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Abstract 

Hypertext is one of those neat ideas in computing that period- 
ically burst upon the scene, quickly demonstrating their usefulness 
and gaining widespread acceptance. As interesting, useful and excit- 
ing as hypertext is, the concept has certain problems and limitations, 
many of which are widely recognized. In this paper we describe what 
we call basic hypertext and we present a logic model for it. Basic hy- 
pertext should be thought of as a rigorously-presented approximation 
of first-generation hypertext concepts. Following our discussion of ba- 
sic hypertext, we present our concept of generalized hypertext, which 
is aimed at overcoming certain of the limitations of basic hypertext 
and which we have implemented in a DSS shell called Max. We then 
present a logic model for browsing in generalized hypertext. 

Last modification: June 23, 1992. File: Logic-Mod-GHT-DSS 

This paper is a revised and expanded version of [9]. 

1 Introduction 

Hypertext is one of those neat ideas in computing that  periodically-and with 
impressive regularity-burst upon the scene, quickly demonstrating their use- 
fulness and gaining widespread acceptance. The concept of hypertext offers 
a "natural" and comprehensive means of navigating among the information 
and commands of a decision support system (DSS). Beyond navigation, hy- 
pertext offers such serendipitous features as user-declared linking, comments, 
backtracking to previously-viewed stages in the session, and so on. Although 
the idea of hypertext is not a new one [12], extensive research and develop- 
ment efforts, and product introductions, have been initiated only within the 
last six or seven years (see [14, 39, 45, 531, which are also good introductory 
reviews of the subject), with the notable exceptions of NLS [19] and FRESS 
[55I. 

The field of hypertext has produced several noteworthy "first generation" 
hypertext systems. These systems are conceptually extensions of the basic 
hypertext model we introduce in $2. They rely on a mainly static view of 
hypertext, in which the links in hyperdocuments are specified manually. We 
believe that a principled, well-structured approach to  generating a hypertext 
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network dynamically (under program control) will be one of the major char- 
acteristics of the next generation of hypertext systems. This is the approach 
we take in our model of general ized hyper tex t ,  discussed in what follows (see 
[23j for an inffuential list of outstanding problems in hypertext). 

We have conceived of, designed, implemented, and delivered to the U.S. 
Coast Guard a decision support system shell, which has a model management 
system and which makes extensive use of hypertext principles. The shell- 
called Max-has been delivered in the form of a particular decision support 
system-called Max Financial-that is currently in use by the Coast Guard. 
We have described various aspects of this software elsewhere [2, 4, 3, 34, 351. 
Idax is, in part, an implementation of our generalization of the (standard) 
concept of hypertext, which we call generalized h y p e r t e x t .  We have described 
elsewhere our concept of generalized hypertext and discussed its implemen- 
tation in Max [lo]. 

Our aim in this paper is to present and discuss a logic model (or, rather, a 
significant fragment of a logic model, as we explain in $6) for generalized hy- 
pertext. Because hypertext is in large part a user interface idea and because 
hypertext systems-including Max-are so heavily procedural, it is perhaps 
surprising that we should want to model hypertext with logic. Indeed, we 
shall only provide logic models for certain elements of hypertext. Further, 
the attendant logical inferences for our model of basic (ungeneralized) hy- 
pertext are quite trivial, so much so that an inferential, or logical, point of 
view here is not likely to be very interesting. What we think is interesting is 
our generalization of hypertext, in which logical inference plays an absolutely 
critical rhle, a rcile so critical that Max-as procedural as so much of it is-is 
written in Prolog. 

IVe were motivated to generalize the concept of hypertext by, among other 
things, the need we saw for automatic linking and for more general operation 
upon application objects (often called n o d e s  in the hypertext literature), 
given the context of a decision support system shell. (See [2, 5, 6, 7, 3121 
for further details.) The user interface concept we were seeking, and have 
achieved, is what we call i n t e r a c t i v e  d o c u m e n t s ,  in which the output of a 
DSS is a hypertext document that can be edited and queried. But that's 
another story. In developing our generalizations of hypertext, we found it 
materially useful to  take the logical point of view. It helped with clarity; it 
helped with rigor; it was easily coded in Prolog. It even helped with suggest- 
ing generalizations, for if you can operationalize an idea by generalizing on a 
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particular predicate, then it is natural to ask about the meaning and useful- 
ness of generalizing on other predicates [8, 331. Thus, although the modeling 
that follows is incomplete and represents work in progress, we hope it will 
be useful to others both for what it has to say about hypertext and as an 
illustration of the benefits of modeling with logic. 

Until recently there has been little published research regarding hyper- 
text modeling. One exception is Garg's model fragment, which focuses on 
abstraction mechanisms in hypertext [22]. The other exception is the Hyper- 
text Abstract Machine or HAM [13]. HAM models a low level transaction- 
based storage engine for components in a hypertext system.Severa1 hypertext 
systems have been implemented on top of this engine (e.g., Neptune [16] and 
DynamicDesign [Ill). HAM can be viewed as a model of a first generation 
or, as we shall explain later, a basic  hypertext system. There are no inherent 
provisions for what Halasz refers to as "virtual structures" or "computation" 
[23], which are of paramount importance in our application domain and are 
at the heart of the model of general ized h y p e r t e x t  that we present in this 
paper. In January 1990 the National Institute of Standards sponsored a 
hypertext standardization workshop [43], at  which several hypertext "refer- 
ence" models that do allow for a dynamic structuring of a hypertext network 
were introduced (e.g., [21, 241). The goal of these reference models is to de- 
fine what is meant by the concept of hypertext and to provide frameworks 
for comparing the features of various hypertext systems. It is hoped that a 
hypertext interchange format will emerge permitting hypertext systems to 
share their data (see [44]). 

While our model of generalized hypertext for the most part can be mapped 
to these m e t a - l e v e l  reference models, our focus differs in two important ways. 
First, instead of mapping among hypertext systems, we are concerned with 
mapping non-hypertext information system applications to a hypertext in- 
terface for the reasons expressed earlier. Here, our major contribution is the 
technique of bridge laws (see §6) ,  which model this integration. Second, in 
the existing models of hypertext virtual structures and computation are ad 
hoe, as are mechanisms most current systems use to implement them (e.g., 
[51]). Because most of our applications are dynamic in nature (e.g., DSS 
which execute decision models on the fly), we provide a structure modeling 
hypertext interaction, which can only be instantiated at run-time. Virtual 
structures and filtered computation [2lj--defined by bridge laws-both are 
at the core of our hypertext model. Our system-level hypertext engine per- 
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forms inference for every hypertext browsing command in a principled, well 
structured manner. 

