 
OPA arrangement for the case when more than one 
cartridge can be stored per storage location but does not 
prove the optimality of this policy. 

The case of a mass storage system is a bit different, 
because depending on the load, it is possible to reposition 
the carousel before another request arrives. This is the 
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cartridge 

FIGURE 1. A carousel with one readlwrite head. 

anticipatory case as defined above. Anticipatory policies 
for disk arm control are offered as a good strategy by 
King (1990). A well known example of such a policy is 
the greedy policy of 'nearest head' shown to be optimal 
for a disk with two read heads by Hofri (1983). In that 
work the head which does not serve the current request is 
allowed to 'jockey' to an optimal location in anticipation 
of the next request. 

In this paper, we use a Markovian model for the 
carousel problem, and show that for both the anticipa- 
tory and non-anticipatory versions of the problem, the 
optimal arrangement is the Organ-Pipe Arrangement 
when there is a single readlwrite head. The results are 
then extended to the case when two heads are provided. 
Finally we extend the results to the case where requests 
arrive as per an arbitrary renewal process and show that 
for the non-anticipatory case the OPA arrangement 
minimizes both the mean queueing delay as well as the 
average time spent in the system by the requests. 

2. MODEL 

The carousel is modeled as having n storage locations. 
One cartridge can be placed in each of the locations. We 
will assume that there are at most n cartridges to be 
loaded (else the problem will need to incorporate 
caching). When extending the results to file allocation 
we will model the cartridge as capable of accommodating 
at most m files. This is a simplification because file sizes 
need not be the same and file migration policies could 
dictate the size distribution of files found in the mass 
storage system. However the simplific.ition enables the 
solution of a problem which otherwise will have to 
contend with random and non-stationary sizes of files 
and bin packing type of limitations. From experience 
however, it is seen that storing larger files in the tertiary 
system leads to a better retrieval performance. So the 
file migration policies may tend to even out the size 
distribution. In any case, the operating policies described 
below can be extended to the case of continuous 
variables representing the items stored and thus are not 
necessarily of limited usefulness in practice. 

In order to model the demand process, it is assumed 
that the probability a particular cartridge will be 

requested next is independent of the past requests. 
Thus the request pattern forms a Markov chain with 
state probabilities, p,, the probability that the next 
cartridge requested will be i and C;p ,  = 1. If the number 
of cartridges is less than n then the remaining 
probabilities are set to zero. Unless specified, in all 
cases the number of readlwrite heads is one. A similar 
model will be used for the file allocation problem. The 
Markovian assumption is reasonable considering that 
the mass storage system does not actively participate in 
user processing and is more like a library or repository in 
its functions. In the non-anticipatory case, called case I, 
the carousel cannot be moved to a specific location in 
anticipation of a request-whereas in the anticipatory 
case, termed case 11, the carousel can be repositioned 
between requests. It will be assumed that the travel time 
is linear and the shortest distance to travel will be 
realized. The objective throughout is to minimize the 
mean delay to service a request and except in proposition 
7, it is always assumed that requests do not interfere with 
one another. The last assumption is reasonable for mass 
storage systems and the ability to reposition in between 
requests is physically possible but not found in current 
systems. 

Number the locations on the carousel as 1 through n. 
Assume that cartridge n(i) is stored in location i. In case 
I, as we have a finite state space for the Markov chain, it 
follows that there exists a unique stationary distribution 
of the position at which arriving requests find the 
carousel (see Wolff, 1990 for example). Direct verifica- 
tion shows that the (stationary) probability that a 
request will find the read head at location i is equal to 
the probability, p,(,), that the cartridge stored at location 
i will be requested. 

In dealing, with the file allocation model in case 11, 
there are two levels of decision. First the files must 
be allocated to cartridges. Then the cartridges must be 
arranged in storage locations. Once the file allocation has 
been carried out, the request probability for a particular 
cartridge is fixed by the sum of the probabilities of 
requests for files allotted to the cartridge. It follows 
that the above stationary distribution holds good 
once the request probability for cartridges has been 
computed. 

In case I, using the above notation, cartridge n(i) is 
stored in location i, the expected travel distance, 
ED(n), per request is given by (see Wolff, 1990 for 
example): 

where d ( i ,  j )  is the shortest rotational distance between 
locations i and j. By substituting any function f of the 
distances d( i ,  j )  in the above formula we also obtain the 
expected value of that function, i.e. 

This fact will be used in proposition 1. 



