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On the Use of the Dempster Shafer Model 

in Information Indexing and Retrieval Applications 

The Dempster Shafer theory of evidence concerns the elicitation and manipula- 
tion of degrees of belief rendered by multiple sources of evidence to a common 
set of propositions. Information indexing and retrieval applications use a variety 
of quantitative means - both probabilistic and quasi-probabilistic - to repre- 
sent and manipulate relevance numbers and index vectors. Recently, several 
proposals were made to use the Dempster Shafes model as a relevance calculus 
in such applications. The paper provides a critical review of these proposals, 
pointing at  several theoretical caveats and suggesting ways to resolve them. 
The methodology is based on expounding a canonical indexing model whose 
relevance measures and combination mechanisms are shown to be isomorphic 
to Shafer's belief functions and to Dempster's rule, respectively. Hence, the 
paper has two objectives: (i) to describe and resolve some caveats in the way 
the Dempster Shafer theory is applied to information indexing and retrieval, 
and (ii) to provide an intuitive interpretation of the Dempster Shafer theory, as 
it unfolds in the simple context of a canonical indexing model. 

Keywords: Theory of evidence, Dempster Shafer model, relevance measures, information 
indexing and retrieval. 

Running Head: On the Use of the Dempster Shafer Model 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-93- 16 



1 Introduction 

Consider a finite and exhaustive set of mutually-exclusive propositions and a body of evi- 

dence that supports some subsets of propositions and discounts others. Many theories were 

put forward to describe how one should represent and update one's degrees of belief in such 

propositions when new or additional evidence is brought to bear. The classical approach 

is to cast degrees of belief as probabilities - a set of numbers b.etween 0 and 1 that obeys 

the axioms of subjective probability - and use Bayesian inference rules to revise them in 

light of new evidence. One problem with this approach is that it does not offer a clear way 

to model the various degrees of 'uncommitted beliefs,' or 'second order uncertainties,' that 

characterize most realistic inference problems. For example, consider the extreme case of 

'insufficient reason,' in which one knows absolutely nothing about a given set of n propo- 

sitions. The common solution, which goes back to LaPlace, is to assign a degree of belief 

of l / n  to each of the propositions under consideration, Incidently, this is also the solution 

that emerges from maximizing the unconstrained entropy function associated with the n 

unknown probabilities. 

Over the years, many students of belief revision theories have objected to  this crude quan- 

tification of insufficient reason. Why, the argument goes, should ignorance be translated 

to the strong statement that every proposition (or state of nature) is equally likely? This 

criticism has led to several alternative models that attempt to capture the elusive notion of 

uncommitted belief by modifying the asiomatic fi.amework of probability theory. Perhaps 

the best known model in this category is the 'theory of evidence,' originated by Demp- 

ster's (1967, 1967a) work on upper and lower probabilities. Dempster's ideas, which were 
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' 

based on a frequentist view of inference, were refined and extended by Shafer (1976), who 

also gave them a subjective interpretation. This led to the Dempster Shafer model - an 

elaborate formalism for representing and revising degrees of support rendered by multiple 

sources of evidence to a common set of propositions1. 

When the work of Dempster and Shafer was 'discovered' by the artificial intelligence com- 

munity, it immediately stirred a considerable interest in two application areas in which 

normative models of belief formation play a key role: espert systems, and information 

indexing and retrieval systems. For expert systems, the Dempster Shafer (DS) model pro- 

vides a mathematically-sound model for representing and manipulating rule-based degrees 

of belief, an area that was traditionally dominated by ad-hoc belief revision calculi whose 

relationship to probability theory \.;.as at best murky. For information indexing and re- 

trieval systems, the DS model can be used as a relevance calculus, designed to quantify and 

revise the degrees of association between documents, keywords, and user-supplied queries. 

This line of thought has led to the development of several DS-based information indexing 

and retrieval applications. For example, Biswas, Bezdek. Marques, and Subramanian (1987) 

built a document retrieval system in which the relevance of documents to taxonomical 

classes was measured and manipulated, respectively, by belief functions and Dempster's 

rule: "We choose to define similarity functions based on the Dempster Shafer theory of 

evidence ... one of the advantages of this approach is that it reflects the process of belief 

revision and updating just as in human reasoning processes." (Biswas et all 1987). Coming 

from a different direction, Turtle and Croft (1991) describe a canonical representation 

in which relevance is handled through inference networks that are structured as directed 

lIn this paper, the terms the Dernpster Shafer theory of evidence and the Dempster Shafer model are 
used interchangeably. 
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acyclic graphs. The nodes in the networks correspond to keywords, documents, and queries, 

and "the arcs joining the nodes are interpreted as assertions that the parent node provides 

support for the child node." Turtle and Croft proposed to operationalize these degrees of 

support through either subjective probabilities, or DS belief functions. A similar approach 

was undertaken in RUBRIC, a full-text information retrieval system described by Tong and 

Shapiro (1985). RUBRIC can be instantiated to operate with several alternative relevance 

calculi, the DS model being a prime example. 

The importance of such applications is obvious. as they attempt to take the DS model 'out 

of the lab' and implement it in realistic settings. In doing so, however, many adopters of the 

DS model have taken the model's validity for granted, either explicitly or implicitly. With 

that in mind, it is important to point out that both the cognitive and the normative roots 

of the DS model are still a matter of intense controversy: whereas Shafer (1987) argues 

that the theory of evidence is a natural extension of probability theory, many critics, e.g. 

Lindley (1987), view it as a reformulated version of a specialized, albeit interesting, case 

of classical probabilistic inference. The debate is not helped by the somewhat forbidding 

notation of the DS model, which prevents an intuitive understanding of its underlying 

structure and philosophy. 

In fact, the gap between the theory and practice of the DS model seems to be two- 

directional. On the one hand, many practitioners believe that the normative correctness of 

the DS model is a 'closed case,' proceeding to implement it without questioning its underly- 

ing rationale. On the other hand, many researchers try to defend the DS model on abstract 

philosophical or mathematical grounds, without realizing that simpler justifications can be 

found in the field, i.e. in the way the model is actually used in certain canonical settings. 
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The latter point is worth emphasizing: a close examination of certain applications of the 

DS model can provide not only a better understanding of the model, but, furthermore, a 

compelling normative justification. 

The research reported here builds on previous work by Schocken and Pyun (1990) and by 

Hummel and Landy (1988). Schocken and Pyun presented a simple DS-based relevance 

calculus which operated over a hierarchical space of keywords. Although the approach 

involved a frequentist interpretation of DS mass and belief functions, no attempt was made 

to interpret or justify the theory's algebra - Dempster's rule - using a domain semantics. 

One such interpretation was given by Hummel and Landy, who viewed the rule as analogous 

to a certain mechanism for pooling expert opinions. However, the Hummel and Landy work 

was an abstract mathematical analysis, detached from specific domains of application. The 

present research integrates and extends these two papers, resulting in a complete (although 

not unique) interpretation of the DS theory, as it unfolds in the context of an information 

indexing and retrieval (IR) application. 

The plan of the paper is depicted in figure 1 and described as follows. 82 presents the notion 

of index vectors and the challenge of eliciting and measuring relevance in a normative, 

rather than ad-hoc, fashion. 33 gives an overview of the DS model and illustrates how it  is 

commonly used in the context of 1R systems. This sets the stage to four critical questions 

regarding the theoretical fit between the general features of the DS model and the specific 

requirements of IR applications. In order to answer these questions, 94 presents a canonical 

indexing model in which the notions of keywords, taxonomies, and relevance, are treated 

formally and unambiguously. It is then shown that the canonical mode1 expounded in $4 

is isomorphic to the DS model, leading to a new intuitive understanding of the latter. §5 
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offers concluding remarks about the implications of the research on the DS model and on IR 

applications. The paper ends with two appendices. Appendix A presents an extension of 

the DS model that enables the handling of conjunctive indexing opinions (the need for this 

extension is discussed at the end of 54.1). Appendix B gives the proofs of the propositions 

presented in the body of the paper. 

Put figure 1 around here 

The Problem 

Models of bibliographical indesing concern the construction of data structures that enable 

rapid keyword-based access to vast collections of documents. Given a document, on the 

one hand, and a keyword-list, on the other, the goal of the indexing model is to select a 

subset of keywords that 'best7 describes the document to its potential users. This is done 

either by human catalogers or by automatic keyword extraction algorithms. Since some 

keywords are more relevant to the document than others, a numeric scale is often used to 

express thk strength of association between the document and the selected keywords. The 

result is an index vector, consisting of pairs of keywords and their respective 'relevance 

numbers.' Several models exist for representing and manipulating such indexing vectors, 

and the reader is referred to Salton and h1cGill (198.3) and to Salton and Buckley (1988) 

for comprehensive treatments of the general approach to the subject. 

Relevance is an elusive concept that defies simplistic definitions. Generally, the term is 

taken to refer to a relation between a document and an information need, and as such it is 
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The answer is that relevance is a subjective and composite relation which is often based on 

aggregating several indexing opinions that come from different sources. Specifically, each 

document has many classifiers, or discerning characteris tics, that determine its relevance 

to different keywords. For example, the title of a document can suggest one index, whereas 

the abstract can suggest another. Other aspects of the document, obtained through lexical, 

linguistic, and citations, analyses will yield additional indexing opinions that must be taken 

into consideration. Hence, even if the individual opinions were forced to be binary, their 

aggregation would probably induce a continuous index. In addition, many indexing opinions 

are not cast automatically; rather. the?; are elicited from human catalogers who inject yet 

another level of uncertainty and subjectivity to the indexing process. That is, when two 

or more catalogers are asked to index the same document, they may well supply different 

(but hopefully overlapping) indexing opinions. Indeed, empirical research indicates that a 

great deal of indexing inconsistency characterizes novice as well as well-trained catalogers 

(Jacoby & Slamecka, 1962, Stevens. 1965). 

Different IR applications use different models to handle this pluralism, and the validity 

of these models can be studied on empirical as well as on normative grounds. From an 

empirical perspective, an IR model must perform well in terms of functional criteria such 

as recall and precision, and whether or not the model makes sense on normative grounds 

is of a lesser importance. From a ~zormative perspective (to which this paper belongs), 

the credibility of an IR model hinges on its capacity to elicit, represent, and synthesize, 

relevance opinions in a formal, rather than ad-hoc, fashion. In order to do so, the relevance 

numbers and the rules that combine them must be given a compelling interpretation. So 

far, the leading normative interpretation of relevance has been probabilistic. Beginning 

with the seminal work of Maron and I<uhns (1960), probabilistic IR models were devel- 
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oped by Bookstein (1983), Cooper & Huizinga (19S2), Cooper and Maron (1978), Croft & 

Harper (1979), Harter (1975), Radecki (19S8), Robertson & Sparc Jones (1976), Thompson 

(1990), and Yu & Salton (1976), among others. Recently, however, several attempts were 

made to  handle relevance in IR applications using the Dempster Shafer model, which is 

widely considered to be a less restricted extension of probability theory. The strengths and 

weaknesses of the latter approach are discussed in the next section. 