The strategy and organization for the remainder of the paper is this. We 
assume the reader is familiar with hypertext and first-order logic. In $2 
we develop a particular concept of hypertext, which we call basic hypertext. 
We do not claim that basic hypertext is an adequate representation of all 
or most hypertext systems. Rather, we claim that it is reasonably close to, 
and very much in the spirit of, the mainstream of first-generation hypertext 
ideas. Our purpose in presenting basic hypertext is to model it, which we do 
in $3, and then to model our generalization of it, in $6. Our model is based 
on the concept of bridge laws, introduced in 55. We s u m a r i z e  and conclude 
in $7. 

2 Basic Hypertext: Concepts 

A hypertext network-often called a hyperdocument 1141 or simply a hypertext 
[24, 21, 381-consists of an arbitrary number of interrelated nodes, links, and 
buttons. Nodes are objects that are declared in a data base (of some sort) 
and, when displayed, are represented as text on the screen.' Links, which 
describe relationships between pairs of nodes (called the source and sink 
link endpoints), are also declared in a data base. Embedded in nodes-as 
part of the declarations establishing the nodes-are link anchors or buttons, 
which indicate the presence of a link and which usually are highlighted in 
some manner when the node embedding them is displayed. The number of 
buttons at a node, and the number of links in a document, is essentially 
unlimited. 

A hypertext system is software for creating, editing and maintaining hy- 
perdocuments and-more interestingly and to the point for present purposes- 
for browsing through, or exploring, hyperdocuments. The browsing concept 
is central to the hypertext idea [14, 39, 461, and it is the hypertext browsing 
functions that are the subject of this paper and of our logic models. Our gen- 
eralization of hypertext generalizes these browsing functions. A user browses 
a hyperdocument by viewing a displayed hypertext node, and selecting a link 
to another node. Typically this is achieved by pointing with a mouse to the 

l o r ,  for hypermedia systems, represented as other types of information objects, such 
as pictures, videos, sounds, and animations. 
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button highlighted in the node's text that names a link emanating from that 
node, and by clicking with the mouse. Selecting a link causes the system to 
traverse the link, i.e., to determine which node is at the link's distal endpoint, 
here the sink. In basic hypertext (as we are characterizing the concept), once 
a link is traversed the destination node is displayed. Clicking on a button, 
then, produces a new display of a node. 

In basic hypertext, there are other browsing commands than the essential 
and fundamental select-and-traverse-to-sink command just discussed. First, 
browsers may a select a button and request display of the node linked as 
a source, or incoming, link .endpoint. Thus, to implement bi-directional 
linking, there is a select-and-traverse-to-source browsing command in ba- 
sic hypertext.2 Second, both links and nodes may have attributes, which for 
simplicity we model as semantic types. For example, in a hypertext system to 
support argumentation, a node may contain a body of text, T, with buttons 
representing links of semantic types "supports" and "supported by." The 
latter names a link whose source node contains text that tends to support 
the assertions in T ,  while the former names a link whose sink node contains 
text supported by T. Further, the nodes may have information associated 
with them that can be retrieved upon command by the browser. For exam- 
ple, in an argumentation system 115, 40, 547 it would be useful to know the 
type of information contained in a given node. Thus, we have two further 
browsing commands: select-and-display-link-attribute and select-and-display- 
node-attribute. 

A fourth category of hypertext navigation is backtracking, or returning 
to the previous node. Hypertext navigation takes place in two directions- 
forwards to "destinations" related to a selected object (button) and back- 
wards by backtracking along the "path" of documents the user already tra- 
versed during the session. Backtracking allows users to explore within an 
information system without fear of getting "lost." Users can "detour" from 
their primary task by looking at items that  "catch their eye" with confi- 
dence, because they know they can always return to a familiar part of the 
information system to re-orient themselves. 

2We specify a directionality in links to maintain semantic interpretations (embodied 
in the link's semantic type attribute). To this purpose we nominally refer to a given link 
endpoint as being a "source" or "sink" node. During link traversal we shall refer to the 
node containing the button selected by the user for traversal as the link's "origin" and the 
distal endpoint as the link "destination." 
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Finally, many hypertext systems support some version of procedural at- 
tachment (or "action links" [38]), in which links are associated with proce- 
dures for enhancing the display of one of their endpoint nodes. In such a case, 
traversing a link results in execution of a procedure. Normally-and always 
for basic hypertext as we are characterizing it-attached procedures either 
format results that are placed in nodes or they affect how certain nodes are 
displayed. 

In summary, then, the browsing comrnands for basic hypertext-as we 
are defining it-are as follows. 

1. select-and-traverse-to-sink 

2. select-and-traverse-to-source 

3. select-and-display-link-attribute 

4, select-and-display-node-attribute 

5. backtrack 

Figure 1: Basic Hypertext Browsing Commands 

Clearly, these are browsing commands only for a very basic hypertext system. 
Still, we believe they adequately capture the spirit of most existing systems, 
whose many features can be interpreted as fairly direct elaborations on our 
basic (i.e., non-generalized) model. 

We now turn to the task of developing a logic model for basic hypertext. 

3 Basic Hypertext: Conceptual and Logic 
Models 

Every modeling effort inevitably requires judicious selection of which ele- 
ments of the object system are to be modeled. The present effort is no 
exception. In general, there are two basic, complementary approaches to 
deciding what to leave out of a model. One can abstract away, or simply 
ignore, certain features of a system, and one can focus on certain parts of 
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an object system, to the exclusion of others. Our selection strategy for the 
models to  follow can best be described as a focusing strategy. 

Hypertext systems in general have significant elements of procedural- 
ity (e.g., displaying a node, handling a mouse click) and of inference (e.g., 
traversing a link, searching for a node with a given attribute). Without 
putting too much weight on the distinction, it is natural to think of hyper- 
text systems as both thinking (making inferences) and acting (doing things 
with procedures). Further, it is natural to model the thinking, or inferential, 
aspects of any system with logic, and (often) not very natural to model the 
actions of a system with logic. Most importantly for the present context, 
generalized hypertext, which we are offering as a contribution to the concept 
hypertext (and its implementation), differs from existing hypertext systems 
in the greatly-expanded rGle of inferencing in the system. 

It is natural, then, to model the inferential aspects of hypertext with 
logic, and it is appropriate to explain and contrast basic and generalized 
hypertext by focusing on their inferential differences. That is the aim of 
the logic modeling exercise we present in what follows. Before presenting the 
logic model for basic hypertext, however, we need a conceptual framework for 
hypertext system that clearly identifies which elements are to be modeled 
logically. To that now. 