In case 11, we do not need to use the Markov chain 
at all. This is because in the anticipatory case it is 
assumed that the read head can be positioned very 
quickly to a given position before a request arrives. 
Given that requests are independent of one another, the 
optimal repositioning strategy will be stationary and 
deterministic. Therefore the read head will always be 
positioned at the same place before a request arrives; a 
fact that allows us to search within this class of policies in 
determining the optimal allocation scheme. Thus, if the 
read head is always repositioned between requests at 

FIGURE 2. The painvise majorization property. 

location i, then the expected distance traveled request Proposition 1. (Bergmans, 1972 and Fujimoto, 1991. 
(ignoring the repositioning distance) will be given by: The OPA arrangement is optimal in case I and also in the 

ED(T) = Cp4,$( i , j )  stochastic sense described above. 
j 

Note that the expected repositioning distance is also Proof. Let there be a line of symmetry over which the 
equal to the above value. pairwise majorization property is violated. We will call 

3. THE OPTIMALITY OF THE ORGAN-PIPE 
ARRANGEMENT 

An Organ-Pipe Arrangement is one in which the 
cartridges are placed in an alternating arrangement. 
The cartridges are ranked in descending order as per 
their request probability. Let cartridge #i be the one with 
the i th largest request probability and let the storage 
locations be numbered in clockwise fashion. Then 
cartridge #I is placed in location I cartridge #2 in 
location 2,3  in location n, #4 in location 3, #5 in location 
(n-l) etc. This arrangement proves to be optima1 under a 
variety of modeling assumptions as described in this 
section. 

The basic condition for optimality of an arrangement 
is obtained by imagining that a line of symmetry (of any 
orientation) is drawn across the carousel, see Figure 2. 
Let the sum of request probabilities for cartridges on the 
left side of this line be larger than the sum on the right 
[ignoring the location(s) bisected]. Let i and j be the 
cartridges stored in mirror image location on the left and 
right sides of the line respectively. Then intuitively 
speaking we expect that the request probability for 
cartridge i should be larger than for cartridge j in the 
optimal arrangement. This property is called the pairwise 
Majorization Property (PMP) by Fujimoto. In case I, in 
fact a necessary and sufficient condition for an arrange- 
ment to be optimal is that PMP holds over all symmetry 
lines. And not very coincidentally the OPA posxsses this 
property. A sketch of the proof (partly provided by 
Fujimoto) follows but with a strengthening of the result. 
The strengthening is in the sense that if we start out 
initially with the stationary distribution of the Markov 
chain, then OPA minimizes the distance traveled at each 
transition in the sense of stochastic order. By definition, 
if X and Y are random variables, then X is larger or 
equal to Y in the stochastic ordering sense, denoted by 
X >,, Y, if Prob (X > t )  < Prob(Y > t )  for all t. In 
Wolff (1990) it is shown that X a,, Y is equivalent to the 
condition that for any non-decreasing function, f, 
E[f (XI1 3 Elf ( Y)1. 

the side that has the higher sum of probabilities as the left 
side. Assume that the symmetrical dividing line is 
vertical. Denote a violating assignment to be one where 
a cartridge on the left side has a lower request probability 
than the one in the mirror image location on the right. 
For example, the fourth cartridge on the left of the 
symmetry line has a smaller request probability 
compared to the fourth one on the right side of the line. 

We will show that this arrangement can be improved 
by interchanging all pairs of violating assignments 
simultaneously. This helps because (i) the cost with 
respect to the un-interchanged cartridges considered by 
themselves is unchanged, (ii) the cost with respect to the 
interchanged cartridges by themselves is unaffected, 
while (iii) the interaction between the interchanged and 
un-interchanged cartridges leads to lower cost. The case 
(iii) can be proved by the following argument: fix an 
un-interchanged cartridge location. The distance by 
which a cartridge has moved away from this location 
due to the interchange is exactly the distance by which 
another cartridge has moved closer to this location. The 
argument can be formalized by denoting the locations on 
the left of the symmetry line from which the cartridges 
must be interchanged to be {11,12,13,. . . , lk} and the 
mirror image locations on the right (where they must be 
placed) to be {rl,  r2, r3,. . . , rk}. Let lu and ru stand for 
the mirror image locations of two uninterchanged 
cartridges, on the left and right sides of the symmetry 
line. Consider the impact of cost in (iii) with respect to lu 
and ru. The change in cost with respect to these two 
locations is given by: 
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The last step follows from the fact that p,($) < p,(,,) as 
PMP is violated at the symmetric locations I, and r, by 
assumption, P,(~,) 2 p,(,) as the cartridges in these two 
positions satisfied PMP, and d(lu, I,) < d(lu, r,). 

Fujimoto argued as above. However the above 
argument holds when the distances are substituted by 
any increasing function of the distance. To verify this 
substitute each distance d(x, y) by the function f [d(x, y)] 
in the proof given above. This shows that the interchange 
reduces the distance traveled at each transition in the 
sense of stochastic order. In our case, this implies that all 
the arguments carry over to the carousel rotational time 
rather than rotational distance, because the time is an 
increasing function of the distance. The importance of 
starting out with the stationary distribution for 
demonstrating this ordering must be noted. This artifice 
does not affect costs averaged over a long period of time, 
and will be used in a queueing context in proposition 7. 