3 A Dempster Shafer Indexing Model 

The DS theory of evidence concerns the representation and manipulation of degrees of 

support rendered by different sources of evidence to a common set of propositions, denoted 

9 and called the frame of discernmelzt. In contrast to a standard Bayesian design, in which 

degrees of support are normally assigned to elements of 9 directly, the DS model assigns 

degrees of support to subsets of propositions, i.e. to members of the power-set 2', also 

called 'possibilities.' The DS model offers several complementary ways to express evidential 

support in possibilities. In particular, the model defines three mappings from 2' to [0,1] 

termed mass, belief, and plausibility7 functions. The three mappings are mathematically 

equivalent in the sense that knowledge of any one of them (for every possibility) can be 

used to compute the other two. Therefore: we view them as alternative means to keep 

score of the same primitive set of degrees of support. In the standard model, when several 

sources of evidence support a common set of possibilities (the support can be cast in terms 

of either mass, belief, or plausibility functions), the overall support in the possibilities is 

computed through Dempster's rule of combination. 
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What is the nexus of the DS model and information indexing and retrieval applications? 

In one way or another, all DS-based IR applications are based on the following premises: 

(i) The DS notion of degrees of support can be used to operationalize the IR notion of 

relevance numbers; and (ii) When two or more classification criteria supply different sets 

of relevance numbers concerning the same document, Dempster's rule provides a plausible 

mechanism to combine them into a composite index (said otherwise: revise the relevance 

of the document to certain keywords in light of new evidence). The goal of this section is 

to  motivate a critical analysis of these premises. Specifically, we intend to: 

Provide a rigorous but accessible overview of the DS model, as it  unfolds in the 

familiar context of an IR application; 

Present a series of questions regarding the theoretical fit between the general features 

of the DS model and the special requirements of IR applications. 

The F'rame of Discernment: The frame of discernment 8 is an exhaustive set of mu- 

tually exclusive elements that can be interpreted as hypotheses, propositions, or simply 

'labels.' The power-set that contains all the subsets of 8 (including 0 itself and the empty 

set) is denoted 2'. In general, the semantics of the labels depends on the context in 

which the DS model is applied. In information indesing and retrieval applications, the 

frame of discernment is normally taken to be a keyword-list X: = { I c l , . ,  . , k,). If we fix 

d on a particular document, each keyword I;; can be interpreted as the proposition "ti 

is relevant to d." As we will see later, a DS-based indexing model seeks to compute the 

degrees of support in such propositions in light of different bodies of evidence. To illus- 

trate the lexical interpretation of a frame of discernment, a keyword-list that supports 
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a collection of documents about modern art might be K = {Arp, Braque, Cezanne, . . . , 
~ o r n ) ,  enumerating all the major artists of the Twentieth Century. The power-set in this 

case is 2" = { { ~ r p ) ,  {Braque), {~ezanne) ,  . . . , {Arp, Braque), {Arp, ~ezanne ) ,  {Braque, 

~ezanne ) ,  , . . . , {Arp, Braque, Cezanne), . . . ,0? K ) ,  the last two elements being the empty 

set and AG itself. Each element in 2' represents a disjunction of keywords, denoted here- 

after a lexical subset. The act of indexing a document using li: amounts to choosing, among 

all the indexing possibilities in 2K, the one or more lexical subsets that best describe the 

document to its potential users. 

For example, suppose that an art scholar is asked to index the document "The Injluence of 

Cezanne on early Cubism" using K, based on partial information such as the document's 

title or abstract. Without loss of generality, assume that (i) the main focus of the docu- 

ment is Cezanne; and (ii) the only Cubist artists in the current keyword-list are Braque 

and Picasso. Under these assumptions, the scholar will probably supply an index of the 

form S = {({Cezanne}, rl), ({~raque,  ~ i c a s s o } ,  r2)) ,  with r1 > r2. This would entail the 

following information: (i) the document is relevant to Cezanne; (ii) it is also relevant, to 

a lesser extent, to either Braque or to Picasso. This is quite different from the indexing 

opinion S' = {({Cezanne), rl),  ({Braque), T ~ ) ,  ( {Picasso), rz)}, which would be more ap- 

propriate if the document's title were, say, "Tlze Inftuence of Cezanne on the early work of 

Braque and Picasso ". 

We arrive at our first question: 

Question Q1: When the DS model is applied to information indexing and 
retrieval applications, the keyword-list K is taken to  be the frame of dis- 
cernment, and indexing possibilities are taken to be elements of the lexical 
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power-set 2n. What are the taxonomical implications and limitations of 
this representation? 

To motivate this question, consider again the document "The Influence of Cezanne on 

early Cubism". Note that the most reasonable index of this document would be Sf' = 

{({cezanne}, r l ) ,  ({Cubism), r2)), especially if the document's abstract makes no references 

to specific artists other than Cezanne. However, Cubism is not an eIement of the original 

keyword-list K,  so it does not entail an indesing possibility. To solve the problem, we 

may want to  extend the original frame of discernment, creating a new keyword-list of the 

form K' = K U {Cubism}. However. the keywords Braque, Picasso and Cubism, have a 

great deal in common from a bibliographical standpoint. Therefore, K' is not a valid frame 

of discernment, because some of its elements are no longer mutually exclusive. Before we 

present a solution to this problem, we have to be very specific about the proper relationship 

among frames of discernment, keyword-lists, and taxonomies of classes. We will return to 

this issue in section 3, where an answer to  Q1 is given. 

Mass Functions: A mapping m : ze t [O,1] with the properties: 

is called a mass function2. In the DS model, the mass na(X)  represents the degree to  which 

a certain source of evidence supports the possibility X, where X & 0. As a convention, 

the mass which is 'left over7 after all the proper subsets of 0 have been assigned masses 

2Throughout the paper, upper-case variables refer to sets and lower-case variables refer to scalars. 
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is allocated to  8 itself and denoted the uncommitted belief displayed by m, or m(6). In 

DS-based IR applications, where 8 is taken to be a keyword-list K, the mass m(X)  is taken 

to represent (to a first approximation that will be discussed shortly) a degree of relevance, 

or, more accurately, the degree of belief that the document is relevant to the lexical subset 

X C K, according to a certain classifier. Hence, if a classifier (say, classifier number 1) 

supplies the indexing opinion Sl = { ({~ezulne) ,  0.6), ({Braque, ~ i c a s s o ) ,  0.3)), then the 

mass function that is induced by this opinion is defined as follows: 

ml((cezanne)) = 0.6 
ml({Braque, ~ i c a s s o ) )  = 0.3 

rnl(lC) = 0.1 (4) 
ml(X) = 0 for all other proper subsets of  K 

Note that the uncommitted belief induced by the opinion is assigned by default to the frame 

of discernment by means of ml(lC) = 1 - 0.6 - 0.13 = 0.1. The rationale for this assignment 

is as follows. If a certain classifier provides no information whatsoever about indexing 

possibilities, the classifier's 'ignorance' can be represented by the index S = {(K, 1)). 

This implies the mass function m ( { ~ r p ,  Braque. Cezanne, . . . , ~ o r n ) )  = 1 and m(X) = 0 

elsewhere, reflecting the (not very useful) opinion that the document is relevant to Arp, 

or to Braque, or to Cezanne, or to any other artist in the keyword-list. Other classifiers 

can provide more focused relevance opinions, resulting with lower levels of m(K). Hence, 

unlike a standard probabilistic design, where the notion of uncommitted belief is not well- 

defined, the DS model provides explicit means to quantify and manipulate it via rn(K). 

Although uncommitted beliefs, or 'second-order uncertainties,' can and have been treated 

in the standard framework of subjective probability, (e.g. Baron, 1987), there is no simple 

way to do it. The theory of evidence is unique in that it treats the notion of uncommitted 
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belief explicitly, at  the axiomatic level. 

It is important to observe that mass functions represent indivisible, or atomic, degrees 

of belief. For example, the magnitudes of m({~raque,Picasso)), m({Braque)), and 

m({~icasso}) are unrelated, and a mass function like m({Braque, picasso)) = 0.9, 

m ( { ~ r a ~ u e ) )  = 0, and m({~icasso) )  = 0 is not inconsistent with the theory. This par- 

ticular function represents a cataloger who strongly believes that the document is relevant 

to either Braque or to Picasso, although he is not willing to say anything more specific 

beyond this assessment. 

But what does this notion of relevance mean? We a r r i ~ e  at our next question: 

Question Q2: A mass function is a formal, domain-independent, component 
of the DS model. Relevance is an informal, but highly intuitive, concept 
that plays a key role in information indexing and retrieval applications. If 
a mass function is taken to represent relevance, then what is the semantics 
of this representation? Said otherwise. what type of relevance do mass 
functions represent? 

Question q2 suggests the premise that mass functions are not necessarily a natural represen- 

tation of the intuitive notion of relevance, as it is typically construed in information indexing 

and retrieval applications. To illustrate this reservation. consider the following example. If 

mass functions are used to represent relevance, then the relevance numbers in each index 

must sum up to 1. That is, the set of allowable indexing opinions {(li;, rl):. . . , (I<,, r,)} 

is constrained by Cy r; = 1. Many 11-ould argue that this constraint does not make sense, 

and that an indexing opinion like, say, { ( { ~ l b e r s )  ,O.S), ( { ~ a n d i s n k i )  ,0.4),  an lee) ,O.4)) 

is perfectly reasonable. The only '\vrong7 thing about this opinion is that it is inconsistent 
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with the DS notion of a mass function, but this seems to be a limitation of the model's 

application, not of the opinion. 

One pragmatic solution is to treat the relevance numbers not as absolute, but rather as 

relative, measures of subjective relevance. According to this position, the two indexes S = 

{(A, 0.8), (B, 0.4, )(C, 0.4)) and St = ((A, 0.4), (3, 0.2), (C, 0.2)) are equally informative, 

as both imply exactly the same relative information: the document is twice as relevant 

to  A as it is to  B, and it is as relevant to B as it is to C. However, this immediately 

leads to  another snag: according to the same principle, the index is also equivalent to  

S" = { ( A ,  0.2), (B,  0.1), (C, 0.1)). Yet S' and S" reflect two different states of uncommitted 

belief (0.2 and 0.6, respectively), and thus they do. not induce the same mass function. 

To get around the problem, we can elicit uncommitted beliefs directly from the catalogers3. 

For example, having specified an indexing opinion, say {(A, O.8), (B,  0.4), (C, 0.4)), the 

cataloger can be asked to rate his confidence in the opinion on a scale of 0 to 1. If the 

confidence level is 1, the index is normalized to { ( A ,  0.5): (B ,  0.25), (C, 0.25)), reflecting 

an uncommitted belief of 0. If the confidence level is 0.8, the index is normalized to  

{(A, 0.4), (B, 0.2), (C, 0.2)), reflecting an uncomillitted belief of 0.2. In general, for any 

unconstrained indexing opinion {(Icl : rl ), . . . , (Kn,  rn ) )  and a confidence level 0 5 c < 1, 

we can find a unique mass function { ~ Z ( I { ~ ) ,  . . . , m(Ii,), m(K:)) such that (i) the m(K;)'s 

preserve the relative properties of the unconstrained r;'s; and (ii) m(K) = 1 - c. 

The shift from an absolute to a relative scale of relevance has several justifications. First, 

a significant body of psychological evidence indicates t,hat relevance is indeed a relative 

31n this section, the terms classifier and cataloger are used interchangeably. The distinction between 
the two terms is made explicit in the nest section. 
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property (Saracevic, 1975). Second, we must remember that ultimately, an IR application 

must satisfy the information needs of library patrons, and that relevance numbers should 

be used pragmatically to that end. For example, according to Maron (1982)'s 'Ranking 

Principle,' the chief objective of relevance numbers is to present to the patron a set of 

documents, sorted by decreasing order of perceived relevance to his or her query. A similar 

principle is used in diagnostic expert systems, where ordinal, rather than cardinal, degrees of 

beliefs are often used to guide the inference engine to promising directions and to explain the 

system's reasoning to the people who consult it. If we accept Maron7s Ranking Principle as a 

working assumption, then normalization is not an issue, since rankings are invariant under 

normalization. However, when multiple indesing opinions are aggregated into a pooled 

index (something that we have not done yet), normalization becomes a tricky manipulation. 