Much as Lisp can be described as operating with a basic read-evaluate- 
print loop, so hypertext systems can conveniently be described as operating 
under a basic read-evaluate-update-display loop. Focusing (without loss of 
generality) on the browsing commands, the operation of a hypertext system 
proceeds by reading a (browsing) c o m a n d  from the user, evaluating the 
command, performing any updates to the system, and displaying the appro- 
priate result. Our focus is on the inferential aspects of the evaluation step 
in the hypertext control loop, in particular on the inferences used to support 
the browsing commands. 

We begin explaining our logic model by presenting and discussing the 
language---the first-order predicates and terms-used to describe a hyper- 
document. The essential predicates and their intended interpretations are as 
follows. 

node(x,y,z) x is a node with content expression y and semantic type (at- 
tribute) z. 

link(u,v,w,x, y,z) u is a link from source node v to sink node w with semantic 
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type x, operation type y, and either display mode or procedure identifier 

button(x, y,z) x is a button representing link y with content expression z. 

sessionlog ([[v, w,x,z, y], . . .I) The session log contains a chronological (last-in- 
first-out) list of identically formatted list elements, in which v is the 
command executed, w the button selected in originating node x and y 
is the link traversed to the destination node z. 

evaluate(u,v,w,x, y,z) u is a procedure that formats the content of expression 
v of a desination node, taking into account the link semantic type w and 
the destination node semantic type x, producing text y to be displayed 
under display mode or procedure identifier z. 

startingnode (x, y, z) x is the default node to display upon sys tem initialization, 
using link operation type y and link display mode z. 

For terms, we shall often use integers for node, link, and button names. In 
addition, we have the following logical names (and their intended interpre- 
t ations) . 

issue 
posit ion 
argument 
procedure 
display 
supports 
supported-b y 
more-information 
full-window 
pop-up-window 

(J 
true 

semantic type for a node 
semantic type for a node 
semantic type for a node 
operation type for a link 
operation type for a link 
semantic type for a link 
semantic type for a link 
semantic type for a link 
a link display mode 
a link display mode 
nil, falsehood 
truth 

We also have the following functions, and their intended interpretations. 

button(x) maps to true if x is a button 
symbol(x, y) maps to true if x is a button 
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with display text y 

Finally, we need to characterize the structure for representing text at  a 
node. The particular structure we shall use is not essential for the general 
points we wish to make. 'LVe represent text (in the hyperdocument dec- 
larations) as a list of terms of two kinds: (a) names, to be represented as 
alphanumeric sequences in single quotes; (b) functions of the form button (x), 
where x is a button identifier. We shall exploit Prolog list notation for 
convenience, but of course logically a list is either a special name, 1, or is a 
special function of arity two. 

To see how all this works, first recall that the hypertext system is running 
under a read-evaluate-update-display loop. The read function is performed by 
a user interface system. Its job is to get input from the user, to translate 
this input into a form that can be understood by the hypertext evaluator, 
and to call the evaluator. The evaluator performs appropriate inferences, 
extracts certain parameter values, and passes control to the updating proce- 
dure, which should be thought of as having the function of altering declara- 
tions in the data base constituting the hyperdocument in question. Once the 
update procedure is complete, the user interface is called with new informa- 
tion for display, and the loop recycles. 

For some specifics of how this works, let us examine an example that is as 
simple as possible for illustrating the browsing commands of basic hypertext. 

Example: Hyperdocument 1 

Hyperdocument 1 is about as simple as can be. It has two nodes and one 
link. Its declarations are as follows. 

node(1,fIf the', 'Soviet Union: 'is to be competitive, ', 'we must hit the 
inside curveball. ', '- ', button (I)],[]) 

node(2,fQuotation of the Day', 'The New York 
Times', 'August 16, 1989 3 [I) 

link(l,l,2, more-information, display, full-window) 
button(l, l ,  'Aleksei L. Nikolov') 
sessionlog ([I) 
startingnode (1, display, full-window) 

First, we have to get a node displayed on the screen. Assume that the 
default node on startup is node 1. We use its predicates to make the appro- 
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priate inferences for the user interface system. There are two basic tasks at 
hand. The  first is to determine the mode of display for the node. This is easy. 
We simply deduce values for x, y and z that satisfy 32, y, zstartingnode(x, y,z). 
Trivially, given the declarations in the present example, the default starting 
node is 1, and it should be displayed in a fulhwindow. Less trivially, but 
still easily, the declared text must be transformed for display by the user 
interface system. In particular, button(1) in the text for node 1 must be 
replaced with a symbol that both indicates what should be displayed and 
provides sufficient information to identify the symbol as a button. This can 
be done by replacing every occurrence of button(x) in a text with symbol(x, y) 
in accordance with the following laws. 

Vz, y (buttondisplay(button(x), symbol(x, y)) --+ button(~,-,y)) (1) 

(We note that for the sake of notational perspicuity we are using the under- 
score as in Prolog's anonymous variable. No logical generality is lost by this, 
for an equivalent formula can always be had by replacing each anonymous 
variable with a unique variable and universally quantifying over the entire 
formula. For example the last formula above is equivalent to: 

Also, we note that here and in what follows all clauses are Horn.) 
Thus, the display value of the button is inferred from the hyperdocument 

declarations, substituted into the text representation, and the modified rep- 
resentation is sent to the (procedural) user interface system, along with the 
display mode symbol full-window. We assume an appropriate collection of 
declarations to do this, called make-display-text(x,y), in which x is the input 
text representation, as declared in the hyperdocument, and y is the output 
test representation, used by the user interface system to create the actual 
display. 

Once node 1 is displayed on the screen, the system can accept and process 
browsing commands. In order to process browsing commands, the hypertext 
evaluator subsystem needs to be told what command is to be executed, what 
its various input parameter values are, and what the current node is. In 
return, the evaluator needs to tell the user interface subsystem what should 
be displayed, how it should be displayed, and what node to make current. 
Because we distinguish the essentially inferential command processor from 
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the procedural system update module, the command processor or evaluator 
must determine what needs updating. In sum, the evaluator needs to deduce 
values of w, x, y, and z that satisfy 

process~command((c), (p), (n),  w, x, y, z)  

where c is a given command, p the parameter value(s) for the command, n 
(the current node), w (the list of update items), x (the text to be displayed), 
y (the mode of display), and z (the node to be made current). (Under 
the intended interpretation and use, the parameters in angle brackets are 
instantiated on inp~ut, while the other parameters are instantiated a t  output.) 

So, now we can define this central predicate for the basic hypertext brows- 
ing commands outlined in the previous section. The first represents the 
select-and-traverse-to-sink operation. (Note: here and in what follows we 
use 4 t .II, for reverse material implication, i.e., as equivalent to .rl) 4 4.) 