Next it is necessary to show that only an OPA has the 
PMP over all symmetry lines. Here we deviate from 
Fujimoto and use a proof by induction. Order the 
cartridges in decreasing value of request probabilities. 
Place cartridge #1 in location 1. If cartridge #2 is not 
placed in location 2 or n then pass a symmetry line 
adjacent to the location in which #2 has been placed such 
that #1 is on the opposite side of #2. Let #1 be on the left 
side. Then that side has to have the larger sum of 
probabilities else PMP will be violated. But #2 can be 
interchanged with the cartridge immediately on the left 
of the symmetry line which is a contradiction. Let the 
first k cartridges be placed in OPA, starting with #2 in 
location 2. If the cartridge #(k + 1) is not placed in OPA 
label the cartridge placed in the OPA location instead as 
#j. Draw a symmetry line such that #j and #(k + 1) are 
in mirror image locations on this line. There are three 
cases to consider. (i) If #j is closer to cartridge #I, the 
sum of probabilities on #js side of the line is greater. 
This leads to a contradiction. (ii) If both #j and (#k + 1) 
are equidistant from cartridge #1 then k must be an even 
number. Draw a symmetry line through cartridge #l. 
The sum of probabilities on #js side must be higher as k 
is an even number and so cartridge #2 is on its side of the 
line. (iii) The case where #(k + 1) is closer to cartridge 
#1 cannot occur. This completes the proof of the 
proposition 

Proposition 2. The OPA arrangement is optimal in 
the anticipatory case too. 

Proof. In the anticipatory case, by the independence , 
property we will always position the head at the same 
location between requests (ignoring ties). So each 
cartridge is essentially assigned a travel distance on a 
permanent basis. By the inequality of Hardy et al. (1991), 
given two sequences w(, . . . , w, and pf ,  . . . ,pa, of all 
permutations 7r of the p17s, the one that minimizes the 
sum: C:,,w,p,(,) is the one that forms each term in the 
above sum by multiplying the jth largest value of thepI7s 
with the jth smallest value of w,'s. If we fix the position of 
the head at a particular location, exactly one cartridge 
will be at distance 0 (distance measured in units of 27r/n), 
at most two at distance 1 etc. If we consider our sequence 
of possible rotational distances as the weights w,, it 
follows that the OPA arrangement is optimal and the 
anticipatory position of the head should be at location i 
with the maximum p,(, 1. 

Remark. The proof assumes that either the move to 
reposition the head is completed before the next request 
arrives, or the move is always completed regardless of 
whether a request has arrived. The latter case assumes no 
interruptions are allowed during the rotation of the 
carousel towards its anticipatory position. 

In the next proposition we consider the case that each 
cartridge can hold m equi-sized files and request 
probabilities are given for each file. This is analogous 
to Theorem 1.3.1 of Wong83 which deals with records 
and pages, however the method of proof here is different 
as we use a direct interchange argument whereas 
Wong83 uses Schur functions. 

Proposition 3. The OPA policy is optimal for the 
non-anticipatory case and when there are m files stored 
per cartridge. 

Proof. The OPA arrangement in this case is obtained 
by sorting mn files in descending order of request 
probabilities and grouping the first m in bundle #1, the 
second m in bundle #2 etc. Then the bundles are placed in 
OPA fashion. The proof of optimality is a straight- 
forward extension of proposition 1. Let the OPA 
property not hold for the optimal arrangement. But by 
proposition 1 the property has to hold with respect to the 
bundles of files. Without loss of generality let the 
property not hold forfiles in two mirror image locations 
say across a given symmetry line. Also let the sum of 
probabilities on the left side of the symmetry line (as 
before) be larger. Call these mirror image locations on 
the left side i and that on the right j .  What the violation 
implies is that the probability that a cartridge in location 
i will be requested can be made larger by interchanging 
files between locations i and j.  Without loss of generality, 
label the files in location i as I through m and those in 
location j as (m + I) through 2m. Label the sorted order 
of these 2m files in descending value of request 



probability as 1 ' through 2mr. Consider bundling I ' 
through m' into location i and the rest in location j. Note 
that this interchange does not affect the cost of 
interaction between other locations. Also the inter- 
actions between other locations and interchanged files 
leads to a decrease in cost as in (iii) of proposition 1. We 
thus are left with comparing 

The minimality of the second expression obtained from a 
simple interchange argument. To see this, let pl < pm+ 
Then interchanging these two alone leads to the 
difference: 

m 2m 

C P i -  E p i 2 0  and 
i= 1 i=m+ 1 

(1) and (2) together with the hypothesis shows that the 
interchange of the two files is beneficial. The proof then is 
completed by showing that only by sorting the files and 
bundling them can we avoid any violation of the OPA 
arrangement as defined initially. But this is easy, because 
(i) the files are first sorted and so the bundles have 
descending sums of probabilities. So if two mirror image 
locations violate the OPA property with respect to files 
then all the files in the two locations need to be 
interchanged. But the bundles are in OPA order leading 
to a contradiction. And (ii) if the files were not sorted 
then an interchange is always possible. 

Proposition 4. The OPA order is optimal for the 
anticipatory case when m files can be placed per 
cartridge. 

Proof. Similar to proposition 2. 

Proposition 5. When there are two read heads placed 
symmetrically opposite one another, the optimal 
anticipatory policy is OPA on each hay of the carousel. 

Proof. We need to define this ordering and will do so 
shortly. The basic idea is that the repositioning is the 
same between requests. So the anticipatory action allots 
a permanent distance to be traveled to each file. If the 

FIGURE 3. A carousel with two readlwrite heads symmetrically 
positioned. 

number of storage locations is even, say 2x, then the 
available values for the distance are 2m zeros, 2m 
ones,. . . By the Hardy, Littlewood, Polya inequality an 
optimal arrangement is to order the files per descending 
request probability and place files #1 through #m in 
location 1, files #(m + 1) through #(2m) in location 
(x + 1 )  etc. In between requests, the strategy is to bring 
the carousel with locations 1 and (x  + 1) aligned with the 
heads. The case of odd number of storage locations is 
similarly solved. 