Specifically, let Sl and S2 be two indesing opinions, @ an aggregation operator, and N a 

normalization operator. In many cases (depending on the specific definitions of @ and N), 

it can be shown that N ( S I  @ S2) # N(Sl)  @ i\i(S;), i.e. that N is not homomorphic. 

In conclusion, we see that even though relevance numbers can be represented by mass 

functions, the representation has some theoretical caveats. Clearly, these limitations are 

related to the fact that we are still lacking explicit domain semantics. That is, we do not 

know yet what is the exact meaning of relevance numbers. This analysis is taken up in 

section 3, where an answer to question Q2 is presented. 

The Core: The core of a mass function rn : 2' --+ [O, 11 is the union of all the possibilities 

X E 2' for which m ( X )  > 0. When the frame 8 is taken to be a keyword-list X;, the core 

becomes a list of indexing possibilities, in the view of one particular classifier. For example, 

the core of the mass function induced by classifier 1 (Eqn. 4) is C1 = {{~ezanne), ( ~ r a q u e ,  

~icasso),AC). Suppose now that the same document is indexed by another classifier (clas- 
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sifier no. 2), whose indexing opinion is captured by the following mass function: 

m2({~icasso))  = 0.8 
m2(X:) = 0.2 (5) 
m2(X) = 0 for all other proper subsets of X: 

The core of this mass function is C2 = { { Picasso) , X:) . Is there a credible way to combine 

the two indexing opinions (4-5) into an aggregate indes? As a first approximation, one 

can focus on all the lexical subsets that both classifiers agree are relevant to the document. 

In particular, if classifier 1 thinks that X is relevant and classifier 2 thinks that Y is 

relevant, then both classifiers agree that X n I' is relesant (recall that both X and Y are 

interpreted as disjunctions of keywords). This leads to the following definition of a pooled 

core: Let ml, m2 : 2* ---t [O,l] be two mass functions n-it11 cores C1 and C2. The pooled 

core C = C1 $ C2 will be: 

For example, the pooled core of C1 = {{~ezanne) ,  { ~ r a q u e ,  Picasso), K) and C2 = 

{{~ icas so ) ,  K) is C1 $C2 = {{~ezanne),  { ~ i c a s s o ) ,  {Braque, Picasso), XI4. In general, 

then, the pooled core can be viewed as a first approsimation of the degree of consensus 

or disagreement displayed by two independent indesing opinions. If C1 @ Cz = C1 = C2, 

we have a consensus regarding which possibilities are likely. If C1 $ C2 = 0, the classifiers 

agree on nothing. If C1 $ C2 is not empty, we have an overlap of some opinions. Of course 

the problem of (6) is that it merely identifies areas of mutual agreement (or iack thereof) 

4Note that K acts as an attractor, in that A n h' = -4 for all -4 C K. 
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between two classifiers. In order to compute the intensity of such agreements, a more 

sensitive pooling mechanism is required. Dempster's rule provides one such mechanism. 

Dempster's Rule: The most fundamental (and debateable) pillar of the DS model is 

the convention that once degrees of support are cast in terms of mass functions, Demp- 

ster's rule provides a proper mechanism to  combine them. Let ml and rn* be two mass 

functions defined over the same frame of discernment: ml,m2 : 2' -+ [O, 11, with cores 

C1 = {A1,. ..,A,,) and C2 = (B1,. . . ,Bn2) ,  respectively. Dempster's rule computes the 

pooled mass function m = ml $ m;! : 'B -+ [0, I] as follo\vs: 

The rationale behind (7-8) can be explicated through an 'intersection table.' In our two- 

classifiers scenario (4-5), the table has the following form: 
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The top row of the table records the mass function of the first classifier excluding its zero 

elements, i.e. the set of values ml (A1), . . . , ml(A,, ) for elements A; in the core C1. The 

left column of the table records the mass values of the second classifier for its core elements, 

i.e. the set of values ma(&), . . . , nz2(B,,) (The curly brackets are dropped for the sake 

of brevity, e.g. m ( ~ i c a s s o ,  Braque) stands for m({Picasso, Braque)), etc.). Inside the 

table, the (i, j)'th cell records the pooled mass contributed to A; n Bj by the pair A; and 

Bj, which is taken to be the product ml(Ai) . m2(Bj). Using these entries and combining 

cells with equivalent intersections following (7-S), one obtains: 

After multiplying by = 1.923 one obtains: 
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m(Cezanne) = 0.23 
m(Picasso) = 0.62 

mlPicasso, Braque) = 0.11 
nz(h') = 0.04 
mjg) gf o 

Since the rn(.)'s sum up to 1 and m(0) = 0, the mapping m = m l @  mz that emerges from 

Dempster's rule is also a mass function, consistent with (3). 

In words, Dempster's rule computes a measure of agreement between two sources of evi- 

dence concerning various possibilities drawn from a common frame of discernment. The 

rule is conservative in that it focuses only on those possibilities that both sources support. 

The magnitude of the pooled support that a possibility S collects is computed by summing 

the products of the two masses nzl(-X-) and ?722(,%-). which explains the product operator 

in (7). Because the sources of evidence express their opinions over 2' rather than over 0, 

a joint agreement on a possibility can occur in more than one way, i.e. whenever the two 

sources support possibilities whose intersection gives A-. This explains the summation op- 

erator in (7). Finally, when a pairing of two opinions results in a null possibility (the empty 

set), the multiplication of their individual masses may still be positive. This is an anomaly, 

since the definition of a mass function (3) requires that the mass of the null possibility be 

zero. This explains the role of (S), in which nzf(0) is deducted from the total mass and the 

remaining mass is divided by (1 - nz'(0)) to ensure that the pooled mass will sum up to 1. 

Dempster's rule is often compared to and contrasted with Bayes rule, because both rules 

concern the combination of probabilistic opinions into an aggregate (posterior) opinion. It 

is crucial to observe however that unlike Bayes rule. which is a trivial consequence of the 

axioms of probability theory, Dempster's rule is a prescriptive pooling mechanism which is 
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neither right nor wrong, and thus it is less of a 'rule,' and more of a 'recipe.' Therefore, we 

take the position that the ultimate justification of Dempster's rule should be sought in the 

field, i.e., in the various applications in which the rule is supposed to have a certain sense 

of domain validity. This leads to the following question: 

Question Q3: What is the intuitive justification of Dempster's rule in the 
context of information indexing and retrieval applications? If one wishes 
to aggregate indexing opinions via a certain pooling mechanism, then why 
use (7-8) and not another set-of formulae? 

A typical way to avoid this question is to invoke the argument: "If one uses mass functions 

to represent relevance numbers, then one should combine them using Dempster's rule, be- 

cause that is how mass functions are combined in the DS model." This argument could have 

been valid if Dempster's rule had a normative, domain-independent, and non-controversial 

justification. But this is not the case. In fact, many researchers have struggled to make 

sense of Dempster's rule, and the debate is still going strong: "Shafer's theory has been 

strongly criticized for its failure to give a meaning to the measures of belief and plausibility, 

or to show how someone might arrive at a particula~+ numerical assessment. In the absence 

of a definite interpretation, it is difficult to see how the rules of the theory, and in particular 

Dempster's rule, can be justified " (Buston, 1989). Given this controversy, the importance 

of question Q3 is obvious. Hence, our goal is to interpret, and to a certain extent defend, the 

meaning of Dempster's rule in the specific contest of an information indexing and retrieval 

application. This analysis is taken up in section 3. where we return to question Q3. 

Belief Functions: Building on the elementary notion of a mass function m : 2@ -+ { O , l ] ,  

the function Be1 : 2' -+ [O, 11, denoted a belief function? can be defined as follows: 
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Whereas m(X)  measures the support rendered to X (a subset of propositions) directly, 

Bel(X) measures the total support rendered to X and to all its subsets (each being a more 

specific proposition than X). This relationship is depicted in figure 2, which illustrates how 

a belief function can be derived from the mass function given by (10). Note that (3) and 

(11) imply that Bel(0) = 0 and Bel(8) = 1 always. Also. (11) implies that the Be1 function 

is completely determined by the m function, and. like~vise, that m can be recovered from 

Bel's definition (Shafer, 1976, p. 39). 

Put figure 2 around here 

Plausibility Functions: Whereas Bel(X) measures the total support rendered to a possi- 

bility X ,  the plausibility of X '  denoted PI(X), measures the maximal support that X can 

possibly attain under a given mass f~~nct ion m. Specifically: 

In words, Pl(X) records the total mass allocated to all the possibilities with which X 

intersects. For a pictorial description of this relationship, refer again to figure 2. 

The intuitive relationship between the three functions m(.), Bel(-), and PI(.) can be de- 

scribed as follows. Beginning with Bel's definition, consider the two possibilities X, A E 8. 
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Since both X and A are disjunctions of propositions, the set-theoretic statement A E X is 

equivalent t o  the logical rule A -., X, which we will interpret as: 'If the truth lies in A, it 

must also lie in X.'  Therefore, the sum of all the masses associated with premises A that 

imply X can be viewed as a measure of the total support rendered to X. As regards Pl's 

definition, suppose now that A n X $. 0 (but A is not necessarily a subset of X). Since 

the possibility A is a disjunction of propositions, the mass m(A) rendered to it can 'float' 

freely to any one of its subsets, including those that intersect X. In the extreme case, the 

intersection A n X may inherit the entire mass of A. It follows that Pl(X) is the upper 

bound of Bel(X). 

To do justice to  the theory of evidence, it should be noted that the construction of Be1 and 

PI using m is only one way to define these functions. Shafer provided direct definitions of 

mass, belief and plausibility functions in terms of each other. He has also emphasized the 

key role that subadditivity plays in the theory of evidence, a point which we now turn to 

discuss in the specific context of information indesing and retrieval. 

Sub Additivity: The complement of a set A' C 8. i.e. the set of all propositions that are 

in 8 and not in X ,  is denoted hereafter 7. Definitions (11) and (12) imply the following 

important relationships: 

Pl(X) = 1 - Bel(T) 

If a certain Belb were a Bayesian representation of degrees of belief, the additivity axiom 

of probability theory (X n Y = 0 implies Be1bj-X- U Y) = Belb(X) + Beb(Y)) would mean 

that 

Belb(X) = 1 - Belb(T), (15) 
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yet (13) and (14) imply that in the general case Bel(X) 5 1 -Bel(r) ,  leading to the famous 

subadditivity property of the theory of evidence: 

In other words, the belief that one holds in a possibility does not automatically imply 

one's disbelief in the negation of that possibility. In information indexing and retrieval 

applications, where 8 is taken to be a keyword-list K. this tenent has important implica- 

tions. For example, if the admittance of new evidence causes a cataloger to increase his 

belief in the document's relevance to a lexical subset X. the same evidence should not 

necessarily decrease his belief in the document's relevance to lexical subsets in x, espe- 

cially if the cataloger is not confident in his indexing opinion. In particular, the difference 

1 - Bel(X) - Bel(X) is called the uncommitted belief with respect to X. If Be1 were 

a Bayesian representation of degrees of belief, the uncommitted belief would be zero by 

definition. This is best illustrated in the 'state of insufficient reason,' in which one knows 

absolutely nothing about a set of propositions 8 = (ql.. . . , 9,) .  Whereas the common so- 

lution is to set Bel(q) = 1/72. for all q, E 8, the theory of evidence would set Bel(8) = 1 and 

Bel(X) = 0 for all the other proper subsets of 8. This is the case when the uncommitted 

belief is at maximum. 