[update-log(traverse-sink,w,u,t,z)],x, y,z) t 

(button(w,t,-) A 

link(t,v,z,,, display, y) A 

n ode (z, u, -) A 

make-display-t ext (u,x)) ) 

Paraphrased into something English-like, formula 3 says that we traverse 
to the sink node, z of link t-outgoing from node v and named by button 
w-whose text x we are to display in mode y if (w is a button naming the 
outgoing link, t ,  that leads from the present node, v, to node z, the text 
of which should be displayed in display mode y, and the text u at  node z 
is transformed for display to x). Using hyperdocument 1 as an example, 
in figure 2 the user has selected the button in the source node ("Node 1") 
and traversed its link to the sink node ("Node 2"), which is displayed in the 
topmost window on the screen, indicating that it is the currently active node. 

P u t  figure 2 a b o u t  here. 
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There are four more browsing commands to model for basic hypertext 
(recall figure I ) ,  but the pattern evident in formula 3 continues. 

The second command, traversing to the source node for a button, provides 
for bi-directional linking. The logic model is as follows. 

[update-log(traverse~source, w,v,t,z)],x, y,z) +- 

(button(w,t,-) A 

link(t,z,v,-, display, y) A 

node (z, u,-) A 

make-displa y-t ext (u,x)) ) 

Other than changing the name of the command, in the first line of formula 4, 
the only difference between (1) and (2) is in link(t,z,v,-, display, y), in which 
we have reversed the source and sink node identifiers. 

Our third browsing command is for displaying a link attribute for the link 
named by button w. In our basic model the link's sole attribute is its semantic 
type, e.g., supports or supported-by, for an argumentation application, A 
user might request the semantic type in order to preview the consequences 
of committing to a link traversal [37]. The model for this command is as 
follows. 

[I, x,pop-up-window, v) t- 

(button(w, t,-) A 

link(t, v,-, u ,-,-) A 

make-attribute-display-text (u,x)) ) 

Here, we have added a new predicate, make-attribute-display-text, that trans- 
forms an attribute expression into an expression displayable by the user inter- 
face system. Note also that we have assumed that link attribute information 
is always presented in a pop-up window. 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-04 



The model for our fourth command, display of a node attribute (its se- 
mantic type, e.g., issue, position or argument), is quite similar to that for 
display of a link attribute. 

[ l ,x ,p~p~up~window,  v) +- 

(bu t ton(~ ,  t,-) A 

link(t, v,z, -,-,-I A 

node ( z , ,  u) A 

make-attribute-display-text(u,x)) ) 

Our fifth command for basic hypertext is backtrack. We will not present 
a logic model for it here, since it is straightforward and does not affect our 
generalizations. (See [5] for an extended logical discussion of this matter.) 

A word about procedural attachment, beginning with an example. Sup- 
pose that in Hyperdocument 1, the current text of node 2 were instead the 
text 'this is a citation from', button(2)], and that button(2)'s text were what 
is currently in node(2). Under the assumption that the first button in a 
node's text provides a brief summary of the node's meaning, we could de- 
clare a procedure named first-button that displays just the text of the first 
button found in the destination node's content expression. In this scenario, 
traversing the new link link(2, 1, 2, summary, procedure, first-button) would 
also result in Figure 2. 

Procedural attachment can be modeled with an additional clause for the 
traverse-sink command, formula 3. Consider the following 

link(t,v,z, a, procedure, u) A 

node(z,r, b) A 

evaluate (u, r, a, b,x, y)) ) 

in which w is the source button the user selected, v is the source node con- 
taining it, t is the button's link, z is the destination node, a and b are the link 
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and node semantic types that are used in determining the procedure results, 
u is the attached procedure, x is the destination node's display text and y is 
the display mode for the destination node. 

There are several things to note about formula 7. First, we have assumed, 
for the sake of modeling, the existence of the evaluate/6 predicate, which ex- 
ecutes a procedure. Ln an implementation, it may or may not be sensible to 
treat evaluate/6 in a purely logical fashion. If not, then the code that im- 
plements it is straightforwardly a procedural attachment. Second, although 
expression 7 does not permit parameters to be passed to the procedure that 
is evaluated, this constraint could easily be relaxed. We are trying to keep 
things as simple as possible, in order not to obscure the main points of the 
paper. 

Finally, we note two facts. First, although our conceptual framework for 
basic hypertext has identified an element of inferencing, described above, 
the amount of inferencing-its depth and subtlety-in basic hypertext is 
quite limited. Second, in our basic hypertext system and in most first gen- 
eration hypertext systems, every node and link in a hyperdocument must 
be explicitly declared by the author(s) of the document. The clauses de- 
scribing a hyperdocument for basic hypertext, e.g., Hyperdocument 1, are 
all ground; they fail to exploit quantification. Further, they are all logically 
simple; no logical constants are used. Of course, real hypertext systems come 
with editors that materially help the authors in making the required explicit 
declarations. Nevertheless, it would be desireable if the expressions used 
to declare a hyperdocument could be understood as creating the elements 
of a hyperdocument--e.g . , nodes and links-implicitly as well as explicitly. 
This is imperative for decision support systems. DSS applications tend to 
be large, making explicit enumeration of its elements impractical. Also, DSS 
applications are dynamic-execution reports that map to  destination nodes 
are generated in real time, not in advance. Most importantly, we want the 
DSS shell to map hypertext to the DSS elements on behalf of the application 
builder instead of forcing builders to reclassify their application elements in 
terms of hypertext nodes, links and buttons. 
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The Need to Move beyond Basic Hyper- 
text 

However interesting the basic hypertext concept, and however useful var- 
ious implementations of it have proved to be, a number of problems and 
limitations have been identified with this basic concept [2, 14, 20, 23, 561. 
For present purposes we are concerned with the following widely-recognized 
problems and limitations in basic hypertext (and in current implementations 
of hypertext) .3 

Manua l  linking [2, 17, 20, 23, 30, 561. Basic hypertext systems 
provide editing features for linking existing nodes, and for creating 
and manipulating buttons. These features are highly useful to the 
builder--or annotator--of a hyperdocument. The basic hypertext con- 
cept, however, does not encompass virtual, or inferred, linking of nodes 
by the system at run time. To illustrate the inferred linking concept 
(called implicit linking by DeRose [17]), consider a system with prede- 
fined keyword nodes, whose contents explain and discuss the keyword 
in question. The hypertext system might infer a link (and thus the 
existence of an accompanying button) by being able to recognize key- 
words in arbitrary nodes and by dynamically creating buttons out of 
them that are linked to the appropriate keyword nodes. With such a 
capability, a builder could simply type text into a node and have the 
system create many of the needed buttons and links associated with 
that node.* Clearly, there is considerable potential benefit-especially 
in terms of reducing the cost of building a hyperdocument-to having 
the hypertext system capable of creating buttons and links automati- 
cally. 