QED 
The case of two read heads and non-anticipatory type 

of operations is more difficult. The problem is which way 
should the carousel rotate? First, let us assurne that there 
are an even number of cartridge locations on the 
carousel; in which case the direction of rotation is 
immaterial as far as the next request is concerned. In the 
next proposition we show that for even number of 
cartridge locations the nearest head policy combined 
with OPA on each half of the carousel will be optimal. 
Interestingly, this is not optimal for odd number of 
locations as we show in the next example. 

Example. Consider the carousel schema of Figure 4 
with five cartridge locations. In this case, to ensure that 
the heads are aligned with some cartridge locations, the 
smaller angle between the two heads is 4x15 (and the big 
one 6x15). Let us assume that each of the request 
probabilities of cartridges at locations 1, 2 and 4 are a 
and that of cartridges at locations 3 and 5 are each 
0.5-3~12. The carousel is currently at the position shown 
in Figure 4a when a request to read cartridge at location 
5 arrives. When the value of a tends to zero, it is clear 
that rotating the carousel to the position of Figure 4c 
(the black head serving the request) is optimal as the two 
heads are now positioned such that with probability 
1-3a, the expected rotational distance for serving the 
stream of future requests is 0. On the other hand, the 
nearest head policy will lead to oscillations between 
positions of 4a and 4b at each future step with 
probability arbitrarily close to 0.5. 

Proposition 6. When there are an even number of 
locations, OPA is optimal. 



FIGURE 4. (a) Current position of carousel, when cartridge at location 5 is requested. (b) Nearest head policy, carousel rotates 2915 in the clockwise 
direction, grey head serves the request (c) optimal policy carousel rotates 4nl5 in the counter-clockwise direction, black head serves the request. 

Proof. The nearest head policy is the optimal ment can be obtained by using the Organ Pipe 
rotational strategy. Therefore the problem can be Arrangement over a random placement of cassettes in 
reduced to the case when there are n/2 locations to be the carousel and what is the extent of savings due to the 
filled each capable of holding two cartridges. Proposition use of an anticipatory policy. 
3 provides the result. 

4.1. A Markov chain model for requests probabilities 

Remark. The optimality in propositions 3 and 6 can 
be extended to hold in the stochastic sense as done in 
proposition 1. 

In many practical multiuser applications, the requests to 
the mass storage system are queued and serviced on a first 
come first served basis (FCFS). In the next proposition we 
utllize two powerful theorems from Stoyan (1983) to show 
that OPA is optimal in this case as well. 

Successive requests for cassettes will not be independent 
in any practical situations. A plausible modeling 
approach in such situations is to use a Markov chain 
to model the dependence between successive requests. 
We assume that given the current cassettes requested is i, 
the probability that the next cassette requested will be j 
will be given by pij, where ,pij = 1. We assume that 
the transition matrix P = (pi,) is irreducible and that the 
steady state probability vector,p = (pi  , p 2 . .  . ,pn) for the 
Markov chain is given by solving the equation p = pP. It 

Proposition 7. For the non-anticipatory case, for any may be verified that if anticipation is not permitted, then 

of the three models of proposition 1, 3, and 6, when the optimal arrangement of cassettes is still OPA based 
on p, and therefore all the previous results for the non- requests arrive as per a general renewal process and they 

are attended on a first come first served (FCFS) basis, anticipatory case will carry over. But the anticipatory 
case is very different now, as it is possible to do state OPA minimizes the average queueing delay as well as the 

time spent in the system. dependent anticipation, i.e. depending on what the last 
request was we can reposition the reading head optimally 

Proof. The proof follows from the fact that by 
propositions 1, 3, and 6 ,  when starting out with the 
stationary distribution, the time to serve a request is the 
smallest in the stochastic sense under the OPA order. The 
rest of the proof can be found in theoreins 5.2.1 and 6.2.1 
(Stoyan, 1983). 

4. SIMULATION RESULTS 

In this section we use simulation to (i) investigate the case 
when successive requests for cassettes can be correlated 
and (ii) determine how a repositioning (anticipatory) 
policy performs when there is interference between 
requests. As a by product of the analysis, we also 
obtain answers to the questions of how much improve- 

for the next request. Moreover given the arrangement (of 
cassettes) there is an optimal anticipation point which 
can be determined simply by computing the expected 
cost of travel using the transition probabilities. For 
example if the cassette i were placed in the position T,, 
i = 1,2, . . . , n, and if the last request was for cassette i, 
then the optimal repositioning should be done at 

where d ( ~ k ,  T,)  is the distance between the locations at 
which cassette k is placed and the location where cassette 
i is placed. Unfortunately, determining the optimal 
arrangement of cassettes is a very hard problem (it can 
be shown to be in the class of NP-complete problems). 
Therefore we tackled the optimal arrangement problm 
through simulation. 