The interpretation of Bel(.) and PI(.) as lower and upper-probabilities has led many to 

view the theory of evidence as a novel calculus for eliciting and manipulating interval- 

valued, rather than point-valued, degrees of beliefs. Indeed, the theory allows one to 

. express the belief in every hypothesis X by means of the interval [Bel(A'), Pl(X)], which 

may be updated as new evidence about is admitted. Further, the width of the interval, 

Pl(A')-Bel(X), which by definition equals 1 -Be](-Y) -Bel(x), represents the uncommitted 

belief with respect to A'. If the uncommitted beliefs induced by a certain mass function 
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m were zero for all the hypotheses under consideration, the intervals would degenerate to 

zero widths and Be1 would be a standard probability function. Yet in the more general 

case in which the mass reflects some 'second-order uncertainty,' or 'ambiguity,' the degree 

of belief in possibilities X drawn from 0 is allowed to 'float' between Bel(X) and PI(X). 

One benefit of such a model is that it  is more robust and less prone to human errors in 

assessing subjective degrees of support. 

We arrive at  our last question: 

Question Q4: The designer of a DS-based 1R application can choose to elicit 
and represent relevance through three alternative languages: mass func- 
tions, belief functions, and belief intervals. What is the relationship among 
these three representation in the specific contest of information indexing 
and retrieval applications? 

Recall that the three functions m, Bel, and Pl, are mathematically equivalent, in the sense 

that knowledge of any one of them (for every possibility) can be used to compute the other 

two. This equivalence might lead one to concur that the question of whether to use m, Bel, 

or [Bel, Pl] to elicit and manipulate degrees of support depends on cognitive and efficiency 

considerations. As it turns out, this conclusion is quite nai've. For example, belief intervals 

are not as flexible a representation as we would like them to be. That is, when one elicits 

[Bel,Pl] intervals from a source of evidence, it is not true that the only restriction is that 

0 < - Be1 < P1 < 1. Again, a full understanding of these constraints requires a semantic 

interpretation, which we now proceed to present. 
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4 A Canonical Indexing Model 

As figure 1 illustrates, the key theme of this paper is the interplay of the theory and practice 

of the Dempster Shafer model, as viewed through the 'lens7 of a particular application. 

The previous section was structured around the key constructs of the theory: the frame 

of discernment, mass and belief functions, and Dempster's rule. Coming from the other 

extreme, this section is structured around the key constructs of the application: taxonomies, 

relevance functions, and index aggregation operators. This leads to the development of a 

canonical indexing model, around which the remainder of the paper evolves. In building 

this model, our intention is to articulate an indexing mechanism which is simple, intuitive, 

and, most importantly, has a straightforward probabilistic interpretation. 

The main result that we are aiming at is this: notwithstanding its domain-specific origin and 

its strict probabilistic foundation, the canonical model that we will expound is isomorphic to 

the DS model. This result is based on previous work by Hummel and Landy (1988), who 

defined an opinions pooling mechanism which plays an important role in our canonical 

model. The isomorphism has three important implications. First, the canonical model 

addresses all the questions that were raised about the theoretical fit between the DS theory 

and information indexing and retrieval applications. Second, because the limitations of 

the former will be explicit, implicit limitations of the latter will become apparent. Third, 

because the canonical model makes no use of estra probabilistic arguments, it also provides 

a simple probabilistic interpretation to the DS theory, which is often claimed to be an 

extension of probability theory. 
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4.1 The Taxonorny 

So far, we have assumed that the keyword-list is a 'flat7 set of index terms. In most 

IR applications, though, the keyword-list has a rich semantic structure that can be used 

to improve and refine the indexing process. Typically, the structure can be described 

in terms of an i s -a  network that imposes a generalization/specialization relation on the 

keyword-list. Taken together, a keyword-list along with its underlying structure will be 

henceforth referred to as a taxonomy. From the user's perspective, the taxonomy is a 

structured set of classes, or categories, designed to facilitate access to a body of material in 

a particular subject of interest. For esample, consider the taxonomy depicted in figure 3, 

which organizes art-related documents according to major artists and artistic movements. 

Put figure 3 around here 

Taxonomies are constructed by domain experts - in this case art scholars - who provide 

two types of information: (i) a set of classes: and (ii) a taxonomical structure. For example, 

the set of classes in figure 3 is C = {Art, Braque, Cubism, Dada, Impressionist ,  Janco, 

Modern, ~ i c a s s o ) .  The taxonomical structure can be represented as a set of ordered pairs, 

where (x, y) codes the assertion 'class z is a direct generalization of class y'. With this 

notation, the structure of figure 3 is completely defined by the set H = { ( ~ r t ~ ~ o d e r n ) ,  

( ~ r t , ~ m p r e s s i o n i s t s ) ,  (Modern, Cubism), (Cubism,Braque), (Cubism, ~ i c a s s o ) ,  (Dada, 

~ i c a s s o ) ,  (Dada, Janco)). As the figure illustrates, the resulting topology is a directed 

graph consisting of the nodes set C and the edges set H. Note that each node x E C can 

be associated with a set of terminal nodes which we denote X' = TERM(X). For example, 

~ ~ ~ ~ ( ~ u b i s r n )  = {Braque,Picasso). The notion of terminal sets plays a role in our 
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definition of a taxonomy, which is as follows: 

Definition: A taxonomy is a directed, acyclic, and finite graph T =< C, H >, where C 
is a set of classes (nodes) and H C C x C is a direct-subclass relation (set of edges), 
under three constraints: 

C1: For every class y E C, save for one exception, there is at least one other class 
x E C such that (x, y)  E H. The one class in C that is no a subclass of any 
other class is called the root of the taxonomy. 

C2: If y is a subclass of x, i.e. (x, y) E H, then there is no other chain of subclasses 
beginning with x  and terminating with y in H .  That is, H designates a minimal 
set of subclass relations. 

C3: For each x, y f C, T E R A ~ ( ~ )  = T E R R ~ I ! ~ )  if and only if x = y. That is, in a 
taxonomy graph every class is associated with a unique set of terminals. 

A taxonomy is much like a tree, escept that children nodes can have multiple parent nodes 

at the level above. For example, in figure 3, { ~ i c a s s o )  is a subclass of both {cubism) and 

{ ~ a d a ) .  Thus there can be multiple paths from the root to any given node. Further, those 

paths can have different lengths? so that unlike a tree. the depth of a node is ambiguous. 

(Unless it is defined as the minimum path length from the root, in which case the length 

is not necessarily monotonically increasing when traversing subclass relations.) Using tree 

terminology, we refer to the classes that can be reached by traversing subclass relations from 

x 'downward' as the descendants of z. and to the classes of which x is a descendant as the 

predecessors of x. The root of the taxonomy is the only class that (i) has no predecessors, 

and (ij) is the predecessor all other classes, e.g., art in figure 3. Since the taxonomy graph 

is finite and acyclical, it contains a 'boundary,' or a set of terrninal~classes, which we denote 

K. A class k E C is said to be terminal if it has no descendants, i.e. if no edges of the 

form (k,x) exist in H.  The set K = (k173x E C with (k,x) E H),  which is completely 

determined by C and H, plays an important role in the subsequent analysis. Therefore, we 

will sometimes use it to subscript the name of its respective taxonomy, as in TK =< C, H >. 
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Given a taxonomy TK =< C, H >, we will further characterize each class x E C by two sets 

of classes that we denote LIB(x) and VOL(X). and refer to as the library rooted at x and 

the volumes of x, respectively. LIB(X) contains all the descendants of x, including x itself, 

representing the entire set of classes into which c may be decomposed. VOL(X) represents a 

larger set, consisting of LIB(X) as well ks all the predecessors of keywords in LIB(X), i.e. all 

the classes that have something in common with x. For example, ~ ~ ~ ( ~ u b i s m )  = {cubism, 

Braque, ~ i c a s s o ) ,  and ~ ~ ~ ( ~ u b i s m )  = {cubism, Braque, Picasso, Modern, ~ r t ) .  These 

sets can be given a recursive definition, as follo\vs: 

LIB(X) = {x) u {Y E C13z E LIB(X) with ( z ,  y)  E H} (17) 

Definitions (17-18) imply that (i)  root) = C ,  so that the root library contains all the 

classes in the taxonomy; (ii)  LIB@) = {k) if and only if I; E K, so that terminal classes 

are characterized by libraries that contain singleton classes only, and (iii) for each x E C, 

TERM(X) = LIB(X) n K, a convenient definition of the terminals set. The definition of LIB 

and the last assertion imply that (x: y) E H -+ TER~I (X)  >  TERM(^). 

The indexing process: The act of indexing a, document within a taxonomy can be de- 

scribed as a top-down, depth-first search process. To illustrate, suppose that an art-related 

document is to be indexed within the art taxonomy from figure 3. Without loss of gen- 

erality, assume that the document is relevant to modern art. Beginning at  the first level 

under Modern and proceeding left to right, Itre test if the document is relevant to Cubism. 
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If the answer is 'yes,' we step down one level and test if it is relevant to Braque. If the 

answer is 'yes,' we index the document in Braque. If the answer is either 'no' or 'unsure,' 

we test if it  is relevant to Picasso. If the answer is either 'no' or 'unsure,' and assuming 

that Picasso is the last class below Cubism, we backtrack one level, index the document in 

Cubism, and proceed to explore Dada. If the document is not relevant to any of the classes 

thus visited, we backtrack one level and index the document in Modern. This would reflect 

the notion that even though the document is related to modern art, the existing taxonomy 

fails to discern the exact category to which it belongs. Thus the indexing process involves 

a depth-first search which is cut off at any class that is deemed irrelevant to the indexed 

document. In practice, the process can be considerably shortened by using the domain 

knowledge of a human cataloger. 

We see that the notion of relevance that is consistent with this process is defined over subsets 

of, rather than individual, keywords. That is, if a document is indexed under, say, Cubism, it 

implies that the document is relevant to ~ ~ ~ ( C u b i s r n ) ,  like other documents about Cubism, 

Braque, or Picasso. Beyond this interpretation. however, the indexing decision does not 

imply any specific logical relationship involving the keywords in  cubism) ism), except that 

it says that the document should not be indesed under any one of the keywords alone. 

This definition of relevance is convenient because it allows us to be as specific as we wish in 

our relevance statements. If we are sure that a document is relevant to a certain class, we 

index it under that class. If we are not sure, we can backtrack and index the document in a 

library that contains the class. W can do this all the way up to the root of the taxonomy, 

at which point the indexing decision roo t  would express the opinion that the document 

belongs somewhere in the library, without specifying esactly where. 
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As we will see shortly, the above indexing process maps well on the standard DS model. 

However, the process as described has one critical shortcoming: it does allow us to differen- 

tially specify a document's relevance to conjunctions of keywords, a situation which occurs 

frequently in IR applications. It turns out that conjunctive indexing can be handled quite 

effectively by a simple extension of the standard DS model. Since the extension entails a 

diversion from the main theme of the paper, v7e will describe it in a separate appendix. 

Relationship to  t h e  theory of evidence: In IR applications, relevance judgements are 

expressed and manipulated over a taxonomy - a structured set of classes. In the DS model, 

belief functions are elicited and combined over a set-theoretic frame of discernment. Hence, 

in order to implement relevance judgements as belief functions, we must specify a unique 

mapping from the semantic domain of classes to the set-theoretic domain of lexical-subsets. 