Manual  node creation [2, 23, 471. This is the node version of 
the above link limitation. Under the basic hypertext concept, the hy- 
perdocument builder builds nodes by using an editor to key in or to 

3This section is drawn from [lo]. 
4Although we will not discuss it further, this feature is supported in the system we 

discuss in [lo]. Other researchers have been active in exploring this sort of feature, e.g., in 
the contest of extended electronic mail systems [1, 26, 501. Other researchers are working 
on generating links from content analysis on text [25, 481. 
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paste in information. There remains the possibility of the hypertext 
system generating nodes (along with embedded buttons) on the basis 
of user inputs, in conjunction with existing information in its data base 
121, 41, 511. (See [20] for mention of work on generation of graphical 
objects,) Again, it can be hoped that with such a capability the cost 
of developing a hyperdocument might be reduced. Finally, we note 
that automatic creation of nodes is quite different from procedural at- 
tachment (see above), which has been used to modify---or modify the 
display of-nodes, rather than to create them. 

Multiple views [23, 36, 491. Basic hypertext systems typically pro- 
vide a limited number of ways to view nodes. For example, many 
systerns permit buttons to be displayed with or without highlighting, 
and some offer both a user's view and a builder's view for nodes. Other 
views, not envisioned in basic hypertext, are possible. As a means of 
reducing cognitive overhead, nodes might be filtered and transformed 
for pertinent information before display. For example, displays special- 
ized by type of user (novice, experienced, e.g.) might be implemented 
in this way. 

Cost of building hyperdocuments [2, 34, 351. Basic hypertext 
systems provide substantial support for building applications in which 
the user may interactively explore a large collection of associated in- 
formation. Nevertheless, much more might be achieved by embedding 
knowledge into the hypertext system [la]. For example, contextual in- 
formation could be used automatically to invoke filtering routines in 
support of multiple views of nodes. 

With the basic hypertext concept and a list of some of its limitations at 
hand, we can now discuss our generalization of the concept. Our focus here 
is on the underlying logic of generalized hypertext (see [lo] for an informal 
discussion of generalized hypertext). We discuss that logic in 56. First, 
however, we turn to a brief discussion of an essential, foundational idea for 
the logic of generalized hypertext. 
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Bridge Laws 

The problems and limitations of basic hypertext, at least those listed in 
$4, can be thought of as setting a requirement that ways be found for pro- 
grams (rather than people) to create links, create nodes, and impose views 
in hyperdocuments. This achieved, then plausibly the cost of building and 
maintaining hyperdocurnents can be substantially reduced [lo]. We find the 
principle of bridge laws instrumental for developing programs that can pro- 
duce hypertext systems while minimizing human effort in developing those 
systems. Our purpose in this section is briefly to introdcce the concept of 
bridge laws. In $6 we will apply th6 concept extensively. 

The term bridge law comes from the philosophy of science literature on 
inter-theoretic reduction (e.g., [31, 421). It would seem that some theories 
can be, or have been, explained by other, more fundamental theories. For 
example, it is plausible that the gas laws can be explained by the more 
fundamental theories of thermodynamics and statistical mechanics. More 
broadly, we often think of chemistry as explainable by physics plus initial 
conditions, biology as explainable by chemistry plus initial conditions, and 
so on. If one theory or science (called the explanandum) has been explained 
by another theory or theories (called the explanans), we say it has been 
reduced. 

What is the logical relation between an explanandum that has been re- 
duced by an explanans? We would like to think of the relation'as a deductive 
one: the explandum is deduced from the explanans. Typically, however, the 
vocabularies and languages of the two theories are quite different. Physics, 
for example, talks about fundamental forces and weird atomic particles. The 
stuff of chemistry-chemical reactions, valences, elements, et c.-is simply not 
in the vocabulary of physics. So how can the laws of chemistry possibly be 
deduced from the laws of physics if they do not share a common vocabulary? 
They can't. If chemistry is to be deduced from physics-and more generally 
if a statement in one domain of discourse is to be derived by expressions in 
another domain of discourse--then there must be some way of mapping ex- 
pressions in one domain to expressions in the other. Such domain-spanning 
expressions are called bridge laws in the literature on theory reduction in 
sclence. 

Whether there are any bridge laws in science, and if so what they are, is 
a controversial matter in philosophy. That need not concern us here. What 
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matters is the idea, and the idea is simple and very useful. 

Bridge laws. A bridge law is a universally quantified material 
conditional in which the expressions in the antededent are all in 
one language (or domain of discourse) and the expressions in the 
consequent are all in another language (or domain of discourse). 

In the present case, we should think of a hypertext system as working 
by making inferences in the hypertext domain of discouse. The underlying 
hypertext language, as we have seen illustrated in $2,  is designed for talking 
about nodes, links, buttons, and so on. An application, for which a hypertext 
system is a front-end, can be thought of as making inferences in some rather 
different domain. In our implementation, Max, that domain is mathematical 
models. There, the application software makes inferences in a language that 
describes models, variables, data, and so on. 

In what follows, we shall see how bridge laws may effectively bridge (Dare 
we say link?) two domains of discourse. How this linking is done is not 
particularly specific to the applications at  hand. The bridge law method 
is general. A system builder, in adding a hypertext front-end to a given 
application, can be thought of as using bridge laws to tell the hypertext 
system what in general is important in the attached application. We now 
turn to a discussion of the logic of generalized hypertext, a logic in which 
bridge laws play an important part. 

6 Generalized Hypertext: Concept and Model 

Our concept of generalized hypertext is basic hypertext plus generalizations 
with regard to nodes, links, buttons and link traversal. These generalizations 
are further extended by system-level support for contextual dependencies 
pertaining to users and to  application domains. The aim of the present 
section is to present, discuss and model these generalizations (see 15, 101 for 
further discussion). 
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6.1 Contexts 

The purpose of contexts (also called filters) is to set or remove certain default 
a ~ s u m ~ t i o n s . ~  For example, if the applicable context is that for nai've users, 
then the user interface system may simplify the display in certain ways, 
perhaps by eliminating acronyms in favor of their full expressions by hiding 
technical information in documents, or by pruning the number of button or 
commands. Logically, we represent contexts by adding an extra argument to 
our basic predicates. What was, for example, simply a node, becomes a node 
in a given context. Also, because contexts are individuated it is possible to 
reason about them. We do so in two main ways. 