- - -- 
- 





T A B L E  l ( a ) .  20 Trials for n  = 5 

Trial OPASTAT LO WED OPADYN GREEDY OPTIMAL HICOST Min of 3  OPAD YN? GREEDY HICOST DEVN % SAVEOPA 

1 0.972455 0.83891 0.91 8705 0.891628 0.868988 0.891628 0.891628 0 1 1 2.54% 9.07% 
2 1.1 1404 0.828802 0.94817 0.846393 0.846393 0.923408 0.846393 0 1 0 0.00% 3 1.62% 
3 1.06171 0.839621 0.92346 0.881033 0.874855 0.942856 0.881033 0 1 0 0.70% 20.51% 
4 0.877076 0.689953 0.743656 0.733139 0.733139 0.734606 0.733139 0 1 0 0.00% 19.63% 
5 0.989339 0.89725 0.961437 0.945652 0.92717 0.961437 0.945652 0 1 0 1.95% 4.62% 
6 1.00345 0.819481 0.8955 0.851882 0.851882 0.888747 0.851882 0 1 0 0.00% 17.79% 
7 1.07319 0.92561 3 0.966005 0.928981 0.928981 1.00002 0.928981 0 1 0 0.00% 15.52% 
8 1.01771 0.880759 0.973741 0.901222 0.901222 0.924178 0.901222 0 1 0 0.00% 12.93% 
9 1.0830 1 0.872763 0.93368 0.906368 0.906368 0.906368 0.906368 0 1 1 0.00% 19.49% 

10 0.856971 0.637321 0.746223 0.714975 0.696441 0.782769 0.714975 0 1 0 2.59% 19.86% 

! 
11 1.06783 0.876174 0.961522 0.924949 0.915102 0.936295 0.924949 0 1 0 1.06% 15.45% 
12 1.08478 0.889971 0.941967 0.906345 0.906345 0.9 16925 0.906345 0 1 0 0.00% 19.69% 
13 1.06275 0.945736 0.993226 0.985713 0.961366 1.00434 0.985713 0 1 0 2.47% 7.82% 
14 1.02942 0.862939 0.87832 0.891494 0.87832 0.980809 0.87832 1 0 0 0.00% 17.20% 
15 1.13806 0.834793 0.875046 0.88432 0.865314 0.912639 0.875046 1 0 0 1.11% 30.06% 
16 1.12213 0.876638 0.946338 0.933805 0.91731 1.001 39 0.933805 0 1 0 1.77% 20.17% 

I 

17 0.994982 0.871918 0.947107 0.898479 0.898479 0.898479 0.898479 0 1 1 0.00% 10.74% 
18 1.03097 0.771097 0.873768 0.838278 0.816722 0.838278 0.838278 0 1 1 2.57% 22.99% 
19 0.958223 0.785906 0.846498 0.839849 0.833133 0.865949 0.839849 0 1 0 0.80% 14.09% 
20 1.0878 0.868806 0.97094 0.900374 0.900374 0.938122 0.900374 0 1 0 0.00% 20.82% 

Totals 2 18 4 0.88% 17.50% 

T A B L E  l b .  20 Trials for n  = 6 

Trial OPASTAT LOWBD OPADYN GREEDY OPTIMAL HICOST M i t 1 o f 3  OPADYN? GREEDY HICOST DEVN% SAVEOPA 

1 1.38192 1.05927 1.20419 1.15723 1.13812 1.18465 1.15723 0 1 0 1.65% 19.42% 
2 1.26817 1.03782 1.16885 1.10995 1.10995 1.17079 1.10995 0 1 0 0.00% 14.25% 
3 1.30766 0.937226 1.14352 1.03424 1.03424 1.08734 1.03424 0 1 0 0.00% 26.44% 
4 1.39028 1.02838 1.20023 1.0961 1 1.07332 1.0961 1 1.0961 1 0 1 1 2.08% 26.84% 
5 1.42086 1.18485 1.21274 1.19612 1.19612 1.23151 1.19612 0 1 0 0.00% 18.79% 
6 1.33969 0.927279 1.09828 1.05066 1.00632 1.06633 1.05066 0 1 0 4.22% 27.51% 
7 1.20036 0.791 894 0.996377 0.87451 1 0.846262 0.918299 0.87451 1 0 1 0 3.23% 37.26% 
8 1.36207 1.08858 1.25318 1.17622 1.14493 1.2048 1.17622 0 1 0 2.66% 15.80% 
9 1.337 1.11319 1.21445 1.1634 1.13994 1.20937 1.1634 0 1 0 2.02% 14.92% 

10 1.28349 1.06524 1.227 1.14204 1.1127 1.16834 1.14204 0 1 0 2.57% 12.39% 
11 1.20985 0.972564 1.13945 1.03949 1.03949 1.12086 1.03949 0 1 0 0.00% 16.39% 
12 1.24912 1.0292 1 1.13099 1.11009 1.11009 1.16593 1.11009 0 1 0 0.00% 12.52% 
13 1.30373 0.920046 1.06812 1.01119 1.01119 1 .O9683 1.01119 0 1 0 0.00% 28.93% 
14 1.32391 1.02181 1.17718 1.06894 1.06894 1 ,10605 1.06894 0 1 0 0.00% 23.85% 
15 1.2761 1.1612 1.25539 1.20498 1.20012 1.28379 1.20498 0 1 0 0.40% 5.90% 
16 1.34799 1.07088 1.23371 1.09982 1.09982 1.18642 1.09982 0 1 0 0.00% 22.56Y/o 
17 1.25994 1.08613 1.14346 1.17433 1.12628 1.21456 1.14346 1 0 0 1.50% 10.19% 