The linkage will be established through the keyword-list K:, which is a shared property of 

both domains. 

Beginning with the DS domain, let h' be a collection of keywords, or a lexical frame of 

discernment, and let 2K be the power-set of h', escluding the empty-set. We define the 

subset graph of K: to be GK =< 2K, S >, where 2" (nodes set) enumerates all the subsets of 

K: excluding the empty set, and S c 2" x 2" (edges set) is a minimal subset relation. That 

is, (X, Y) E S if and only if X > Y and there are no other subsets that can fit in between, 

i.e. there is no 2 E 2K such that X > Z and 2 > 1'. It follows that (i) subset X has 

exactly one more element than subset Y ,  and (ii) the root node of G is the maximal set in 

2K, i.e. K: i t ~ e l f . ~  We will also speak of the transitive closure GL, which is the graph that 

$The subset graph has a layered structure. Specifically, if K consists of n elements, then the subset 
graph will consist of n levels. Labeling the root level 1 and the terminals level n, each level i = 1, . . . , n 

consists of ( -: + ) subsets, each of cardinality n - i + 1. 
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is obtained from G by adding new edges from subset X to subsets Y whenever there is a 

path from X to Y in G. Hence, G? contains a directed edge (X, Y) for every two subsets 

X, Y E 2" such that X 3 Y. 

Given these constructs, it  is not difficult to see that every taxonomy TK =< C, H > can 

be embedded into its related G*, graph. We sketch the proof by construction, as follows. 

Given a taxonomy TK =< C, H >: vie use C and H to extract the set of terminal classes 

K. Next, we use the power-set 2K to construct the graph G b  Now, let us fix a pair of 

connected nodes in TK so that x, y .E C and (x, y)  E H. We have to show that both the 

nodes and the edge map uniquely on Gk. Since TK is a taxonomy, every node x E C is 

associated with a unique set of terminals  TERM(^) = A- E 2K. By construction, every 

lexical subset in 2K is associated with a single node in G*,. Thus, both x and y map 

uniquely on the nodes X = T E R ~ I ( X )  and Y = T E R J I ( ~ )  in Gz. Now, (x, y )  E H implies 

that TERM(X) > TERM(ZJ). This, in turn. implies that there is an edge between X and Y in 

G:. Thus, both x, y ,  and (x, y) map uniquely on Gk, implying that TK can be embedded 

in Gz. An example for the case of K: = {Braque. Picasso, ~ a n c o )  is given in figure 4. 

Put figure 4 a.round here 

Note that the transitive closure is necessary for establishing the relationship. In the IR 

taxonomy domain, ( x ,  y)  E H implies that TER~\I(X) >  TERM(^). However, the semantic 

structure of the taxonomy may well be such that the number of elements in TERM(X) is 

more than one plus the number of elements in TER~I(IJ). Because the taxonomy's subset 

graph GK represents only minimal subset relationships. it  will contain no edge associated 

with (TERM($),  TERM(^)). However, such an edge would exist in the transitive closure Gz, 

enabling the embedment. 
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From a practical standpoint, it is convenient to distinguish between two types of tax- 

onomies: static and adaptive. A static taxonomy consists of a fixed set of classes, like 

the Dewey decimal system or the Library of Congress index. An adaptive taxonomy is a 

dynamic data structure that evolves from the indexing process itself. Such a taxonomy 

consists of an open-ended set of classes, each class being a different grouping of keywords 

from K. That is, when a new document is deemed relevant to a subset of keywords that do 

not make up an existing category, one simply announces this subset a new class and adds 

it to the taxonomy. Hence, a document titled .-rl letter f~.orn Braque t o  Junco" may well 

be indexed in the class {Braque, ~ a n c o ) ,  something that would have been impossible in a 

static taxonomy that does not contain such a predefined category. The only restriction that 

is placed on an adaptive taxonomy is that it must contain at least all the elements in K: (as 

singletons, or classes that are made up of single keywords), as well as K: itself. Hence, we 

begin with the initial set of classes C = {{kl),.. . {k,), C ) ,  and add more classes to it as 

we go along. In the extreme case, the tasonomy might end up consisting of 2" classes, one 

for each indexing possibility in IC. Of course, such a tasonomy will become prohibitively 

large even with only a few dozen keywords. Ho\vever7 note that once the semantics of the 

keyword-list is taken into consideration, many if not most of the classes in 2" will become 

irrelevant, since they represent arbitrary grouping of keywords that are not likely to arise 

in the indexing process. 

In sum, we have shown that relevance judgements made over a tasonomy of classes can 

be pegged into and manipulated over a standard frame of discernment. In order to assert 

this relationship, we had to constrain the definition of a taxonomy by disallowing certain 

graph forms that do not map well on the set-theoretic notion of a frame of discernment. 

The practical implications are as follows. The first constraint (CI) simply requires that 

every taxonomy will have a single entry point. According to the second constraint ( ~ 2 ) ,  
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if class x generalizes class y and class y generalizes class z, there is no need to hard- 

wire into the taxonomy the fact that s also generalizes z. Since this relationship can be 

inferred automatically, the constraint serves to minimize duplication and inconsistencies. 

Constraint ( ~ 3 )  rules out taxonomies in which non-terminal classes converge on the same 

set of terminals through different paths. This constraint can be restrictive, because the 

different paths might have a distinct taxonomical interpretation that a cataloger may wish 

to preserve. If we have to deal with such a taxonomy, ( C 3 )  could be enforced structurally 

by adding auxiliary nodes to K: in such a way that makes all the terminal sets of the 

non-terminal classes unique. Purists may find this solution crude, but the adjustment 

is necessary if one wants to apply the DS model to information indexing and retrieval 

applications without violating, or misinterpreting. the set theoretic premise of the model. 

We now turn to question Qi, which asked whether the DS concept of a lexical power-set 

provides an adequate 'skeleton' for indesing documents in IR applications. The answer 

to this question is 'yes,' but there are two caveats? regarding structural complexity and 

interpretation. Ideally, we would have liked the DS theory to apply to the whole gamut 

of keyword structures - from simple hierarchical architectures (e.g. the Dewey Decimal 

System) to the loose networks that result from 'hot-word' Hypertext indexing. However, 

according to  our analysis only a certain family of these topologies - namely those that 

conform to our definition of a taxonomy - yield to a standard DS interpretation. This rules 

out certain keyword structures that might arise in practice, although in some cases non- 

taxonomical structures can be converted into taxonomies by adding auxiliary keywords. 

The second caveat is that the standard DS model interprets lexical subsets (non-terminal 

classes) as exclusive disjunctions of their constituent keywords. Yet when a cataloger states 

that a document is relevant to, say, {kl: kS, Jiyj): he nlay well mean that the document is 

relevant to all the keywords, i.e. to the conjunctio~z kl A k2 A k3. In fact, the cataloger 
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may wish to index the document in other logical connectives involving those keywords, e.g. 

kl V (k2 /\ k3). It turns out that even though the standard DS model does not support such 

indexing decisions, a simple extension of the model can go a long way toward solving the 

problem, as we treat in Appendix A. 

4.2 Relevance Functions 

The fundamental rule of indexing is that a document should be indexed using certain 

keywords if prospective users of the document would find it relevant to these keywords. 

In its most primitive form, then, relevance is a Boolean and subjective relation, indicating 

categorically that a document d E D is relevant to a lexical subset X = {kl,. . . , km) in the 

view of a particular library patron. However, due to the fact that bibliographical classes 

do not have crisp boundaries, and due to the multitude of relevance opinions expressed 

by different catalogers and library patrons, a more reasonable question is not whether d is 

relevant to X, but rather what is the intensity of this relation. In other words, we seek to 

represent relevance in terms of a mapping r : 2' x D -+ f0,1], rather than in terms of a 

characteristic function r : 2K x D -+ (0,l) .  

There have been many efforts to interpret relevance on probabilistic grounds, Maron and 

Kuhns (1960) being the defining article. One of the fundamental problems in this area 

has been the proper definition of the sample space from which relevance propositions are 

drawn. This point was alluded to by Maron, as folows: 

"The notion of probability of relevance can be interpreted in two different per- 
spectives: of the document, as the proportion of patrons of a given type who 
would judge that document relevant, and of the patron himself, a s  the propor- 
tion of documents of a given type which he would judge relevant. The first 
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model leads to a theory of probabilistic indexing; The second model leads to a 
theory of probabilistic query formulation (Maron, 1982)." 

In what follows we will focus on Maron's first perspective, in which multiple patrons form 

relevance opinions about a fixed document. Consistent with Maron's observation, this 

perspective yields a model of inexact indexing. Unlike Maron, though, the uncertainty 

associated with the indexes will lead in our model not to probability functions, but rather 

to Dempster Shafer mass functions, i.e. functions that conform to definition (3). 

Let U = (ti1, . . . , u,) be a set of catalogers, and let kr be a keyword-list. Suppose that each 

cataloger in U is asked to index the same document using K: i.e. to specify one or more 

keywords from K that are relevant to the document. Suppose that catal~ger u; supplies. 

the opinion that the document is relevant to the lesical subset X E IC; we then record this 

opinion by means of the following Boolean function: 

1 if 21; indexed the document using X 
v;(X) = 

0 otherwise 

Since each cataloger u; supplies one set of relevant keywords, there will be exactly one 

subset X E 2" such that v;(X) = 3. Also, the empty set is not allowed to be a valid 

indexing opinion. If a cataloger is unwilling to give an opinion or is unsure about the 

proper classification of the document, the document is indexed by default in the root class 

IC, which is also an element of 2". This convention makes sense because the root class 

represents the entire library, and is therefore the natural place to store documents whose 

specific class membership is undiscernible. 
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After all n catalogers have cast their indexing opinions regarding the same document d, we 

compute for each lexical subset X E 2' three 'relevance counters,' as follows: 

r (S) = x ~(3': d) LIB 
YE LIB(^) 

, (21) 

r ( X ) =  x r(Y-?d) 
VOL 

Y€VOL(X) 

In words, r(X),  rLIB(X), and r (X) count the number of catalogers who classified 
VOL 

the document in X, in the library rooted in X! and in libraries that intersect (or in a 

hierarchical taxonomy, contain) X, respectively. (When d is fixed in our analysis, we will 

suppress it from the notation, writing r ( X )  instead of r ( X ,  d).) 

Relationship t o  t h e  theory of evidence: Suppose now that the Boolean indexing 

opinions of the catalogers are averaged over the space of catalogers U as follows: 

Then the resulting function m ( X )  is a DS mass function over the lexical space K. Formally, 

we have the following proposition (the proofs are given in a separate appendix): 
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Proposition 
opinions 
m ( X )  = 

1: Let U = {ul,. .  . , u,) be a set of catalogers with their Boolean indexing 
q7 . . . , v, : 2' + {0,1). The real function m : 2' + [0,1] defined by 
. r ( X )  = C;"=, u ; ( X )  is a mass function, satisfying definition (3). 

n 

The consequence of Proposition 1 is that DS mass functions arise naturally when we view 

the relevance functions as derived from averages of multiple Boolean indexing opinions. We 

begin with a space U of n catalogers who are asked to index the same document using the 

same keyword-list IC. Each cataloger supplies an individual opinion that specifies which 

keywords are relevant to the document. Note that the cataloger's indexes are not restricted, 

and that they are free to choose an>- keyword or combination of keywords that, in their 

opinion, are relevant to the document. Nest, shifting our attention from the catalogers 

space U to the keyword space IC, we compute for each lexical subset X .C X: a measure of 

'average relevance,' ! - r(X). which represents the fraction of catalogers who thought that 

the document was relevant to X. Disregarding the lesical subsets that no cataloger has 

chosen? we obtain a set of pairs of the form {(A'l, r l ) ,  . . . , (Kn,rn))  in which E 2"" and 

0 < T ;  =' n .r(l(;) < 1. 