First, contexts may be used for mapping (transforming) and filtering data 
objects in the system. For example, in our present system, contexts may be 
set in which only certain entities (documents, commands, or models) are 
available. The entities that are available are determined during run time by 
mapping certain information to a set of possible entities, then filtering the 
set using contextual information (see expression 14 in 56.3, below). Second, 
contexts may be declared in much the way nodes, links, and buttons are 
declared, and in this way become generalized hypertext objects. We model 
contexts with the predicate ghtcontext(c, a) with c being the context identi- 
fier and a its attributes, e.g., a definition, its semantic type or the application 
which declared it. (As a mnemonic we use ght as a prefix in many generalized 
hypertext predicates.) More than one context may be active simultaneously. 
As we shall see later, each generalized hypertext node, link and button has 
a context argument. During link traversal (see 56.6) the value for that ar- 
gument must be an active context identifier for its instance to be accessed. 
There is a special context symbol all, which indicates an instance is accessi- 
ble under all context settings. The hypertext evaluator maintains the set of 
currently active contexts in the predicate ghtactivecontexts(1) with 1 being a 
list of context identifiers. I always includes the symbol all. A more sophisti- 
cated model of contexts can be found in [ 5 ] .  One aspect of this model is the 
organization of contexts into inheritance hierarchies representing different 
characteristics of an application's environment and user abilities. 

In what follows, we frequently mention context and contextual inferences, 
and normally use the variable, c, as a context variable. 

5This differs from the "context" objects in HAM [13], which serve to partition, rather 
than tailor, the hyperdocument. 
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6.2 Node Generalization 

In basic hypertext, nodes are normally collections of text with embedded 
buttons and (in many hypertext systems) graphics. Further, as we have 
seen, these nodes are represented explicitly in the system. We generalize 
nodes in two principal ways. First, while nodes may be collections of text 
with embedded buttons, under our concept (when idealized) a node may be 
any information item about which the system may reason. Abstractly, nodes 
are objects that may be named (referred to) in various ways (explicitly or 
implicitly), and linked to other nodes. Just about any sort of entity may 
be the endpoint of a link (including contexts and other links), and all such 
endpoints are considered to be nodes. Further, information about nodes 
may be declared in the system, and this information (including contextual 
information) may be used by the system during its link traversal operations. 

Our second generalization, then, is that nodes need not be explicitly rep- 
resented in the system. They may be inferred at run time from declarations 
used to build the system, as well as from other information, such as con- 
text. Logically, and in our system operationally, what this means is that 
nodes may be declared with formulas having quantified variables. (This irn- 
plements what Halasz calls virtual structures [23].) Recall that in example 1 
the node declarations, viz. 

node(l,['If the', 'Soviet Union', 'is to be competitive,', 'we 
must hit the inside curveball.', '-', button(l)],[l) 

node(Z?,['&uotation of the Day', 'The New York Times7, 
'August 16, 1989 XI) 

were all logically simple ground expressions. The natural generalization, from 
a logical point of view, is to exploit quantification in order to define nodes 
implicitly for the system. This is exactly what we do, using the predicate 
ghtnode(z, y,z), with x the node identifier, y the node attributes, and z the 
context. For example, nodes 1 and 2 could be inferred as instances of node/d 
with the following law, where s-type and n-type signify semantic and node 
types respectively. 

v5, Y ,  (8) 
ghtnode(x,[[contents, y],[s-type,z], 

[n-type, explicit]], basicAypertext) t 

Center for Digital Economy Research 
Stem School of Business 
IVorking Paper IS-93-04 



Given this move, this abstraction, we can declare laws that make just about 
anything a node. Links can be nodes. (This implements what Lange calls 
second order links 1381.) 

v" ,v7w>x1~,z PI 
(ghtnode(u,[[source,v],  sink,^], [s-type,x],[n-type,Zink], 
[operation-type, y],[display-mode,z]], basic-hypertext) t 

link (u, v, w,x, y, z )  ) 

Buttons can be nodes. 

htore interestingly, the hypertext system can be mapped to an application 
and laws can be declared that make application-specific entities into gen- 
eralized hypertext nodes. In our system, Max Financial, the generalized 
hypertext system is matched to a model management system. Nodes may 
be declared with bridge laws (see $5) that map between predicates in the 
two systems. For example, every model in the model management system 
(called TEFA [4]) is a node in the generalized hypertext system (called Maxi 
110, 341). The following formula is a bridge law that achieves this. 

V C , ~ ~ W , X , Y ~ ~  (11) 
(ghtnode(x,[[math-ex,z],[source, w],[description, v], 

[n-type, mode%[model-type, y]], c )  c- 

model(x,  y,z) ) A 

context(c,x,modeZ) A 

source (x, w )  A 

description(x,v)) ) 

Note that ghtnode/3 is a predicate from the generalized hypertext system, 
while the other four predicates in formula 11 belong to the model manage- 
ment system and are used to declare models. In short, such bridge laws can 
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be added at will, and what counts as  a node can be extended more or less 
indefinitely. Individual bridge laws can be very general (as in formula ll), or 
they can refer to particular objects explicitly. Our goal is for a system builder 
to  be able to combine existing application predicates and hypertext utility 
predicates to declare a small set of bridge laws that can map the components 
of all applications in the system. 

6.3 Link Generalization 

In basic hypertext, each link establishes a relation between a single source 
node and a single sink node, called the link endpoints. We generalize links 
in two principal ways. First, links may be "n-ary" [24]: they may fork into 
multiple links. Thus, in selecting a button, which names a link, the user may 
then be asked to choose among several sub-links. We call such collections of 
sub-links link ensembles. For example, in $6.4 we shall see that the name of a 
mathematical model may be a button in a document. Upon selecting such a 
button, the link traversal routine will infer that several options are presently 
available, e.g., to run the model, to describe the model, and to suggest a 
scenario (data set) for running the model (see figure 3). Link ensembles 
often represent different aspects of the "object of interest" represented by 
the button the user selects. 

P u t  figure 3 about here. 

Each of these sub-links, or link forks, is traversable by the system and 
may be thought of as a DSS application command. In basic hypertext each 
link may be thought of as a command to display one of the two endpoints 
of a link. This generalization allows arbitrary commands for operating upon 
a link endpoint, and so is a richer concept than what is normally meant by 
procedural attachment. 

Our second generalization is that links need not be explicitly represented 
in the system. Like nodes, they may be inferred at  run time from logically 
quantified declarations used to  build the system, as well as from other in- 
formation, such as user inputs and context. In fact, generalized hypertext 
buttons will often indicate the presence of such virtual links. These links are 
not generated until the user actually chooses to traverse them. 