18 1.38227 1.06419 1.21706 1.13063 1.11623 1.14226 1.13063 0 1 0 1.27% 22.26% 

19 1.36657 1.05549 1.22818 1.13114 1.12201 1.19751 1.13114 0 1 0 0.81% 20.8 1 % 

20 1.40259 1.19367 1.19367 1.11522 1.09783 1.15471 1.11522 0 1 0 1.56% 25.77% 
Totals 1 19 1 1.20% 20.14% 



TABLE l c .  10 Trials for n = 7 

Triul OPASTAT LO WBD OPADYN GREEDY OPTIMAL HICOST Min of 3 OPADYN? GREEDY HICOST DEVN % SAVEOPA 

1.31786 
1.28011 
1.33479 
1.36337 
1.1399 
1.23 
1.33181 
1.35874 
1.26911 
1.21775 
Totals 

TABLE I d .  10 Trials for n = 8 

Trial OPASTAT 

10 Trials for n = 9 
1 1.97885 
2 2.01 727 
3 1.9714 
4 2.09747 
5 2.04965 
6 2.00108 
7 2.0874 
8 2.03249 
9 1.96806 

10 2.03184 

LO WBD OPAD YN 

1.37738 1.59107 
1.30812 1.5788 1 
1.45849 1.64501 
1.21609 1.46007 
1.48836 1.68623 
1.3568 1.58539 
1.36466 1.63913 
1.33919 1.61793 
1.45283 1.57945 
1.40913 1.59422 

10 Trials for n = 10 
1 2.30239 1.6635 2.0336 
2 2.24565 1.79187 2.01723 
3 2.3637 1.57991 2.01192 
4 2.13992 1.7481 2.03629 
5 2.24608 1.64555 2.02902 

GREEDY OPTIMAL HICOST Min of 3 OPADYN? GREEDY HICOST DEVN % SA VEOPA 

1.57621 
1.45892 
1.60143 
1.41728 
1.60414 
1.51112 
1.57264 
1.53177 
1.5726 
1.55351 
Totals 

1.72631 
1.7655 
1.65426 
1.78 176 
1.75176 
1.6862 
1.82755 
1.71786 
1.74773 
1.78912 
Totals 

1.94962 
2.01539 
1.89382 
1.98261 
1.88729 



TABLE I d .  Continued 

Trial OPASTAT LO WBD OPADYN GREEDY OPTIMAL HICOST Min of 3 OPADYN? GREEDY 

2.13392 2.01 376 1.96906 2.07533 2.01376 0 1 
2.06198 2.0138 1.95038 2.08705 2.0138 0 1 
2.03842 1.95246 1.89653 2.05759 1.9546 0 1 
2.01925 1.9695 1 1.89607 1.98891 1.9695 1 0 1 
2.09 15 2.0478 1.99639 2.10834 2.0478 0 1 

Totals 0 10 

HICOST DEVN % SAVEOPA 

0 2.22% 15.22% 
0 3.15% 9.05% 
0 2.86% 9.54% 
0 3.73% 15.67% 
0 2.51 % 8.56% 
0 2.99% 13.93% 
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FIGURE 6 .  Performance of OPA static versus REPOSO & RANDOM, number of locations = 10. 

location i + 1 and then to location i + 2. Even such a 
provision is unavailable today. We assume therefore that 
once a command to reposition has been given, it has to 
be executed and only then subsequent commands can be 
taken up for execution. We also assume that requests are 
served in the first come first served (FCFS) order. We 
assume that the arrival process of requests can be 
modelled by using a Poisson process. Given that a large 
number of users will be making infrequent requests to a 
tertiary storage system, this is a reasonable assumption 
to make (for example see Gnedenko and Kovalenko, 
1989). We assume that the cassette request probabilities 
are such that 70% of the requests are for 10% of the 
cassettes, 20% for 20% of cassettes and the remaining 
10% for 70% of the cassettes. If files that are rarely 
accessed are put into tertiary storage, then based on 
practical experience this assumption would be valid. 

We assume that the original model for cassette 
requests holds, i.e. requests are independent of one 
another and that the request probabilities do not change 
over time. We investigate the case when there is only one 
read head. Given these assumptions we ask: does 
repositioning yield any benefits? How much benefit do 

we get from using an OPA arrangement over a random 
arrangement of cassettes? 