We are now in a position to answer question q2, regarding the 'type7 of relevance that 

DS mass functions represent, given the contest of multiple indexing opinions. First, note 

that the canonical model has yielded the type of relevance numbers that are at the center 

of any probabilistic indexing model. Second, according to Proposition 1, these numbers 

form a mass function, consistent with the standard DS model. Finally, in our multi-player 

interpretation, the meaning of the mass m ( X )  is simply the fraction of catalogers who think 

that the document is relevant to the lesical subset S. 

Following the same line of reasoning, we can also provide an answer to question Q4, that 

sought an IR interpretation of the meaning and relationship of mass functions, belief func- 
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tions, and belief intervals. Given the IR context in which 8 r K, it is easily seen that 

the relevance counters (20-22) are proportional to the mappings that represent degrees of 

belief in the DS model. Specifically, dividing each counter by n - the number of cata- 

logers - yields the mass, belief, and plausibility. functions defined in (3), ( l l ) ,  and (12), 

respectively: 

1 
172 (-r-) = - - T(,X-) 

n 
1 

Bel(X) = - - T (X) LIB 

If we combine these observations with the interpretation of the power-set of the keyword- 

list as a taxonomy, we see that the mass on a lexical subset X is given by the fraction of 

catalogers who indexed the document using X directly. Similarly, the belief in X is the 

fraction of catalogers who indexed the document in libraries within X, and the plausibility 

of X is the fraction of catalogers who indexed the document in libraries that intersect (in 

a hierarchical taxonomy, contain) S. 

The key component of the canonical model that enables this interpretation of the DS 

functions is the assumption of multiple catalogers and the v;(-) functions that keep track of 

their individual indexing opinions. Although this assumption is not part of the DS model, 

we see that once posited, it provides a foundation on which the model can be given (one) 

plausible interpretation, without having to  invoke extra-probabilistic arguments. 
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4.3 Aggregating Relevance 

So far, we have assumed that (i) relevance is a two-place function r(X, d) between a doc- 

ument d and a lexical subset X ,  and that (ii) all the catalogers from whom r(X,d) was 

elicited were of the same 'type,' using Maron's terminology (see quote in Section 4.2). In 

this section we retract both assumptions. Specifically, we argue that relevance, in its most 

elementary form, is a three-place relation r(X, d, q )  in which q is the cEassifier dimension, 

or context, in which d was judged to be relevant to S With that in mind, r(X,d) can be 

viewed as a measure of aggregate relevance that runs over the various contexts in which d's 

relevance to X was judged. We now turn to describe a pooling mechanism that implements 

such an aggregation. 

Let Ul = {ul,.  . . , u,, ) be a group of 121 catalogers who are asked to index a document d 

using a keyword-list IC: based on a certain classifier, or source of information, denoted ql .  

Similarly, let U2 = {ui ,  . . . , uL2) be a group of n2 catalogers who are asked to index the s m e  

document, based on another classifier. denoted q2. The semantics of the classifiers depends 

on the indexing scenario. For example? ql might be the document's title, whereas q2 might 

be the document's abstract. To illustrate, let K = {a. b, c) and let Ul and U2 consist of 

4 and 3 catalogers, respectively. Assume that within the Ul group, two catalogers index 

the document in {a: b), one in {a). and one in {b). Within the U2 group, one cataloger 

indexes the document in {b, c), one in {a, b), and one in {b). These indexing opinions are 

tabulated in the two tables on the left side of figure 5 .  The columns of each table represent 

the common keyword-list K: = {a, b, c). The it11 tuple in each table represents the indexing 

opinion elicited from the ith cataloger in the respective group as a binary vector. Hence, 

1 in the (i, j)th table entry indicates that cataloger i has included the j th  keyword in his 

indexing opinion and 0 indicates that he did not. 
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Put figure 5 around here 

In what follows, we denote the binary vector that represents the indexing opinion of cat- 

aloger u; by w;. Similarly, the set of all opinions of a group of catalogers will be denoted 

W = {wilu; E U ) .  Finally, the group of catalogers ki together with their indexing opinions 

W will be denoted Z =< U, W > and referred to as a model. With this notation, consider 

two groups of catalogers Ul and U2 together with their indexing opinions Wl and W2. If 

all the catalogers in both groups are considered equa31~- qualified to cast indexing opinions, 

then a variety of different pooling mechanisms ma?; be used to compute the aggregate index 

induced by all the catalogers. Symbolically, we seek an operator @ to compute the model 

< U,W >=< u1,w2 > @ < u1.1/1/-2 >. 

One such operator - denoted hereafter by @ - is illustrated in figure 5. This operator 

implements a pooling mechanism that can be described as "a consensus opinion formed by 

the committees of two" (Hummel and Landy, 1988). \Ve have chosen to focus on this par- 

ticular operator for two reasons. First, @ enables an intuitive interpretation of Dempster's 

rule, as we will see shortly. Second, the operator has a straightforward meaning in terms 

of combining expert opinions, although it is certainly not the only plausible technique for 

pooling indexing decisions in an IR context. At the same time, the operator provides a 

simple point of departure from which more sophisticated IR pooling techniques can be 

derived. as we discuss toward the end of the section. 

Going back to figure 5, note that I: = Tj; x I;:z enumerates all the nl . n2 possible two- 

member committees of catalogers that can be drawn from Ul and from U2. Within each 

committee (unique pair of catalogers) (u;,ui) E U, the committee's indexing opinion is 

defined to be the binary conjunction of the individual opinions of u; and ui, which we 

denote wig = w; - wi. For esample, consider the first tuple in the U table in figure 5. This 
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tuple gives the opinion of the committee ( u l ,  u',), i.e. wl,lt = (0,1,O). This opinion is the 

binary conjunction of the individual opinion w1 = (1,1,0)  and wi = (0,1,1) as given by 

catalogers ul and ui respectively. 

The pooling operation €9 is completed by treating U as a new group of catalogers and using 

(23) to compute the mass function that it induces: 

m J ( { a ) )  = m'(l.O.0) = 1/12 
m l ( {b ) )  = mJ(O. 1,O) = 7/12 
mJ ( (a7  b ) )  = rn'(1: 1 , O )  = 2/12 
mJ( 0 ) = mJ(O.O.O) = 2/12 

Note that m' is not necessarily a ma.ss function. since can yield a result like m'(0) > 0. 

This happens when there is a pair of opinions (e.g. u2 and u', in our example), such that 

the conjunction of the opinions gives the empty set even though neither opinion gives the 

empty set individually. To resolve the problem. we norillalize mJ(-)  as follows: 

m ( ( a } )  = - . 172'(X) = 1/10 
I-mi(@) 

172/(B) = 7/10 m ( { b ) )  = - I-ml(0) 

m ( { a ,  b ) )  = - I -ml(0) . m r ( A B )  = 2/10 (28) 

m(0) gf 0 

In words, for each lexical subset X E X, m J ( X )  is the fraction of the (paired) catalogers 

who classified the document in that subset. Kest. the fraction of the catalogers who agreed 

on nothing - mr(O,O,O) - is distributed proportionally among the fractions of catalogers 

who agreed on something, yielding a new mass that sums up to unity. This function is now 

taken to be the 'aggregate index' of the document d, implying the taxonomy depicted at  the 

top right of the figure. We may also view m ( X )  as the fraction of (paired) catalogers who 

index the document in X among those paired catalogers who do not index the document 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-93- 16 



in the empty set 0. That is, if we discard pairs that agree on no relevant keywords, then 

the remaining pairs can compute their pooled relevance and then yield a mass function m. 

Relationship t o  t h e  theory of evidence: In order to discuss the relationship of the 

multiple catalogers/multiple classifiers scenario to the DS model, we first have to step 

back and say a few words about the role of 'sources of evidence' in the latter. Basically, 

the DS theory models a situation in which a finite set of 'pieces' or 'sources' of evidence 

E = {el,. . . , en) is used to discern the likelihoods of various possibilities X drawn from a 

common frame of discernment. Yet the identity of the sources of evidence is rather implicit 

in the model's language. That is, the common notation m;(X) and Bel;(X) is meant to 

be shorthand of the mass and belief functions m(.Xle,) and Bel(Xle;), where e; is the 

source of evidence whose 'support' of the possibility X we are trying to capture. The total 

support that the body of evidence E lends to A- is computed through Dempster7s rule (7- 

8), which yields a new function of the form m(Xlel, . . . , en) = m(X/el)@, . . . , @m(Xlen).6 

For simplicity's sake, we denote the latter function m(X), which reads 'the mass that the 

possibility X attains after all the available evidence has been taken into consideration.' 

With that, the relationship between the canonical model and the DS model is as follows: 

possibilities correspond to lexical subsets, and sources of evidence correspond to classifiers, 

i.e. to different aspects of the document (title, abstract, author, etc.) that help discern the 

document's proper classification. The missing piece in the analogy is the set of catalogers 

who inspect each classifier individually and cast Boolean indexing opinions based on that 

information. In the DS model, the notion of multiple catalogers does not exist. In the 

canonical model, they are the driving force of the entire analysis. Specifically, it is assumed 

6Like Bayes rule, Dempster's rule is com~nutative and associative, so its extension from 2 t o  n operands 
(sources of evidence) is straightforward. 

Center for Digital Economy Research 
Stern School of Business 
Working Paper IS-93- 16 



that each group of catalogers is given access to one source of evidence - a classifier - and 

proceeds to cast its indexing opinions in view of that evidence (Whether or not this multi- 

player scenario makes sense in practice will be discussed in the next section. For now, 

the reader is asked to treat it as a theoretical metaphor). Hence, the overall classification 

decision is characterized by two types of uncertainty: ( i )  the uncertainty which is attributed 

to the fact that different sources of evidence might suggest different indexing decisions; 

and (ii) the uncertainty that is attributed to the variance of indexing opinions within each 

group of catalogers who are given access to the same information (classifier). How should 

we combine this multitude of indexing opinions into an aggregate index? In the canonical 

indexing model, the opinions are combined at the catalogers level, through the cartesian 

consensus operator @. In the DS model, where the cataloger spaces do not exist, the 

opinions are combined at  the classifiers level, via Dempster's rule Bj. The key point, as 

illustrated in figure 5 ,  is that both combination methods yield precisely the same result. 

Formally, we have the following proposition: 

Proposit ion 2: Let Z1 =< U1, 1;1/; > and Z2 =< U2,  PT/; > be two sets of catalogers 
together with their Boolean indexing opinions, and let Z =< U, T,V > be the outcome 
of Z = Zl 8 Z2, as follows: (i) U = til x lJ2; and (ii) W = {wij = w; wlilw; E 
Wl and w; E W2). Let 8 be Dempster's rule as it is applied to mass functions. Let 
mz, 7 mz2 9 and mz .z2 7 be the mass functions induced by the models Zl, 5, and 
Zl 8 Zz. Then we have the following: mr, oh = mZ, @ mz2. 