In order to see the logical import of these generalizations, recall our link 
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declaration from example 1-link(1, 1,2, more-information, display, full-window)- 
which is interpreted as "Link 1 is of type more-information and links source 
node 1 with sink node 2." Our link predicate for generalized hypertext de- 
clares link ensembles, where each element in the ensemble is a command 
that can be used (perhaps with other information) to operate upon the link's 
object of interest. Traversing a link that corresponds to an application com- 
mand causes the application to execute that command. Often this results in 
the generation of a report, which a bridge law can map to the link's desina- 
tion node. Thus, we have the generalized link predicate ghtlink(u, v, w, x, y, 
z, c) for which the intended interpretation is that u is the link identifier, v is 
the source node, w the sink node, x the link's attributes, y the display mode 
of the destination node, z the ensemble elements, or commands, associated 
with the link, and c is as usual the pertinent contextual information. Ad- 
verting to example 1, we can define our basic hypertext link as a generalized 
hypertext link, with the following laws. 

vu, v, w, 5, Y (12) 
(ghtlink(u,v,w, [[s- type,^]], y,[display], basic-hypertext) t 

linb(u,v, w,x,display, Y))  ) 

Vu, v, w, x, Y (13) 
(ghtlink(u,v, w, [[s-type,x]],-,[y], basic-hypertext) t 

Iink(u, v, W ,  x,procedure, y)) ) 

Formula 12 is for displaying text and 13 is for executing attached procedures. 
Although this example illustrates both of our link generalizations-link 

ensembles and implicit declaration of links-a more interesting example is 
provided by connecting the generalized hypertext system with an application. 
Again, we will illustrate this with a bridge law between Maxi and TEFA. The 
following law describes the generalized hypertext link ensemble associated 
with every model in Max Financial. 

vc, U,  v, W, Z (14) 
(ghtlinb(u,v, w,[(l-type,modell,[owner, TEFA]],-,z, c) t- 
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available-commands(u,z, c)) ) 

There are several things to note about expression 14. First, ghtlinkl7 is a 
predicate in the (generalized) hypertext system, while model/3 and avail- 
able_cornmands/3 are predicates in the application system, here the model 
management system, TEFA. Second, the pertinent originating and destina- 
tion nodes v and w for for formula 14-style links are not specified, here. 
These nodes may exist only virtually. Until there is a clear need to deter- 
mine them, they continue to be only implicit. Third, calling either or both 
of the TEFA predicates may result in a large amount of inferencing. For 
example, TEFA is normally able to execute any of three commands on a 
given model: run, describe, and suggest-scenario (cf., figure 3). That it is 
able to do so, however, is something that is inferred by TEFA depending 
on the current context. Also, the list of commands returned by TEFA, z ,  
may be fairly complex. Typically, it has the following sort of form: [sym- 
bol(TEFA, run), syrnbol(TEFA, describe), symbol(TEFA, suggest-scenario)]. 
(Note: Here symbol(x, y) is a function with the intended interpretation that 
it maps to true if y is a symbol from the x subsystem.) Expressing the link 
ensemble this way allows the hypertext system and the user interface to man- 
age run, describe and suggest-scenario, on the screen and inferentially, in a 
knowledge base. 

6.4 Generalizing Buttons 

We generalize buttons in much the same way we generalized nodes and links: 
by declaring expressions that use the predicate in question but that are quan- 
tified and are logically complex. Recall our button declaration from example 
1. 

button(l,l ,  'Aleksei L. Nikolov') 

Expressed as a generalized hypertext button, we have the following law. 

V X , Y , Z  (15) 
(ghtbutton(x,[[link, y],[contents,z]], basic-hypertext) t- 

button (x, Y,z)) ) 
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But as usual, more interesting laws can be defined as well. In our system, 
models and modeling variables are represented by buttons, via bridge laws 
between the generalized hypertext system and the application, TEFA. 

vc, x (16) 

(ghtbutton(x,[[contents,x],[owner, l'EFA],[t ype, m o d e m  c) t- 

(model(x,-,-) A 

context (c,x,model)) ) 

VC, x (17) 

(ghtbutton(x,[[contents~x],[owner, TEFA],[type,variable]], c) +- 

(variable (x,-) A 

Notice that, context permitting, the name of each model and of each modeling 
variable is a button. But, given that, e.g., a model's name is a button, what 
link ensemble does it name? Clearly, from the declarations the symbol also 
serves as a link name. Thus, we see that a given model may be represented 
as a button, a node, and a link, and that this is declared through universally- 
quantified laws that are instantiated inferentially as the occasion requires. 

6.5 Generalizing the Session Log 

Backtracking within generalized hypertext must take the context into ac- 
count. To reduce disorientation when the user returns to previously-viewed 
nodes, they should be displayed in the manner they originally appeared. 
Thus, the original context and all other parameters necessary for restoring 
the node's original appearance must be captured in the session log. We 
model the generalized hypertext session log as ghtsessionlog([[v, w, x, y, z, 
c, cc], ...I, a), a chronological (last-in-first-out) list of identically formatted 
list elements, in which v is the cornmand executed, w the button selected in 
"originating" node x, y is the link traversed to the "destination" node z, c 
was the context before traversal and cc is the new context resulting from the 
traversal. 
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6.6 Generalizing Link Traversal 

In basic hypertext, as noted above, link traversal is normally performed 
through a select-traverse-display mod- 
el: the user selects a button (e.g., by pointing to it with a mouse and clicking 
on the mouse), the system finds the link named by the button, traverses it, 
and displays the node found at the link's end point. (In the case of proce- 
dural attachment, the system may find a procedure at a link endpoint. If 
so, the system calls the procedure, which normally changes the content, or 
perhaps display, of a node.) 

Our concept for generalizing link traversal is as follows. Inference (in- 
deed, arbitrary processing) may occur both before and after traversal of a 
link. After the user selects a button, the system may perform a series of 
inferences in order to determine what the available links are, possibly tak- 
ing context into account. If there are several options available, the user is 
then prompted to choose a particular option and (when needed) to supply 
parameters. (Alternatively, the system may invoke a default.) Inferencing 
is performed again in order to validate the refined request. Upon success- 
ful validation, the system determines (finds or generates) the appropriate 
link and traverses it. Traversal-which may itself be a complex inferencing 
process and may use application-level procedures-produces a symbol that 
names a node and computes the contents that represent it [23]. Inferenc- 
ing, or processing, is then performed on these contents (e.g., for the purpose 
of formatting and display). Usually, this final inferencing results in display 
of a new node. Thus, our generalization follows a select-infer-traverse-infer 
model. 

In order to see the logical import of this, recall our first browsing com- 
mand for basic hypertext, formula 3. We have labelled various subclauses 
for the purpose of easy reference in the discussion that follows. 