We conducted several simulation experiments to 
answer these questions and their results are summarized 
in Tables 2a-d. In these experiments we varied the load 
on the system from 30% to 95% and the size of the 
carousel from 10 to 40 cassettes in steps of 10. The 
request probabilities were assigned as follows: given 
n = 10,20,30,40 break up n into high load class i.e. 10% 
of n, medium load class, i.e. 20% of n and low load class 
consisting of 70% of the n cassettes. We then assign 
request probabilities uniformly within each class. As an 
example, if n = 10, the request probabilities were set to 
be: 0.7, 0.1, 0.1, 0.0142857, 0.0142857, 0.0142857, 
0.0142857, 0.0142857, 0.0142857 and 0.0142857. The 
reading time from the tape was assumed to be uniformly 
distributed over [0,2] and the rotational time between 
two adjacent locations to be 0.1. In Table 2a we show the 
simulation results for the case n = 10. The cassettes are 
arranged as per OPA in all except the columns labeled 
RANDOM. Note that the average service time will 
depend on the arrangement of cassettes as well as the 
repositioning policy. In STATIC OPA, we do not allow 

Load 6) with req+ct to OPA Static - REPOSO Gain over OPA Stutlc - OPA Static Gain over RANDOM 



TABLE 2a. Number of tape locations = 10 

(Static OPA) (REPOS) (REPOS' ) (REPOS0)  (RANDOM: 20 Trials) 
Static OPA rule Reposition always Repusifon when 1 Reposition empty Tapes randomly placed 

Mean 
Mean Load on Number 

Arrival Service System in System 
Rate Time (%) ( 1 )  

Mean 
Service 

Time 

Mean Mean 
Mean Mean Mean Mean Number Number 

Number Service Number Service in System in System 
in System Time in System Time ( 2 )  ( 3 )  

0.621 1.105 0.615 1.073 0.594 0.649 
0.907 1.104 0.895 1.077 0.865 0.939 
1.354 1.102 1.315 1.081 1.277 1.413 
2.186 1.099 2.132 1.085 2.102 2.416 
4.309 1.097 4.026 1.09 3.984 6.055 

88.948 1.095 36.871 1.094 37.264 118471 

TABLE 2b. Number of tape locations = 20 

Mrrx mean 
in 20 Trials 

0.693 
0.997 
1.537 
2.798 
7.861 

3081 96 

Min mean 
in 20 Trials 

- 

0.601 
0.89 
1.308 
2.054 
4.326 

2481.3 

Gain Gain 
RESPOSO over Static OPA over 

Static OPA Randum 
(1)/(2)-1 (3)/(1)-1 

Arrival 
Rate 

Mean 
Service 
Time 

(Static OPA)  (REPOS)  (REPOS' 
Static OPA rule Reposition always Repositon when 1 

Load on 
System 
(%) 

36.33 
48.52 
60.7 
72.72 
84.7 
96.96 

Mean 
Number 

in Syslern 
( 1 )  

-- 

0.466 
0.722 
1.103 
1.79 
3.296 

18.297 

Mean 
Service 
Time 

1.281 
1.282 
1.282 
1.28 1 
1.279 
1.277 

Mean 
Number 

in System 

0.51 
0.804 
1.269 
2.2 
4.967 

7924.8 

Mean 
Service 

Time 

Mean 
Number 

in System 

- - -- 

(REPOSB)  (RANDOM: 20 Trials) 
Reposition empty Tapes randomly placed 

Mean Mean Gain Gain 
Mean Number Number RESPOSO over Stcrtic OPA civer 

Service in Systen~ in System Max mean Min mecrn Static OPA Ranciom 
Time ( 2 )  ( 3 )  itr 20 Trials in 20 Tricrls (1) / (2) - I  (3) / (1) -1  

-- 

TABLE 2c. Number of tape locations = 30 

(Static OPA)  (REPOS) (REPOS' ) (REPOS0)  (RANDOM: 20 Trials) 
Static OPA rule Reposition always Repositon when I Reposition entpty Tapes randomly placed 

Mean Merrn Mean Gain Gain 
Mean Load on Number Mean Mean Mean Mean Mean Ntrmber Number RESPOSO over Stcrtic OPA over 

Arrival Service System in System Service Number Service Number Service in System in System Max mean Min rnean Stcrtic OPA Rcrnriclrn 
Rate Time (%) ( 1 )  Time in S y ~ t e m  Time in System Time ( 2 )  (3)  in 20 Tricrls in 20 Trials (1)/(2)-I  (3) / (1) -1  



Arrival 
Rate 

Mean 
Service 

Time 

1.452 
1.43 
1.427 
1.434 
1.431 
1.433 

(Static OPA) (REPOS) (REPOS') (REPOSB) (RANDOM: 20 Trials) 
Static 0 PA rule Reposition always Repositon when I Reposition empty Tnpes randomly placed 

Load on 
System 

( % I  

29.04 
42.9 
57.08 
71.7 
85.86 
94.578 

Mean 
Ntonber Mean 

in System Service 
(1)  Time 

0.357 1.582 
0.609 1.554 
1.003 1.556 
1.81 1.563 
3.929 1.559 

10.568 1.557 

Mean 
Number 

in System 

0.406 
0.707 
1.215 
2.517 
9.41 

8332.9 

Mean 
Service 

Time 

Mean 
Number 

in System 

Mean 
Service 
Time 

Mean 
Number 

in System 
(2 )  

Mean 
Number 

in System 
(3) 