We are now in a position to return to question Q3, which sought a plausible interpretation 

of Dempster's rule in the contest of IR applications. First, note that the cartesian product 

operator $ implements a pooling mechanism which may or may not make sense in the 

applied context of IR. From a theoretical perspective, though, @ is quite unique because of 

Proposition 2. That is, once we accept the fact that Dempster's rule is isomorphic to @, a 

whole set of questions emerges: (1) why are the individual catalogers forced to specify only 
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Boolean, and not probabilistic, indexing opinions? (2) why are the groups of catalogers 

joined using a set product operator, as opposed to other set combination operators, e.g. 

union? (3) why committees of two, and not, say, committees of three? (4) why are the 

individual opinions combined using a binary conjunction rule? (5) why are all cataloger 

opinions given the same weight, where in practice some opinions may be more informed or 

worthy than others? 

A proper answer to these questions requires an elaborate research program, involving both 

theoretical and empirical work. illso, the exact nature of the combination rule can vary 

from one situation to another. In the specific contest of information indexing and retrieval, 

one can think of a family of index elicitation and aggregation models, designed to operate 

under different sets of assumptions. For example, if the catalogers prefer to express binary 

indexing opinions, we can use Dempster's rule (or the equivalent 8 )  to combine them. If 

they wish to express relevance by selecting a number between 0 and 1, we can modify the 

combination rule to accommodate this language as well (this will be similar to  the way Yen 

(1989) extended Dempster's rule in the GERTIS system). If the catalogers wish to  use a 

discrete language such as 'remotely relevant,' 'somewhat relevant,' etc., we can develop a 

fuzzy version of the rule. The key point here is that the precise definition of @, along with 

Proposition 2, provide clear .guidelines as to (i) which aspect of the combination rule has 

to be modified, and (ii) what will be the normative relationship between the modified rule, 

Dempster's rule, and probability theory. 

5 Conclusion 

The major implications of the research were already discussed in the body of the paper. We 

conclude with several comments regarding (i) efforts to apply the DS model to information 
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indexing and retrieval applications; and (ii) efforts to interpret the theory of evidence on 

logical or probabilistic grounds. 

Information Indexing and Retrieval: One objective of the paper was to articulate a 

concrete relationship between the Dempster Shafer model and information indexing and 

retrieval applications. The relationship that we have expounded can be summarized as 

follows: 

keyword-list (IC) 
taxonomy (< C, H >) 
classification criteria (9;) 
groups of catalogers (CI ; . )  
individual indexing opinions (TAT;) 

relevance measure to class (r) 
relevance measure to library ( r  (X)) LIB 
relevance measure to volume (r  (S)) VOL 
relevance aggregation operator ((3) 

IR application 

frame of discernment (8) 
subset of 2' 
sources of evidence (e;) 
not part of the model 
not part of the model 
mass function (m) 
belief function (Bel) 
plausibility function (Pl) 
Dempster's rule (@) 

Dempster Shafer model 

We hope that the details of this interpretation, as discussed in the paper, will promote 

a better understanding of the proper way to apply the DS model to IR applications. In 

addition, the interpretation provides a practical foundation for building a variety of different 

indexing algorithms. These algorithms can use the @ combination rule, or versions thereof, 

as called by the application. Ultimately, the success of one relevance calculus or another 

will depend on face validity and on field performance considerations. 
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In view of the fact that economic considerations hardly permit documents to be classified 

by even one human cataloger, the multiple catalogers setting that we have postulated 

seems to be rather unrealistic. There are two ways to address this point. First, a chief 

objective of this paper was to shed light on the DS theory; in that context, the notion of 

multiple catalogers serves as a theoretical artifact that enables a probabilistic interpretation 

of the theory. Second, with the advent of m4de-area information services (such as Thinking 

Machine's WAIS system), the notion of multiple catalogers is no longer a remote academic 

exercise. In such systems, indexing opinions can be dynamically elicited from qualified 

library searchers and then used to autornaiically refine (or even create from scratch) index 

vectors for the benefit of other searchers. The library patrons who act as catalogers reach 

the same documents with different backgrounds and interests, each highlighting a different 

facet of the composite relation that we call 'relevance.' The canonical rnodel that was 

described in this paper can be viewed as a first step toward implementing an interactive, 

multi-player, system for pooling such indexing opinions and converting them into composite 

relevance measures. 

T h e  Dempster  Shafer theory of evidence: Several authors provided canonical exam- 

ples that explain the rationale of the DS model in the way of analogy. Zadeh (1986) 

illustrated how mass functions and Dempster's rule can be mapped on fuzzy queries about 

interval-valued, rather than point-valued, attributes, in a relational database. Gordon and 

Shortliffe (1985) gave a compelling interpretation of how a DS calculus can be used to  rep- 

resent and combine the degrees of belief that clinical symptoms (pieces of evidence) render 

to classes of bacterial organisms (disjunctions of hypotheses), whose set relationships form 

a hierarchy. Coming from a different, domain-independent, direction, Hummel and Landy 

(1988) analyzed the statistical foundation of the theory of evidence in general, without 

making any assumptions on the underlying domain or the logical structure of the hypothe- 

ses. In contrast to other researchers who attenlpted to interpret high-level constructs of 
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the DS model directly (e.g. Baron, 1937, Kyburg, 19517, and Schocken and Kleindorfer, 

1989), Hummel and Landy took a more fundamental viewpoint that showed how the the- 

ory's constructs were implicitly linked to statistics of hypothetical opinions. However, their 

abstract mathematical analysis made no use of canonical examples, and thus it is difficult 

to interpret its implications on specific domain of application. 

With that in mind, one objective of this paper was to illustrate how constructs of the DS 

theory that up until now defied simplistic interpretations have a plausible semantics in the 

context of a multi-classifier/multi-cataloger model. We have seen, in propositions 1 and 2, 

that the canonical model leads to exactly the same set of functions and formulae of the DS 

model. Hence, from a mathematical perspective. the canonical model is isomorphic to the 

DS model. Yet from a semantic perspective, it invokes the notion of multiple catalogers, 

consistent with several previous analyses of probabilistic relevance (Maron and Kuhns, 

1960, Maron, 1932, Thompson, 1990). 

To what extent are we forced to accept the multi-player premise of our canonical interpreta- 

tion? One can simply reject the notion, avoiding the isomorphism by denying the possibility 

of multiple opinions, and relying simply on the DS theory as presented in Section 3. In that 

case, however, one is left with philosophical questions like Q1 through 94. There could, of 

course, be other interpretations. However, in a real sense. all valid interpretations must be 

accepted or explained. That is, either the interpretation is accepted as is, or one must show 

how another set of semantic constructs provides a plausible interpretation of the theory. 

One advantage of our approach is that new calculi can be developed, different from the DS 

combination rule, that might better suit particular applications, based on modifications of 

the canonical model. It is precisely the unsatisfactory elements of this model that permit 

us to systematically seek improved naethods for managing uncertainty. 
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Since our analysis was strictly probabilistic, it seems to support Lindley7s observation that 

"Anything that can be done with belief functions can better be done with probability theory" 

(Lindley, 1987,~. 20). However, we believe that this argument misses an important point. 

To use a crude but useful analogy, it will be unreasonable to write off a programming 

language like Pascal simply because every Pascal program can be rewritten in machine lan- 

guage. Just like high-level languages provide complex structures for dealing with specialized 

problems, the DS model provides non-elementary functions and operators that lend them- 

selves nicely to certain domains of application, information indexing and retrieval being 

one such example. 

We conclude that the Dempster Shafer theory of evidence provides an attractive framework 

for supporting information indexing and retrieval applications, and that these applications, 

in turn, serve to highlight the internal validity and limitations of the theory. Dempster7s 

rule remains a controversial operator for combining degrees of beliefs, but this paper has 

illustrated that it is just one member in a parametric family of combination rules, and that 

the question of whether to use this rule or another is more a matter of reasoned choice than 

a matter of adhering to a fixed set of formulae. 

Appendix A: Conjunctive Frames of Discernment 

IR taxonomies (left of figure 4) differ from their respective lexical DS power-sets (right of 

figure 4) in a subtle but profound way. In the former, the classes often have meaningful 

names, like Cubism; in the latter. the classes correspond to anonymous lexical subsets, 

like {Braque,~icasso).  As a result, indexing a document in a named class might mean 

something quite different than the implication that the document should be indexed in one 

of the class's constituent keywords. 
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F'or example, suppose that a cataloger decides to index a document in Cubism. In the 

standard DS model, this indexing opinion would be interpreted as "the document is relevant 

to exactly one of the following: Picasso, Braque, or any other (single) Cubist artist." 

Although this interpretation may be logically correct, it clearly entails a loss of concrete 

information about the document's relevance to Cubism proper, a relationship that can take 

many different forms in terms of the keywords that make up that class. In particular, the 

DS model does not support indexing opinions about conjunctions of keywords. That is, 

there is no provision for expressing the opinion that a document is relevant to kl and to kz, 

only that it is relevant to kl or to k2. In reality, of course, it is quite common for catalogers 

to specify conjunctive indexing decisions. 

To partly solve the problem, we propose the following estension of the standard notion of a 

DS frame of discernment. Given a taxonomy graph TK =< C, H >, we augment the graph 

with a new set of terminal nodes that we call net-clas.ses: for each non-terminal class x E 6, 

we add a new terminal class net-x to C and a new edge (x,net-x) to  H. We interpret each 

class net-x to be the conjunction of all the keywords in TERM(X). Since the newly-added 

net-classes are all terminal, we are essentially estending the lexical frame of discernment 

K: (which is a subset of C) to include conjunctions of keywords as well as elementary 

keywords. At the same time, we do not add any new interior nodes (non-terminal classes) 

to the taxonomy graph. Instead, each esisting non-terminal class is interpreted as the 

disjunction of all its terminal classes, which now include the net-classes as well. The 

extension is illustrated in figure 6, where K: = { a ,  b, c ) .  In the figure and hereafter, the 

notation ab stands for the conjunction a A b. 

Compared to the original DS model, the extended model implies a less restrictive interpre- 

tation of lexical subsets. Whereas in the former the indexing decision { a ,  b, c )  meant that 

the document is relevant to a V b V c, in the extended model the decision is tantamount to 
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X n Y, as usual, but the intersection will once again be interpreted as any disjunction 

of conjunctions involving all the elements in the intersection. Hence, our extended logical 

interpretation of subsets is closed under Dempster's rule. For example, the common ground 

of the statements "the truth lies in a logical connective involving (a, b, c)," and "the truth 

lies in a logical connective involving {b, c, d}," is: "the truth lies in a logical connective 

involving {b, c)." The support in this proposition will be computed by Dempster rule from 

ml({a,  b, c)) and mz({b, c, dl), as usual, but the exact form of the logical connective is left 

unspecified at any stage of the analysis. 

In sum, the revised interpretation that we propose implies three generic indexing options 

with respect to a keyword list X = {kl, . . . J i m ) .  If a cataloger thinks that the document 

is relevant to a particular keyword k; E -Y, the document is indexed directly in the ter- 

minal class {k;). If he thinks that the document is relevant to an elementary conjunction 

k;, A, .  . . , Ak,, where {k;,, . . . , I;;,} = 1' 2 X ,  the document is indexed directly in the 

terminal net-class associated with 1;. Finally, if the cataloger thinks that the document 

is relevant to the keywords in Y, but he is unsure about the exact logical form of that 

relevance, then the indexing decision is taken to be the lexical subset Y itself. 

Recall that in a standard DS frame of discernment, indesing decisions consist of either indi- 

vidual keywords (singletons), or exclusive disjunctions of keywords (non-terminal classes). 