\J t ,  21, v ,  w, x, Y, z (18) 
(process-command (traverse-sink, w, v, (19) 

[update-log(traverse-sink, w, v,t,z)],x, y,z) t- (20) 
(button(w,t,-) A (21) 

link(t,v,z,-, display, y) A (22) 

node (z, u, -) A (23) 
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make-displa y-t ext (u,x)) ) (24) 

Here the arguments passed are the input parameter w (normally the button 
selected), the active node v, followed by any update messages such as up- 
dating the session log (or the current context), the display text x, its display 
mode y and z the new node to make active. 

How does the formula associated with line 18 need to be modified to acco- 
modate our concept of generalized hypertext? First, contextual information 
must be brought into play. Second, at  line 22 we need to generalize from 
trivially inferring a link by essentially looking it up in a table. Third, link 
traversal is accomplished at line 23 with, again, a trivial inference to look up 
u, the text associated with the node. Fourth, a step needs to be added after 
23 in order to cover post-traversal inference. Although line 24 is in fact an 
inferential step, it has the not very interesting function of performing a sim- 
ple transformation on a node's text t o  prepare it for display. These remarks 
lead naturally to the generalization of 18. 

vc7 cc7 r, s, t ,  v, w, x, Y ,  z 
(process-command(traverse-sink, w, v, 

[update-log([traverse-sink, w, v, t,z, c, cc]), 

update-context (c, cc)],~, y,z, c) t 

(ghtbutton(w,t, c) A 

ghtlink(t,v,z,-, y,r,c) A 

map-node (z, w,r, y, C,S, CC) A 

.. make-display-text(s, cc,x)) ) 

Note that an argument, c, to represent the current context, has been 
added to the head of the formula associated with line 25. In 25, our gen- 
eralization of 18, the first step, 29, corresponds to 21, but with contextual 
information added and the possibility that the values of its variables are de- 
duced, rather than merely looked up. The second step, 30, corresponds to 
22, again with the possibility of extensive inferencing. Step 31 corresponds 
to 23, but greatly generalizes it. From 30 we have the list r of eligible links 
forks, and perhaps the name of the destination node z. Resolving z, its dis- 
play text s and its display mode y7 however, often depends on the application 
command executed, since it normally determines the resulting report. 
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At 31, we apply the link ensemble to the node in the context, c, to 
produce s, the output of applying a link/command to the node, and cc, 
the new context. Extensive inferencing normally is performed here. In the 
event that r has many elements, the user must be prompted to make a single 
choice (see figure 3). The application (in our implementation, the model 
management system TEFA) than is called to execute the command on the 
object in the context. Again, complex inferencing will typically ensue. At 
32, s, corresponding to u in 24, is transformed for display, and the process 
completes by determining the mode of display, y ,  in the new context, cc, of 
the display object, x, returned. 

Thus, our generalized hypertext command model, 25, is quite similar to 
its basic hypertext relative, 18, but 25 has the effect of greatly generalizing 
18. There are analogous changes for the other browsing commands discussed 
for basic hypertext. 

Conclusion 

Under our concept of generalized hypertext, nodes are objects (declared or 
inferred) and links declare (explicity or implicitly) operations that may be 
applied to objects, usually producing a hypertext node upon completion. 
These generalizations are the outcome of our intention to construct a hyper- 
text system in which the cost of building hyperdocuments is greatly reduced 
through automatic creation of nodes and links on the basis of application- 
specific declarations. Bridge laws, and system-level procedures that imple- 
ment these generalizations, work on application-specific declarations in order 
to make the necessary inferences for automatic linking, for automatic node, 
link, and button creation, and support for multiple views of nodes, links, and 
buttons. 

An important element of our design concept is that the application should 
declare-explicitly or implicitly-what is important to it, and the generalized 
hypertext system should exploit these declarations in order to infer links, 
nodes, and views. Further, it is our hope that the recognized hypertext 
problems of network and cognitive disorientation are reduced by inferencing 
procedures that are broadly available for reporting on and explaining various 
system entities, notably nodes, links, and buttons. The essential idea is 
to employ a standard format to declare information about system entities 
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that map application elements, and to use generic (application-independent) 
inferencing procedures to generate nodes, links, and alternate views, and to 
provide system-level explanation features. 

Briefly, and finally, we see several main areas for generalized hypertext 
that need to be addressed in future research. First, connections between 
simplifications of the logic model for generalized hypertext and other repre- 
sentational schemes need to be explored. Such other representational schemes 
(e.g., graph grammars 127, 28, 291 and Petri nets with automation semantics 
[21, 521) offer the possibility of computational benefits. They also offer the 
possibility of a more detailed theoretical understanding of the nature and 
workings of the underlying represent ation. With special cases comes deeper 
understanding. Second, while our model provides for expression of context 
or local environments (e.g., the seventh argument of ghtlink/r), we have not 
h e r m r  yet in our implementation, Max--exploited this information to any- 
where near its full value. That, too, must wait for future research. Third, the 
logic modeling techniques employed above can, we are confident, be applied 
to modeling the internal structure of generalized hypertext nodes. Thus, for 
example, relationships between nodes (and even the existence of particular 
nodes) could be inferred automatically based on the application of general 
laws to the specific structures of existing nodes. I~lteresting relationships 
would include aggregation of information from several nodes (e.g., composite 
components [23, 24]), generalizations of information at a given node, and 
precedences of various sorts among nodes. If the useful possibilities here are 
limited, it is hard to see what those limitations are. 
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I f  t h e  Sov ie t  Union i s  t o  be compet i t ive,  w e  m u s t  h i t  the  i ns ide  
curvebal l .  - A l e k s e i  L. N i k o l o v  

Quotat ion o f  t he  Day 
The New York T imes  
August 16, 1989 

Figure 2: Basic Hypertext Illustration 
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I 4 File Edit Information Query Processinq Max Financial 

I The ASSET Cost Analysis nodule calculates ship acquisition and life cucle costs. The intent of the module is to provide data 

Information fluailable: 

(2) describe 
f-c = :  c-1-s + - (3) suggest-scenario 

c-1-a = : c-1- I I I 
D,I =: c-1-cc J SeIect 
C-f,s =: C-f-a 
~-f--, = : c-f-n [Ca"Fel) Number --> 
c-f-acq =: 1 , 2 L u u  - - 

0, 

Guard H. Q. 

& = :  c-f-cc + c - f - ~ r o f i t  

The model a s s e t  cal Is asset_= to evaluate 
c-f-cc, c-f-orof i t ,  c-1-cc and c-1-orofi t . - 

C- 

Figure 3: Description of the ASSET model, from Max Financial 
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