Max mean % 
in 20 Trials 

Min mean % 
in 20 Trials 

Gain Grzitz 
RESPOSO over Static OPA over 

Static OPA Ranrlorn 
(1)/(2)-I (%) (3 ) / ( J ) - f  ( % I  
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Load (%) with respect to OPA Static - REPOSO Gain over OPA Static - OPA Static Gain over RANDOM 

FIGURE 8. Performance of OPA static versus REPOSO & RANDOM, number of locations = 30 

repositioning and the system load is computed with 
reference to this policy. In REPOS we always reposition, 
which as seen from the table adds tremendous overhead 
to the mean service time because the carousel always 
rotates back to the cassette with the highest request 
probability. In REPOS1, we reposition when there is one 
request and give the repositioning command when that 
cassette is taken up for service. That is at the time of 
taking up for service the (lone) request we add a 
command for repositioning, which is always executed. 
This adds decreasing amount of overhead as the load 
increases, as seen from Table 2a. In REPOSO we 
reposition when the system is empty. This adds over- 
heads once in a while, but that overhead is not shown in 
the table as it was difficult to adjust the simulator to 
compute the overhead added to the request that arrived 
while the carousel was being repositioned. However note 
that the mean service time increases with the load 
because less and less repositioning gets done as the load 
increases. (If repositioning is not done frequently we are 
almost back to the STATIC OPA case, and on top of 
that suffer a penalty whenever repositioning interferes 
with the next request.) This demonstrates the trade off 
between repositioning overhead and the reduction in the 

mean service time. Finally, we generated 20 different 
random arrangements of cassettes and assumed that no 
repositioning was done in these 20 cases. We show the 
results from these arrangements under RANDOM, and 
give the mean, maximum and minimum of the average 
number of requests over the 20 cases. For each policy/ 
arrangement we give the average number of requests in 
the system over a suitable length of simulation. The 
simulation runs were for 10000 to 9000000 time units. 
The average number of requests in the system was 
collected for each time interval of 1000 units to get a 
standard error for the average number in the system over 
the entire run. The run length of the simulations was 
adjusted to keep this standard error within 1-2% of the 
average number in the system for the entire length of 
simulation. The standard errors are not shown in the 
Tables. The simulation was coded in f77 and run on a 
network of SUN workstations at the Leonard N. Stern 
school of Business, New York University. 

The results show that REPOS is not a good strategy. 
REPOSO is the best strategy we have discovered. But 
even REPOSO gave at the most 9% improvement over 
OPA STATIC and that too at low loads. This is shown in 
the graphs in Figures 6-9. The remarkable fact from 

Load (%) with respect to OPA Static - REPOSO Gain over OPA Static - OPA Static Gain over RANDOM 

FIGURE 9. Performance of OPA static versus REPOSO & RANDOM, number of locations = 40. 



these simulations is that OPA STATIC outperforms 
RANDOM significantly and as the carousel size 
increases, the gain in performance becomes better and 
better. 

The explanation for the improvement in performance 
over RANDOM, lies almost entirely in the fact that the 
use of OPA reduces the average service time. The extent 
of the reduction in service time will depend on the size of 
the carousel, because RANDOM has a greater chance to 
deviate from the optimal arrangement as the size 
increases. Another factor that influences the percentage 
reduction in the average service time is the ratio between 
the average time to read from a cassette and the average 
travel time to move to the cassette location. This 
ratio would get progressively small as the size of the 
carousel increases. Thus the relative improvement in the 
average service time will increase (by using OPA over 
RANDOM). 

5 .  CONCLUSIONS 

In this paper we studied organization schemes of 
cartridges on a carousel type robotic tape library. The 
following Table summarizes the results: 

Anticipatory Non-Anticipatory 

One head/Single File Proposition 2 Fujimoto (1991), 
Proposition 1 

Two heads/Single File Proposition 5 Proposition 6 
(even number of 

locations) 
One head/Multiple Files Proposition 4 Proposition 3 
Two heads/Multiple Files Proposition 5 Proposition 6 

(even number of 
locations) 

In addition, we showed that by using the concept of 
stochastic ordering, all the above results can also be 
extended to the queueing environment with FCFS 
policy. 

Some questions raised by this work are: 

(i) Varying j l e  sizes. In the file allocation problem we 
assumed that the files are of equal size. If the file sizes are 
not the same, we will have packing limitation based 
on file size and cartridge capacity. This leads to an 
NP-complete problem as shown in Wongd3. Based on 
the results in this paper a good heuristic can be 
constructed by first ranking files as per the request 
probability per unit of size and ordering them in OPA 
based on these modified probabilities. 
(ii) Other queueing disciplines. We have ignored schedul- 
ing problems in proposition 7 by assuming a FCFS 

service discipline. When file sizes vary, there is some 
advantage in attending to requests that need smaller files 
on a priority basis. 
(iii) Analysis of other robotic devices. The carousel is only 
one type of robotic device, other architectures include 
cabinets with multiple shelves such as the EXB-120 (by 
Exabyte Corporation) where the robotic arm picks 
cartridges from the shelves and places them in up to 
four parallel drives. Optimal arrangements of cartridges 
in such architectures and efficient mount schedules of the 
parallel drives are of interest. 
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