A conjunctive frame of discernment represents a step forward in terms of specificity, be- 

cause it supports conjunctive indesilig decisions as well. At the same time, neither frame 

supports direct assignment of degrees of support to any other logical keyword connectives. 

For example, there is no provision for indesing a document on, say, a V (b A c) directly. The 

only way to deal with such an indexing decision is to index the document by default in the 

sweeping class {a, b,c), implying that the document is relevant to a logical combination 

of the three keywords which the model fails to represent directly. Another disadvantage 
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of conjunctive frames is that they do not support exclusive disjunctions, as an indexing 

decision like {a ,  b )  always implies that the document is relevant to a or to b or to a A b. 

Thus, the design of relevance calculi that support any logical combination of keywords with- 

out violating the basic philosophy of the DS model remains an important area of future 

research. 

We conclude with some observations about complexity. Augmenting a taxonomy with 

conjunctive net-classes obviously enlarges the indexing space, but the increase is not ex- 

ponential. In the worst-case situation, one would have to add a new net-class element for 

every non-singleton subset X E zK. For example. let h' contain n keywords, and consider a 

maximal taxonomy that contains 2" - 1 classes (we exclude the empty class). If we extend 

this taxonomy with all possible net-classes, the size of the augmented taxonomy would be 

2" - 1 -+ (2" - 1 - n) = znS1 - n - 2, less than twice the size of the original taxonomy. 

Note that in reality, the IR semantics will significantly reduce the model's complexity, be- 

cause the fully augmented taxonomy contains numerous conjunctions that make little or 

no sense on bibliographical grounds. Accordingly, if conjunctive keywords are introduced 

only dynamically, as they occur in indesing scenarios, then the actual taxonomy will be 

significantly smaller than the worst-case (fully-augmented) taxonomy. 

The extension that we have proposed - augmenting the frame of discernment yet leaving 

the non-terminal classes set intact - represents a compromise between two extremes. On 

one hand, the standard DS model supports only disjllnctive indexing opinions. On the 

other hand, we can envision a model in which indesing opinions can focus directly on 

any disjunction of conjunctions of keywords, such as "the document is directly relevant to 

a V ( b  A c)". The problem with such a model is that it will contain a formidable number 

of non-terminal classes: if we let X: contain 12 keywords, such a model will be based on a 

frame of discernment consisting of '2" elements, upon which 22n classes would be formed. 
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Obviously, managing such an indexing space would be a daunting task. The intermediate 

solution that we propose is a reasonable compromise, because (i) it allows indexing opinions 

to  focus directly on any elementary conjunction of keywords, and (ii) it yields a taxonomy 

which is a t  most twice as large as a standard DS-based taxonomy. 

Appendix B: Proofs 

Proposi t ion 1: Let U = {ul, . . . . u,) be a set of catalogers with their Boolean indexing 

opinions v1, . . . , v, : 2K --+ {0,1}. The real function rn : zK -+ [O, 11 defined by 

m(X)  = $ - r (X)  = ! C:=, vi(X) is a mass function. satisfying definition (3). 

Proof :  For each class X E 2K, either all, some, or none of the catalogers indexed the 

document in X. Hence, r (X)  = n,  or r (X)  < n,  or r ( X )  = 0, respectively, implying that 

0 < m(X)  < 1. Hence, m(.) is a mapping from 2' to [O,l], satisfying the first requirement 

of being a mass function. The second requirement is-that the function will sum up to  1 

over all the subsets of K. This is proved as follo\vs. For each cataloger u;, exactly one 

of the subsets X 2 K: is such that v;(X) = 1. For all other subsets Y, vi (Y)  = 0. Thus 

C X E 2 ~  v;(X) = 1. We thus have the following: 
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Further, since no cataloger gives 0 as his opinion, it is always true that v;(0) = 0. Therefore, 

the third requirement of definition (3) is satisfied. Thus m is a mass function. 

Definition of the @ combination rule: Let U = {ul,. . . , a n )  be a set of catalogers 

with their Boolean indexing opinions vl, . . . , v, : 2"; --+ { O , l ) .  To denote the fact that 

the keyword k f X: was included in the indexing opinion of the ith cataloger, we use the 

following notation: 

1 if v;(X) = 1 and k E X 
w;(k) = 

0 otherwise 

If K = {kl , . . . , k,), the binary vector obtained by tui(kl), . . . , wi(k,) is denoted w; and 

called the Boolean indexing opinion of ui. The collection of all such opinions of members of 

U is denoted W = {wilui f U). To combine the indexing opinions of two sets of catalogers 

< Ul, Wl > and < U2, W2 >, we use the following formulae (@): 

u = u, xu;, 

W = {wij(.)lui E fi7 'llj E U2), 

wij(k) = w ; ( k ) .  wj(k). 

Where wi(k) and wi(k) are as defined in (29) for u; E Ul and of u; E U;. 

In section 4.2 we have shown how a mass function can be constructed from a set of catalogers 

(Proposition 1). Specifically, recall that the mass function induced by the model 

Z =< U, W >, denoted hereafter mT(X), gives the fraction of catalogers in U, among those 
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catalogers who express an opinion (i.e. w; f 0) ,  whose indexing opinion exactly matched 

X .  This is the same as those catalogers for whom wi(kj)  = 1 if and only if kj E X .  For 

Z =< U, W >, This fraction can be written down exactly: 

#{u; E Ulwi(kj) = 1 if kj E X and w;(k,) = 0 if k, 4 X) 
m z ( W  = 

#{ui E ulwi f;} 
' (33) 

for X f 0. Of course? m ~ ( 8 )  = 0. We are now in a position to prove the follo-vving. 

Proposition 2: Let Z1 =< Ul, MJ1 > and Z2 =< C;. T/V2 > be two sets of catalogers 
together with their Boolean indexing opinions, and let Z =< U, W > be the outcome 
of Z = Z1 8 Z2, as follows: (i) U = Ul x U2; and (ii) W = {w,, = w; w:Jwi E 
Wl and w: E W2}. Let $ be Dempster's rule as it is applied to mass functions. Let 
mzl ,  mz2, and mzl,,2, be the mass functions induced by the models 21, Z2,  and 
Z1 @I Zz. Then we have the following: n2zl,z2 = mZl $ mz2. 

Proof: This proposition asserts a relationship between the general Dempster Shafer model 

and the canonical indexing model presented in section 4. The fact that the mapping from 

one model to the other is homomorphic follows from Hummel and Landy (19S8), but we 

will supply an independent argument here in the contest of the indexing model. 

Let us assume that there are nl catalogers in U1 and 122 catalogers in LT2, and let us fix a 

particular nonempty lexical subset X of the key\vord-list K. We wish to show that 

n2 Z , 8 z 2  (X) = ( 1 7 2 ~ ~  $ 1nZ2 )(X) (34) 

Beginning with the right hand side of (134) and using the definition of Dempster's rule @, 

(mZl  63 m Z 2 ) ( X )  is equivalent to 
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Multiplying top and bottom by nl . n2 and distributing, we obtain 

Recalling how mass functions are induced from the opinions of groups of catalogers (Eqn. 

23 in Section 4.2), we may interpret this expression as follows. The value nlmz, (A) counts 

the number of catalogers in Ul who have indexed the document in the lexical subset A. 

Likewise, n2mz2 (B) counts the number of catalogers in Z2 who have indexed the document 

in the lexical subset B. Hence, the product nlmZl ( A )  . n2mz2 (B)  counts the number of 

distinct pairs of catalogers ju;, ujl) in LJl x U2 where u; E lil has indexed the document in 

A and ujl f U2 has indexed the document in B .  Now?.., according to the way @ is defined, 

if u; has indexed in A and ujl has indesed in B, then the pair of catalogers (u;, ujl) end up 

indexing the document in A f l  B = X. Thus, the numerator of expression (36) counts all 

the cataloger pairs that end up indexing the document in X. 

Precisely the same argument can be used to show that the denominator of (36) counts all 

the pairs of catalogers who do not index the document in 0. Thus (36) gives the fraction 

of cataloger pairs'in Ul x U2 that have indexed the document in X out of the pairs of 

catalogers in Ul x U2 who have indexed the document in some non-empty lexical subset, 

which is exactly the definition of rnzl,,,, the left hand side of (34). 
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E X T E R N A L  V A L I D 1 , T Y  

Indexing 
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Shaf e r  
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% Retrieval  

I N T E R N A L  V A L I D I T Y  

Figure 1: A pictorial description of the paper's methodology. Section 3 uses the terminology 
and rationale of the Dempster Shafer theory to derive a DS indexing model for IR applica- 
tions (top arrow). Taking the opposite direction, Section 4 presents a canonical indexing 
model that uses a particular method to combine cataloger opinions. Toward the end of the 
paper, we show that the canonical model provides a probabilistic and domain-independent 
interpretation of the Dempster Shafer model (bottom arrow). 
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Figure 2: An illustration of the relationship that exists among mass (top), belief (left), and 
plausibility (right) functions that represent the same set of primitive degrees of support. 
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art 

. . . modern . . . impressionist . . . 

. . . Cubism . . . Dada . . . 

. . . Braque . . . Picasso . . . Janco . . . 

Figure 3: An excerpt from an art-related taxonomy designed to classify documents on 
major artists and artistic movements. 
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Figure 4: The relationship between a taxonomy (left) and a lexical frame of discernment 
(right). Using the terminals set K: = {~raque ,P icasso ,  Janco) of the taxonomy, one con- 
structs the transitive closure of the subset graph G*,, where broken lines represent the edges 
added by the transitive closure operation. The embedment is established by mapping each 
node x in the taxonomy on its terminals set TERM(X) in G*,. In this particular case we 
have (using the first letter of each keyword) b t--, {b), p c+ {P}, j H {j }, c H {b, p), and 
m {b, p, j). The edges map in a corresponding fashion. 

Modern (Braque ,Picasso, ~ a n c o )  

'\ / 4 =/;/ \ \ 
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The Ul taxonomy The U2 taxonomy 
with m(X,d,qi) values: with m(X,d,q2) values: 

The U taxonomy 
v i t h  m(X,d) values: 

U1 a b b c - UlxU2 
--- ------------- c U 2  ---- ------------- a ------- 
ul: 1 1 0 1 :  0 1 1 u1 ,u1' : 
u2: 1 0 0 u2': 1 1 0 u1 ,u2' : 
u3: 0 1 0 u3': 0 1 0 ul,u3' : 
u4: 1 1 0 u2,ul': 

u2,u2' : 
u2,u3' : 
u3,ul' : 
u3,u2' : 
u3 ,u3' : 
u4,uIY : 
u4,u2' : 
u4,u3' : 

Figure 5: The DS model (top) and its probabilistic interpretation (bottom) in one particular 
indexing scenario. The individual indesing opinions of two groups of catalogers (Ul and 
U2) induce two different taxonomies and two different relevance functions - m ( X ,  d, q,) 
and m(X, d, 42). The combination of the relevance functions via Dempster's rule @ a t  the 
classifiers level and the combination of the opinions via the cartesian consensus rule (8, at 
the catalogers level lead to the same pooled indes depicted at the top right of the figure. 
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Figure 6: A conjunctive frame of discernment. Nodes of type {x, y) represent disjunctions, 
as usual, whereas nodes of type {zy) represent newly-added conjunctions. The nodes and 
edges added by the extension are underlined and broken, respectively. Note that while 
the extended model contains many more terminal classes than the original model, it has 
the same number of non-terminal classes (albeit with a new disjunctive interpretation). 
As a result, the size of the extended taxonomy is less than twice the size of the original 
taxonomy. 
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